
Parameterized algorithms: Tree width and dynamic
programming

Maria Serna

Fall 2023

AiC FME Parameterizing by tree width Fall 2023 1 / 33

Parameterizing by treewidth

1 Parameterizing by treewidth

2 Nice tree decomposition

3 Algorithmic meta theorems

AiC FME Parameterizing by tree width Fall 2023 2 / 33

Parameterizing by treewidth

Equivalent tw parameterizations for property P

tw-k-P
Input: A graph G , a tree decomposition (T ,X) of G
and an integer k,
Parameter: width(T ,X) + k
Question: Is P(G , k) true?

tw-k-P
Input: A graph G and integers w and k,
Parameter: w + k
Question: Is tw(G) ≤ w and P(G , k) true?

AiC FME Parameterizing by tree width Fall 2023 3 / 33

Parameterizing by treewidth

Equivalent tw parameterizations for property P

tw-k-P
Input: A graph G , a tree decomposition (T ,X) of G
and an integer k,
Parameter: width(T ,X) + k
Question: Is P(G , k) true?

tw-k-P
Input: A graph G and integers w and k,
Parameter: w + k
Question: Is tw(G) ≤ w and P(G , k) true?

AiC FME Parameterizing by tree width Fall 2023 3 / 33

Parameterizing by treewidth

Equivalent tw parameterizations for property P

tw-k-P
Input: A graph G , a tree decomposition (T ,X) of G
and an integer k,
Parameter: width(T ,X) + k
Question: Is P(G , k) true?

tw-k-P
Input: A graph G and integers w and k,
Parameter: w + k
Question: Is tw(G) ≤ w and P(G , k) true?

AiC FME Parameterizing by tree width Fall 2023 3 / 33

Parameterizing by treewidth Small tree decomposition

Small tree decomposition

A tree decomposition (T ,X) is small if for distinct u, v ∈ V (T),
Xu ̸⊆ Xv and Xv ̸⊆ Xu.

When given a tree decomposition of G , in polynomial time we can
construct a small tree decomposition of G with the same width.

If a tree decomposition is not small there should be two adjacent nodes
u, v ∈ V (T) with Xu ⊆ Xv .
Contracting uv into a new node w with Xw = Xv gives a smaller tree
decomposition for G .
repeating the above procedure we get a small tree decomposition.

AiC FME Parameterizing by tree width Fall 2023 4 / 33

Parameterizing by treewidth Small tree decomposition

Small tree decomposition

A tree decomposition (T ,X) is small if for distinct u, v ∈ V (T),
Xu ̸⊆ Xv and Xv ̸⊆ Xu.

When given a tree decomposition of G , in polynomial time we can
construct a small tree decomposition of G with the same width.

If a tree decomposition is not small there should be two adjacent nodes
u, v ∈ V (T) with Xu ⊆ Xv .
Contracting uv into a new node w with Xw = Xv gives a smaller tree
decomposition for G .
repeating the above procedure we get a small tree decomposition.

AiC FME Parameterizing by tree width Fall 2023 4 / 33

Parameterizing by treewidth Small tree decomposition

Small tree decomposition

A tree decomposition (T ,X) is small if for distinct u, v ∈ V (T),
Xu ̸⊆ Xv and Xv ̸⊆ Xu.

When given a tree decomposition of G , in polynomial time we can
construct a small tree decomposition of G with the same width.

If a tree decomposition is not small there should be two adjacent nodes
u, v ∈ V (T) with Xu ⊆ Xv .
Contracting uv into a new node w with Xw = Xv gives a smaller tree
decomposition for G .
repeating the above procedure we get a small tree decomposition.

AiC FME Parameterizing by tree width Fall 2023 4 / 33

Parameterizing by treewidth Small tree decomposition

Small tree decomposition

A tree decomposition (T ,X) is small if for distinct u, v ∈ V (T),
Xu ̸⊆ Xv and Xv ̸⊆ Xu.

When given a tree decomposition of G , in polynomial time we can
construct a small tree decomposition of G with the same width.

If a tree decomposition is not small there should be two adjacent nodes
u, v ∈ V (T) with Xu ⊆ Xv .

Contracting uv into a new node w with Xw = Xv gives a smaller tree
decomposition for G .
repeating the above procedure we get a small tree decomposition.

AiC FME Parameterizing by tree width Fall 2023 4 / 33

Parameterizing by treewidth Small tree decomposition

Small tree decomposition

A tree decomposition (T ,X) is small if for distinct u, v ∈ V (T),
Xu ̸⊆ Xv and Xv ̸⊆ Xu.

When given a tree decomposition of G , in polynomial time we can
construct a small tree decomposition of G with the same width.

If a tree decomposition is not small there should be two adjacent nodes
u, v ∈ V (T) with Xu ⊆ Xv .
Contracting uv into a new node w with Xw = Xv gives a smaller tree
decomposition for G .

repeating the above procedure we get a small tree decomposition.

AiC FME Parameterizing by tree width Fall 2023 4 / 33

Parameterizing by treewidth Small tree decomposition

Small tree decomposition

A tree decomposition (T ,X) is small if for distinct u, v ∈ V (T),
Xu ̸⊆ Xv and Xv ̸⊆ Xu.

When given a tree decomposition of G , in polynomial time we can
construct a small tree decomposition of G with the same width.

If a tree decomposition is not small there should be two adjacent nodes
u, v ∈ V (T) with Xu ⊆ Xv .
Contracting uv into a new node w with Xw = Xv gives a smaller tree
decomposition for G .
repeating the above procedure we get a small tree decomposition.

AiC FME Parameterizing by tree width Fall 2023 4 / 33

Parameterizing by treewidth Small tree decomposition

Small tree decomposition

If (T ,X) is a small tree decomposition of G . Then |V (T)| ≤ |V (G)|

Exercise: proof by induction

We can make use the FPT algorithm that given a (G ,w) decides
iwhether tw(G) > w or produces a tree decomposition of width
4w + 4.

We can further assume that such a tree decomposition is small.

AiC FME Parameterizing by tree width Fall 2023 5 / 33

Parameterizing by treewidth Small tree decomposition

Small tree decomposition

If (T ,X) is a small tree decomposition of G . Then |V (T)| ≤ |V (G)|

Exercise: proof by induction

We can make use the FPT algorithm that given a (G ,w) decides
iwhether tw(G) > w or produces a tree decomposition of width
4w + 4.

We can further assume that such a tree decomposition is small.

AiC FME Parameterizing by tree width Fall 2023 5 / 33

Parameterizing by treewidth Small tree decomposition

Small tree decomposition

If (T ,X) is a small tree decomposition of G . Then |V (T)| ≤ |V (G)|

Exercise: proof by induction

We can make use the FPT algorithm that given a (G ,w) decides
iwhether tw(G) > w or produces a tree decomposition of width
4w + 4.

We can further assume that such a tree decomposition is small.

AiC FME Parameterizing by tree width Fall 2023 5 / 33

Parameterizing by treewidth Small tree decomposition

Small tree decomposition

If (T ,X) is a small tree decomposition of G . Then |V (T)| ≤ |V (G)|

Exercise: proof by induction

We can make use the FPT algorithm that given a (G ,w) decides
iwhether tw(G) > w or produces a tree decomposition of width
4w + 4.

We can further assume that such a tree decomposition is small.

AiC FME Parameterizing by tree width Fall 2023 5 / 33

Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

Let (T ,X) be a tree decomposition of G of width w .

Make T into a rooted tree by choosing a root r ∈ V (T), and
replacing edges by arcs in such a way that every node points to its
parent.

For v ∈ V (T), RT (v) denotes the nodes in the subtree rooted at v
(including v).

