A graph parameter: Treewidth

Maria Serna

Fall 2023

(1) Tree width

Graph parameters

Graph parameters

- For a given graph G we can consider graph measures as candidates for parameters.

Graph parameters

- For a given graph G we can consider graph measures as candidates for parameters.
- Diameter, degree, vertex cover, ..., or a combination of them.

Graph parameters

- For a given graph G we can consider graph measures as candidates for parameters.
- Diameter, degree, vertex cover, ..., or a combination of them.
- Many hard graph problems can be solved in polynomial time in trees.

Graph parameters

- For a given graph G we can consider graph measures as candidates for parameters.
- Diameter, degree, vertex cover, ..., or a combination of them.
- Many hard graph problems can be solved in polynomial time in trees.
- We are going to explore a parameter that measures the closeness of a graph to a tree: treewidth.

Graph parameters

- For a given graph G we can consider graph measures as candidates for parameters.
- Diameter, degree, vertex cover, ..., or a combination of them.
- Many hard graph problems can be solved in polynomial time in trees.
- We are going to explore a parameter that measures the closeness of a graph to a tree: treewidth.
- A similar parameter measures closeness of a graph to a path: pathwidth.

Recall some graph notation

Recall some graph notation

- For a graph G and $v \in V(G), G-v$ denotes the graph obtained by deleting v (and all incident edges).
- For a set $S, S+v$ denotes $S \cup\{v\}$, and $S-v$ denotes $S \backslash\{v\}$.
- For a vertex $v \in V(G), N(v)$ denotes the set of neighbors of v. $N[v]=N(v)+v . d(v)=|N(v)|$.
- For a graph $G=(V, E), \delta(G)=\min _{v \in V} d(v)$, and $\Delta(G)=\max _{v \in V} d(v)$.

Recall some graph notation

- For a graph G and $v \in V(G), G-v$ denotes the graph obtained by deleting v (and all incident edges).
- For a set $S, S+v$ denotes $S \cup\{v\}$, and $S-v$ denotes $S \backslash\{v\}$.
- For a vertex $v \in V(G), N(v)$ denotes the set of neighbors of v. $N[v]=N(v)+v . d(v)=|N(v)|$.
- For a graph $G=(V, E), \delta(G)=\min _{v \in V} d(v)$, and $\Delta(G)=\max _{v \in V} d(v)$.
- A tree is a connected graph without cycles.
- A forest is a graph without cycles.
- A unicyclic graph has only one cycle.

Recall some graph notation

- For a graph G and $v \in V(G), G-v$ denotes the graph obtained by deleting v (and all incident edges).
- For a set $S, S+v$ denotes $S \cup\{v\}$, and $S-v$ denotes $S \backslash\{v\}$.
- For a vertex $v \in V(G), N(v)$ denotes the set of neighbors of v. $N[v]=N(v)+v . d(v)=|N(v)|$.
- For a graph $G=(V, E), \delta(G)=\min _{v \in V} d(v)$, and $\Delta(G)=\max _{v \in V} d(v)$.
- A tree is a connected graph without cycles.
- A forest is a graph without cycles.
- A unicyclic graph has only one cycle.
- A graph is outerplanar if it can be drawn as cycle with non-crossing chords.

Tree decomposition

Tree decomposition

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and $X=\left\{X_{v} \mid v \in V(T)\right\}$ is a set of subsets of $V(G)$ such that:

Tree decomposition

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and $X=\left\{X_{v} \mid v \in V(T)\right\}$ is a set of subsets of $V(G)$ such that:
- For every $x y \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_{v}$.
- For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x)=\left\{v \in V(T) \mid x \in X_{v}\right\}$ is non-empty and connected.

Tree decomposition

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and $X=\left\{X_{v} \mid v \in V(T)\right\}$ is a set of subsets of $V(G)$ such that:
- For every $x y \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_{v}$.
- For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x)=\left\{v \in V(T) \mid x \in X_{v}\right\}$ is non-empty and connected.

Tree decomposition

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and $X=\left\{X_{v} \mid v \in V(T)\right\}$ is a set of subsets of $V(G)$ such that:
- For every $x y \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_{v}$.
- For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x)=\left\{v \in V(T) \mid x \in X_{v}\right\}$ is non-empty and connected.

Tree decomposition

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and $X=\left\{X_{v} \mid v \in V(T)\right\}$ is a set of subsets of $V(G)$ such that:
- For every $x y \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_{v}$.
- For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x)=\left\{v \in V(T) \mid x \in X_{v}\right\}$ is non-empty and connected.

Tree decomposition

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and $X=\left\{X_{v} \mid v \in V(T)\right\}$ is a set of subsets of $V(G)$ such that:
- For every $x y \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_{v}$.
- For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x)=\left\{v \in V(T) \mid x \in X_{v}\right\}$ is non-empty and connected.
- Equivalently the second condition can be expressed as:

Tree decomposition

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and $X=\left\{X_{v} \mid v \in V(T)\right\}$ is a set of subsets of $V(G)$ such that:
- For every $x y \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_{v}$.
- For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x)=\left\{v \in V(T) \mid x \in X_{v}\right\}$ is non-empty and connected.
- Equivalently the second condition can be expressed as:
- For every $u, v \in V(T)$ and every node $w \in V(T)$ on the path between u and $v, X_{u} \cap X_{v} \subseteq X_{w}$, and
- every vertex of G appears in at least one X_{v}.

