Parameterized algorithms: Tree width and dynamic programming

Maria Serna

Fall 2023

Ai	С	FI	M	E

Parameterizing by tree width

- Nice tree decomposition
- 3 Algorithmic meta theorems

()

< A ▶

Equivalent tw parameterizations for property P

-		
	N/I	
·~		

э

Equivalent tw parameterizations for property P

тw-к-Р

Input: A graph G, a tree decomposition (T, X) of G and an integer k, Parameter: width(T, X) + kQuestion: Is P(G, k) true?

Equivalent tw parameterizations for property P

тw-к-Р

```
Input: A graph G, a tree decomposition (T, X) of G
and an integer k,
Parameter: width(T, X) + k
Question: Is P(G, k) true?
```

тw-к-Р

```
Input: A graph G and integers w and k,
Parameter: w + k
Question: Is tw(G) \le w and P(G, k) true?
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ロト ・四ト ・ヨト ・ヨト

э

 A tree decomposition (T, X) is small if for distinct u, v ∈ V(T), X_u ⊈ X_v and X_v ⊈ X_u.

イロト イヨト イヨト

э

- A tree decomposition (T, X) is small if for distinct $u, v \in V(T)$, $X_u \not\subseteq X_v$ and $X_v \not\subseteq X_u$.
- When given a tree decomposition of *G*, in polynomial time we can construct a small tree decomposition of *G* with the same width.

- A tree decomposition (T, X) is small if for distinct $u, v \in V(T)$, $X_u \not\subseteq X_v$ and $X_v \not\subseteq X_u$.
- When given a tree decomposition of *G*, in polynomial time we can construct a small tree decomposition of *G* with the same width.
 - If a tree decomposition is not small there should be two adjacent nodes $u, v \in V(T)$ with $X_u \subseteq X_v$.

- A tree decomposition (T, X) is small if for distinct $u, v \in V(T)$, $X_u \not\subseteq X_v$ and $X_v \not\subseteq X_u$.
- When given a tree decomposition of *G*, in polynomial time we can construct a small tree decomposition of *G* with the same width.
 - If a tree decomposition is not small there should be two adjacent nodes $u, v \in V(T)$ with $X_u \subseteq X_v$.
 - Contracting uv into a new node w with $X_w = X_v$ gives a smaller tree decomposition for G.

- A tree decomposition (T, X) is small if for distinct $u, v \in V(T)$, $X_u \not\subseteq X_v$ and $X_v \not\subseteq X_u$.
- When given a tree decomposition of *G*, in polynomial time we can construct a small tree decomposition of *G* with the same width.
 - If a tree decomposition is not small there should be two adjacent nodes $u, v \in V(T)$ with $X_u \subseteq X_v$.
 - Contracting uv into a new node w with $X_w = X_v$ gives a smaller tree decomposition for G.
 - repeating the above procedure we get a small tree decomposition.

・ロト ・雪 ト ・ヨ ト ・

• If (T, X) is a small tree decomposition of G. Then $|V(T)| \le |V(G)|$

AIC	EM	Т
AIC	1 10	

э

- If (T, X) is a small tree decomposition of G. Then $|V(T)| \le |V(G)|$
 - Exercise: proof by induction

э

If (T,X) is a small tree decomposition of G. Then |V(T)| ≤ |V(G)|
 Exercise: proof by induction

 We can make use the FPT algorithm that given a (G, w) decides iwhether tw(G) > w or produces a tree decomposition of width 4w + 4.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If (T,X) is a small tree decomposition of G. Then |V(T)| ≤ |V(G)|
 Exercise: proof by induction

- We can make use the FPT algorithm that given a (G, w) decides iwhether tw(G) > w or produces a tree decomposition of width 4w + 4.
- We can further assume that such a tree decomposition is small.

・ロト ・雪 ト ・ヨ ト ・

• Let (T, X) be a tree decomposition of G of width w.

э

- Let (T, X) be a tree decomposition of G of width w.
- Make T into a rooted tree by choosing a root r ∈ V(T), and replacing edges by arcs in such a way that every node points to its parent.

- Let (T, X) be a tree decomposition of G of width w.
- Make T into a rooted tree by choosing a root r ∈ V(T), and replacing edges by arcs in such a way that every node points to its parent.
- For v ∈ V(T), R_T(v) denotes the nodes in the subtree rooted at v (including v).

・ロト ・雪 ト ・ヨ ト ・

