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Parameterizing by treewidth

Equivalent tw parameterizations for property P

TW-K-P

Input: A graph G, a tree decomposition (T, X) of G
and an integer k,

Parameter: width(T, X) + k

Question: Is P(G, k) true?
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Parameterizing by treewidth

Equivalent tw parameterizations for property P

TW-K-P

Input: A graph G, a tree decomposition (T, X) of G
and an integer k,

Parameter: width(T, X) + k

Question: Is P(G, k) true?

TW-K-P

Input: A graph G and integers w and k,

Parameter: w + k
Question: Is tw(G) < w and P(G, k) true?
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Small tree decomposition
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Parameterizing by treewidth Small tree decomposition

Small tree decomposition

@ A tree decomposition (T, X) is small if for distinct u,v € V(T),
X, € X, and X, € X,,.
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Parameterizing by treewidth Small tree decomposition

Small tree decomposition

@ A tree decomposition (T, X) is small if for distinct u,v € V(T),
X, € X, and X, € X,,.

@ When given a tree decomposition of G, in polynomial time we can
construct a small tree decomposition of G with the same width.
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Parameterizing by treewidth Small tree decomposition

Small tree decomposition

@ A tree decomposition (T, X) is small if for distinct u,v € V(T),
X, € X, and X, € X,,.

@ When given a tree decomposition of G, in polynomial time we can
construct a small tree decomposition of G with the same width.

o If a tree decomposition is not small there should be two adjacent nodes
u,v € V(T) with X, C X,.
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Parameterizing by treewidth Small tree decomposition

Small tree decomposition

@ A tree decomposition (T, X) is small if for distinct u,v € V(T),
X, € X, and X, € X,,.

@ When given a tree decomposition of G, in polynomial time we can
construct a small tree decomposition of G with the same width.
o If a tree decomposition is not small there should be two adjacent nodes
u,v € V(T) with X, C X,.
e Contracting uv into a new node w with X, = X, gives a smaller tree
decomposition for G.
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Parameterizing by treewidth Small tree decomposition

Small tree decomposition

@ A tree decomposition (T, X) is small if for distinct u,v € V(T),
X, € X, and X, € X,,.

@ When given a tree decomposition of G, in polynomial time we can
construct a small tree decomposition of G with the same width.
o If a tree decomposition is not small there should be two adjacent nodes
u,v € V(T) with X, C X,.
e Contracting uv into a new node w with X, = X, gives a smaller tree

decomposition for G.
e repeating the above procedure we get a small tree decomposition.
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Small tree decomposition

e If (T, X) is a small tree decomposition of G. Then |V(T)| < |V(G)|
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Parameterizing by treewidth Small tree decomposition

Small tree decomposition

e If (T, X) is a small tree decomposition of G. Then |V(T)| < |V(G)|

Exercise: proof by induction
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Parameterizing by treewidth Small tree decomposition

Small tree decomposition

e If (T, X) is a small tree decomposition of G. Then |V(T)| < |V(G)|

Exercise: proof by induction

@ We can make use the FPT algorithm that given a (G, w) decides
iwhether tw(G) > w or produces a tree decomposition of width
4w + 4.
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Parameterizing by treewidth Small tree decomposition

Small tree decomposition

e If (T, X) is a small tree decomposition of G. Then |V(T)| < |V(G)|

Exercise: proof by induction

@ We can make use the FPT algorithm that given a (G, w) decides
iwhether tw(G) > w or produces a tree decomposition of width
4w + 4.

@ We can further assume that such a tree decomposition is small.
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Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

o Let (T, X) be a tree decomposition of G of width w.
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Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

o Let (T, X) be a tree decomposition of G of width w.

@ Make T into a rooted tree by choosing a root r € V(T), and
replacing edges by arcs in such a way that every node points to its
parent.
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Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

o Let (T, X) be a tree decomposition of G of width w.