Tree decomposition

Tree decomposition

- To distinguish between vertices of G and T, we use nodes. for the vertices of T.

Tree decomposition

- To distinguish between vertices of G and T, we use nodes. for the vertices of T.
- The sets X_{v} are the bags of the tree decomposition.

Tree width

- The width of a tree decomposition (T, X) for G is $\max _{v \in V(T)}\left|X_{v}\right|-1$.

Tree width

- The width of a tree decomposition (T, X) for G is $\max _{v \in V(T)}\left|X_{v}\right|-1$.
- The tree width $(\operatorname{tw}(G))$ of a graph G is the minimum width over all tree decompositions of G.

A graph with tree width 2

A graph with tree width 2

This graph is an outerplanar graph.

Tree width of some graphs

Tree width of some graphs

- $\operatorname{tw}(G)=0$ iff $E(G)=\emptyset$.

Tree width of some graphs

- $\operatorname{tw}(G)=0$ iff $E(G)=\emptyset$.
- If G is a forest $\operatorname{tw}(G) \leq 1$.

Tree width of some graphs

- $\operatorname{tw}(G)=0$ iff $E(G)=\emptyset$.
- If G is a forest $t w(G) \leq 1$.
- Consider the tree obtained from G by subdividing every edge $u v \in E(G)$ with a new vertex $w_{u v}$.

Tree width of some graphs

- $\operatorname{tw}(G)=0$ iff $E(G)=\emptyset$.
- If G is a forest $t w(G) \leq 1$.
- Consider the tree obtained from G by subdividing every edge $u v \in E(G)$ with a new vertex $w_{u v}$.
- Set $X_{u}=\{u\}$ for all $u \in V(G)$, and $X_{w_{u v}}=\{u, v\}$ for every $u v \in E(G)$.

Tree width of some graphs

- $\operatorname{tw}(G)=0$ iff $E(G)=\emptyset$.
- If G is a forest $t w(G) \leq 1$.
- Consider the tree obtained from G by subdividing every edge $u v \in E(G)$ with a new vertex $w_{u v}$.
- Set $X_{u}=\{u\}$ for all $u \in V(G)$, and $X_{w_{u v}}=\{u, v\}$ for every $u v \in E(G)$.
- If G is outerplanar then $\operatorname{tw}(G) \leq 2$.

Tree width of some graphs

- $\operatorname{tw}(G)=0$ iff $E(G)=\emptyset$.
- If G is a forest $t w(G) \leq 1$.
- Consider the tree obtained from G by subdividing every edge $u v \in E(G)$ with a new vertex $w_{u v}$.
- Set $X_{u}=\{u\}$ for all $u \in V(G)$, and $X_{w_{u v}}=\{u, v\}$ for every $u v \in E(G)$.
- If G is outerplanar then $\operatorname{tw}(G) \leq 2$.
- Let G^{\prime} be a graph obtained after triangulating arbitrarily the face of G with more than 3 sides preserving outerplanarity .

Tree width of some graphs

- $\operatorname{tw}(G)=0$ iff $E(G)=\emptyset$.
- If G is a forest $\operatorname{tw}(G) \leq 1$.
- Consider the tree obtained from G by subdividing every edge $u v \in E(G)$ with a new vertex $w_{u v}$.
- Set $X_{u}=\{u\}$ for all $u \in V(G)$, and $X_{w_{u v}}=\{u, v\}$ for every $u v \in E(G)$.
- If G is outerplanar then $\operatorname{tw}(G) \leq 2$.
- Let G^{\prime} be a graph obtained after triangulating arbitrarily the face of G with more than 3 sides preserving outerplanarity .
- T is the dual of G^{\prime} : a node per face and connecting two nodes if their faces share an edge.

Tree width of some graphs

- $\operatorname{tw}(G)=0$ iff $E(G)=\emptyset$.
- If G is a forest $\operatorname{tw}(G) \leq 1$.
- Consider the tree obtained from G by subdividing every edge $u v \in E(G)$ with a new vertex $w_{u v}$.
- Set $X_{u}=\{u\}$ for all $u \in V(G)$, and $X_{w_{u v}}=\{u, v\}$ for every $u v \in E(G)$.
- If G is outerplanar then $\operatorname{tw}(G) \leq 2$.
- Let G^{\prime} be a graph obtained after triangulating arbitrarily the face of G with more than 3 sides preserving outerplanarity .
- T is the dual of G^{\prime} : a node per face and connecting two nodes if their faces share an edge.
- Associate to every node the three vertices in the corresponding face.