For v ∈ V (T), V (v) = X (RT (v)), and G (v) = G [V (v)].

Thus, we have an induced subgraph associated to each node.

Notice that Xv is a separator in G .

AiC FME Parameterizing by tree width Fall 2023 6 / 33

Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

Let (T ,X) be a tree decomposition of G of width w .

Make T into a rooted tree by choosing a root r ∈ V (T), and
replacing edges by arcs in such a way that every node points to its
parent.

For v ∈ V (T), RT (v) denotes the nodes in the subtree rooted at v
(including v).

For v ∈ V (T), V (v) = X (RT (v)), and G (v) = G [V (v)].

Thus, we have an induced subgraph associated to each node.

Notice that Xv is a separator in G .

AiC FME Parameterizing by tree width Fall 2023 6 / 33

Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

Let (T ,X) be a tree decomposition of G of width w .

Make T into a rooted tree by choosing a root r ∈ V (T), and
replacing edges by arcs in such a way that every node points to its
parent.

For v ∈ V (T), RT (v) denotes the nodes in the subtree rooted at v
(including v).

For v ∈ V (T), V (v) = X (RT (v)), and G (v) = G [V (v)].

Thus, we have an induced subgraph associated to each node.

Notice that Xv is a separator in G .

AiC FME Parameterizing by tree width Fall 2023 6 / 33

Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

Let (T ,X) be a tree decomposition of G of width w .

Make T into a rooted tree by choosing a root r ∈ V (T), and
replacing edges by arcs in such a way that every node points to its
parent.

For v ∈ V (T), RT (v) denotes the nodes in the subtree rooted at v
(including v).

For v ∈ V (T), V (v) = X (RT (v)), and G (v) = G [V (v)].

Thus, we have an induced subgraph associated to each node.

Notice that Xv is a separator in G .

AiC FME Parameterizing by tree width Fall 2023 6 / 33

Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

Let (T ,X) be a tree decomposition of G of width w .

Make T into a rooted tree by choosing a root r ∈ V (T), and
replacing edges by arcs in such a way that every node points to its
parent.

For v ∈ V (T), RT (v) denotes the nodes in the subtree rooted at v
(including v).

For v ∈ V (T), V (v) = X (RT (v)), and G (v) = G [V (v)].

Thus, we have an induced subgraph associated to each node.

Notice that Xv is a separator in G .

AiC FME Parameterizing by tree width Fall 2023 6 / 33

Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

Let (T ,X) be a tree decomposition of G of width w .

Make T into a rooted tree by choosing a root r ∈ V (T), and
replacing edges by arcs in such a way that every node points to its
parent.

For v ∈ V (T), RT (v) denotes the nodes in the subtree rooted at v
(including v).

For v ∈ V (T), V (v) = X (RT (v)), and G (v) = G [V (v)].

Thus, we have an induced subgraph associated to each node.

Notice that Xv is a separator in G .

AiC FME Parameterizing by tree width Fall 2023 6 / 33

Parameterizing by treewidth Small tree decomposition

a

b c

d

eg

f

b, c

b, c, g

b, g, a c, g, e

g, f , e e, d, c

Exercise For this rooted tree decomposition. Draw the graphs associated
to each node in the tree. What are the differences among parent-child
graphs?

AiC FME Parameterizing by tree width Fall 2023 7 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X) be a rooted tree decomposition of G with width w .

For every v ∈ V (T) and every proper k-coloring α of G [Xv], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X) be a rooted tree decomposition of G with width w .

For every v ∈ V (T) and every proper k-coloring α of G [Xv], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X) be a rooted tree decomposition of G with width w .

For every v ∈ V (T) and every proper k-coloring α of G [Xv], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X) be a rooted tree decomposition of G with width w .

For every v ∈ V (T) and every proper k-coloring α of G [Xv], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X) be a rooted tree decomposition of G with width w .

For every v ∈ V (T) and every proper k-coloring α of G [Xv], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X) be a rooted tree decomposition of G with width w .

For every v ∈ V (T) and every proper k-coloring α of G [Xv], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Lemma

Pu(α) = 1 iff for all children v of u, there is an α-compatible coloring β of
G [Xv] with Pv (β) = 1.

Proof.

(⇒) Let γ be an α-compatible coloring of G (u). G (v) is a subgraph
of G (u), so restricting to Xv gives the desired coloring β.

AiC FME Parameterizing by tree width Fall 2023 9 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Lemma

Pu(α) = 1 iff for all children v of u, there is an α-compatible coloring β of
G [Xv] with Pv (β) = 1.

Proof.

(⇒)

Let γ be an α-compatible coloring of G (u). G (v) is a subgraph
of G (u), so restricting to Xv gives the desired coloring β.

AiC FME Parameterizing by tree width Fall 2023 9 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Lemma

Pu(α) = 1 iff for all children v of u, there is an α-compatible coloring β of
G [Xv] with Pv (β) = 1.

Proof.

(⇒) Let γ be an α-compatible coloring of G (u). G (v) is a subgraph
of G (u), so restricting to Xv gives the desired coloring β.

AiC FME Parameterizing by tree width Fall 2023 9 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

(⇐)

Consider two children v and w of u, and suppose they have
α-compatible colorings β and γ respectively.

Since (T ,X) is a tree decomposition, V (v) ∩ V (w) ⊂ Xu, so β is
γ-compatible.
Combining β and γ gives δ : V (u) → {1, . . . , k}.
Since (T ,X) is a tree decomposition, there are no edges xy ∈ E (G)
with x ∈ V (v)− Xu and y ∈ V (w)− Xu,
so δ is a proper k-coloring of G (u).
The same can be done for all children of u simultaneously.

EndProof

AiC FME Parameterizing by tree width Fall 2023 10 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

(⇐) Consider two children v and w of u, and suppose they have
α-compatible colorings β and γ respectively.

Since (T ,X) is a tree decomposition, V (v) ∩ V (w) ⊂ Xu, so β is
γ-compatible.
Combining β and γ gives δ : V (u) → {1, . . . , k}.
Since (T ,X) is a tree decomposition, there are no edges xy ∈ E (G)
with x ∈ V (v)− Xu and y ∈ V (w)− Xu,
so δ is a proper k-coloring of G (u).
The same can be done for all children of u simultaneously.

EndProof

AiC FME Parameterizing by tree width Fall 2023 10 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

(⇐) Consider two children v and w of u, and suppose they have
α-compatible colorings β and γ respectively.

Since (T ,X) is a tree decomposition, V (v) ∩ V (w) ⊂ Xu, so β is
γ-compatible.

Combining β and γ gives δ : V (u) → {1, . . . , k}.
Since (T ,X) is a tree decomposition, there are no edges xy ∈ E (G)
with x ∈ V (v)− Xu and y ∈ V (w)− Xu,
so δ is a proper k-coloring of G (u).
The same can be done for all children of u simultaneously.

EndProof

AiC FME Parameterizing by tree width Fall 2023 10 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

(⇐) Consider two children v and w of u, and suppose they have
α-compatible colorings β and γ respectively.

Since (T ,X) is a tree decomposition, V (v) ∩ V (w) ⊂ Xu, so β is
γ-compatible.
Combining β and γ gives δ : V (u) → {1, . . . , k}.

Since (T ,X) is a tree decomposition, there are no edges xy ∈ E (G)
with x ∈ V (v)− Xu and y ∈ V (w)− Xu,
so δ is a proper k-coloring of G (u).
The same can be done for all children of u simultaneously.

EndProof

AiC FME Parameterizing by tree width Fall 2023 10 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

(⇐) Consider two children v and w of u, and suppose they have
α-compatible colorings β and γ respectively.