@ Make T into a rooted tree by choosing a root r € V(T), and
replacing edges by arcs in such a way that every node points to its
parent.

e For v € V(T), Rr(v) denotes the nodes in the subtree rooted at v
(including v).
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Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

o Let (T, X) be a tree decomposition of G of width w.

@ Make T into a rooted tree by choosing a root r € V(T), and
replacing edges by arcs in such a way that every node points to its
parent.

e For v € V(T), Rr(v) denotes the nodes in the subtree rooted at v
(including v).

e Forve V(T), V(v) = X(Rr(v)), and G(v) = G[V(v)].
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Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

o Let (T, X) be a tree decomposition of G of width w.

@ Make T into a rooted tree by choosing a root r € V(T), and
replacing edges by arcs in such a way that every node points to its
parent.

e For v € V(T), Rr(v) denotes the nodes in the subtree rooted at v
(including v).
e Forve V(T), V(v) = X(Rr(v)), and G(v) = G[V(v)].

Thus, we have an induced subgraph associated to each node.
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Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

o Let (T, X) be a tree decomposition of G of width w.

@ Make T into a rooted tree by choosing a root r € V(T), and
replacing edges by arcs in such a way that every node points to its
parent.

e For v € V(T), Rr(v) denotes the nodes in the subtree rooted at v
(including v).

e Forve V(T), V(v) = X(Rr(v)), and G(v) = G[V(v)].
Thus, we have an induced subgraph associated to each node.

@ Notice that X, is a separator in G.
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Parameterizing by treewidth Small tree decomposition

Exercise For this rooted tree decomposition. Draw the graphs associated
to each node in the tree. What are the differences among parent-child
graphs?

AiC FME Parameterizing by tree width Fall 2023

7/33



tw-k-Vertex Coloring belongs to FPT

@ To show that TW-K-VERTEX COLORING € FPT we use dynamic
programming on the tree decomposition.
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Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

@ To show that TW-K-VERTEX COLORING € FPT we use dynamic
programming on the tree decomposition.

@ Let H; and H, be two subgraphs of G, with valid k-colorings a3 and
ap respectively.
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tw-k-Vertex Coloring belongs to FPT

@ To show that TW-K-VERTEX COLORING € FPT we use dynamic
programming on the tree decomposition.

@ Let H; and H, be two subgraphs of G, with valid k-colorings a3 and
ap respectively.

@ an is aj-compatible if for all v € V(H1) N V(Hz), az(v) = ai(v).
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tw-k-Vertex Coloring belongs to FPT

@ To show that TW-K-VERTEX COLORING € FPT we use dynamic
programming on the tree decomposition.

@ Let H; and H, be two subgraphs of G, with valid k-colorings a3 and
«p respectively.

@ an is aj-compatible if for all v € V(H1) N V(Hz), az(v) = ai(v).
o Let (T, X) be a rooted tree decomposition of G with width w.
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tw-k-Vertex Coloring belongs to FPT

@ To show that TW-K-VERTEX COLORING € FPT we use dynamic
programming on the tree decomposition.

@ Let H; and H, be two subgraphs of G, with valid k-colorings a3 and
«p respectively.

@ an is aj-compatible if for all v € V(H1) N V(Hz), az(v) = ai(v).

o Let (T, X) be a rooted tree decomposition of G with width w.

o For every v € V(T) and every proper k-coloring o of G[Xv], define
P,(a) = 1 iff G(v) has an a-compatible k-coloring S.
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tw-k-Vertex Coloring belongs to FPT

@ To show that TW-K-VERTEX COLORING € FPT we use dynamic
programming on the tree decomposition.

@ Let H; and H, be two subgraphs of G, with valid k-colorings a3 and
«p respectively.

@ an is aj-compatible if for all v € V(H1) N V(Hz), az(v) = ai(v).

o Let (T, X) be a rooted tree decomposition of G with width w.

o For every v € V(T) and every proper k-coloring o of G[Xv], define
P,(a) = 1 iff G(v) has an a-compatible k-coloring S.