Tree width of some graphs

- $\operatorname{tw}(G)=0$ iff $E(G)=\emptyset$.
- If G is a forest $\operatorname{tw}(G) \leq 1$.
- Consider the tree obtained from G by subdividing every edge $u v \in E(G)$ with a new vertex $w_{u v}$.
- Set $X_{u}=\{u\}$ for all $u \in V(G)$, and $X_{w_{u v}}=\{u, v\}$ for every $u v \in E(G)$.
- If G is outerplanar then $\operatorname{tw}(G) \leq 2$.
- Let G^{\prime} be a graph obtained after triangulating arbitrarily the face of G with more than 3 sides preserving outerplanarity .
- T is the dual of G^{\prime} : a node per face and connecting two nodes if their faces share an edge.
- Associate to every node the three vertices in the corresponding face.
- For K_{n}, the complete graph on n vertices, $t w\left(K_{n}\right)=n-1$.

Tree width complexity

- Deciding if a graph has trewidth k is NP-complete.

Tree width complexity

- Deciding if a graph has trewidth k is NP-complete.
- Computing a tree decomposition with width at most k (if it exists) takes $O(f(k) n)$ time.

Tree width complexity

- Deciding if a graph has trewidth k is NP-complete.
- Computing a tree decomposition with width at most k (if it exists) takes $O(f(k) n)$ time.
- We present an FPT algorithm that either concludes that a $t w(G)>k$ or provides a tree decomposition with width $\leq 4 k+4$. (See section 7.6.2 in M. Cygan et al. Parameterized Algorithms, Springer 2015)

Separations

- We consider a connected undirected graph $G=(V, E)$.

Separations

- We consider a connected undirected graph $G=(V, E)$.
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B=V$, and there is no edge between $A \backslash B$ and $B \backslash A$.

Separations

- We consider a connected undirected graph $G=(V, E)$.
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B=V$, and there is no edge between $A \backslash B$ and $B \backslash A$.
- Note that $G[V \backslash(A \cap B)]$ is disconnected.

Separations

- We consider a connected undirected graph $G=(V, E)$.
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B=V$, and there is no edge between $A \backslash B$ and $B \backslash A$.
- Note that $G[V \backslash(A \cap B)]$ is disconnected.
- The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.

Separations

- We consider a connected undirected graph $G=(V, E)$.
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B=V$, and there is no edge between $A \backslash B$ and $B \backslash A$.
- Note that $G[V \backslash(A \cap B)]$ is disconnected.
- The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.
- For $X, Y \subseteq V$,

Separations

- We consider a connected undirected graph $G=(V, E)$.
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B=V$, and there is no edge between $A \backslash B$ and $B \backslash A$.
- Note that $G[V \backslash(A \cap B)]$ is disconnected.
- The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.
- For $X, Y \subseteq V$,
- A separation (A, B) separates X, Y if $X \subseteq A$ and $Y \subseteq B$.

Separations

- We consider a connected undirected graph $G=(V, E)$.
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B=V$, and there is no edge between $A \backslash B$ and $B \backslash A$.
- Note that $G[V \backslash(A \cap B)]$ is disconnected.
- The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.
- For $X, Y \subseteq V$,
- A separation (A, B) separates X, Y if $X \subseteq A$ and $Y \subseteq B$.
- $\mu(X, Y)=$ minimum order of a separation separating X, Y

Separations

- We consider a connected undirected graph $G=(V, E)$.
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B=V$, and there is no edge between $A \backslash B$ and $B \backslash A$.
- Note that $G[V \backslash(A \cap B)]$ is disconnected.
- The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.
- For $X, Y \subseteq V$,
- A separation (A, B) separates X, Y if $X \subseteq A$ and $Y \subseteq B$.
- $\mu(X, Y)=$ minimum order of a separation separating X, Y
- $\mu(X, Y)=$ maximum number of vertex disjoint $X-Y$ paths.

Separations

- We consider a connected undirected graph $G=(V, E)$.
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B=V$, and there is no edge between $A \backslash B$ and $B \backslash A$.
- Note that $G[V \backslash(A \cap B)]$ is disconnected.
- The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.
- For $X, Y \subseteq V$,
- A separation (A, B) separates X, Y if $X \subseteq A$ and $Y \subseteq B$.
- $\mu(X, Y)=$ minimum order of a separation separating X, Y
- $\mu(X, Y)=$ maximum number of vertex disjoint $X-Y$ paths.

Claim
Given G, X, Y, the value $\mu(X, Y)$ can be computed in polynomial time, as well as a separator of order $\mu(X, Y)$

Balanced separators

- We consider a connected graph G together with a vertex weighting function $w: V \rightarrow \mathbb{R}^{+}$

Balanced separators

- We consider a connected graph G together with a vertex weighting function $w: V \rightarrow \mathbb{R}^{+}$
- $X \subseteq V$ is an α-balanced separator if every connected component D of $G[V \backslash X]$ has $w(D) \leq \alpha$.

Balanced separators

- We consider a connected graph G together with a vertex weighting function $w: V \rightarrow \mathbb{R}^{+}$
- $X \subseteq V$ is an α-balanced separator if every connected component D of $G[V \backslash X]$ has $w(D) \leq \alpha$.

Theorem
Let $G=(V, E), w$ be a vertex weighted connected graph with $t w(G) \leq k$. Then G has a $1 / 2$-balanced separator X with $|X| \leq k+1$.