Since (T ,X) is a tree decomposition, V (v) ∩ V (w) ⊂ Xu, so β is
γ-compatible.
Combining β and γ gives δ : V (u) → {1, . . . , k}.
Since (T ,X) is a tree decomposition, there are no edges xy ∈ E (G)
with x ∈ V (v)− Xu and y ∈ V (w)− Xu,
so δ is a proper k-coloring of G (u).

The same can be done for all children of u simultaneously.

EndProof

AiC FME Parameterizing by tree width Fall 2023 10 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

(⇐) Consider two children v and w of u, and suppose they have
α-compatible colorings β and γ respectively.

Since (T ,X) is a tree decomposition, V (v) ∩ V (w) ⊂ Xu, so β is
γ-compatible.
Combining β and γ gives δ : V (u) → {1, . . . , k}.
Since (T ,X) is a tree decomposition, there are no edges xy ∈ E (G)
with x ∈ V (v)− Xu and y ∈ V (w)− Xu,
so δ is a proper k-coloring of G (u).
The same can be done for all children of u simultaneously.

EndProof

AiC FME Parameterizing by tree width Fall 2023 10 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T ,X) be a rooted small tree decomposition of G of width w. In time
kw+1nO(1) we can decide whether G is k-colorable.

Proof.

For v ∈ V (T) and a k-coloring α of G [Xv], we compute Pv (α)
starting at the leaves of T , and using the recurrence.

G = G (r) is k-colorable iff Pr(α) = 1, for some α.

testing whether α is a G [Xv] coloring can be done in O(w2).

computing Pv(α) for a valid α can be done in nO(1)

the total complexity is mainly determined by the number of
candidates for α which is k |Xv |: |V (T)|kw+1nO(1).

AiC FME Parameterizing by tree width Fall 2023 11 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T ,X) be a rooted small tree decomposition of G of width w. In time
kw+1nO(1) we can decide whether G is k-colorable.

Proof.

For v ∈ V (T) and a k-coloring α of G [Xv], we compute Pv (α)
starting at the leaves of T , and using the recurrence.

G = G (r) is k-colorable iff Pr(α) = 1, for some α.

testing whether α is a G [Xv] coloring can be done in O(w2).

computing Pv(α) for a valid α can be done in nO(1)

the total complexity is mainly determined by the number of
candidates for α which is k |Xv |: |V (T)|kw+1nO(1).

AiC FME Parameterizing by tree width Fall 2023 11 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T ,X) be a rooted small tree decomposition of G of width w. In time
kw+1nO(1) we can decide whether G is k-colorable.

Proof.

For v ∈ V (T) and a k-coloring α of G [Xv], we compute Pv (α)
starting at the leaves of T , and using the recurrence.

G = G (r) is k-colorable iff Pr(α) = 1, for some α.

testing whether α is a G [Xv] coloring can be done in O(w2).

computing Pv(α) for a valid α can be done in nO(1)

the total complexity is mainly determined by the number of
candidates for α which is k |Xv |: |V (T)|kw+1nO(1).

AiC FME Parameterizing by tree width Fall 2023 11 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T ,X) be a rooted small tree decomposition of G of width w. In time
kw+1nO(1) we can decide whether G is k-colorable.

Proof.

For v ∈ V (T) and a k-coloring α of G [Xv], we compute Pv (α)
starting at the leaves of T , and using the recurrence.

G = G (r) is k-colorable iff Pr(α) = 1, for some α.

testing whether α is a G [Xv] coloring can be done in O(w2).

computing Pv(α) for a valid α can be done in nO(1)

the total complexity is mainly determined by the number of
candidates for α which is k |Xv |: |V (T)|kw+1nO(1).

AiC FME Parameterizing by tree width Fall 2023 11 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T ,X) be a rooted small tree decomposition of G of width w. In time
kw+1nO(1) we can decide whether G is k-colorable.

Proof.

For v ∈ V (T) and a k-coloring α of G [Xv], we compute Pv (α)
starting at the leaves of T , and using the recurrence.

G = G (r) is k-colorable iff Pr(α) = 1, for some α.

testing whether α is a G [Xv] coloring can be done in O(w2).

computing Pv(α) for a valid α can be done in nO(1)

the total complexity is mainly determined by the number of
candidates for α which is k |Xv |: |V (T)|kw+1nO(1).

AiC FME Parameterizing by tree width Fall 2023 11 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T ,X) be a rooted small tree decomposition of G of width w. In time
kw+1nO(1) we can decide whether G is k-colorable.

Proof.

For v ∈ V (T) and a k-coloring α of G [Xv], we compute Pv (α)
starting at the leaves of T , and using the recurrence.

G = G (r) is k-colorable iff Pr(α) = 1, for some α.

testing whether α is a G [Xv] coloring can be done in O(w2).

computing Pv(α) for a valid α can be done in nO(1)

the total complexity is mainly determined by the number of
candidates for α which is k |Xv |:

|V (T)|kw+1nO(1).

AiC FME Parameterizing by tree width Fall 2023 11 / 33

Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T ,X) be a rooted small tree decomposition of G of width w. In time
kw+1nO(1) we can decide whether G is k-colorable.

Proof.

For v ∈ V (T) and a k-coloring α of G [Xv], we compute Pv (α)
starting at the leaves of T , and using the recurrence.

G = G (r) is k-colorable iff Pr(α) = 1, for some α.

testing whether α is a G [Xv] coloring can be done in O(w2).

computing Pv(α) for a valid α can be done in nO(1)

the total complexity is mainly determined by the number of
candidates for α which is k |Xv |: |V (T)|kw+1nO(1).

AiC FME Parameterizing by tree width Fall 2023 11 / 33

Nice tree decomposition

1 Parameterizing by treewidth

2 Nice tree decomposition

3 Algorithmic meta theorems

AiC FME Parameterizing by tree width Fall 2023 12 / 33

Nice tree decomposition Definition

Nice tree decomposition

A nice tree decomposition is a variant in which the structure of the
tree is simpler.

A rooted tree decomposition (T ,X) is nice if for every u ∈ V (T)

|Xu| = 1 (start)
u has one child v

with Xu ⊆ Xv and |Xu| = |Xv | − 1 (forget)
with Xv ⊆ Xu and |Xu| = |Xv |+ 1 (introduce)

u has two children v and w with Xu = Xv = Xw (join)

AiC FME Parameterizing by tree width Fall 2023 13 / 33

Nice tree decomposition Definition

Nice tree decomposition

A nice tree decomposition is a variant in which the structure of the
tree is simpler.

A rooted tree decomposition (T ,X) is nice if for every u ∈ V (T)

|Xu| = 1 (start)
u has one child v

with Xu ⊆ Xv and |Xu| = |Xv | − 1 (forget)
with Xv ⊆ Xu and |Xu| = |Xv |+ 1 (introduce)

u has two children v and w with Xu = Xv = Xw (join)

AiC FME Parameterizing by tree width Fall 2023 13 / 33

Nice tree decomposition Definition

Nice tree decomposition

A nice tree decomposition is a variant in which the structure of the
tree is simpler.

A rooted tree decomposition (T ,X) is nice if for every u ∈ V (T)

|Xu| = 1 (start)
u has one child v

with Xu ⊆ Xv and |Xu| = |Xv | − 1 (forget)
with Xv ⊆ Xu and |Xu| = |Xv |+ 1 (introduce)

u has two children v and w with Xu = Xv = Xw (join)

AiC FME Parameterizing by tree width Fall 2023 13 / 33

Nice tree decomposition Definition

Nice tree decomposition

A nice tree decomposition is a variant in which the structure of the
tree is simpler.

