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Tree width

Graph parameters

For a given graph G we can consider graph measures as candidates
for parameters.

Diameter, degree, vertex cover, . . . , or a combination of them.

Many hard graph problems can be solved in polynomial time in trees.

We are going to explore a parameter that measures the closeness of a
graph to a tree: treewidth.

A similar parameter measures closeness of a graph to a path:
pathwidth.
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Tree width

Recall some graph notation

For a graph G and v ∈ V (G ), G − v denotes the graph obtained by
deleting v (and all incident edges).

For a set S , S + v denotes S ∪ {v}, and S − v denotes S \ {v}.
For a vertex v ∈ V (G ), N(v) denotes the set of neighbors of v .
N[v ] = N(v) + v . d(v) = |N(v)|.
For a graph G = (V ,E ), δ(G ) = minv∈V d(v), and
∆(G ) = maxv∈V d(v).

A tree is a connected graph without cycles.

A forest is a graph without cycles.

A unicyclic graph has only one cycle.

A graph is outerplanar if it can be drawn as cycle with non-crossing
chords.
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Tree width Tree decomposition

Tree decomposition

A tree decomposition of a graph G is a tuple (T ,X ) where T is a tree
and X = {Xv | v ∈ V (T )} is a set of subsets of V (G ) such that:

For every xy ∈ E (G ), there is a v ∈ V (T ) with {x , y} ⊆ Xv .
For every x ∈ V (G ), the subgraph of T induced by
X−1(x) = {v ∈ V (T ) | x ∈ Xv} is non-empty and connected.
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For every x ∈ V (G ), the subgraph of T induced by
X−1(x) = {v ∈ V (T ) | x ∈ Xv} is non-empty and connected.

Equivalently the second condition can be expressed as:

For every u, v ∈ V (T ) and every node w ∈ V (T ) on the path between
u and v , Xu ∩ Xv ⊆ Xw , and
every vertex of G appears in at least one Xv .

AiC FME Parameterizing by tree width Fall 2023 6 / 26



Tree width Tree decomposition

Tree decomposition

A tree decomposition of a graph G is a tuple (T ,X ) where T is a tree
and X = {Xv | v ∈ V (T )} is a set of subsets of V (G ) such that:

For every xy ∈ E (G ), there is a v ∈ V (T ) with {x , y} ⊆ Xv .
For every x ∈ V (G ), the subgraph of T induced by
X−1(x) = {v ∈ V (T ) | x ∈ Xv} is non-empty and connected.

Equivalently the second condition can be expressed as:

For every u, v ∈ V (T ) and every node w ∈ V (T ) on the path between
u and v , Xu ∩ Xv ⊆ Xw , and
every vertex of G appears in at least one Xv .

AiC FME Parameterizing by tree width Fall 2023 6 / 26



Tree width Tree decomposition

Tree decomposition

A tree decomposition of a graph G is a tuple (T ,X ) where T is a tree
and X = {Xv | v ∈ V (T )} is a set of subsets of V (G ) such that:

For every xy ∈ E (G ), there is a v ∈ V (T ) with {x , y} ⊆ Xv .
For every x ∈ V (G ), the subgraph of T induced by
X−1(x) = {v ∈ V (T ) | x ∈ Xv} is non-empty and connected.

Equivalently the second condition can be expressed as:

For every u, v ∈ V (T ) and every node w ∈ V (T ) on the path between
u and v , Xu ∩ Xv ⊆ Xw , and
every vertex of G appears in at least one Xv .

AiC FME Parameterizing by tree width Fall 2023 6 / 26



Tree width Tree decomposition

Tree decomposition
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To distinguish between vertices of G and T , we use nodes. for the
vertices of T .

The sets Xv are the bags of the tree decomposition.
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Tree width Treewidth

Tree width

The width of a tree decomposition (T ,X ) for G is
maxv∈V (T ) |Xv | − 1.

The tree width (tw(G )) of a graph G is the minimum width over all
tree decompositions of G .
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Tree width Treewidth

A graph with tree width 2

a

b c

d

eg

f

b, c

b, c, g

b, g, a c, g, e

g, f , e e, d, c

This graph is an outerplanar graph.
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Tree width Treewidth

Tree width of some graphs

tw(G ) = 0 iff E (G ) = ∅.
If G is a forest tw(G ) ≤ 1.

Consider the tree obtained from G by subdividing every edge
uv ∈ E (G ) with a new vertex wuv .
Set Xu = {u} for all u ∈ V (G ), and Xwuv = {u, v} for every
uv ∈ E (G ).

If G is outerplanar then tw(G ) ≤ 2.

Let G ′ be a graph obtained after triangulating arbitrarily the face of G
with more than 3 sides preserving outerplanarity .
T is the dual of G ′: a node per face and connecting two nodes if their
faces share an edge.
Associate to every node the three vertices in the corresponding face.