Balanced separators

Proof.

- Let $T=\left(N,\left\{X_{t}\right\}_{t \in N}, r\right)$ be a tree decomposition of G with width $\leq k$.
- Let V_{t} be the vertices in the bags in the subtree rooted at $t \in N$.

Balanced separators

Proof.

- Let $T=\left(N,\left\{X_{t}\right\}_{t \in N}, r\right)$ be a tree decomposition of G with width $\leq k$.
- Let V_{t} be the vertices in the bags in the subtree rooted at $t \in N$.
- Select $t \in N$ such that
- $w(t)>w(V(G)) / 2$
- t is at maximum distance from r (in T).

Balanced separators

Proof.

- Let $T=\left(N,\left\{X_{t}\right\}_{t \in N}, r\right)$ be a tree decomposition of G with width $\leq k$.
- Let V_{t} be the vertices in the bags in the subtree rooted at $t \in N$.
- Select $t \in N$ such that
- $w(t)>w(V(G)) / 2$
- t is at maximum distance from r (in T).
- t exists as r verifies the properties.

Balanced separators

Proof.

- Let $T=\left(N,\left\{X_{t}\right\}_{t \in N}, r\right)$ be a tree decomposition of G with width $\leq k$.
- Let V_{t} be the vertices in the bags in the subtree rooted at $t \in N$.
- Select $t \in N$ such that
- $w(t)>w(V(G)) / 2$
- t is at maximum distance from r (in T).
- t exists as r verifies the properties.
- For each children t^{\prime} of $T, w(t) \leq w(V) / 2$.

Balanced separators

Proof.

- Let $T=\left(N,\left\{X_{t}\right\}_{t \in N}, r\right)$ be a tree decomposition of G with width $\leq k$.
- Let V_{t} be the vertices in the bags in the subtree rooted at $t \in N$.
- Select $t \in N$ such that
- $w(t)>w(V(G)) / 2$
- t is at maximum distance from r (in T).
- t exists as r verifies the properties.
- For each children t^{\prime} of $T, w(t) \leq w(V) / 2$.
- Furthermore, $w\left(V \backslash V_{t}\right) \leq w(V) / 2$.

Balanced separators

Proof.

- Let $T=\left(N,\left\{X_{t}\right\}_{t \in N}, r\right)$ be a tree decomposition of G with width $\leq k$.
- Let V_{t} be the vertices in the bags in the subtree rooted at $t \in N$.
- Select $t \in N$ such that
- $w(t)>w(V(G)) / 2$
- t is at maximum distance from r (in T).
- t exists as r verifies the properties.
- For each children t^{\prime} of $T, w(t) \leq w(V) / 2$.
- Furthermore, $w\left(V \backslash V_{t}\right) \leq w(V) / 2$.
- So, X_{t} is a balanced separator of order $\leq k+1$.

Balanced separations

- We consider a connected graph G together with a vertex weighting function $w: V \rightarrow \mathbb{R}^{+}$

Balanced separations

- We consider a connected graph G together with a vertex weighting function $w: V \rightarrow \mathbb{R}^{+}$
- A separation (A, B) is an α-balanced separation if $w(A \backslash B), w(B \backslash A) \leq \alpha w(V)$.

Balanced separations

- We consider a connected graph G together with a vertex weighting function $w: V \rightarrow \mathbb{R}^{+}$
- A separation (A, B) is an α-balanced separation if $w(A \backslash B), w(B \backslash A) \leq \alpha w(V)$.

Theorem

Let G, w be a vertex weighted connected with $t w(G) \leq k$. Then G has a 2/3-balanced separation of order $\leq k+1$.

Balanced separations

Proof.

Balanced separations

Proof.

- Let X be a $1 / 2$-balanced separator of order $\leq k+1$.

Balanced separations

Proof.

- Let X be a $1 / 2$-balanced separator of order $\leq k+1$.
- Let D_{1}, \ldots, D_{p} be the c.c. of $G[V \backslash X]$ and let $a_{i}=w\left(D_{i}\right)$, for $i \in[p]$.

Balanced separations

Proof.

- Let X be a $1 / 2$-balanced separator of order $\leq k+1$.
- Let D_{1}, \ldots, D_{p} be the c.c. of $G[V \backslash X]$ and let $a_{i}=w\left(D_{i}\right)$, for $i \in[p]$.
- Assume that $a_{1} \geq a_{2} \geq \cdots \geq a_{p}$, and let q be the smallest index such that $S_{q}=\sum_{i=1}^{q} a_{i} \geq w(V) / 3$ or $q=p$ if this never happens.

Balanced separations

Proof.

- Let X be a $1 / 2$-balanced separator of order $\leq k+1$.
- Let D_{1}, \ldots, D_{p} be the c.c. of $G[V \backslash X]$ and let $a_{i}=w\left(D_{i}\right)$, for $i \in[p]$.
- Assume that $a_{1} \geq a_{2} \geq \cdots \geq a_{p}$, and let q be the smallest index such that $S_{q}=\sum_{i=1}^{q} a_{i} \geq w(V) / 3$ or $q=p$ if this never happens.
- Note that if $q=p, S_{q}<w(V) / 3 \leq 2 w(V) / 3$ and that if $q=1$, $S_{q}<w(V) / 2 \leq 2 w(V) / 3$.