@ Our algorithm computes P, («), for each node in T, from leaves to
root.
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U G
tw-k-Vertex Coloring belongs to FPT

Lemma

P,(«) = 1 iff for all children v of u, there is an a.-compatible coloring 3 of
G[X,] with P,(B) = 1.

Proof. J
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U G
tw-k-Vertex Coloring belongs to FPT

Lemma

P,(«) = 1 iff for all children v of u, there is an a.-compatible coloring 3 of
G[X,] with P,(B) = 1.

Proof. J

° (=)
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U G
tw-k-Vertex Coloring belongs to FPT

Lemma

P,(«) = 1 iff for all children v of u, there is an a.-compatible coloring 3 of
G[X,] with P,(B) = 1.

Proof. J

o (=) Let v be an a-compatible coloring of G(u). G(v) is a subgraph
of G(u), so restricting to X, gives the desired coloring 3.
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U G
tw-k-Vertex Coloring belongs to FPT

° («)
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tw-k-Vertex Coloring belongs to FPT

@ (<) Consider two children v and w of u, and suppose they have
a-compatible colorings 5 and y respectively.
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tw-k-Vertex Coloring belongs to FPT

@ (<) Consider two children v and w of u, and suppose they have
a-compatible colorings 5 and y respectively.
e Since (T, X) is a tree decomposition, V(v) N V(w) C X,, so S is
~y-compatible.
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tw-k-Vertex Coloring belongs to FPT

@ (<) Consider two children v and w of u, and suppose they have
a-compatible colorings 5 and y respectively.
e Since (T, X) is a tree decomposition, V(v) N V(w) C X,, so S is
~y-compatible.
o Combining 8 and v gives ¢ : V(u) = {1,..., k}.
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tw-k-Vertex Coloring belongs to FPT

@ (<) Consider two children v and w of u, and suppose they have
a-compatible colorings 5 and y respectively.

e Since (T, X) is a tree decomposition, V(v) N V(w) C X,, so S is
~y-compatible.

o Combining 8 and v gives ¢ : V(u) = {1,..., k}.

e Since (T, X) is a tree decomposition, there are no edges xy € E(G)
with x € V(v) — X, and y € V(w) — X,,
so ¢ is a proper k-coloring of G(u).
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tw-k-Vertex Coloring belongs to FPT

@ (<) Consider two children v and w of u, and suppose they have
a-compatible colorings 5 and y respectively.

e Since (T, X) is a tree decomposition, V(v) N V(w) C X,, so S is
~y-compatible.

o Combining 8 and v gives ¢ : V(u) = {1,..., k}.

e Since (T, X) is a tree decomposition, there are no edges xy € E(G)
with x € V(v) — X, and y € V(w) — X,,
so ¢ is a proper k-coloring of G(u).

e The same can be done for all children of u simultaneously.

EndProof
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U G
tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time
k"+1n9() we can decide whether G is k-colorable.

v

Proof.
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tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time
k"+1n9() we can decide whether G is k-colorable.

v

Proof.

@ For v € V(T) and a k-coloring a of G[X,], we compute P,(«)
starting at the leaves of T, and using the recurrence.
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Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time
k"+1n9() we can decide whether G is k-colorable.

v

Proof.

@ For v € V(T) and a k-coloring a of G[X,], we compute P,(«)
starting at the leaves of T, and using the recurrence.

@ G = G(r) is k-colorable iff Pr(a) = 1, for some «.
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U G
tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time
k"+1n9() we can decide whether G is k-colorable.

v

Proof.

@ For v € V(T) and a k-coloring a of G[X,], we compute P,(«)
starting at the leaves of T, and using the recurrence.