- Let (T, X) be a tree decomposition of G of width w.
- Make T into a rooted tree by choosing a root r ∈ V(T), and replacing edges by arcs in such a way that every node points to its parent.
- For v ∈ V(T), R_T(v) denotes the nodes in the subtree rooted at v (including v).
- For $v \in V(T)$, $V(v) = X(R_T(v))$, and G(v) = G[V(v)].

イロト 不得 トイヨト イヨト 二日

- Let (T, X) be a tree decomposition of G of width w.
- Make T into a rooted tree by choosing a root r ∈ V(T), and replacing edges by arcs in such a way that every node points to its parent.
- For v ∈ V(T), R_T(v) denotes the nodes in the subtree rooted at v (including v).
- For $v \in V(T)$, $V(v) = X(R_T(v))$, and G(v) = G[V(v)].

Thus, we have an induced subgraph associated to each node.

イロト 不得 トイヨト イヨト 二日

- Let (T, X) be a tree decomposition of G of width w.
- Make T into a rooted tree by choosing a root r ∈ V(T), and replacing edges by arcs in such a way that every node points to its parent.
- For v ∈ V(T), R_T(v) denotes the nodes in the subtree rooted at v (including v).
- For $v \in V(T)$, $V(v) = X(R_T(v))$, and G(v) = G[V(v)].

Thus, we have an induced subgraph associated to each node.

• Notice that X_v is a separator in G.

6/33

イロト 不得 トイヨト イヨト 二日

Fall 2023

Exercise For this rooted tree decomposition. Draw the graphs associated to each node in the tree. What are the differences among parent-child graphs?

• To show that TW-K-VERTEX COLORING ∈ FPT we use dynamic programming on the tree decomposition.

- To show that TW-K-VERTEX COLORING \in FPT we use dynamic programming on the tree decomposition.
- Let H_1 and H_2 be two subgraphs of G, with valid k-colorings α_1 and α_2 respectively.

- To show that TW-K-VERTEX COLORING ∈ FPT we use dynamic programming on the tree decomposition.
- Let H_1 and H_2 be two subgraphs of G, with valid k-colorings α_1 and α_2 respectively.
- α_2 is α_1 -compatible if for all $v \in V(H_1) \cap V(H_2)$, $\alpha_2(v) = \alpha_1(v)$.

- To show that TW-K-VERTEX COLORING ∈ FPT we use dynamic programming on the tree decomposition.
- Let H_1 and H_2 be two subgraphs of G, with valid k-colorings α_1 and α_2 respectively.
- α_2 is α_1 -compatible if for all $v \in V(H_1) \cap V(H_2)$, $\alpha_2(v) = \alpha_1(v)$.
- Let (T, X) be a rooted tree decomposition of G with width w.

- To show that TW-K-VERTEX COLORING ∈ FPT we use dynamic programming on the tree decomposition.
- Let H_1 and H_2 be two subgraphs of G, with valid k-colorings α_1 and α_2 respectively.
- α_2 is α_1 -compatible if for all $v \in V(H_1) \cap V(H_2)$, $\alpha_2(v) = \alpha_1(v)$.
- Let (T, X) be a rooted tree decomposition of G with width w.
 - For every $v \in V(T)$ and every proper k-coloring α of G[Xv], define $P_v(\alpha) = 1$ iff G(v) has an α -compatible k-coloring β .

・ロト ・雪 ト ・ヨ ト ・

Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

- To show that TW-K-VERTEX COLORING \in FPT we use dynamic programming on the tree decomposition.
- Let H_1 and H_2 be two subgraphs of G, with valid k-colorings α_1 and α_2 respectively.
- α_2 is α_1 -compatible if for all $v \in V(H_1) \cap V(H_2)$, $\alpha_2(v) = \alpha_1(v)$.
- Let (T, X) be a rooted tree decomposition of G with width w.
 - For every $v \in V(T)$ and every proper k-coloring α of G[Xv], define $P_{v}(\alpha) = 1$ iff G(v) has an α -compatible k-coloring β .
- Our algorithm computes $P_{v}(\alpha)$, for each node in T, from leaves to root.

8/33

イロト 不得 トイヨト イヨト 二日

Lemma

 $P_u(\alpha) = 1$ iff for all children v of u, there is an α -compatible coloring β of $G[X_v]$ with $P_v(\beta) = 1$.

Proof.

Lemma

 $P_u(\alpha) = 1$ iff for all children v of u, there is an α -compatible coloring β of $G[X_v]$ with $P_v(\beta) = 1$.

Proof.

(⇒)

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma

 $P_u(\alpha) = 1$ iff for all children v of u, there is an α -compatible coloring β of $G[X_v]$ with $P_v(\beta) = 1$.

Proof.