For Kn, the complete graph on n vertices, tw(Kn) = n − 1.
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Tree width Complexity

Tree width complexity

Deciding if a graph has trewidth k is NP-complete.

Computing a tree decomposition with width at most k
(if it exists) takes O(f (k)n) time.

We present an FPT algorithm that either concludes that a tw(G ) > k
or provides a tree decomposition with width ≤ 4k + 4.
(See section 7.6.2 in M. Cygan et al. Parameterized Algorithms,
Springer 2015)
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Tree width A tree with small width

Separations

We consider a connected undirected graph G = (V ,E ).

(A,B) is a separation in G if A,B ⊆ V , A ∪ B = V , and there is no
edge between A \ B and B \ A.

Note that G [V \ (A ∩ B)] is disconnected.
The separator is A ∩ B and the order of the separation is |A ∩ B|.

For X ,Y ⊆ V ,

A separation (A,B) separates X ,Y if X ⊆ A and Y ⊆ B.
µ(X ,Y ) = minimum order of a separation separating X ,Y
µ(X ,Y ) = maximum number of vertex disjoint X − Y paths.

Claim

Given G ,X ,Y , the value µ(X ,Y ) can be computed in polynomial time, as
well as a separator of order µ(X ,Y )
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Tree width A tree with small width

Balanced separators

We consider a connected graph G together with a vertex weighting
function w : V → R+

X ⊆ V is an α-balanced separator if every connected component D of
G [V \ X ] has w(D) ≤ α.

Theorem

Let G = (V ,E ),w be a vertex weighted connected graph with tw(G ) ≤ k.
Then G has a 1/2-balanced separator X with |X | ≤ k + 1.
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Tree width A tree with small width

Balanced separators

Proof.

Let T = (N, {Xt}t∈N , r) be a tree decomposition of G with width
≤ k .

Let Vt be the vertices in the bags in the subtree rooted at t ∈ N.

Select t ∈ N such that

w(t) > w(V (G ))/2
t is at maximum distance from r (in T ).

t exists as r verifies the properties.

For each children t ′ of T , w(t) ≤ w(V )/2.

Furthermore, w(V \ Vt) ≤ w(V )/2.

So, Xt is a balanced separator of order ≤ k + 1.
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Tree width A tree with small width

Balanced separations

We consider a connected graph G together with a vertex weighting
function w : V → R+

A separation (A,B) is an α-balanced separation if
w(A \ B),w(B \ A) ≤ αw(V ).
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Let G ,w be a vertex weighted connected with tw(G ) ≤ k. Then G has a
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Tree width A tree with small width

Balanced separations

Proof.

Let X be a 1/2-balanced separator of order ≤ k + 1.

Let D1, . . . ,Dp be the c.c. of G [V \ X ] and let ai = w(Di ), for
i ∈ [p].

Assume that a1 ≥ a2 ≥ · · · ≥ ap, and let q be the smallest index such
that Sq =

∑q
i=1 ai ≥ w(V )/3 or q = p if this never happens.

Note that if q = p, Sq < w(V )/3 ≤ 2w(V )/3 and that if q = 1,
Sq < w(V )/2 ≤ 2w(V )/3.

If 1 < q < p, Sq−1 < w(V )/3 and aq ≤ aq−1 ≤ Sq−1. So,
Sq ≤ 2w(V )/3.

(A,B) is 2/3-balanced.
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Tree width A tree with small width

Balanced separations

Take A = X ∪
⋃q

i=1Di and B = X ∪
⋃p

i=q+1Di .

(A,B) is a separation and, as A ∩ B = X , it has order ≤ k + 1.

w(A \ B) = Sq ≤ 2w(V )/3.

Note that if q = p, B \ A = ∅ so w(B \ A) = 0.

Otherwise, w(B \ A) ≤ w(V )− Sq ≤ w(v)− w(V )/3 ≤ 2w(V )/3.

EndProof.
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Tree width A tree with small width

Balanced separators

Corollary 1

Let G = (V ,E ) be a connected graph with tw(G ) ≤ k . Let S ⊆ V with
|S | = 3k + 4. Then, there is a partition (SA, SB) of S such that
k + 2 ≤ |SA||SB | ≤ 2k + 2 and µ(SA, SB) ≤ k + 1.

Proof.

For u ∈ V , define w(u) to be 1 if u ∈ S and 0 otherwise.

Let (A,B) be a 2/3 separation with µ(A,B) ≤ k + 1.

|A \ B|, |B \ A| ≤ 2w(V )/3 = 2|S |/3 ≤ 2(3k + 4)/3 ≤ 2k + 8/3 as
the sizes are integer values the obtained upper bound is 2k + 2.

Furthermore, |(A \ B) ∩ S ||, |(B \ A) ∩ S | ≤ 2k + 2.
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Tree width A tree with small width

Balanced separators

Set SA = (A \ B) ∩ S and SB = (B \ A) ∩ S .