@ G = G(r) is k-colorable iff Pr(a) = 1, for some «.

e testing whether o is a G[Xv] coloring can be done in O(w?).
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tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time
k"+1n9() we can decide whether G is k-colorable.

v

Proof.
@ For v € V(T) and a k-coloring a of G[X,], we compute P,(«)
starting at the leaves of T, and using the recurrence.
e G = G(r) is k-colorable iff Pr(a)) = 1, for some «.
e testing whether o is a G[Xv] coloring can be done in O(w?).

e computing Pv(a) for a valid o can be done in n©(%)
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tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time
k"+1n9() we can decide whether G is k-colorable.

v

Proof.
@ For v € V(T) and a k-coloring a of G[X,], we compute P,(«)
starting at the leaves of T, and using the recurrence.
e G = G(r) is k-colorable iff Pr(a)) = 1, for some «.
e testing whether o is a G[Xv] coloring can be done in O(w?).
e computing Pv(a) for a valid o can be done in n©(%)

@ the total complexity is mainly determined by the number of
candidates for o which is kIXvl:
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tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time
k"+1n9() we can decide whether G is k-colorable.

v

Proof.
@ For v € V(T) and a k-coloring a of G[X,], we compute P,(«)
starting at the leaves of T, and using the recurrence.
e G = G(r) is k-colorable iff Pr(a)) = 1, for some «.
e testing whether o is a G[Xv] coloring can be done in O(w?).
e computing Pv(a) for a valid o can be done in n©(%)

@ the total complexity is mainly determined by the number of
candidates for a which is kXvl: |V/(T)[kw+10(1),

AiC FME Parameterizing by tree width Fall 2023 11/33
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© Nice tree decomposition
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Nice tree decomposition Definition

Nice tree decomposition
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Nice tree decomposition Definition

Nice tree decomposition

@ A nice tree decomposition is a variant in which the structure of the
tree is simpler.
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Nice tree decomposition Definition

Nice tree decomposition

@ A nice tree decomposition is a variant in which the structure of the
tree is simpler.
@ A rooted tree decomposition (T, X) is nice if for every u € V(T)
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Nice tree decomposition Definition

Nice tree decomposition

@ A nice tree decomposition is a variant in which the structure of the
tree is simpler.
@ A rooted tree decomposition (T, X) is nice if for every u € V(T)
o X, =1 (start)
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Nice tree decomposition Definition

Nice tree decomposition

@ A nice tree decomposition is a variant in which the structure of the
tree is simpler.
@ A rooted tree decomposition (T, X) is nice if for every u € V(T)
o X, =1 (start)
e u has one child v
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Nice tree decomposition Definition

Nice tree decomposition

@ A nice tree decomposition is a variant in which the structure of the
tree is simpler.
@ A rooted tree decomposition (T, X) is nice if for every u € V(T)

o X, =1 (start)
e u has one child v
with X, C X, and | X,| = |Xv| -1 (forget)
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Nice tree decomposition Definition

Nice tree decomposition

@ A nice tree decomposition is a variant in which the structure of the
tree is simpler.
@ A rooted tree decomposition (T, X) is nice if for every u € V(T)

o X, =1 (start)
e u has one child v
with X, C X, and | X,| = |Xv| -1 (forget)
with X, C X, and |Xu| = [Xv| +1 (introduce)
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Nice tree decomposition Definition

Nice tree decomposition

@ A nice tree decomposition is a variant in which the structure of the
tree is simpler.
@ A rooted tree decomposition (T, X) is nice if for every u € V(T)

o X, =1 (start)
e u has one child v
with X, C X, and | X,| = |Xv| -1 (forget)
with X, C X, and |Xu| = [Xv| +1 (introduce)
e u has two children v and w with X, = X, = X,, (join)
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Nice tree decomposition Definition

Nice tree decomposition
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Nice tree decomposition Definition

Nice tree decomposition

Introduce Forget Join
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Nice tree decomposition Definition

Nice tree decomposition

Lemma

Computing a rooted nice tree decomposition with width at most k, given a
small tree decomposition of width at most k takes O(kn) time.
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Nice tree decomposition Definition

Nice tree decomposition

@ Nodes in the tree
node u holds a subset of vertices X, and has a subgraph G,

associated to it.
@ the root r has X, = () and G, = G.

