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Parameterizing by treewidth

Equivalent tw parameterizations for property P

tw-k-P
Input: A graph G , a tree decomposition (T ,X ) of G
and an integer k,
Parameter: width(T ,X ) + k
Question: Is P(G , k) true?

tw-k-P
Input: A graph G and integers w and k,
Parameter: w + k
Question: Is tw(G ) ≤ w and P(G , k) true?

AiC FME Parameterizing by tree width Fall 2023 3 / 33



Parameterizing by treewidth

Equivalent tw parameterizations for property P

tw-k-P
Input: A graph G , a tree decomposition (T ,X ) of G
and an integer k,
Parameter: width(T ,X ) + k
Question: Is P(G , k) true?

tw-k-P
Input: A graph G and integers w and k,
Parameter: w + k
Question: Is tw(G ) ≤ w and P(G , k) true?

AiC FME Parameterizing by tree width Fall 2023 3 / 33



Parameterizing by treewidth

Equivalent tw parameterizations for property P

tw-k-P
Input: A graph G , a tree decomposition (T ,X ) of G
and an integer k,
Parameter: width(T ,X ) + k
Question: Is P(G , k) true?

tw-k-P
Input: A graph G and integers w and k,
Parameter: w + k
Question: Is tw(G ) ≤ w and P(G , k) true?

AiC FME Parameterizing by tree width Fall 2023 3 / 33



Parameterizing by treewidth Small tree decomposition

Small tree decomposition

A tree decomposition (T ,X ) is small if for distinct u, v ∈ V (T ),
Xu ̸⊆ Xv and Xv ̸⊆ Xu.

When given a tree decomposition of G , in polynomial time we can
construct a small tree decomposition of G with the same width.

If a tree decomposition is not small there should be two adjacent nodes
u, v ∈ V (T ) with Xu ⊆ Xv .
Contracting uv into a new node w with Xw = Xv gives a smaller tree
decomposition for G .
repeating the above procedure we get a small tree decomposition.
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Parameterizing by treewidth Small tree decomposition

Small tree decomposition

If (T ,X ) is a small tree decomposition of G . Then |V (T )| ≤ |V (G )|

Exercise: proof by induction

We can make use the FPT algorithm that given a (G ,w) decides
iwhether tw(G ) > w or produces a tree decomposition of width
4w + 4.

We can further assume that such a tree decomposition is small.
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Parameterizing by treewidth Small tree decomposition

Rooted tree decomposition

Let (T ,X ) be a tree decomposition of G of width w .

Make T into a rooted tree by choosing a root r ∈ V (T ), and
replacing edges by arcs in such a way that every node points to its
parent.

For v ∈ V (T ), RT (v) denotes the nodes in the subtree rooted at v
(including v).

For v ∈ V (T ), V (v) = X (RT (v)), and G (v) = G [V (v)].

Thus, we have an induced subgraph associated to each node.

Notice that Xv is a separator in G .
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Parameterizing by treewidth Small tree decomposition

a

b c

d

eg

f

b, c

b, c, g

b, g, a c, g, e

g, f , e e, d, c

Exercise For this rooted tree decomposition. Draw the graphs associated
to each node in the tree. What are the differences among parent-child
graphs?
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Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X ) be a rooted tree decomposition of G with width w .

For every v ∈ V (T ) and every proper k-coloring α of G [Xv ], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33



Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X ) be a rooted tree decomposition of G with width w .

For every v ∈ V (T ) and every proper k-coloring α of G [Xv ], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33



Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X ) be a rooted tree decomposition of G with width w .

For every v ∈ V (T ) and every proper k-coloring α of G [Xv ], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33



Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X ) be a rooted tree decomposition of G with width w .

For every v ∈ V (T ) and every proper k-coloring α of G [Xv ], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33



Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X ) be a rooted tree decomposition of G with width w .

For every v ∈ V (T ) and every proper k-coloring α of G [Xv ], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33



Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

To show that tw-k-Vertex Coloring ∈ FPT we use dynamic
programming on the tree decomposition.

Let H1 and H2 be two subgraphs of G , with valid k-colorings α1 and
α2 respectively.

α2 is α1-compatible if for all v ∈ V (H1) ∩ V (H2), α2(v) = α1(v).

Let (T ,X ) be a rooted tree decomposition of G with width w .

For every v ∈ V (T ) and every proper k-coloring α of G [Xv ], define
Pv (α) = 1 iff G (v) has an α-compatible k-coloring β.