A rooted tree decomposition (T ,X) is nice if for every u ∈ V (T)

|Xu| = 1 (start)

u has one child v
with Xu ⊆ Xv and |Xu| = |Xv | − 1 (forget)
with Xv ⊆ Xu and |Xu| = |Xv |+ 1 (introduce)

u has two children v and w with Xu = Xv = Xw (join)

AiC FME Parameterizing by tree width Fall 2023 13 / 33

Nice tree decomposition Definition

Nice tree decomposition

A nice tree decomposition is a variant in which the structure of the
tree is simpler.

A rooted tree decomposition (T ,X) is nice if for every u ∈ V (T)

|Xu| = 1 (start)
u has one child v

with Xu ⊆ Xv and |Xu| = |Xv | − 1 (forget)
with Xv ⊆ Xu and |Xu| = |Xv |+ 1 (introduce)

u has two children v and w with Xu = Xv = Xw (join)

AiC FME Parameterizing by tree width Fall 2023 13 / 33

Nice tree decomposition Definition

Nice tree decomposition

A nice tree decomposition is a variant in which the structure of the
tree is simpler.

A rooted tree decomposition (T ,X) is nice if for every u ∈ V (T)

|Xu| = 1 (start)
u has one child v

with Xu ⊆ Xv and |Xu| = |Xv | − 1 (forget)

with Xv ⊆ Xu and |Xu| = |Xv |+ 1 (introduce)

u has two children v and w with Xu = Xv = Xw (join)

AiC FME Parameterizing by tree width Fall 2023 13 / 33

Nice tree decomposition Definition

Nice tree decomposition

A nice tree decomposition is a variant in which the structure of the
tree is simpler.

A rooted tree decomposition (T ,X) is nice if for every u ∈ V (T)

|Xu| = 1 (start)
u has one child v

with Xu ⊆ Xv and |Xu| = |Xv | − 1 (forget)
with Xv ⊆ Xu and |Xu| = |Xv |+ 1 (introduce)

u has two children v and w with Xu = Xv = Xw (join)

AiC FME Parameterizing by tree width Fall 2023 13 / 33

Nice tree decomposition Definition

Nice tree decomposition

A nice tree decomposition is a variant in which the structure of the
tree is simpler.

A rooted tree decomposition (T ,X) is nice if for every u ∈ V (T)

|Xu| = 1 (start)
u has one child v

with Xu ⊆ Xv and |Xu| = |Xv | − 1 (forget)
with Xv ⊆ Xu and |Xu| = |Xv |+ 1 (introduce)

u has two children v and w with Xu = Xv = Xw (join)

AiC FME Parameterizing by tree width Fall 2023 13 / 33

Nice tree decomposition Definition

Nice tree decomposition

a

b c

d

eg

f

bc

bcg

bga cge

gfe edc

Start Introduce Forget Join

b

bc

bcg
bcg bcg

bg

bga

ga

a

cg

cge

cge cge

ge

gfe

gf

f

ec

edc

cd

d

AiC FME Parameterizing by tree width Fall 2023 14 / 33

Nice tree decomposition Definition

Nice tree decomposition

a

b c

d

eg

f

bc

bcg

bga cge

gfe edc

Start Introduce Forget Join

b

bc

bcg
bcg bcg

bg

bga

ga

a

cg

cge

cge cge

ge

gfe

gf

f

ec

edc

cd

d

AiC FME Parameterizing by tree width Fall 2023 14 / 33

Nice tree decomposition Definition

Nice tree decomposition

Lemma

Computing a rooted nice tree decomposition with width at most k, given a
small tree decomposition of width at most k takes O(kn) time.

AiC FME Parameterizing by tree width Fall 2023 15 / 33

Nice tree decomposition Definition

Nice tree decomposition

Nodes in the tree
node u holds a subset of vertices Xu, and has a subgraph Gu

associated to it.

the root r has Xr = ∅ and Gr = G .

nodes can be of four types:
Start Introduce Forget Join

AiC FME Parameterizing by tree width Fall 2023 16 / 33

Nice tree decomposition Min Vertex cover

A parameterization for Min Vertex Cover

tw-Min Vertex Cover
Input: A graph G , a tree decomposition (T ,X),
Parameter: width(T ,X)
Question: Compute a minimum size vertex cover of G

AiC FME Parameterizing by tree width Fall 2023 17 / 33

Nice tree decomposition Min Vertex cover

A parameterization for Min Vertex Cover

tw-Min Vertex Cover
Input: A graph G , a tree decomposition (T ,X),
Parameter: width(T ,X)
Question: Compute a minimum size vertex cover of G

AiC FME Parameterizing by tree width Fall 2023 17 / 33

Nice tree decomposition Min Vertex cover

The algorithm for tw-Min Vertex Cover

We can assume that (T ,X) is nice

For each node v ∈ V (T) we keep a table sv (C) for each C ⊆ Xv

holding the minimum size of a vertex cover C ′ of G (v) with
C ′ ∩ Xv = C if such a C ′ exists, and sv (C) = ∞ otherwise.

The value of sr (∅) is the size of a minimum vertex cover of G .

We deal with each type of node separately

AiC FME Parameterizing by tree width Fall 2023 18 / 33

Nice tree decomposition Min Vertex cover

The algorithm for tw-Min Vertex Cover

We can assume that (T ,X) is nice

For each node v ∈ V (T) we keep a table sv (C) for each C ⊆ Xv

holding the minimum size of a vertex cover C ′ of G (v) with
C ′ ∩ Xv = C if such a C ′ exists, and sv (C) = ∞ otherwise.

The value of sr (∅) is the size of a minimum vertex cover of G .

We deal with each type of node separately

AiC FME Parameterizing by tree width Fall 2023 18 / 33

Nice tree decomposition Min Vertex cover

The algorithm for tw-Min Vertex Cover

We can assume that (T ,X) is nice

For each node v ∈ V (T) we keep a table sv (C) for each C ⊆ Xv

holding the minimum size of a vertex cover C ′ of G (v) with
C ′ ∩ Xv = C if such a C ′ exists, and sv (C) = ∞ otherwise.

The value of sr (∅) is the size of a minimum vertex cover of G .

We deal with each type of node separately

AiC FME Parameterizing by tree width Fall 2023 18 / 33

Nice tree decomposition Min Vertex cover

The algorithm for tw-Min Vertex Cover

We can assume that (T ,X) is nice

For each node v ∈ V (T) we keep a table sv (C) for each C ⊆ Xv

holding the minimum size of a vertex cover C ′ of G (v) with
C ′ ∩ Xv = C if such a C ′ exists, and sv (C) = ∞ otherwise.

The value of sr (∅) is the size of a minimum vertex cover of G .

We deal with each type of node separately

AiC FME Parameterizing by tree width Fall 2023 18 / 33

Nice tree decomposition Min Vertex cover

The algorithm for tw-Min Vertex Cover

We can assume that (T ,X) is nice

For each node v ∈ V (T) we keep a table sv (C) for each C ⊆ Xv

holding the minimum size of a vertex cover C ′ of G (v) with
C ′ ∩ Xv = C if such a C ′ exists, and sv (C) = ∞ otherwise.

The value of sr (∅) is the size of a minimum vertex cover of G .

We deal with each type of node separately

AiC FME Parameterizing by tree width Fall 2023 18 / 33

Nice tree decomposition Min Vertex cover

Start node

Claim

Let u be a leaf of T with Xu = {x}.
su({x}) = 1 and su(∅) = 0.

AiC FME Parameterizing by tree width Fall 2023 19 / 33

Nice tree decomposition Min Vertex cover

Start node

Claim

Let u be a leaf of T with Xu = {x}.
su({x}) = 1 and su(∅) = 0.