Balanced separations

Proof.

- Let X be a $1 / 2$-balanced separator of order $\leq k+1$.
- Let D_{1}, \ldots, D_{p} be the c.c. of $G[V \backslash X]$ and let $a_{i}=w\left(D_{i}\right)$, for $i \in[p]$.
- Assume that $a_{1} \geq a_{2} \geq \cdots \geq a_{p}$, and let q be the smallest index such that $S_{q}=\sum_{i=1}^{q} a_{i} \geq w(V) / 3$ or $q=p$ if this never happens.
- Note that if $q=p, S_{q}<w(V) / 3 \leq 2 w(V) / 3$ and that if $q=1$, $S_{q}<w(V) / 2 \leq 2 w(V) / 3$.
- If $1<q<p, S_{q-1}<w(V) / 3$ and $a_{q} \leq a_{q-1} \leq S_{q-1}$. So, $S_{q} \leq 2 w(V) / 3$.

Balanced separations

Proof.

- Let X be a $1 / 2$-balanced separator of order $\leq k+1$.
- Let D_{1}, \ldots, D_{p} be the c.c. of $G[V \backslash X]$ and let $a_{i}=w\left(D_{i}\right)$, for $i \in[p]$.
- Assume that $a_{1} \geq a_{2} \geq \cdots \geq a_{p}$, and let q be the smallest index such that $S_{q}=\sum_{i=1}^{q} a_{i} \geq w(V) / 3$ or $q=p$ if this never happens.
- Note that if $q=p, S_{q}<w(V) / 3 \leq 2 w(V) / 3$ and that if $q=1$, $S_{q}<w(V) / 2 \leq 2 w(V) / 3$.
- If $1<q<p, S_{q-1}<w(V) / 3$ and $a_{q} \leq a_{q-1} \leq S_{q-1}$. So, $S_{q} \leq 2 w(V) / 3$.
- (A, B) is $2 / 3$-balanced.

Balanced separations

Balanced separations

- Take $A=X \cup \bigcup_{i=1}^{q} D_{i}$ and $B=X \cup \bigcup_{i=q+1}^{p} D_{i}$.

Balanced separations

- Take $A=X \cup \bigcup_{i=1}^{q} D_{i}$ and $B=X \cup \bigcup_{i=q+1}^{p} D_{i}$.
- (A, B) is a separation and, as $A \cap B=X$, it has order $\leq k+1$.

Balanced separations

- Take $A=X \cup \bigcup_{i=1}^{q} D_{i}$ and $B=X \cup \bigcup_{i=q+1}^{p} D_{i}$.
- (A, B) is a separation and, as $A \cap B=X$, it has order $\leq k+1$.
- $w(A \backslash B)=S_{q} \leq 2 w(V) / 3$.

Balanced separations

- Take $A=X \cup \bigcup_{i=1}^{q} D_{i}$ and $B=X \cup \bigcup_{i=q+1}^{p} D_{i}$.
- (A, B) is a separation and, as $A \cap B=X$, it has order $\leq k+1$.
- $w(A \backslash B)=S_{q} \leq 2 w(V) / 3$.
- Note that if $q=p, B \backslash A=\emptyset$ so $w(B \backslash A)=0$.

Balanced separations

- Take $A=X \cup \bigcup_{i=1}^{q} D_{i}$ and $B=X \cup \bigcup_{i=q+1}^{p} D_{i}$.
- (A, B) is a separation and, as $A \cap B=X$, it has order $\leq k+1$.
- $w(A \backslash B)=S_{q} \leq 2 w(V) / 3$.
- Note that if $q=p, B \backslash A=\emptyset$ so $w(B \backslash A)=0$.
- Otherwise, $w(B \backslash A) \leq w(V)-S_{q} \leq w(v)-w(V) / 3 \leq 2 w(V) / 3$.

Balanced separations

- Take $A=X \cup \bigcup_{i=1}^{q} D_{i}$ and $B=X \cup \bigcup_{i=q+1}^{p} D_{i}$.
- (A, B) is a separation and, as $A \cap B=X$, it has order $\leq k+1$.
- $w(A \backslash B)=S_{q} \leq 2 w(V) / 3$.
- Note that if $q=p, B \backslash A=\emptyset$ so $w(B \backslash A)=0$.
- Otherwise, $w(B \backslash A) \leq w(V)-S_{q} \leq w(v)-w(V) / 3 \leq 2 w(V) / 3$.

EndProof.

Balanced separators

Corollary 1

Let $G=(V, E)$ be a connected graph with $t w(G) \leq k$. Let $S \subseteq V$ with $|S|=3 k+4$. Then, there is a partition $\left(S_{A}, S_{B}\right)$ of S such that $k+2 \leq\left|S_{A}\right|\left|S_{B}\right| \leq 2 k+2$ and $\mu\left(S_{A}, S_{B}\right) \leq k+1$.