Our algorithm computes Pv (α), for each node in T , from leaves to
root.

AiC FME Parameterizing by tree width Fall 2023 8 / 33



Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Lemma

Pu(α) = 1 iff for all children v of u, there is an α-compatible coloring β of
G [Xv ] with Pv (β) = 1.

Proof.

(⇒) Let γ be an α-compatible coloring of G (u). G (v) is a subgraph
of G (u), so restricting to Xv gives the desired coloring β.
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Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

(⇐)

Consider two children v and w of u, and suppose they have
α-compatible colorings β and γ respectively.

Since (T ,X ) is a tree decomposition, V (v) ∩ V (w) ⊂ Xu, so β is
γ-compatible.
Combining β and γ gives δ : V (u) → {1, . . . , k}.
Since (T ,X ) is a tree decomposition, there are no edges xy ∈ E (G )
with x ∈ V (v)− Xu and y ∈ V (w)− Xu,
so δ is a proper k-coloring of G (u).
The same can be done for all children of u simultaneously.

EndProof
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Parameterizing by treewidth Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T ,X ) be a rooted small tree decomposition of G of width w. In time
kw+1nO(1) we can decide whether G is k-colorable.

Proof.

For v ∈ V (T ) and a k-coloring α of G [Xv ], we compute Pv (α)
starting at the leaves of T , and using the recurrence.

G = G (r) is k-colorable iff Pr(α) = 1, for some α.

testing whether α is a G [Xv ] coloring can be done in O(w2).

computing Pv(α) for a valid α can be done in nO(1)

the total complexity is mainly determined by the number of
candidates for α which is k |Xv |: |V (T )|kw+1nO(1).
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Nice tree decomposition Definition

Nice tree decomposition

A nice tree decomposition is a variant in which the structure of the
tree is simpler.

A rooted tree decomposition (T ,X ) is nice if for every u ∈ V (T )

|Xu| = 1 (start)
u has one child v

with Xu ⊆ Xv and |Xu| = |Xv | − 1 (forget)
with Xv ⊆ Xu and |Xu| = |Xv |+ 1 (introduce)

u has two children v and w with Xu = Xv = Xw (join)
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Nice tree decomposition Definition

Nice tree decomposition

Lemma

Computing a rooted nice tree decomposition with width at most k, given a
small tree decomposition of width at most k takes O(kn) time.
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Nice tree decomposition Definition

Nice tree decomposition

Nodes in the tree
node u holds a subset of vertices Xu, and has a subgraph Gu

associated to it.

the root r has Xr = ∅ and Gr = G .

nodes can be of four types:
Start Introduce Forget Join
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Nice tree decomposition Min Vertex cover

A parameterization for Min Vertex Cover

tw-Min Vertex Cover
Input: A graph G , a tree decomposition (T ,X ),
Parameter: width(T ,X )
Question: Compute a minimum size vertex cover of G
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Nice tree decomposition Min Vertex cover

A parameterization for Min Vertex Cover

tw-Min Vertex Cover
Input: A graph G , a tree decomposition (T ,X ),
Parameter: width(T ,X )
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Nice tree decomposition Min Vertex cover

The algorithm for tw-Min Vertex Cover

We can assume that (T ,X ) is nice

For each node v ∈ V (T ) we keep a table sv (C ) for each C ⊆ Xv

holding the minimum size of a vertex cover C ′ of G (v) with
C ′ ∩ Xv = C if such a C ′ exists, and sv (C ) = ∞ otherwise.

The value of sr (∅) is the size of a minimum vertex cover of G .

We deal with each type of node separately
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Nice tree decomposition Min Vertex cover

Start node

Claim

Let u be a leaf of T with Xu = {x}.
su({x}) = 1 and su(∅) = 0.
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Nice tree decomposition Min Vertex cover

Introduce node

Claim

Let u be an introduce node, let v be its unique child and assume that
{x} = Xu − Xv .
Then for all C ⊆ Xu

If C is not a vertex cover of G [Xu] then su(C ) = ∞.

If C is a vertex cover of G [Xu] and x ∈ C then su(C ) = sv (C − x)+1.

If C is a vertex cover of G [Xu] and x /∈ C then su(C ) = sv (C ).

All neighbors of x in G (u) are in Xv and therefore in C since C is a
vertex cover of G [Xu].
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Nice tree decomposition Min Vertex cover

Forget node

Claim

Let u be a forget node, let v be its unique child and assume that
{v} = Xv − Xu.
Then for all C ⊆ Xu , su(C ) = min{sv (C ), sv (C + x)}.