(⇒) Let γ be an α-compatible coloring of G(u). G(v) is a subgraph of G(u), so restricting to X_v gives the desired coloring β.

● (⇐)

AiC	FM	E

3

• (\Leftarrow) Consider two children v and w of u, and suppose they have α -compatible colorings β and γ respectively.

- (\Leftarrow) Consider two children v and w of u, and suppose they have α -compatible colorings β and γ respectively.
 - Since (T, X) is a tree decomposition, $V(v) \cap V(w) \subset X_u$, so β is γ -compatible.

Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

- (\Leftarrow) Consider two children v and w of u, and suppose they have α -compatible colorings β and γ respectively.
 - Since (T, X) is a tree decomposition, $V(v) \cap V(w) \subset X_u$, so β is γ -compatible.
 - Combining β and γ gives $\delta : V(u) \rightarrow \{1, \ldots, k\}$.

イロト イポト イヨト イヨト 三日

Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

- (\Leftarrow) Consider two children v and w of u, and suppose they have α -compatible colorings β and γ respectively.
 - Since (T, X) is a tree decomposition, $V(v) \cap V(w) \subset X_{u}$, so β is γ -compatible.
 - Combining β and γ gives $\delta : V(u) \rightarrow \{1, \ldots, k\}$.
 - Since (T, X) is a tree decomposition, there are no edges $xy \in E(G)$ with $x \in V(v) - X_{\mu}$ and $y \in V(w) - X_{\mu}$, so δ is a proper k-coloring of G(u).

くロ とくぼ とくほ とくほ とうしょ
- (\Leftarrow) Consider two children v and w of u, and suppose they have α -compatible colorings β and γ respectively.
 - Since (T, X) is a tree decomposition, $V(v) \cap V(w) \subset X_u$, so β is γ -compatible.
 - Combining β and γ gives $\delta: V(u) \rightarrow \{1, \dots, k\}.$
 - Since (T, X) is a tree decomposition, there are no edges xy ∈ E(G) with x ∈ V(v) − X_u and y ∈ V(w) − X_u, so δ is a proper k-coloring of G(u).
 - The same can be done for all children of *u* simultaneously.

EndProof

10/33

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fall 2023

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time $k^{w+1}n^{O(1)}$ we can decide whether G is k-colorable.

Proof.

Aic	2 F	MI	E

Fall 2023

11/33

Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time $k^{w+1}n^{O(1)}$ we can decide whether G is k-colorable.

Proof.

• For $v \in V(T)$ and a k-coloring α of $G[X_v]$, we compute $P_v(\alpha)$ starting at the leaves of T, and using the recurrence.

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time $k^{w+1}n^{O(1)}$ we can decide whether G is k-colorable.

- For v ∈ V(T) and a k-coloring α of G[X_v], we compute P_v(α) starting at the leaves of T, and using the recurrence.
- G = G(r) is k-colorable iff $Pr(\alpha) = 1$, for some α .

Vertex Coloring

tw-k-Vertex Coloring belongs to FPT

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time $k^{w+1}n^{O(1)}$ we can decide whether G is k-colorable.

- For $v \in V(T)$ and a k-coloring α of $G[X_v]$, we compute $P_v(\alpha)$ starting at the leaves of T, and using the recurrence.
- G = G(r) is k-colorable iff $Pr(\alpha) = 1$, for some α .
- testing whether α is a G[Xv] coloring can be done in $O(w^2)$.

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time $k^{w+1}n^{O(1)}$ we can decide whether G is k-colorable.

- For v ∈ V(T) and a k-coloring α of G[X_v], we compute P_v(α) starting at the leaves of T, and using the recurrence.
- G = G(r) is k-colorable iff $Pr(\alpha) = 1$, for some α .
- testing whether α is a G[Xv] coloring can be done in $O(w^2)$.
- computing $Pv(\alpha)$ for a valid α can be done in $n^{O(1)}$

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time $k^{w+1}n^{O(1)}$ we can decide whether G is k-colorable.

- For v ∈ V(T) and a k-coloring α of G[X_v], we compute P_v(α) starting at the leaves of T, and using the recurrence.
- G = G(r) is k-colorable iff $Pr(\alpha) = 1$, for some α .
- testing whether α is a G[Xv] coloring can be done in $O(w^2)$.
- computing $Pv(\alpha)$ for a valid α can be done in $n^{O(1)}$
