A graph parameter: Treewidth

Maria Serna

Fall 2023

	-	_			1
- 41	ι.	-	IV	16	
	~				

Parameterizing by tree width

Fall 2023

▲ 伊 ▶ ▲ 三 ▶

Δi	С.	F	M	Ŀ
	-			

• For a given graph *G* we can consider graph measures as candidates for parameters.

- For a given graph *G* we can consider graph measures as candidates for parameters.
- Diameter, degree, vertex cover, ..., or a combination of them.

- For a given graph *G* we can consider graph measures as candidates for parameters.
- Diameter, degree, vertex cover, ..., or a combination of them.
- Many hard graph problems can be solved in polynomial time in trees.

- For a given graph *G* we can consider graph measures as candidates for parameters.
- Diameter, degree, vertex cover, ..., or a combination of them.
- Many hard graph problems can be solved in polynomial time in trees.
- We are going to explore a parameter that measures the closeness of a graph to a tree: treewidth.

- For a given graph *G* we can consider graph measures as candidates for parameters.
- Diameter, degree, vertex cover, ..., or a combination of them.
- Many hard graph problems can be solved in polynomial time in trees.
- We are going to explore a parameter that measures the closeness of a graph to a tree: treewidth.
- A similar parameter measures closeness of a graph to a path: pathwidth.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- For a graph G and v ∈ V(G), G − v denotes the graph obtained by deleting v (and all incident edges).
- For a set S, S + v denotes $S \cup \{v\}$, and S v denotes $S \setminus \{v\}$.
- For a vertex $v \in V(G)$, N(v) denotes the set of neighbors of v. N[v] = N(v) + v. d(v) = |N(v)|.
- For a graph G = (V, E), $\delta(G) = \min_{v \in V} d(v)$, and $\Delta(G) = \max_{v \in V} d(v)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For a graph G and v ∈ V(G), G − v denotes the graph obtained by deleting v (and all incident edges).
- For a set S, S + v denotes $S \cup \{v\}$, and S v denotes $S \setminus \{v\}$.
- For a vertex $v \in V(G)$, N(v) denotes the set of neighbors of v. N[v] = N(v) + v. d(v) = |N(v)|.
- For a graph G = (V, E), $\delta(G) = \min_{v \in V} d(v)$, and $\Delta(G) = \max_{v \in V} d(v)$.
- A tree is a connected graph without cycles.
- A forest is a graph without cycles.
- A unicyclic graph has only one cycle.

イロト イポト イヨト イヨト 三日

Fall 2023

- For a graph G and v ∈ V(G), G − v denotes the graph obtained by deleting v (and all incident edges).
- For a set S, S + v denotes $S \cup \{v\}$, and S v denotes $S \setminus \{v\}$.
- For a vertex $v \in V(G)$, N(v) denotes the set of neighbors of v. N[v] = N(v) + v. d(v) = |N(v)|.
- For a graph G = (V, E), $\delta(G) = \min_{v \in V} d(v)$, and $\Delta(G) = \max_{v \in V} d(v)$.
- A tree is a connected graph without cycles.
- A forest is a graph without cycles.
- A unicyclic graph has only one cycle.
- A graph is outerplanar if it can be drawn as cycle with non-crossing chords.

イロト 不得 トイヨト イヨト 二日

æ

A tree decomposition of a graph G is a tuple (T, X) where T is a tree and X = {X_v | v ∈ V(T)} is a set of subsets of V(G) such that:

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and X = {X_v | v ∈ V(T)} is a set of subsets of V(G) such that:
 - For every $xy \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_v$.
 - For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x) = \{v \in V(T) \mid x \in X_v\}$ is non-empty and connected.

・ロト ・四ト ・ヨト ・

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and X = {X_v | v ∈ V(T)} is a set of subsets of V(G) such that:
 - For every $xy \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_v$.
 - For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x) = \{v \in V(T) \mid x \in X_v\}$ is non-empty and connected.

ヘロト 人間 とくほとくほど

Tree decomposition

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and $X = \{X_v \mid v \in V(T)\}$ is a set of subsets of V(G) such that:
 - For every $xy \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_v$.
 - For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x) = \{v \in V(T) \mid x \in X_v\}$ is non-empty and connected.

ヘロマ 人間マ 人間マ 人口マ

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and X = {X_v | v ∈ V(T)} is a set of subsets of V(G) such that:
 - For every $xy \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_v$.
 - For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x) = \{v \in V(T) \mid x \in X_v\}$ is non-empty and connected.