AiC FME Parameterizing by tree width Fall 2023 19 / 33

Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} = Xu − Xv .
Then for all C ⊆ Xu

If C is not a vertex cover of G [Xu] then su(C) = ∞.

If C is a vertex cover of G [Xu] and x ∈ C then su(C) = sv (C − x)+1.

If C is a vertex cover of G [Xu] and x /∈ C then su(C) = sv (C).

All neighbors of x in G (u) are in Xv and therefore in C since C is a
vertex cover of G [Xu].

AiC FME Parameterizing by tree width Fall 2023 20 / 33

Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} = Xu − Xv .

Then for all C ⊆ Xu

If C is not a vertex cover of G [Xu] then su(C) = ∞.

If C is a vertex cover of G [Xu] and x ∈ C then su(C) = sv (C − x)+1.

If C is a vertex cover of G [Xu] and x /∈ C then su(C) = sv (C).

All neighbors of x in G (u) are in Xv and therefore in C since C is a
vertex cover of G [Xu].

AiC FME Parameterizing by tree width Fall 2023 20 / 33

Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} = Xu − Xv .
Then for all C ⊆ Xu

If C is not a vertex cover of G [Xu] then su(C) = ∞.

If C is a vertex cover of G [Xu] and x ∈ C then su(C) = sv (C − x)+1.

If C is a vertex cover of G [Xu] and x /∈ C then su(C) = sv (C).

All neighbors of x in G (u) are in Xv and therefore in C since C is a
vertex cover of G [Xu].

AiC FME Parameterizing by tree width Fall 2023 20 / 33

Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} = Xu − Xv .
Then for all C ⊆ Xu

If C is not a vertex cover of G [Xu] then su(C) = ∞.

If C is a vertex cover of G [Xu] and x ∈ C then su(C) = sv (C − x)+1.

If C is a vertex cover of G [Xu] and x /∈ C then su(C) = sv (C).

All neighbors of x in G (u) are in Xv and therefore in C since C is a
vertex cover of G [Xu].

AiC FME Parameterizing by tree width Fall 2023 20 / 33

Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} = Xu − Xv .
Then for all C ⊆ Xu

If C is not a vertex cover of G [Xu] then su(C) = ∞.

If C is a vertex cover of G [Xu] and x ∈ C then su(C) = sv (C − x)+1.

If C is a vertex cover of G [Xu] and x /∈ C then su(C) = sv (C).

All neighbors of x in G (u) are in Xv and therefore in C since C is a
vertex cover of G [Xu].

AiC FME Parameterizing by tree width Fall 2023 20 / 33

Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} = Xu − Xv .
Then for all C ⊆ Xu

If C is not a vertex cover of G [Xu] then su(C) = ∞.

If C is a vertex cover of G [Xu] and x ∈ C then su(C) = sv (C − x)+1.

If C is a vertex cover of G [Xu] and x /∈ C then su(C) = sv (C).

All neighbors of x in G (u) are in Xv and therefore in C since C is a
vertex cover of G [Xu].

AiC FME Parameterizing by tree width Fall 2023 20 / 33

Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} = Xu − Xv .
Then for all C ⊆ Xu

If C is not a vertex cover of G [Xu] then su(C) = ∞.

If C is a vertex cover of G [Xu] and x ∈ C then su(C) = sv (C − x)+1.

If C is a vertex cover of G [Xu] and x /∈ C then su(C) = sv (C).

All neighbors of x in G (u) are in Xv and therefore in C since C is a
vertex cover of G [Xu].

AiC FME Parameterizing by tree width Fall 2023 20 / 33

Nice tree decomposition Min Vertex cover

Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} = Xv − Xu.
Then for all C ⊆ Xu , su(C) = min{sv (C), sv (C + x)}.

Proof.

(≥) Let C ′ be a minvc of G (u) = G (v) with C ′ ∩ Xu = C .

If x /∈ C ′ then C ′ ∩ Xu = C so |C ′| ≥ sv (C).
If x ∈ C ′ then similarly |C ′| ≥ sv (C + x).

(≤) Let C1 and C2 be the vcs that determine sv (C) and sv (C + x)
respectively. C1,C2 are vc of G (u) compatible with C , so
sv (C) ≤ min{|C1|, |C2|}.

AiC FME Parameterizing by tree width Fall 2023 21 / 33

Nice tree decomposition Min Vertex cover

Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} = Xv − Xu.

Then for all C ⊆ Xu , su(C) = min{sv (C), sv (C + x)}.

Proof.

(≥) Let C ′ be a minvc of G (u) = G (v) with C ′ ∩ Xu = C .

If x /∈ C ′ then C ′ ∩ Xu = C so |C ′| ≥ sv (C).
If x ∈ C ′ then similarly |C ′| ≥ sv (C + x).

(≤) Let C1 and C2 be the vcs that determine sv (C) and sv (C + x)
respectively. C1,C2 are vc of G (u) compatible with C , so
sv (C) ≤ min{|C1|, |C2|}.

AiC FME Parameterizing by tree width Fall 2023 21 / 33

Nice tree decomposition Min Vertex cover

Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} = Xv − Xu.
Then for all C ⊆ Xu , su(C) = min{sv (C), sv (C + x)}.

Proof.

(≥) Let C ′ be a minvc of G (u) = G (v) with C ′ ∩ Xu = C .

If x /∈ C ′ then C ′ ∩ Xu = C so |C ′| ≥ sv (C).
If x ∈ C ′ then similarly |C ′| ≥ sv (C + x).

(≤) Let C1 and C2 be the vcs that determine sv (C) and sv (C + x)
respectively. C1,C2 are vc of G (u) compatible with C , so
sv (C) ≤ min{|C1|, |C2|}.

AiC FME Parameterizing by tree width Fall 2023 21 / 33

Nice tree decomposition Min Vertex cover

Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} = Xv − Xu.
Then for all C ⊆ Xu , su(C) = min{sv (C), sv (C + x)}.

Proof.

(≥) Let C ′ be a minvc of G (u) = G (v) with C ′ ∩ Xu = C .

If x /∈ C ′ then C ′ ∩ Xu = C so |C ′| ≥ sv (C).
If x ∈ C ′ then similarly |C ′| ≥ sv (C + x).

(≤) Let C1 and C2 be the vcs that determine sv (C) and sv (C + x)
respectively. C1,C2 are vc of G (u) compatible with C , so
sv (C) ≤ min{|C1|, |C2|}.

AiC FME Parameterizing by tree width Fall 2023 21 / 33

Nice tree decomposition Min Vertex cover

Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} = Xv − Xu.
Then for all C ⊆ Xu , su(C) = min{sv (C), sv (C + x)}.

Proof.

(≥) Let C ′ be a minvc of G (u) = G (v) with C ′ ∩ Xu = C .

If x /∈ C ′ then C ′ ∩ Xu = C so |C ′| ≥ sv (C).

If x ∈ C ′ then similarly |C ′| ≥ sv (C + x).

(≤) Let C1 and C2 be the vcs that determine sv (C) and sv (C + x)
respectively. C1,C2 are vc of G (u) compatible with C , so
sv (C) ≤ min{|C1|, |C2|}.

AiC FME Parameterizing by tree width Fall 2023 21 / 33

Nice tree decomposition Min Vertex cover

Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} = Xv − Xu.
Then for all C ⊆ Xu , su(C) = min{sv (C), sv (C + x)}.

Proof.

(≥) Let C ′ be a minvc of G (u) = G (v) with C ′ ∩ Xu = C .