- the total complexity is mainly determined by the number of candidates for α which is k^{|X_ν|}:

Theorem

Let (T, X) be a rooted small tree decomposition of G of width w. In time $k^{w+1}n^{O(1)}$ we can decide whether G is k-colorable.

- For v ∈ V(T) and a k-coloring α of G[X_ν], we compute P_ν(α) starting at the leaves of T, and using the recurrence.
- G = G(r) is k-colorable iff $Pr(\alpha) = 1$, for some α .
- testing whether α is a G[Xv] coloring can be done in $O(w^2)$.
- computing $Pv(\alpha)$ for a valid α can be done in $n^{O(1)}$
- the total complexity is mainly determined by the number of candidates for α which is $k^{|X_v|}$: $|V(T)|k^{w+1}n^{O(1)}$.

2 Nice tree decomposition

3 Algorithmic meta theorems

AIC	ENA	
AIC		

< ∃ →

Nice tree decomposition

・ロト ・四ト ・ヨト ・ヨト

3

Nice tree decomposition

• A nice tree decomposition is a variant in which the structure of the tree is simpler.

▶ ∢ ⊒ ▶

Nice tree decomposition

- A nice tree decomposition is a variant in which the structure of the tree is simpler.
- A rooted tree decomposition (T, X) is nice if for every $u \in V(T)$

Nice tree decomposition

- A nice tree decomposition is a variant in which the structure of the tree is simpler.
- A rooted tree decomposition (T, X) is nice if for every $u \in V(T)$

•
$$|X_u| = 1$$
 (start)

Nice tree decomposition

- A nice tree decomposition is a variant in which the structure of the tree is simpler.
- A rooted tree decomposition (T, X) is nice if for every $u \in V(T)$
 - $|X_u| = 1$ (start)
 - *u* has one child *v*

・ 同 ト ・ ヨ ト ・ ヨ ト …

Nice tree decomposition

- A nice tree decomposition is a variant in which the structure of the tree is simpler.
- A rooted tree decomposition (T, X) is nice if for every $u \in V(T)$

•
$$|X_u| = 1$$
 (start)

• μ has one child ν

with
$$X_u \subseteq X_v$$
 and $|X_u| = |Xv| - 1$ (forget)

Nice tree decomposition

- A nice tree decomposition is a variant in which the structure of the tree is simpler.
- A rooted tree decomposition (T, X) is nice if for every $u \in V(T)$

•
$$|X_u| = 1$$
 (start)

• μ has one child ν

with
$$X_u \subseteq X_v$$
 and $|X_u| = |Xv| - 1$ (forget)
with $X_v \subseteq X_u$ and $|Xu| = |Xv| + 1$ (introduce)

Nice tree decomposition

- A nice tree decomposition is a variant in which the structure of the tree is simpler.
- A rooted tree decomposition (T, X) is nice if for every $u \in V(T)$

•
$$|X_u| = 1$$
 (start)

- μ has one child ν with $X_{\mu} \subseteq X_{\nu}$ and $|X_{\mu}| = |X_{\nu}| - 1$ (forget) with $X_v \subseteq X_u$ and |Xu| = |Xv| + 1(introduce)
- u has two children v and w with $X_{\mu} = X_{\nu} = X_{w}$ (join)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nice tree decomposition

э

Nice tree decomposition

Start Introduce Forget Join

14/33

Nice tree decomposition

Lemma

Computing a rooted nice tree decomposition with width at most k, given a small tree decomposition of width at most k takes O(kn) time.

AiC	FM	E

Nice tree decomposition

Nodes in the tree

node u holds a subset of vertices X_{u} , and has a subgraph G_{u} associated to it.

- the root r has $X_r = \emptyset$ and $G_r = G$.
- on nodes can be of four types:

Start	Introduce	Forget	Join

▶ < Ξ ▶</p>

э

▲ □ ● ● ● ●

A parameterization for Min Vertex Cover

э

A parameterization for Min Vertex Cover

TW-MIN VERTEX COVER

Input: A graph G, a tree decomposition (T, X), Parameter: width(T, X)Question: Compute a minimum size vertex cover of G

<u> </u>	 	
	NVI	
_		_

イロト イボト イヨト イヨト

э

• We can assume that (T, X) is nice

AIC	EN4	
AIC		

イロト イボト イヨト イヨト

- We can assume that (T, X) is nice
- For each node v ∈ V(T) we keep a table s_v(C) for each C ⊆ X_v holding the minimum size of a vertex cover C' of G(v) with C' ∩ X_v = C if such a C' exists, and s_v(C) = ∞ otherwise.

くロ と く 同 と く ヨ と 一

- We can assume that (T, X) is nice
- For each node v ∈ V(T) we keep a table s_v(C) for each C ⊆ X_v holding the minimum size of a vertex cover C' of G(v) with C' ∩ X_v = C if such a C' exists, and s_v(C) = ∞ otherwise.