@ nodes can be of four types:
Start Introduce Forget Join

AiC FME Parameterizing by tree width Fall 2023
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A parameterization for Min Vertex Cover
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Nice tree decomposition Min Vertex cover

A parameterization for Min Vertex Cover

TW-MIN VERTEX COVER

Input: A graph G, a tree decomposition (T, X),
Parameter: width(T, X)

Question: Compute a minimum size vertex cover of G
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RIS
The algorithm for tw-Min Vertex Cover

@ We can assume that (T, X) is nice
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Nice tree decomposition Min Vertex cover

The algorithm for tw-Min Vertex Cover

@ We can assume that (T, X) is nice

@ For each node v € V/(T) we keep a table s,(C) for each C C X,
holding the minimum size of a vertex cover C’ of G(v) with
C'NX, = Cifsuch a C’ exists, and s,(C) = oo otherwise.
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Nice tree decomposition Min Vertex cover

The algorithm for tw-Min Vertex Cover

@ We can assume that (T, X) is nice

@ For each node v € V/(T) we keep a table s,(C) for each C C X,
holding the minimum size of a vertex cover C’ of G(v) with
C’'NnX, = Cifsuch a C’ exists, and s,(C) = co otherwise.

@ The value of s5,() is the size of a minimum vertex cover of G.
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DN G
The algorithm for tw-Min Vertex Cover

@ We can assume that (T, X) is nice

@ For each node v € V/(T) we keep a table s,(C) for each C C X,
holding the minimum size of a vertex cover C’ of G(v) with
C’'NnX, = Cifsuch a C’ exists, and s,(C) = co otherwise.

@ The value of s5,() is the size of a minimum vertex cover of G.

@ We deal with each type of node separately

AiC FME Parameterizing by tree width Fall 2023 18/33



Min Vertex cover
Start node
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Min Vertex cover
Start node

Claim

Let u be a leaf of T with X, = {x}.
su({x}) =1 and s,(0) = 0.
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Introduce node
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Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} =X, — X,.
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Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} =X, — X,.
Then for all C C X,
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Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} =X, — X,.
Then for all C C X,

e If C is not a vertex cover of G[X,] then s,(C) = co.
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Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} =X, — X,.
Then for all C C X,

e If C is not a vertex cover of G[X,] then s,(C) = co.

e If Cis a vertex cover of G[X,] and x € C then s5,(C) =s,(C —x)+ 1.
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Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} =X, — X,.
Then for all C C X,
e If C is not a vertex cover of G[X,] then s,(C) = co.
e If Cis a vertex cover of G[X,] and x € C then s5,(C) =s,(C —x)+ 1.
e If Cis a vertex cover of G[X,] and x ¢ C then s,(C) = s,(C).
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Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that

{x} =X, — X,.

Then for all C C X,
e If C is not a vertex cover of G[X,] then s,(C) = co.
e If Cis a vertex cover of G[X,] and x € C then s5,(C) =s,(C —x)+ 1.
e If Cis a vertex cover of G[X,] and x ¢ C then s,(C) = s,(C).

All neighbors of x in G(u) are in X, and therefore in C since C is a
vertex cover of G[X,].

AiC FME Parameterizing by tree width Fall 2023 20/33
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Nice tree decomposition Min Vertex cover

Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} =X, — X
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Tl Ve 5
Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} =X, — X

Then for all C C X, , s,(C) = min{s,(C),s,(C + x)}.

Proof.
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Tl Ve 5
Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} =X, — X

Then for all C C X, , s,(C) = min{s,(C),s,(C + x)}.

Proof.
@ (>) Let C’ be a minvc of G(u) = G(v) with C'n X, = C.
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Tl Ve 5
Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} =X, — X

Then for all C C X, , s,(C) = min{s,(C),s,(C + x)}.