If x /∈ C ′ then C ′ ∩ Xu = C so |C ′| ≥ sv (C).
If x ∈ C ′ then similarly |C ′| ≥ sv (C + x).

(≤) Let C1 and C2 be the vcs that determine sv (C) and sv (C + x)
respectively. C1,C2 are vc of G (u) compatible with C , so
sv (C) ≤ min{|C1|, |C2|}.

AiC FME Parameterizing by tree width Fall 2023 21 / 33

Nice tree decomposition Min Vertex cover

Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} = Xv − Xu.
Then for all C ⊆ Xu , su(C) = min{sv (C), sv (C + x)}.

Proof.

(≥) Let C ′ be a minvc of G (u) = G (v) with C ′ ∩ Xu = C .

If x /∈ C ′ then C ′ ∩ Xu = C so |C ′| ≥ sv (C).
If x ∈ C ′ then similarly |C ′| ≥ sv (C + x).

(≤) Let C1 and C2 be the vcs that determine sv (C) and sv (C + x)
respectively.

C1,C2 are vc of G (u) compatible with C , so
sv (C) ≤ min{|C1|, |C2|}.

AiC FME Parameterizing by tree width Fall 2023 21 / 33

Nice tree decomposition Min Vertex cover

Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} = Xv − Xu.
Then for all C ⊆ Xu , su(C) = min{sv (C), sv (C + x)}.

Proof.

(≥) Let C ′ be a minvc of G (u) = G (v) with C ′ ∩ Xu = C .

If x /∈ C ′ then C ′ ∩ Xu = C so |C ′| ≥ sv (C).
If x ∈ C ′ then similarly |C ′| ≥ sv (C + x).

(≤) Let C1 and C2 be the vcs that determine sv (C) and sv (C + x)
respectively. C1,C2 are vc of G (u) compatible with C , so
sv (C) ≤ min{|C1|, |C2|}.

AiC FME Parameterizing by tree width Fall 2023 21 / 33

Nice tree decomposition Min Vertex cover

Join node

Claim

Let u be a join node of T with children v and w .
Then for all C ⊆ Xu: su(C) = sv (C) + sw (C)− |C |.

Proof.

(≥) If C ′ is a vertex cover of G (u) with C ′ ∩ Xu = C , then C ′ ∩ V (v)
is a vertex cover of G (v) and C ′ ∩ V (w) is a vertex cover of G (w),
which share |C | vertices.
(≤) Two C -compatible vertex covers of G (v) and G (w) of size sv (C)
and sw (C) can be combined to a vertex cover of G (u) of size
sv (C) + sw (C)− |C |.

AiC FME Parameterizing by tree width Fall 2023 22 / 33

Nice tree decomposition Min Vertex cover

Join node

Claim

Let u be a join node of T with children v and w .
Then for all C ⊆ Xu: su(C) = sv (C) + sw (C)− |C |.

Proof.

(≥) If C ′ is a vertex cover of G (u) with C ′ ∩ Xu = C , then C ′ ∩ V (v)
is a vertex cover of G (v) and C ′ ∩ V (w) is a vertex cover of G (w),
which share |C | vertices.
(≤) Two C -compatible vertex covers of G (v) and G (w) of size sv (C)
and sw (C) can be combined to a vertex cover of G (u) of size
sv (C) + sw (C)− |C |.

AiC FME Parameterizing by tree width Fall 2023 22 / 33

Nice tree decomposition Min Vertex cover

Join node

Claim

Let u be a join node of T with children v and w .
Then for all C ⊆ Xu: su(C) = sv (C) + sw (C)− |C |.

Proof.

(≥) If C ′ is a vertex cover of G (u) with C ′ ∩ Xu = C , then C ′ ∩ V (v)
is a vertex cover of G (v) and C ′ ∩ V (w) is a vertex cover of G (w),
which share |C | vertices.

(≤) Two C -compatible vertex covers of G (v) and G (w) of size sv (C)
and sw (C) can be combined to a vertex cover of G (u) of size
sv (C) + sw (C)− |C |.

AiC FME Parameterizing by tree width Fall 2023 22 / 33

Nice tree decomposition Min Vertex cover

Join node

Claim

Let u be a join node of T with children v and w .
Then for all C ⊆ Xu: su(C) = sv (C) + sw (C)− |C |.

Proof.

(≥) If C ′ is a vertex cover of G (u) with C ′ ∩ Xu = C , then C ′ ∩ V (v)
is a vertex cover of G (v) and C ′ ∩ V (w) is a vertex cover of G (w),
which share |C | vertices.
(≤) Two C -compatible vertex covers of G (v) and G (w) of size sv (C)
and sw (C) can be combined to a vertex cover of G (u) of size
sv (C) + sw (C)− |C |.

AiC FME Parameterizing by tree width Fall 2023 22 / 33

Nice tree decomposition Min Vertex cover

Min Vertex cover parameterized by treewidth

Theorem

Let (T ,X) be a rooted nice tree decomposition of width w of a graph G
on n vertices. In time 2w+1nO(1) the size of a minimum vertex cover of G
can be computed.

Proof.

We can construct a minimum vertex cover as well, by tracing back
through the tree decomposition.

+ O(f (k)nO(1)) to get the tree decomposition if needed.

AiC FME Parameterizing by tree width Fall 2023 23 / 33

Nice tree decomposition Min Vertex cover

Min Vertex cover parameterized by treewidth

Theorem

Let (T ,X) be a rooted nice tree decomposition of width w of a graph G
on n vertices. In time 2w+1nO(1) the size of a minimum vertex cover of G
can be computed.

Proof.

We can construct a minimum vertex cover as well, by tracing back
through the tree decomposition.

+ O(f (k)nO(1)) to get the tree decomposition if needed.

AiC FME Parameterizing by tree width Fall 2023 23 / 33

Nice tree decomposition Min Vertex cover

Min Vertex cover parameterized by treewidth

Theorem

Let (T ,X) be a rooted nice tree decomposition of width w of a graph G
on n vertices. In time 2w+1nO(1) the size of a minimum vertex cover of G
can be computed.

Proof.

We can construct a minimum vertex cover as well, by tracing back
through the tree decomposition.

+ O(f (k)nO(1)) to get the tree decomposition if needed.

AiC FME Parameterizing by tree width Fall 2023 23 / 33

Algorithmic meta theorems

1 Parameterizing by treewidth

2 Nice tree decomposition

3 Algorithmic meta theorems

AiC FME Parameterizing by tree width Fall 2023 24 / 33

Algorithmic meta theorems

Closure properties

A contraction of an edge (u, v) in a graph G consists in replacing u, v
by a new vertex w which keeps as neighbors N(u) ∪ N(v)

A graph H is a minor of G if H can be obtained from G by a series of
edge contractions.

If H is a minor of G then tw(H) ≤ tw(G)

(T ,X) is a tree decomposition. Contract xy into z . The tree
decomposition (T ,X ′) in which we replace x , y by z in any bag
containing x or y (or both) is a valid tree decomposition.

If H is a subgraph of G then tw(H) ≤ tw(G)

AiC FME Parameterizing by tree width Fall 2023 25 / 33

Algorithmic meta theorems

Closure properties

A contraction of an edge (u, v) in a graph G consists in replacing u, v
by a new vertex w which keeps as neighbors N(u) ∪ N(v)

A graph H is a minor of G if H can be obtained from G by a series of
edge contractions.

If H is a minor of G then tw(H) ≤ tw(G)

(T ,X) is a tree decomposition. Contract xy into z . The tree
decomposition (T ,X ′) in which we replace x , y by z in any bag
containing x or y (or both) is a valid tree decomposition.