- The value of $s_r(\emptyset)$ is the size of a minimum vertex cover of G.

- We can assume that (T, X) is nice
- For each node v ∈ V(T) we keep a table s_v(C) for each C ⊆ X_v holding the minimum size of a vertex cover C' of G(v) with C' ∩ X_v = C if such a C' exists, and s_v(C) = ∞ otherwise.
- The value of $s_r(\emptyset)$ is the size of a minimum vertex cover of G.

• We deal with each type of node separately

18/33

Start node

AIC FME Para	meterizing by tree width
--------------	--------------------------

Fall 2023

・ロト ・四ト ・ヨト ・ヨト

19/33

E • • • • •

Start node

Claim

Let u be a leaf of T with
$$X_u = \{x\}$$
.
 $s_u(\{x\}) = 1$ and $s_u(\emptyset) = 0$.

Ai	С	F	М	Е

・ロト ・四ト ・ヨト ・ヨト

æ.

Ai	С	FI	M	E

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ.

Claim

Let *u* be an *introduce* node, let *v* be its unique child and assume that $\{x\} = X_u - X_v$.

AIC FME	Parameterizing by tree width	Fall 2023	20 / 33

• • • • • • • • • • • • •

1. 1. 1.

SOA

Claim

Let *u* be an *introduce* node, let *v* be its unique child and assume that $\{x\} = X_u - X_v$. Then for all $C \subset X_u$

э

20/33

Claim

Let *u* be an *introduce* node, let *v* be its unique child and assume that $\{x\} = X_u - X_v$. Then for all $C \subseteq X_u$

• If C is not a vertex cover of $G[X_u]$ then $s_u(C) = \infty$.

- 4 目 ト 4 日 ト

э

Claim

Let *u* be an *introduce* node, let *v* be its unique child and assume that $\{x\} = X_u - X_v$. Then for all $C \subseteq X_u$

- If C is not a vertex cover of $G[X_u]$ then $s_u(C) = \infty$.
- If C is a vertex cover of $G[X_u]$ and $x \in C$ then $s_u(C) = s_v(C-x) + 1$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Claim

Let *u* be an *introduce* node, let *v* be its unique child and assume that $\{x\} = X_u - X_v$. Then for all $C \subseteq X_u$

- If C is not a vertex cover of $G[X_u]$ then $s_u(C) = \infty$.
- If C is a vertex cover of $G[X_u]$ and $x \in C$ then $s_u(C) = s_v(C-x) + 1$.
- If C is a vertex cover of $G[X_u]$ and $x \notin C$ then $s_u(C) = s_v(C)$.

20/33

・ 同 ト ・ ヨ ト ・ ヨ ト
Introduce node

Claim

Let *u* be an *introduce* node, let *v* be its unique child and assume that $\{x\} = X_u - X_v$. Then for all $C \subseteq X_u$

- If C is not a vertex cover of $G[X_u]$ then $s_u(C) = \infty$.
- If C is a vertex cover of $G[X_u]$ and $x \in C$ then $s_u(C) = s_v(C-x) + 1$.
- If C is a vertex cover of G[X_u] and x ∉ C then s_u(C) = s_v(C).
 All neighbors of x in G(u) are in X_v and therefore in C since C is a vertex cover of G[X_u].

Fall 2023

		-	_		_
	н		-	ΝИ	-
-	ль	_		N I	

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ.

Claim

Let *u* be a *forget* node, let *v* be its unique child and assume that $\{v\} = X_v - X_u$.

イロト イボト イヨト イヨト

э

Claim

Let *u* be a *forget* node, let *v* be its unique child and assume that $\{v\} = X_v - X_u$. Then for all $C \subseteq X_u$, $s_u(C) = \min\{s_v(C), s_v(C+x)\}$.

Proof.

	《日》《聞》《臣》《臣》	₹ 9

Claim

Let *u* be a *forget* node, let *v* be its unique child and assume that $\{v\} = X_v - X_u$. Then for all $C \subseteq X_u$, $s_u(C) = \min\{s_v(C), s_v(C+x)\}$.

Proof.

• (\geq) Let C' be a minVC of G(u) = G(v) with $C' \cap X_u = C$.

Claim

Let *u* be a *forget* node, let *v* be its unique child and assume that $\{v\} = X_v - X_u$. Then for all $C \subseteq X_u$, $s_u(C) = \min\{s_v(C), s_v(C+x)\}$.

Proof.

- (\geq) Let C' be a minVC of G(u) = G(v) with C' $\cap X_u = C$.
 - If $x \notin C'$ then $C' \cap X_u = C$ so $|C'| \ge s_v(C)$.

3

21/33

< ロ > < 同 > < 回 > < 回 > < 回 > <

Claim

Let *u* be a *forget* node, let *v* be its unique child and assume that $\{v\} = X_v - X_u$. Then for all $C \subseteq X_u$, $s_u(C) = \min\{s_v(C), s_v(C+x)\}$.

Proof.

- (\geq) Let C' be a minVC of G(u) = G(v) with $C' \cap X_u = C$.
 - If $x \notin C'$ then $C' \cap X_u = C$ so $|C'| \ge s_v(C)$.