Proof.

@ (>) Let C’ be a minvc of G(u) = G(v) with C'n X, = C.
o If x¢ C' then C'N X, = Cso|C'| >5,(C).
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Tl Ve 5
Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} =X, — X

Then for all C C X, , s,(C) = min{s,(C),s,(C + x)}.

Proof.

@ (>) Let C’ be a minvc of G(u) = G(v) with C'n X, = C.
o If x¢ C' then C'N X, = Cso|C'| >5,(C).
o If x € C’ then similarly |C'| > s,(C + x).
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Tl Ve 5
Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} =X, — X

Then for all C C X, , s,(C) = min{s,(C),s,(C + x)}.

Proof.

@ (>) Let C’ be a minvc of G(u) = G(v) with C'n X, = C.
o If x¢ C' then C'N X, = Cso|C'| >5,(C).
o If x € C’ then similarly |C'| > s,(C + x).

o (<) Let (i and G, be the vCs that determine s,(C) and s,(C + x)
respectively.
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Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} =X, — X

Then for all C C X, , s,(C) = min{s,(C),s,(C + x)}.

Proof.

@ (>) Let C’ be a minvc of G(u) = G(v) with C'n X, = C.
o If x¢ C' then C'N X, = Cso|C'| >5,(C).
o If x € C’ then similarly |C’'| > s,(C + x).
o (<) Let G; and G, be the vCs that determine s,(C) and s,(C + x)
respectively. Ci, C; are vC of G(u) compatible with C, so
5,(C) < min{|Gil, |G}
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Nice tree decomposition Min Vertex cover

Join node

Claim

Let u be a join node of T with children v and w.
Then for all C C X,;: s,(C) =5,(C) + su(C) — |C|.

Proof.
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Nice tree decomposition Min Vertex cover

Join node

Claim

Let u be a join node of T with children v and w.
Then for all C C X,;: s,(C) =5,(C) + su(C) — |C|.

Proof.

e (>) If C'is a vertex cover of G(u) with C'N X, = C, then C'N V(v)
is a vertex cover of G(v) and C' N V(w) is a vertex cover of G(w),
which share | C| vertices.
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Nice tree decomposition Min Vertex cover

Join node

Claim

Let u be a join node of T with children v and w.
Then for all C C X,;: s,(C) =5,(C) + su(C) — |C|.

Proof.

e (>) If C'is a vertex cover of G(u) with C'N X, = C, then C'N V(v)
is a vertex cover of G(v) and C' N V(w) is a vertex cover of G(w),
which share | C| vertices.

@ (<) Two C-compatible vertex covers of G(v) and G(w) of size s,(C)
and s, (C) can be combined to a vertex cover of G(u) of size

so(C) + sw(C) — | CJ.
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Nice tree decomposition Min Vertex cover

Min Vertex cover parameterized by treewidth

Theorem

Let (T, X) be a rooted nice tree decomposition of width w of a graph G

on n vertices. In time 2% +t1n9() the size of a minimum vertex cover of G
can be computed.

Proof.
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Nice tree decomposition Min Vertex cover

Min Vertex cover parameterized by treewidth

Theorem

Let (T, X) be a rooted nice tree decomposition of width w of a graph G

on n vertices. In time 2% +t1n9() the size of a minimum vertex cover of G
can be computed.

Proof.

@ We can construct a minimum vertex cover as well, by tracing back
through the tree decomposition.
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Nice tree decomposition Min Vertex cover

Min Vertex cover parameterized by treewidth

Theorem

Let (T, X) be a rooted nice tree decomposition of width w of a graph G

on n vertices. In time 2% +t1n9() the size of a minimum vertex cover of G
can be computed.

Proof.