・ロト ・四ト ・ヨト ・

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and X = {X_v | v ∈ V(T)} is a set of subsets of V(G) such that:
 - For every $xy \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_v$.
 - For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x) = \{v \in V(T) \mid x \in X_v\}$ is non-empty and connected.
- Equivalently the second condition can be expressed as:

・ロト ・四ト ・ヨト ・

- A tree decomposition of a graph G is a tuple (T, X) where T is a tree and X = {X_v | v ∈ V(T)} is a set of subsets of V(G) such that:
 - For every $xy \in E(G)$, there is a $v \in V(T)$ with $\{x, y\} \subseteq X_v$.
 - For every $x \in V(G)$, the subgraph of T induced by $X^{-1}(x) = \{v \in V(T) \mid x \in X_v\}$ is non-empty and connected.
- Equivalently the second condition can be expressed as:
 - For every $u, v \in V(T)$ and every node $w \in V(T)$ on the path between u and $v, X_u \cap X_v \subseteq X_w$, and
 - every vertex of G appears in at least one X_v .

6 / 26

イロト 不得 トイヨト イヨト 二日

Fall 2023

Fall 2023

・ロト ・四ト ・ヨト ・ヨト

æ

• To distinguish between vertices of G and T, we use nodes. for the vertices of T.

・ 同 ト ・ ヨ ト ・ ヨ ト

- To distinguish between vertices of G and T, we use nodes. for the vertices of T.
- The sets X_v are the bags of the tree decomposition.

Treewidth

Tree width

The width of a tree decomposition (T, X) for G is max_{v∈V(T)} |X_v| − 1.

Treewidth

Tree width

- The width of a tree decomposition (T, X) for G is $\max_{v \in V(T)} |X_v| - 1.$
- The tree width (tw(G)) of a graph G is the minimum width over all tree decompositions of G.

A graph with tree width 2

Fall 2023

9/26

A graph with tree width 2

This graph is an outerplanar graph.

▲ 伊 ▶ ▲ 国 ▶

- ∢ ⊒ →

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

3

• tw(G) = 0 iff $E(G) = \emptyset$.

イロト イボト イヨト イヨト

3

- tw(G) = 0 iff $E(G) = \emptyset$.
- If G is a forest $tw(G) \leq 1$.

- tw(G) = 0 iff $E(G) = \emptyset$.
- If G is a forest $tw(G) \leq 1$.
 - Consider the tree obtained from G by subdividing every edge $uv \in E(G)$ with a new vertex w_{uv} .

- tw(G) = 0 iff $E(G) = \emptyset$.
- If G is a forest $tw(G) \leq 1$.
 - Consider the tree obtained from G by subdividing every edge $uv \in E(G)$ with a new vertex w_{uv} .
 - Set $X_u = \{u\}$ for all $u \in V(G)$, and $X_{w_{uv}} = \{u, v\}$ for every $uv \in E(G)$.

- tw(G) = 0 iff $E(G) = \emptyset$.
- If G is a forest $tw(G) \leq 1$.
 - Consider the tree obtained from G by subdividing every edge $uv \in E(G)$ with a new vertex w_{uv} .
 - Set $X_u = \{u\}$ for all $u \in V(G)$, and $X_{w_{uv}} = \{u, v\}$ for every $uv \in E(G)$.
- If G is outerplanar then $tw(G) \leq 2$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- tw(G) = 0 iff $E(G) = \emptyset$.
- If G is a forest $tw(G) \leq 1$.
 - Consider the tree obtained from G by subdividing every edge $uv \in E(G)$ with a new vertex w_{uv} .
 - Set $X_u = \{u\}$ for all $u \in V(G)$, and $X_{w_{uv}} = \{u, v\}$ for every $uv \in E(G)$.
- If G is outerplanar then $tw(G) \leq 2$.
 - Let G' be a graph obtained after triangulating arbitrarily the face of G with more than 3 sides preserving outerplanarity .