 - If $x \in C'$ then similarly $|C'| \ge s_{\nu}(C+x)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Claim

Let *u* be a *forget* node, let *v* be its unique child and assume that $\{v\} = X_v - X_u$. Then for all $C \subseteq X_u$, $s_u(C) = \min\{s_v(C), s_v(C+x)\}$.

Proof.

- (\geq) Let C' be a minVC of G(u) = G(v) with $C' \cap X_u = C$.
 - If $x \notin C'$ then $C' \cap X_u = C$ so $|C'| \ge s_v(C)$.
 - If $x \in C'$ then similarly $|C'| \ge s_{\nu}(C+x)$.
- (\leq) Let C_1 and C_2 be the VCs that determine $s_v(C)$ and $s_v(C+x)$ respectively.

Fall 2023

Claim

Let *u* be a *forget* node, let *v* be its unique child and assume that $\{v\} = X_v - X_u$. Then for all $C \subseteq X_u$, $s_u(C) = \min\{s_v(C), s_v(C+x)\}$.

Proof.

- (\geq) Let C' be a minVC of G(u) = G(v) with $C' \cap X_u = C$.
 - If $x \notin C'$ then $C' \cap X_u = C$ so $|C'| \ge s_v(C)$.
 - If $x \in C'$ then similarly $|C'| \ge s_v(C+x)$.
- (\leq) Let C_1 and C_2 be the VCs that determine $s_v(C)$ and $s_v(C+x)$ respectively. C_1, C_2 are VC of G(u) compatible with C, so $s_v(C) \leq \min\{|C_1|, |C_2|\}.$

イロト イヨト イヨト

3

A	N 4 E	
	 NE	
	 _	

Claim

Let *u* be a join node of *T* with children *v* and *w*. Then for all $C \subseteq X_u$: $s_u(C) = s_v(C) + s_w(C) - |C|$.

Proof.

AIC	EN/	
AIC	L IAI	

イロト イボト イヨト イヨト

э

Claim

Let *u* be a join node of *T* with children *v* and *w*. Then for all $C \subseteq X_u$: $s_u(C) = s_v(C) + s_w(C) - |C|$.

Proof.

• (\geq) If C' is a vertex cover of G(u) with $C' \cap X_u = C$, then $C' \cap V(v)$ is a vertex cover of G(v) and $C' \cap V(w)$ is a vertex cover of G(w), which share |C| vertices.

22/33

・ 同 ト ・ ヨ ト ・ ヨ ト

Claim

Let *u* be a join node of *T* with children *v* and *w*. Then for all $C \subseteq X_u$: $s_u(C) = s_v(C) + s_w(C) - |C|$.

Proof.

- (\geq) If C' is a vertex cover of G(u) with $C' \cap X_u = C$, then $C' \cap V(v)$ is a vertex cover of G(v) and $C' \cap V(w)$ is a vertex cover of G(w), which share |C| vertices.
- (\leq) Two C-compatible vertex covers of G(v) and G(w) of size $s_v(C)$ and $s_w(C)$ can be combined to a vertex cover of G(u) of size $s_v(C) + s_w(C) - |C|$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fall 2023

Min Vertex cover parameterized by treewidth

Theorem

Let (T, X) be a rooted nice tree decomposition of width w of a graph G on n vertices. In time $2^{w+1}n^{O(1)}$ the size of a minimum vertex cover of G can be computed.

Proof.

AIC FME	Parameterizing by tree width	Fall 2023	23 / 33

Min Vertex cover parameterized by treewidth

Theorem

Let (T, X) be a rooted nice tree decomposition of width w of a graph G on n vertices. In time $2^{w+1}n^{O(1)}$ the size of a minimum vertex cover of G can be computed.

Proof.

• We can construct a minimum vertex cover as well, by tracing back through the tree decomposition.

Min Vertex cover parameterized by treewidth

Theorem

Let (T, X) be a rooted nice tree decomposition of width w of a graph G on n vertices. In time $2^{w+1}n^{O(1)}$ the size of a minimum vertex cover of G can be computed.

Proof.

- We can construct a minimum vertex cover as well, by tracing back through the tree decomposition.
- + $O(f(k)n^{O(1)})$ to get the tree decomposition if needed.

AIC FME	Parameterizing by tree width	Fall 2023	23 / 33
		《曰》《卽》《言》《言》	≣ • ୨ .୧.୧

- ∢ ⊒ →

• A contraction of an edge (u, v) in a graph G consists in replacing u, v by a new vertex w which keeps as neighbors $N(u) \cup N(v)$

- 4 同 ト 4 回 ト -

- A contraction of an edge (u, v) in a graph G consists in replacing u, v by a new vertex w which keeps as neighbors N(u) ∪ N(v)
- A graph *H* is a minor of *G* if *H* can be obtained from *G* by a series of edge contractions.

くロ と く 同 と く ヨ と 一

- A contraction of an edge (u, v) in a graph G consists in replacing u, v by a new vertex w which keeps as neighbors N(u) ∪ N(v)
- A graph *H* is a minor of *G* if *H* can be obtained from *G* by a series of edge contractions.