@ We can construct a minimum vertex cover as well, by tracing back
through the tree decomposition.

o + O(f(k)n“™M) to get the tree decomposition if needed.
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Algorithmic meta theorems

© Algorithmic meta theorems

Parameterizing by tree width Fall 2023 24 /33



Algorithmic meta theorems

Closure properties

@ A contraction of an edge (u, v) in a graph G consists in replacing u, v
by a new vertex w which keeps as neighbors N(u) U N(v)
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Algorithmic meta theorems

Closure properties

@ A contraction of an edge (u, v) in a graph G consists in replacing u, v
by a new vertex w which keeps as neighbors N(u) U N(v)

@ A graph H is a minor of G if H can be obtained from G by a series of
edge contractions.
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Algorithmic meta theorems

Closure properties

@ A contraction of an edge (u, v) in a graph G consists in replacing u, v
by a new vertex w which keeps as neighbors N(u) U N(v)

@ A graph H is a minor of G if H can be obtained from G by a series of
edge contractions.

e If His a minor of G then tw(H) < tw(G)
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Algorithmic meta theorems

Closure properties

@ A contraction of an edge (u, v) in a graph G consists in replacing u, v
by a new vertex w which keeps as neighbors N(u) U N(v)

@ A graph H is a minor of G if H can be obtained from G by a series of
edge contractions.

e If His a minor of G then tw(H) < tw(G)

(T, X) is a tree decomposition. Contract xy into z. The tree
decomposition (T, X’) in which we replace x,y by z in any bag
containing x or y (or both) is a valid tree decomposition.
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Algorithmic meta theorems

Closure properties

@ A contraction of an edge (u, v) in a graph G consists in replacing u, v
by a new vertex w which keeps as neighbors N(u) U N(v)

@ A graph H is a minor of G if H can be obtained from G by a series of
edge contractions.

e If His a minor of G then tw(H) < tw(G)

(T, X) is a tree decomposition. Contract xy into z. The tree
decomposition (T, X’) in which we replace x,y by z in any bag
containing x or y (or both) is a valid tree decomposition.

e If H is a subgraph of G then tw(H) < tw(G)

AiC FME Parameterizing by tree width Fall 2023 25/33
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Algorithmic theorems

@ Algorithmic theorems provide algorithms, i.e., a proof of the existence
of an algorithm.
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Algorithmic meta theorems

Algorithmic theorems

@ Algorithmic theorems provide algorithms, i.e., a proof of the existence
of an algorithm.

o Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on
graphs of constant treewidth.
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Algorithmic meta theorems

Algorithmic theorems

@ Algorithmic theorems provide algorithms, i.e., a proof of the existence
of an algorithm.
o Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on
graphs of constant treewidth.
e Vertex Cover, Feedback Vertex Set can be solved in sub-exponential
time on planar graphs
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Algorithmic meta theorems

Algorithmic theorems

@ Algorithmic theorems provide algorithms, i.e., a proof of the existence
of an algorithm.
o Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on
graphs of constant treewidth.
e Vertex Cover, Feedback Vertex Set can be solved in sub-exponential
time on planar graphs

@ To get an algorithm, as we have done, you should working out all the
details of the DP!
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Algorithmic meta theorems

@ Algorithmic meta theorems. No algorithm is constructed!
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@ Algorithmic meta theorems. No algorithm is constructed!

@ But the existence of an algorithm is proved
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Algorithmic meta theorems

Algorithmic meta theorems

@ Algorithmic meta theorems. No algorithm is constructed!
@ But the existence of an algorithm is proved

@ Main uses: quick complexity classification tools, mapping the limits of
applicability for specific techniques.
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Algorithmic meta theorems

Algorithmic meta theorems

@ Algorithmic meta theorems. No algorithm is constructed!
@ But the existence of an algorithm is proved

@ Main uses: quick complexity classification tools, mapping the limits of
applicability for specific techniques.