Proof.

(≥) Let C ′ be a minvc of G (u) = G (v) with C ′ ∩ Xu = C .

If x /∈ C ′ then C ′ ∩ Xu = C so |C ′| ≥ sv (C ).
If x ∈ C ′ then similarly |C ′| ≥ sv (C + x).

(≤) Let C1 and C2 be the vcs that determine sv (C ) and sv (C + x)
respectively. C1,C2 are vc of G (u) compatible with C , so
sv (C ) ≤ min{|C1|, |C2|}.
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Nice tree decomposition Min Vertex cover

Join node

Claim

Let u be a join node of T with children v and w .
Then for all C ⊆ Xu: su(C ) = sv (C ) + sw (C )− |C |.

Proof.

(≥) If C ′ is a vertex cover of G (u) with C ′ ∩ Xu = C , then C ′ ∩ V (v)
is a vertex cover of G (v) and C ′ ∩ V (w) is a vertex cover of G (w),
which share |C | vertices.
(≤) Two C -compatible vertex covers of G (v) and G (w) of size sv (C )
and sw (C ) can be combined to a vertex cover of G (u) of size
sv (C ) + sw (C )− |C |.
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Nice tree decomposition Min Vertex cover

Min Vertex cover parameterized by treewidth

Theorem

Let (T ,X ) be a rooted nice tree decomposition of width w of a graph G
on n vertices. In time 2w+1nO(1) the size of a minimum vertex cover of G
can be computed.

Proof.

We can construct a minimum vertex cover as well, by tracing back
through the tree decomposition.

+ O(f (k)nO(1)) to get the tree decomposition if needed.
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Nice tree decomposition Min Vertex cover
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Algorithmic meta theorems

1 Parameterizing by treewidth

2 Nice tree decomposition

3 Algorithmic meta theorems
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Algorithmic meta theorems

Closure properties

A contraction of an edge (u, v) in a graph G consists in replacing u, v
by a new vertex w which keeps as neighbors N(u) ∪ N(v)

A graph H is a minor of G if H can be obtained from G by a series of
edge contractions.

If H is a minor of G then tw(H) ≤ tw(G )

(T ,X ) is a tree decomposition. Contract xy into z . The tree
decomposition (T ,X ′) in which we replace x , y by z in any bag
containing x or y (or both) is a valid tree decomposition.

If H is a subgraph of G then tw(H) ≤ tw(G )
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Algorithmic meta theorems

Algorithmic theorems

Algorithmic theorems provide algorithms, i.e., a proof of the existence
of an algorithm.

Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on
graphs of constant treewidth.
Vertex Cover, Feedback Vertex Set can be solved in sub-exponential
time on planar graphs

To get an algorithm, as we have done, you should working out all the
details of the DP!
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Algorithmic meta theorems

Algorithmic meta theorems

Algorithmic meta theorems. No algorithm is constructed!

But the existence of an algorithm is proved

Main uses: quick complexity classification tools, mapping the limits of
applicability for specific techniques.

Usually they are grounded in logics or other properties
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Algorithmic meta theorems

First Order Logic on graphs

We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬,→
Quantifiers ∀, ∃

Example: Dominating Set of size 2

∃x1∃x2∀y E (x1, y) ∨ E (x2, y) ∨ x1 = y ∨ x2 = y)
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We express graph properties using logic

Basic vocabulary

Vertex variables: x , y , z , . . .
Edge predicate E (x , y), Equality x = y
Boolean connectives ∨,∧,¬
Quantifiers ∀, ∃

Many standard (parameterized) problems can be expressed in FO
logic.

But some easy problems are inexpressible (e.g. connectivity).

Rule of thumb: FO = local properties
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Algorithmic meta theorems

Monadic Second Order Logic

MSO logic: we add to FO logic

set variables S1,S2, . . .
and the a ∈ predicate.
Quantifiers ∀, ∃
MSO1 logic: we can quantify over sets of vertices
MSO2 logic: we can quantify over sets of vertices and sets of edges

Example: 2-coloring

∃V1∃V2∀x∀y E (x , y) → (x ∈ V1 ↔ y ∈ V2)
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Algorithmic meta theorems

Algorithmic meta theorems

All Monadic Second Order logic ( MSO) expressible problems are
solvable in linear time on graphs of constant treewidth.

All minor closed optimization problems can be solved in
sub-exponential time on planar graphs

Recall: No algorithm is constructed!
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