- If H is a minor of G then $tw(H) \le tw(G)$

- A contraction of an edge (u, v) in a graph G consists in replacing u, v by a new vertex w which keeps as neighbors $N(u) \cup N(v)$
- A graph *H* is a minor of *G* if *H* can be obtained from *G* by a series of edge contractions.
- If H is a minor of G then $tw(H) \le tw(G)$

(T, X) is a tree decomposition. Contract xy into z. The tree decomposition (T, X') in which we replace x, y by z in any bag containing x or y (or both) is a valid tree decomposition.

- A contraction of an edge (u, v) in a graph G consists in replacing u, v by a new vertex w which keeps as neighbors $N(u) \cup N(v)$
- A graph *H* is a minor of *G* if *H* can be obtained from *G* by a series of edge contractions.
- If H is a minor of G then $tw(H) \le tw(G)$

(T, X) is a tree decomposition. Contract xy into z. The tree decomposition (T, X') in which we replace x, y by z in any bag containing x or y (or both) is a valid tree decomposition.

• If H is a subgraph of G then $tw(H) \leq tw(G)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fall 2023

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ.

• Algorithmic theorems provide algorithms, i.e., a proof of the existence of an algorithm.

イロト イボト イヨト イヨト

э

- Algorithmic theorems provide algorithms, i.e., a proof of the existence of an algorithm.
 - Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on graphs of constant treewidth.

- 4 同 ト 4 目 ト

- Algorithmic theorems provide algorithms, i.e., a proof of the existence of an algorithm.
 - Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on graphs of constant treewidth.
 - Vertex Cover, Feedback Vertex Set can be solved in sub-exponential time on planar graphs

- Algorithmic theorems provide algorithms, i.e., a proof of the existence of an algorithm.
 - Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on graphs of constant treewidth.
 - Vertex Cover, Feedback Vertex Set can be solved in sub-exponential time on planar graphs
- To get an algorithm, as we have done, you should working out all the details of the DP!

26 / 33

_		_		
- ^ -	1.0		ΝЛ	

æ

• Algorithmic meta theorems. No algorithm is constructed!

< A >

▶ < Ξ ▶</p>

э

- Algorithmic meta theorems. No algorithm is constructed!
- But the existence of an algorithm is proved

- ∢ ⊒ →

- Algorithmic meta theorems. No algorithm is constructed!
- But the existence of an algorithm is proved
- Main uses: quick complexity classification tools, mapping the limits of applicability for specific techniques.

- Algorithmic meta theorems. No algorithm is constructed!
- But the existence of an algorithm is proved
- Main uses: quick complexity classification tools, mapping the limits of applicability for specific techniques.
- Usually they are grounded in logics or other properties

• We express graph properties using logic

3

- We express graph properties using logic
- Basic vocabulary

э

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・ ・ 日

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives $\lor,\land,\neg,\rightarrow$

・ロト ・ 一下 ・ ト ・ ト ・ ト

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives $\lor,\land,\neg,\rightarrow$
 - Quantifiers \forall , \exists

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives $\lor,\land,\neg,\rightarrow$
 - Quantifiers \forall , \exists
- Example:

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives $\vee,\wedge,\neg,\rightarrow$
 - Quantifiers \forall , \exists
- Example: Dominating Set of size 2

28 / 33

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives $\vee,\wedge,\neg,\rightarrow$
 - Quantifiers \forall , \exists
- Example: Dominating Set of size 2

 $\exists x_1 \exists x_2 \forall y \ E(x_1, y) \lor E(x_2, y) \lor x_1 = y \lor x_2 = y)$

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives $\lor,\land,\neg,\rightarrow$
 - Quantifiers \forall , \exists
- Example:

・ロト ・ 一下 ・ ト ・ ト ・ ト