@ Usually they are grounded in logics or other properties
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@ We express graph properties using logic
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@ We express graph properties using logic
@ Basic vocabulary
o Vertex variables: x,y,z,...
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@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...
o Edge predicate E(x,y), Equality x =y
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...
o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, -, —
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, -, —

o Quantifiers V, 3
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, -, —

o Quantifiers V, 3

@ Example:
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, -, —

o Quantifiers V, 3

@ Example: Dominating Set of size 2
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, -, —

o Quantifiers V, 3

@ Example: Dominating Set of size 2

Ix1IxVy E(x1,y) VE(x,y)Vxi=yVxs=y)
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, -, —

o Quantifiers V, 3

@ Example:
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, -, —

o Quantifiers V, 3

@ Example: Vertex Cover of size 2
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, -, —

o Quantifiers V, 3

@ Example: Vertex Cover of size 2

I IVyVz E(y,z) 5> (y=xiVy=xxVz=x1Vz=x
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, -, —

o Quantifiers V, 3

@ Example:
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, -, —

o Quantifiers V, 3

o Example: Clique of size 3
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, -, —

o Quantifiers V, 3

o Example: Clique of size 3

E|X1§|X2§|X3 E(Xl,XQ) A E(Xl,X3) AN E(XQ,X3)
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, —

o Quantifiers V, 3
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary
o Vertex variables: x,y,z,...
o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, —
o Quantifiers V, 3
@ Many standard (parameterized) problems can be expressed in FO
logic.
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First Order Logic on graphs

@ We express graph properties using logic
@ Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, —

o Quantifiers V, 3

@ Many standard (parameterized) problems can be expressed in FO
logic.

@ But some easy problems are inexpressible (e.g. connectivity).
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First Order Logic on graphs

We express graph properties using logic
Basic vocabulary

o Vertex variables: x,y,z,...

o Edge predicate E(x,y), Equality x =y
e Boolean connectives V, A, —

o Quantifiers V, 3

Many standard (parameterized) problems can be expressed in FO
logic.

But some easy problems are inexpressible (e.g. connectivity).

Rule of thumb: FO = local properties
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Monadic Second Order Logic

@ MSO logic: we add to FO logic
e set variables 51, 5, ...
e and the a € predicate.
o Quantifiers V, 3
MSO; logic: we can quantify over sets of vertices
MSO, logic: we can quantify over sets of vertices and sets of edges
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@ MSO logic: we add to FO logic
e set variables 51, 5, ...
e and the a € predicate.
o Quantifiers V, 3
MSO; logic: we can quantify over sets of vertices
MSO, logic: we can quantify over sets of vertices and sets of edges

@ Example:
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Monadic Second Order Logic

@ MSO logic: we add to FO logic
e set variables 51, 5, ...
e and the a € predicate.
o Quantifiers V, 3
MSO; logic: we can quantify over sets of vertices
MSO, logic: we can quantify over sets of vertices and sets of edges

@ Example: 2-coloring
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Monadic Second Order Logic

@ MSO logic: we add to FO logic
e set variables 51, 5, ...
e and the a € predicate.
o Quantifiers V, 3
MSO; logic: we can quantify over sets of vertices
MSO, logic: we can quantify over sets of vertices and sets of edges

@ Example: 2-coloring

AVi3VLVxVy E(x,y) = (x € Vi <> y € Vo)
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Algorithmic meta theorems

Algorithmic meta theorems

e All Monadic Second Order logic ( MSO) expressible problems are
solvable in linear time on graphs of constant treewidth.
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Algorithmic meta theorems

Algorithmic meta theorems

e All Monadic Second Order logic ( MSO) expressible problems are
solvable in linear time on graphs of constant treewidth.

@ All minor closed optimization problems can be solved in
sub-exponential time on planar graphs
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Algorithmic meta theorems

Algorithmic meta theorems

e All Monadic Second Order logic ( MSO) expressible problems are
solvable in linear time on graphs of constant treewidth.

@ All minor closed optimization problems can be solved in
sub-exponential time on planar graphs

Recall: No algorithm is constructed!
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