If H is a subgraph of G then tw(H) ≤ tw(G)

AiC FME Parameterizing by tree width Fall 2023 25 / 33

Algorithmic meta theorems

Closure properties

A contraction of an edge (u, v) in a graph G consists in replacing u, v
by a new vertex w which keeps as neighbors N(u) ∪ N(v)

A graph H is a minor of G if H can be obtained from G by a series of
edge contractions.

If H is a minor of G then tw(H) ≤ tw(G)

(T ,X) is a tree decomposition. Contract xy into z . The tree
decomposition (T ,X ′) in which we replace x , y by z in any bag
containing x or y (or both) is a valid tree decomposition.

If H is a subgraph of G then tw(H) ≤ tw(G)

AiC FME Parameterizing by tree width Fall 2023 25 / 33

Algorithmic meta theorems

Closure properties

A contraction of an edge (u, v) in a graph G consists in replacing u, v
by a new vertex w which keeps as neighbors N(u) ∪ N(v)

A graph H is a minor of G if H can be obtained from G by a series of
edge contractions.

If H is a minor of G then tw(H) ≤ tw(G)

(T ,X) is a tree decomposition. Contract xy into z . The tree
decomposition (T ,X ′) in which we replace x , y by z in any bag
containing x or y (or both) is a valid tree decomposition.

If H is a subgraph of G then tw(H) ≤ tw(G)

AiC FME Parameterizing by tree width Fall 2023 25 / 33

Algorithmic meta theorems

Closure properties

A contraction of an edge (u, v) in a graph G consists in replacing u, v
by a new vertex w which keeps as neighbors N(u) ∪ N(v)

A graph H is a minor of G if H can be obtained from G by a series of
edge contractions.

If H is a minor of G then tw(H) ≤ tw(G)

(T ,X) is a tree decomposition. Contract xy into z . The tree
decomposition (T ,X ′) in which we replace x , y by z in any bag
containing x or y (or both) is a valid tree decomposition.

If H is a subgraph of G then tw(H) ≤ tw(G)

AiC FME Parameterizing by tree width Fall 2023 25 / 33

Algorithmic meta theorems

Algorithmic theorems

Algorithmic theorems provide algorithms, i.e., a proof of the existence
of an algorithm.

Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on
graphs of constant treewidth.
Vertex Cover, Feedback Vertex Set can be solved in sub-exponential
time on planar graphs

To get an algorithm, as we have done, you should working out all the
details of the DP!

AiC FME Parameterizing by tree width Fall 2023 26 / 33

Algorithmic meta theorems

Algorithmic theorems

Algorithmic theorems provide algorithms, i.e., a proof of the existence
of an algorithm.

Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on
graphs of constant treewidth.
Vertex Cover, Feedback Vertex Set can be solved in sub-exponential
time on planar graphs

To get an algorithm, as we have done, you should working out all the
details of the DP!

AiC FME Parameterizing by tree width Fall 2023 26 / 33

Algorithmic meta theorems

Algorithmic theorems

Algorithmic theorems provide algorithms, i.e., a proof of the existence
of an algorithm.

Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on
graphs of constant treewidth.

Vertex Cover, Feedback Vertex Set can be solved in sub-exponential
time on planar graphs

To get an algorithm, as we have done, you should working out all the
details of the DP!

AiC FME Parameterizing by tree width Fall 2023 26 / 33

Algorithmic meta theorems

Algorithmic theorems

Algorithmic theorems provide algorithms, i.e., a proof of the existence
of an algorithm.

Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on
graphs of constant treewidth.
Vertex Cover, Feedback Vertex Set can be solved in sub-exponential
time on planar graphs

To get an algorithm, as we have done, you should working out all the
details of the DP!

AiC FME Parameterizing by tree width Fall 2023 26 / 33

Algorithmic meta theorems

Algorithmic theorems

Algorithmic theorems provide algorithms, i.e., a proof of the existence
of an algorithm.

Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on
graphs of constant treewidth.
Vertex Cover, Feedback Vertex Set can be solved in sub-exponential
time on planar graphs

To get an algorithm, as we have done, you should working out all the
details of the DP!

AiC FME Parameterizing by tree width Fall 2023 26 / 33

Algorithmic meta theorems

Algorithmic meta theorems

Algorithmic meta theorems. No algorithm is constructed!

But the existence of an algorithm is proved

Main uses: quick complexity classification tools, mapping the limits of
applicability for specific techniques.

Usually they are grounded in logics or other properties

AiC FME Parameterizing by tree width Fall 2023 27 / 33

Algorithmic meta theorems

Algorithmic meta theorems

Algorithmic meta theorems. No algorithm is constructed!

But the existence of an algorithm is proved

Main uses: quick complexity classification tools, mapping the limits of
applicability for specific techniques.

Usually they are grounded in logics or other properties

AiC FME Parameterizing by tree width Fall 2023 27 / 33

Algorithmic meta theorems

Algorithmic meta theorems

Algorithmic meta theorems. No algorithm is constructed!

But the existence of an algorithm is proved

Main uses: quick complexity classification tools, mapping the limits of
applicability for specific techniques.

Usually they are grounded in logics or other properties

AiC FME Parameterizing by tree width Fall 2023 27 / 33

Algorithmic meta theorems

Algorithmic meta theorems

Algorithmic meta theorems. No algorithm is constructed!

But the existence of an algorithm is proved

Main uses: quick complexity classification tools, mapping the limits of
applicability for specific techniques.

Usually they are grounded in logics or other properties

AiC FME Parameterizing by tree width Fall 2023 27 / 33

Algorithmic meta theorems

Algorithmic meta theorems

Algorithmic meta theorems. No algorithm is constructed!

But the existence of an algorithm is proved

Main uses: quick complexity classification tools, mapping the limits of
applicability for specific techniques.

Usually they are grounded in logics or other properties

AiC FME Parameterizing by tree width Fall 2023 27 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Dominating Set of size 2

∃x1∃x2∀y E (x1, y) ∨ E (x2, y) ∨ x1 = y ∨ x2 = y)

AiC FME Parameterizing by tree width Fall 2023 28 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Dominating Set of size 2

∃x1∃x2∀y E (x1, y) ∨ E (x2, y) ∨ x1 = y ∨ x2 = y)

AiC FME Parameterizing by tree width Fall 2023 28 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .

Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Dominating Set of size 2

∃x1∃x2∀y E (x1, y) ∨ E (x2, y) ∨ x1 = y ∨ x2 = y)

AiC FME Parameterizing by tree width Fall 2023 28 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y

Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Dominating Set of size 2

∃x1∃x2∀y E (x1, y) ∨ E (x2, y) ∨ x1 = y ∨ x2 = y)

AiC FME Parameterizing by tree width Fall 2023 28 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→

Quantifiers ∀, ∃
Example: Dominating Set of size 2

∃x1∃x2∀y E (x1, y) ∨ E (x2, y) ∨ x1 = y ∨ x2 = y)

AiC FME Parameterizing by tree width Fall 2023 28 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Dominating Set of size 2

∃x1∃x2∀y E (x1, y) ∨ E (x2, y) ∨ x1 = y ∨ x2 = y)

AiC FME Parameterizing by tree width Fall 2023 28 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example:

Dominating Set of size 2

∃x1∃x2∀y E (x1, y) ∨ E (x2, y) ∨ x1 = y ∨ x2 = y)

AiC FME Parameterizing by tree width Fall 2023 28 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Dominating Set of size 2

∃x1∃x2∀y E (x1, y) ∨ E (x2, y) ∨ x1 = y ∨ x2 = y)

AiC FME Parameterizing by tree width Fall 2023 28 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Dominating Set of size 2