Balanced separators

Corollary 1
Let $G=(V, E)$ be a connected graph with $t w(G) \leq k$. Let $S \subseteq V$ with $|S|=3 k+4$. Then, there is a partition $\left(S_{A}, S_{B}\right)$ of S such that $k+2 \leq\left|S_{A}\right|\left|S_{B}\right| \leq 2 k+2$ and $\mu\left(S_{A}, S_{B}\right) \leq k+1$.

Proof.

Balanced separators

Corollary 1
Let $G=(V, E)$ be a connected graph with $t w(G) \leq k$. Let $S \subseteq V$ with $|S|=3 k+4$. Then, there is a partition $\left(S_{A}, S_{B}\right)$ of S such that $k+2 \leq\left|S_{A}\right|\left|S_{B}\right| \leq 2 k+2$ and $\mu\left(S_{A}, S_{B}\right) \leq k+1$.

Proof.

- For $u \in V$, define $w(u)$ to be 1 if $u \in S$ and 0 otherwise.

Balanced separators

Corollary 1
Let $G=(V, E)$ be a connected graph with $t w(G) \leq k$. Let $S \subseteq V$ with $|S|=3 k+4$. Then, there is a partition $\left(S_{A}, S_{B}\right)$ of S such that $k+2 \leq\left|S_{A}\right|\left|S_{B}\right| \leq 2 k+2$ and $\mu\left(S_{A}, S_{B}\right) \leq k+1$.

Proof.

- For $u \in V$, define $w(u)$ to be 1 if $u \in S$ and 0 otherwise.
- Let (A, B) be a $2 / 3$ separation with $\mu(A, B) \leq k+1$.

Balanced separators

Corollary 1

Let $G=(V, E)$ be a connected graph with $t w(G) \leq k$. Let $S \subseteq V$ with $|S|=3 k+4$. Then, there is a partition $\left(S_{A}, S_{B}\right)$ of S such that $k+2 \leq\left|S_{A}\right|\left|S_{B}\right| \leq 2 k+2$ and $\mu\left(S_{A}, S_{B}\right) \leq k+1$.

Proof.

- For $u \in V$, define $w(u)$ to be 1 if $u \in S$ and 0 otherwise.
- Let (A, B) be a $2 / 3$ separation with $\mu(A, B) \leq k+1$.
- $|A \backslash B|,|B \backslash A| \leq 2 w(V) / 3=2|S| / 3 \leq 2(3 k+4) / 3 \leq 2 k+8 / 3$ as the sizes are integer values the obtained upper bound is $2 k+2$.

Balanced separators

Corollary 1
Let $G=(V, E)$ be a connected graph with $t w(G) \leq k$. Let $S \subseteq V$ with $|S|=3 k+4$. Then, there is a partition $\left(S_{A}, S_{B}\right)$ of S such that $k+2 \leq\left|S_{A}\right|\left|S_{B}\right| \leq 2 k+2$ and $\mu\left(S_{A}, S_{B}\right) \leq k+1$.

Proof.

- For $u \in V$, define $w(u)$ to be 1 if $u \in S$ and 0 otherwise.
- Let (A, B) be a $2 / 3$ separation with $\mu(A, B) \leq k+1$.
- $|A \backslash B|,|B \backslash A| \leq 2 w(V) / 3=2|S| / 3 \leq 2(3 k+4) / 3 \leq 2 k+8 / 3$ as the sizes are integer values the obtained upper bound is $2 k+2$.
- Furthermore, $|(A \backslash B) \cap S \|,|(B \backslash A) \cap S| \leq 2 k+2$.

Balanced separators

Balanced separators

- Set $S_{A}=(A \backslash B) \cap S$ and $S_{B}=(B \backslash A) \cap S$.

Balanced separators

- Set $S_{A}=(A \backslash B) \cap S$ and $S_{B}=(B \backslash A) \cap S$.
- The vertices $u \in A \cap B \cap S$ are assigned in order to S_{A} or to S_{B} depending on which is the smallest at this time. Arbitrarily if they have equal size.

Balanced separators

- Set $S_{A}=(A \backslash B) \cap S$ and $S_{B}=(B \backslash A) \cap S$.
- The vertices $u \in A \cap B \cap S$ are assigned in order to S_{A} or to S_{B} depending on which is the smallest at this time. Arbitrarily if they have equal size.
- Since $|S| \leq 3 k+4<2(2 k+2)$, the assignment guarantees that they can not be larger that $2 k+2$.

Balanced separators

- Set $S_{A}=(A \backslash B) \cap S$ and $S_{B}=(B \backslash A) \cap S$.
- The vertices $u \in A \cap B \cap S$ are assigned in order to S_{A} or to S_{B} depending on which is the smallest at this time. Arbitrarily if they have equal size.
- Since $|S| \leq 3 k+4<2(2 k+2)$, the assignment guarantees that they can not be larger that $2 k+2$.
- As, $\left(S_{A} \cup S_{B}\right)=S,\left|S_{A}\right|\left|S_{B}\right| \geq 3 k+4-(2 k+2)=k+2$.