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives $\lor,\land,\neg,\rightarrow$
 - Quantifiers \forall , \exists
- Example: Vertex Cover of size 2

29/33

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives $\lor, \land, \neg, \rightarrow$
 - Quantifiers \forall , \exists
- Example: Vertex Cover of size 2

 $\exists x_1 \exists x_2 \forall y \forall z \ E(y, z) \rightarrow (y = x_1 \lor y = x_2 \lor z = x_1 \lor z = x_2$

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives $\lor,\land,\neg,\rightarrow$
 - Quantifiers \forall , \exists
- Example:

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives $\lor,\land,\neg,\rightarrow$
 - Quantifiers \forall , \exists
- Example: Clique of size 3

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives $\vee,\wedge,\neg,\rightarrow$
 - Quantifiers \forall , \exists
- Example: Clique of size 3

 $\exists x_1 \exists x_2 \exists x_3 \ E(x_1, x_2) \land E(x_1, x_3) \land E(x_2, x_3)$

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives \lor,\land,\lnot
 - Quantifiers \forall , \exists

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives \lor,\land,\lnot
 - Quantifiers \forall , \exists
- Many standard (parameterized) problems can be expressed in FO logic.

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives \lor,\land,\lnot
 - Quantifiers \forall , \exists
- Many standard (parameterized) problems can be expressed in FO logic.
- But some easy problems are inexpressible (e.g. connectivity).

(日) (同) (三) (三) (三)

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, ...
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives \lor,\land,\lnot
 - Quantifiers \forall , \exists
- Many standard (parameterized) problems can be expressed in FO logic.
- But some easy problems are inexpressible (e.g. connectivity).
- Rule of thumb: FO = local properties

• MSO logic: we add to FO logic

- MSO logic: we add to FO logic
 - set variables S_1, S_2, \ldots

イロト イボト イヨト イヨト

- MSO logic: we add to FO logic
 - set variables S_1, S_2, \ldots
 - and the $a \in$ predicate.

イロト イヨト イヨト

- MSO logic: we add to FO logic
 - set variables S_1, S_2, \ldots
 - and the $a \in$ predicate.
 - Quantifiers \forall , \exists
 - MSO₁ logic: we can quantify over sets of vertices
 - MSO₂ logic: we can quantify over sets of vertices and sets of edges

< 同 > < 回 > < 回 > -

- MSO logic: we add to FO logic
 - set variables S_1, S_2, \ldots
 - and the $a \in$ predicate.
 - Quantifiers \forall , \exists MSO₁ logic: we can quantify over sets of vertices MSO₂ logic: we can quantify over sets of vertices and sets of edges

• Example:

< 同 > < 回 > < 回 > -

- MSO logic: we add to FO logic
 - set variables S_1, S_2, \ldots
 - and the $a \in$ predicate.
 - Quantifiers ∀, ∃
 MSO₁ logic: we can quantify over sets of vertices
 MSO₂ logic: we can quantify over sets of vertices and sets of edges
- Example: 2-coloring

32 / 33

< 同 > < 回 > < 回 > -

- MSO logic: we add to FO logic
 - set variables S_1, S_2, \ldots
 - and the $a \in$ predicate.
 - Quantifiers ∀, ∃
 MSO₁ logic: we can quantify over sets of vertices
 MSO₂ logic: we can quantify over sets of vertices and sets of edges
- Example: 2-coloring

 $\exists V_1 \exists V_2 \forall x \forall y \ E(x,y) \rightarrow (x \in V_1 \leftrightarrow y \in V_2)$

32/33

	-	_		τ.
- 41	ι.	-	IV	16

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• All Monadic Second Order logic (MSO) expressible problems are solvable in linear time on graphs of constant treewidth.

- All Monadic Second Order logic (MSO) expressible problems are solvable in linear time on graphs of constant treewidth.
- All minor closed optimization problems can be solved in sub-exponential time on planar graphs

- All Monadic Second Order logic (MSO) expressible problems are solvable in linear time on graphs of constant treewidth.
- All minor closed optimization problems can be solved in sub-exponential time on planar graphs

Recall: No algorithm is constructed!