∃x1∃x2∀y E (x1, y) ∨ E (x2, y) ∨ x1 = y ∨ x2 = y)

AiC FME Parameterizing by tree width Fall 2023 28 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example:

Vertex Cover of size 2

∃x1∃x2∀y∀z E (y , z) → (y = x1 ∨ y = x2 ∨ z = x1 ∨ z = x2

AiC FME Parameterizing by tree width Fall 2023 29 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Vertex Cover of size 2

∃x1∃x2∀y∀z E (y , z) → (y = x1 ∨ y = x2 ∨ z = x1 ∨ z = x2

AiC FME Parameterizing by tree width Fall 2023 29 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Vertex Cover of size 2

∃x1∃x2∀y∀z E (y , z) → (y = x1 ∨ y = x2 ∨ z = x1 ∨ z = x2

AiC FME Parameterizing by tree width Fall 2023 29 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example:

Clique of size 3

∃x1∃x2∃x3 E (x1, x2) ∧ E (x1, x3) ∧ E (x2, x3)

AiC FME Parameterizing by tree width Fall 2023 30 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Clique of size 3

∃x1∃x2∃x3 E (x1, x2) ∧ E (x1, x3) ∧ E (x2, x3)

AiC FME Parameterizing by tree width Fall 2023 30 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Clique of size 3

∃x1∃x2∃x3 E (x1, x2) ∧ E (x1, x3) ∧ E (x2, x3)

AiC FME Parameterizing by tree width Fall 2023 30 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬
Quantifiers ∀, ∃

Many standard (parameterized) problems can be expressed in FO
logic.

But some easy problems are inexpressible (e.g. connectivity).

Rule of thumb: FO = local properties

AiC FME Parameterizing by tree width Fall 2023 31 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬
Quantifiers ∀, ∃

Many standard (parameterized) problems can be expressed in FO
logic.

But some easy problems are inexpressible (e.g. connectivity).

Rule of thumb: FO = local properties

AiC FME Parameterizing by tree width Fall 2023 31 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬
Quantifiers ∀, ∃

Many standard (parameterized) problems can be expressed in FO
logic.

But some easy problems are inexpressible (e.g. connectivity).

Rule of thumb: FO = local properties

AiC FME Parameterizing by tree width Fall 2023 31 / 33

Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬
Quantifiers ∀, ∃

Many standard (parameterized) problems can be expressed in FO
logic.

But some easy problems are inexpressible (e.g. connectivity).

Rule of thumb: FO = local properties

AiC FME Parameterizing by tree width Fall 2023 31 / 33

Algorithmic meta theorems

Monadic Second Order Logic

MSO logic: we add to FO logic

set variables S1,S2, . . .
and the a ∈ predicate.
Quantifiers ∀, ∃
MSO1 logic: we can quantify over sets of vertices
MSO2 logic: we can quantify over sets of vertices and sets of edges

Example: 2-coloring

∃V1∃V2∀x∀y E (x , y) → (x ∈ V1 ↔ y ∈ V2)

AiC FME Parameterizing by tree width Fall 2023 32 / 33

Algorithmic meta theorems

Monadic Second Order Logic

MSO logic: we add to FO logic

set variables S1,S2, . . .

and the a ∈ predicate.
Quantifiers ∀, ∃
MSO1 logic: we can quantify over sets of vertices
MSO2 logic: we can quantify over sets of vertices and sets of edges

Example: 2-coloring

∃V1∃V2∀x∀y E (x , y) → (x ∈ V1 ↔ y ∈ V2)

AiC FME Parameterizing by tree width Fall 2023 32 / 33

Algorithmic meta theorems

Monadic Second Order Logic

MSO logic: we add to FO logic

set variables S1,S2, . . .
and the a ∈ predicate.

Quantifiers ∀, ∃
MSO1 logic: we can quantify over sets of vertices
MSO2 logic: we can quantify over sets of vertices and sets of edges

Example: 2-coloring

∃V1∃V2∀x∀y E (x , y) → (x ∈ V1 ↔ y ∈ V2)

AiC FME Parameterizing by tree width Fall 2023 32 / 33

Algorithmic meta theorems

Monadic Second Order Logic

MSO logic: we add to FO logic

set variables S1,S2, . . .
and the a ∈ predicate.
Quantifiers ∀, ∃
MSO1 logic: we can quantify over sets of vertices
MSO2 logic: we can quantify over sets of vertices and sets of edges

Example: 2-coloring

∃V1∃V2∀x∀y E (x , y) → (x ∈ V1 ↔ y ∈ V2)

AiC FME Parameterizing by tree width Fall 2023 32 / 33

Algorithmic meta theorems

Monadic Second Order Logic

MSO logic: we add to FO logic

set variables S1,S2, . . .
and the a ∈ predicate.
Quantifiers ∀, ∃
MSO1 logic: we can quantify over sets of vertices
MSO2 logic: we can quantify over sets of vertices and sets of edges

Example:

2-coloring

∃V1∃V2∀x∀y E (x , y) → (x ∈ V1 ↔ y ∈ V2)

AiC FME Parameterizing by tree width Fall 2023 32 / 33

Algorithmic meta theorems

Monadic Second Order Logic

MSO logic: we add to FO logic

set variables S1,S2, . . .
and the a ∈ predicate.
Quantifiers ∀, ∃
MSO1 logic: we can quantify over sets of vertices
MSO2 logic: we can quantify over sets of vertices and sets of edges

Example: 2-coloring

∃V1∃V2∀x∀y E (x , y) → (x ∈ V1 ↔ y ∈ V2)

AiC FME Parameterizing by tree width Fall 2023 32 / 33

Algorithmic meta theorems

Monadic Second Order Logic

MSO logic: we add to FO logic

set variables S1,S2, . . .
and the a ∈ predicate.
Quantifiers ∀, ∃
MSO1 logic: we can quantify over sets of vertices
MSO2 logic: we can quantify over sets of vertices and sets of edges

Example: 2-coloring

∃V1∃V2∀x∀y E (x , y) → (x ∈ V1 ↔ y ∈ V2)

AiC FME Parameterizing by tree width Fall 2023 32 / 33

Algorithmic meta theorems

Algorithmic meta theorems

All Monadic Second Order logic (MSO) expressible problems are
solvable in linear time on graphs of constant treewidth.

All minor closed optimization problems can be solved in
sub-exponential time on planar graphs

Recall: No algorithm is constructed!

AiC FME Parameterizing by tree width Fall 2023 33 / 33

Algorithmic meta theorems

Algorithmic meta theorems

All Monadic Second Order logic (MSO) expressible problems are
solvable in linear time on graphs of constant treewidth.

All minor closed optimization problems can be solved in
sub-exponential time on planar graphs

Recall: No algorithm is constructed!

AiC FME Parameterizing by tree width Fall 2023 33 / 33

Algorithmic meta theorems

Algorithmic meta theorems

All Monadic Second Order logic (MSO) expressible problems are
solvable in linear time on graphs of constant treewidth.

All minor closed optimization problems can be solved in
sub-exponential time on planar graphs

Recall: No algorithm is constructed!

AiC FME Parameterizing by tree width Fall 2023 33 / 33

Algorithmic meta theorems

Algorithmic meta theorems

All Monadic Second Order logic (MSO) expressible problems are
solvable in linear time on graphs of constant treewidth.

All minor closed optimization problems can be solved in
sub-exponential time on planar graphs

Recall: No algorithm is constructed!

AiC FME Parameterizing by tree width Fall 2023 33 / 33

	Parameterizing by treewidth
	Small tree decomposition
	Vertex Coloring

	Nice tree decomposition
	Definition
	Min Vertex cover

	Algorithmic meta theorems