Balanced separators

- Set $S_{A}=(A \backslash B) \cap S$ and $S_{B}=(B \backslash A) \cap S$.
- The vertices $u \in A \cap B \cap S$ are assigned in order to S_{A} or to S_{B} depending on which is the smallest at this time. Arbitrarily if they have equal size.
- Since $|S| \leq 3 k+4<2(2 k+2)$, the assignment guarantees that they can not be larger that $2 k+2$.
- As, $\left(S_{A} \cup S_{B}\right)=S,\left|S_{A}\right|\left|S_{B}\right| \geq 3 k+4-(2 k+2)=k+2$.
- Finally, $\mu\left(S_{A} \cup S_{B}\right) \leq|A \cap B| \leq k+1$.

Balanced separators

- Set $S_{A}=(A \backslash B) \cap S$ and $S_{B}=(B \backslash A) \cap S$.
- The vertices $u \in A \cap B \cap S$ are assigned in order to S_{A} or to S_{B} depending on which is the smallest at this time. Arbitrarily if they have equal size.
- Since $|S| \leq 3 k+4<2(2 k+2)$, the assignment guarantees that they can not be larger that $2 k+2$.
- As, $\left(S_{A} \cup S_{B}\right)=S,\left|S_{A}\right|\left|S_{B}\right| \geq 3 k+4-(2 k+2)=k+2$.
- Finally, $\mu\left(S_{A} \cup S_{B}\right) \leq|A \cap B| \leq k+1$.

EndProof.

A component of the algorithm

Assume G is connected.

```
procedure \(\operatorname{FindSplit}(W, S)\)
    \(G=G[W]\)
if \(|S|<3 k+4\) then
\(\triangleright W \backslash S \neq \emptyset\)
    Choose \(u \in W \backslash S\)
    return \(S \cup\{u\}\)
else
                                \(\triangleright|S|=3 k+4\)
    for \(S_{A}, S_{B} \subseteq S\) with \(k+2 \leq\left|S_{A}\right|\left|S_{B}\right| \leq 2 k+2\) do
        if \(\mu\left(S_{A}, S_{B}\right) \leq k+1\) then
            Find a separation \((A, B)\) separating \(S_{A}, S_{B}\)
            with \(|A \cap B| \leq k+1\)
            return \(S \cup A \cap B\)
    stop \(t w(G)>k\)
                            \(\triangleright\) By Coro 1
```


FindSplit

Claim

Let G be a graph, let $S, W \subseteq V$, and let $k \in \mathbb{N}$. Assume that
(1) $S \subsetneq W \subseteq V,|S| \leq 3 k+4, W \backslash S=\emptyset$,
(2) $G[W]$ and $G[W \backslash S]$ are connected, and
(0) $S=N_{G}[W \backslash S]$

Then, $\operatorname{FindSplit}(S, W)$ either discovers that $t w(G)>k$ or returns a set \hat{S} verifying
(1) $S \subsetneq \hat{S},|\hat{S}| \leq 4 k+5$,
(2) every c.c. of $G[W \backslash \hat{S}]$ is adjacent to at most $3 k+4$ vertices of \hat{S}.

Furthermore, the running time FindSplit is at most $2^{2(3 k+4)} p(n)$.

FindSplit

Proof.

FindSplit

Proof.

- When $|S|<3 k+4$:
- Clearly $S \subsetneq \hat{S}$, and $|\hat{S}| \leq 3 k+4 \leq 4 k+5$
- For every c.c. of $G[W \backslash \hat{S}]$ is adjacent only to vertices in \hat{S}, so (2) holds.

FindSplit

- When $|S|=3 k+4$:

FindSplit

- When $|S|=3 k+4$:
- FindSplit correctly reports that $t w(G)>k$.
- As $|A \cap B| \leq k+1,|\hat{S}| \leq 3 k+4+k+1=4 k+5$.
- (A, B) separates some $S_{A}, S_{B} \subseteq S$ with $k+2 \leq\left|S_{A}\right|\left|S_{B}\right| \leq 2 k+2$

FindSplit

- When $|S|=3 k+4$:
- FindSplit correctly reports that $t w(G)>k$.
- As $|A \cap B| \leq k+1,|\hat{S}| \leq 3 k+4+k+1=4 k+5$.
- (A, B) separates some $S_{A}, S_{B} \subseteq S$ with $k+2 \leq\left|S_{A}\right|\left|S_{B}\right| \leq 2 k+2$
- As $k+2 \leq\left|S_{A}\right|,\left|S_{B}\right|$ and $|A \cap B| \leq k+1$, $S_{A} \backslash(A \cap B), S_{B} \backslash(A \cap B) \neq \emptyset$.
- We can pick $u_{A} \in S_{A} \backslash(A \cap B)$ and $u_{B} \in S_{B} \backslash(A \cap B)$.
- As $G[W]$ and $G[W \backslash S]$ are connected and $S=N_{G}[W \backslash S]$, there is a path from s_{A} to s_{B} in $G[W]$ that contains a vertex $u_{A B} \in(W \backslash S) \cap(A \cap B)$.