The vertices u ∈ A ∩ B ∩ S are assigned in order to SA or to SB
depending on which is the smallest at this time. Arbitrarily if they
have equal size.

Since |S | ≤ 3k + 4 < 2(2k + 2), the assignment guarantees that they
can not be larger that 2k + 2.

As, (SA ∪ SB) = S , |SA||SB | ≥ 3k + 4− (2k + 2) = k + 2.

Finally, µ(SA ∪ SB) ≤ |A ∩ B| ≤ k + 1.
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Tree width A tree with small width

A component of the algorithm

Assume G is connected.

procedure FindSplit(W , S)
G = G [W ]
if |S | < 3k + 4 then ▷ W \ S ̸= ∅

Choose u ∈ W \ S
return S ∪ {u}

else ▷ |S | = 3k + 4
for SA,SB ⊆ S with k + 2 ≤ |SA||SB | ≤ 2k + 2 do

if µ(SA,SB) ≤ k + 1 then
Find a separation (A,B) separating SA, SB
with |A ∩ B| ≤ k + 1
return S ∪ A ∩ B

stop tw(G ) > k ▷ By Coro 1

AiC FME Parameterizing by tree width Fall 2023 20 / 26



Tree width A tree with small width

FindSplit

Claim

Let G be a graph, let S ,W ⊆ V , and let k ∈ N. Assume that

1 S ⊊ W ⊆ V , |S | ≤ 3k + 4, W \ S = ∅,
2 G [W ] and G [W \ S ] are connected, and

3 S = NG [W \ S ]
Then, FindSplit(S ,W ) either discovers that tw(G ) > k or returns a set
Ŝ verifying

1 S ⊊ Ŝ , |Ŝ | ≤ 4k + 5,

2 every c.c. of G [W \ Ŝ ] is adjacent to at most 3k + 4 vertices of Ŝ .

Furthermore, the running time FindSplit is at most 22(3k+4)p(n).
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Tree width A tree with small width

FindSplit

Proof.

When |S | < 3k + 4:

Clearly S ⊊ Ŝ , and |Ŝ | ≤ 3k + 4 ≤ 4k + 5
For every c.c. of G [W \ Ŝ ] is adjacent only to vertices in Ŝ , so (2)
holds.
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Tree width A tree with small width

FindSplit

When |S | = 3k + 4:

FindSplit correctly reports that tw(G ) > k.
As |A ∩ B| ≤ k + 1, |Ŝ | ≤ 3k + 4 + k + 1 = 4k + 5.
(A,B) separates some SA,SB ⊆ S with k + 2 ≤ |SA||SB | ≤ 2k + 2

As k + 2 ≤ |SA|, |SB | and |A ∩ B| ≤ k + 1,
SA \ (A ∩ B),SB \ (A ∩ B) ̸= ∅.
We can pick uA ∈ SA \ (A ∩ B) and uB ∈ SB \ (A ∩ B).
As G [W ] and G [W \ S ] are connected and S = NG [W \ S ], there is a
path from sA to sB in G [W ] that contains a vertex
uAB ∈ (W \ S) ∩ (A ∩ B).
Therefore, S ⊊ Ŝ and condition (1) holds.
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Tree width A tree with small width

FindSplit

When |S | = 3k + 4:

Let D be a c.c. of G [W \ Ŝ ].
G [D] is connected in G [W ] and D cap(A ∩ B) = ∅, so either
D ⊆ A \ B or D ⊆ B \ A.
Assume that D ⊆ A \ B.
The vertices in Ŝ that are adjacent to D belong either to (A \ B) ∩ S
or to A ∩ B.
Therefore, D is adjacent to at most |(A \ B) ∩ S |+ |A ∩ B| vertices.
As |(A \ B) ∩ S | ≤ |S | ≤ 3k + 4 and |A ∩ B| ≤ k + 1 condition (2)
holds.

EndProof
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Tree width A tree with small width

An approximate algorithm for small treewidth
decomposition

Assume G = (V ,E ) is connected.

procedure Decompose(W ,S)
Ŝ = FindSplit(G ,S)
Let D1, . . . ,Dp be the c.c. of G [W \ Ŝ ].
for i ∈ [p] do

Ti = Decompose(N[Di ],N(Di ))
Construct T from T1, . . . ,Tp, adding a rot r having
as children of r the roots of the Ti ’s and setting Xr = Ŝ

stop tw(G ) > k ▷ By Coro 1
return T
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Tree width A tree with small width

Decompose

Claim

In every call Decompose(W , S) from the initial call Decompose(V , ∅)
the sets W , S verify:

1 S ⊊ W ⊆ V , |S | ≤ 3k + 4, W \ S = ∅,
2 G [W ] and G [W \ S ] are connected, and

3 S = NG [W \ S ].

Proof.

Follows directly from the previous claim and the selection of parameters in
the recursive call.
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