FindSplit

- When $|S|=3 k+4$:
- FindSplit correctly reports that $t w(G)>k$.
- As $|A \cap B| \leq k+1,|\hat{S}| \leq 3 k+4+k+1=4 k+5$.
- (A, B) separates some $S_{A}, S_{B} \subseteq S$ with $k+2 \leq\left|S_{A}\right|\left|S_{B}\right| \leq 2 k+2$
- As $k+2 \leq\left|S_{A}\right|,\left|S_{B}\right|$ and $|A \cap B| \leq k+1$, $S_{A} \backslash(A \cap B), S_{B} \backslash(A \cap B) \neq \emptyset$.
- We can pick $u_{A} \in S_{A} \backslash(A \cap B)$ and $u_{B} \in S_{B} \backslash(A \cap B)$.
- As $G[W]$ and $G[W \backslash S]$ are connected and $S=N_{G}[W \backslash S]$, there is a path from s_{A} to s_{B} in $G[W]$ that contains a vertex $u_{A B} \in(W \backslash S) \cap(A \cap B)$.
- Therefore, $S \subsetneq \hat{S}$ and condition (1) holds.

FindSplit

- When $|S|=3 k+4$:

FindSplit

- When $|S|=3 k+4$:
- Let D be a c.c. of $G[W \backslash \hat{S}]$.
- $G[D]$ is connected in $G[W]$ and $D \operatorname{cap}(A \cap B)=\emptyset$, so either $D \subseteq A \backslash B$ or $D \subseteq B \backslash A$.

FindSplit

- When $|S|=3 k+4$:
- Let D be a c.c. of $G[W \backslash \hat{S}]$.
- $G[D]$ is connected in $G[W]$ and $D \operatorname{cap}(A \cap B)=\emptyset$, so either $D \subseteq A \backslash B$ or $D \subseteq B \backslash A$.
- Assume that $D \subseteq A \backslash B$.
- The vertices in \hat{S} that are adjacent to D belong either to $(A \backslash B) \cap S$ or to $A \cap B$.
- Therefore, D is adjacent to at most $|(A \backslash B) \cap S|+|A \cap B|$ vertices.

FindSplit

- When $|S|=3 k+4$:
- Let D be a c.c. of $G[W \backslash \hat{S}]$.
- $G[D]$ is connected in $G[W]$ and $D \operatorname{cap}(A \cap B)=\emptyset$, so either $D \subseteq A \backslash B$ or $D \subseteq B \backslash A$.
- Assume that $D \subseteq A \backslash B$.
- The vertices in \hat{S} that are adjacent to D belong either to $(A \backslash B) \cap S$ or to $A \cap B$.
- Therefore, D is adjacent to at most $|(A \backslash B) \cap S|+|A \cap B|$ vertices.
- As $|(A \backslash B) \cap S| \leq|S| \leq 3 k+4$ and $|A \cap B| \leq k+1$ condition (2) holds.

FindSplit

- When $|S|=3 k+4$:
- Let D be a c.c. of $G[W \backslash \hat{S}]$.
- $G[D]$ is connected in $G[W]$ and $D \operatorname{cap}(A \cap B)=\emptyset$, so either $D \subseteq A \backslash B$ or $D \subseteq B \backslash A$.
- Assume that $D \subseteq A \backslash B$.
- The vertices in \hat{S} that are adjacent to D belong either to $(A \backslash B) \cap S$ or to $A \cap B$.
- Therefore, D is adjacent to at most $|(A \backslash B) \cap S|+|A \cap B|$ vertices.
- As $|(A \backslash B) \cap S| \leq|S| \leq 3 k+4$ and $|A \cap B| \leq k+1$ condition (2) holds.

EndProof

An approximate algorithm for small treewidth

 decompositionAssume $G=(V, E)$ is connected.
procedure Decompose (W, S)
$\hat{S}=\operatorname{FindSplit}(G, S)$
Let D_{1}, \ldots, D_{p} be the c.c. of $G[W \backslash \hat{S}]$.
for $i \in[p]$ do $T_{i}=\operatorname{Decompose}\left(N\left[D_{i}\right], N\left(D_{i}\right)\right)$
Construct T from T_{1}, \ldots, T_{p}, adding a rot r having as children of r the roots of the T_{i} 's and setting $X_{r}=\hat{S}$
stop $t w(G)>k$
\triangleright By Coro 1
return T

Decompose

Claim
In every call Decompose (W, S) from the initial call $\operatorname{Decompose}(V, \emptyset)$ the sets W, S verify:
(1) $S \subsetneq W \subseteq V,|S| \leq 3 k+4, W \backslash S=\emptyset$,
(3) $G[W]$ and $G[W \backslash S]$ are connected, and

- $S=N_{G}[W \backslash S]$.

Decompose

Claim
In every call Decompose (W, S) from the initial call $\operatorname{Decompose}(V, \emptyset)$ the sets W, S verify:
(1) $S \subsetneq W \subseteq V,|S| \leq 3 k+4, W \backslash S=\emptyset$,
(3) $G[W]$ and $G[W \backslash S]$ are connected, and

- $S=N_{G}[W \backslash S]$.

Proof.

Follows directly from the previous claim and the selection of parameters in the recursive call.