(ロ) (同) (三) (三) 三

- tw(G) = 0 iff $E(G) = \emptyset$.
- If G is a forest $tw(G) \leq 1$.
 - Consider the tree obtained from G by subdividing every edge $uv \in E(G)$ with a new vertex w_{uv} .
 - Set $X_u = \{u\}$ for all $u \in V(G)$, and $X_{w_{uv}} = \{u, v\}$ for every $uv \in E(G)$.
- If G is outerplanar then $tw(G) \leq 2$.
 - Let G' be a graph obtained after triangulating arbitrarily the face of G with more than 3 sides preserving outerplanarity .
 - T is the dual of G': a node per face and connecting two nodes if their faces share an edge.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- tw(G) = 0 iff $E(G) = \emptyset$.
- If G is a forest $tw(G) \leq 1$.
 - Consider the tree obtained from G by subdividing every edge $uv \in E(G)$ with a new vertex w_{uv} .
 - Set $X_u = \{u\}$ for all $u \in V(G)$, and $X_{w_{uv}} = \{u, v\}$ for every $uv \in E(G)$.
- If G is outerplanar then $tw(G) \leq 2$.
 - Let G' be a graph obtained after triangulating arbitrarily the face of G with more than 3 sides preserving outerplanarity .
 - T is the dual of G': a node per face and connecting two nodes if their faces share an edge.
 - Associate to every node the three vertices in the corresponding face.

Fall 2023

・ロト ・ 一下 ・ ト ・ ト ・ ト
Tree width of some graphs

- tw(G) = 0 iff $E(G) = \emptyset$.
- If G is a forest $tw(G) \leq 1$.
 - Consider the tree obtained from G by subdividing every edge $uv \in E(G)$ with a new vertex w_{uv} .
 - Set $X_u = \{u\}$ for all $u \in V(G)$, and $X_{w_{uv}} = \{u, v\}$ for every $uv \in E(G)$.
- If G is outerplanar then $tw(G) \leq 2$.
 - Let G' be a graph obtained after triangulating arbitrarily the face of G with more than 3 sides preserving outerplanarity .
 - T is the dual of G': a node per face and connecting two nodes if their faces share an edge.
 - Associate to every node the three vertices in the corresponding face.
- For K_n , the complete graph on *n* vertices, $tw(K_n) = n 1$.

Tree width complexity

• Deciding if a graph has trewidth k is NP-complete.

э

Complexity

Tree width complexity

- Deciding if a graph has trewidth k is NP-complete.
- Computing a tree decomposition with width at most k (if it exists) takes O(f(k)n) time.

Complexity

Tree width complexity

- Deciding if a graph has trewidth k is NP-complete.
- Computing a tree decomposition with width at most k (if it exists) takes O(f(k)n) time.
- We present an FPT algorithm that either concludes that a tw(G) > k or provides a tree decomposition with width ≤ 4k + 4. (See section 7.6.2 in M. Cygan et al. Parameterized Algorithms, Springer 2015)

• We consider a connected undirected graph G = (V, E).

- We consider a connected undirected graph G = (V, E).
- (A, B) is a separation in G if A, B ⊆ V, A ∪ B = V, and there is no edge between A \ B and B \ A.

- We consider a connected undirected graph G = (V, E).
- (A, B) is a separation in G if A, B ⊆ V, A ∪ B = V, and there is no edge between A \ B and B \ A.
 - Note that $G[V \setminus (A \cap B)]$ is disconnected.

- We consider a connected undirected graph G = (V, E).
- (A, B) is a separation in G if A, B ⊆ V, A ∪ B = V, and there is no edge between A \ B and B \ A.
 - Note that $G[V \setminus (A \cap B)]$ is disconnected.
 - The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.

くロ と く 同 と く ヨ と 一

- We consider a connected undirected graph G = (V, E).
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B = V$, and there is no edge between $A \setminus B$ and $B \setminus A$.
 - Note that $G[V \setminus (A \cap B)]$ is disconnected.
 - The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.
- For $X, Y \subseteq V$,

- We consider a connected undirected graph G = (V, E).
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B = V$, and there is no edge between $A \setminus B$ and $B \setminus A$.
 - Note that $G[V \setminus (A \cap B)]$ is disconnected.
 - The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.
- For $X, Y \subseteq V$,
 - A separation (A, B) separates X, Y if $X \subseteq A$ and $Y \subseteq B$.

12/26

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We consider a connected undirected graph G = (V, E).
- (A, B) is a separation in G if A, B ⊆ V, A ∪ B = V, and there is no edge between A \ B and B \ A.
 - Note that $G[V \setminus (A \cap B)]$ is disconnected.
 - The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.
- For $X, Y \subseteq V$,
 - A separation (A, B) separates X, Y if $X \subseteq A$ and $Y \subseteq B$.
 - $\mu(X, Y) =$ minimum order of a separation separating X, Y

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We consider a connected undirected graph G = (V, E).
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B = V$, and there is no edge between $A \setminus B$ and $B \setminus A$.
 - Note that $G[V \setminus (A \cap B)]$ is disconnected.
 - The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.
- For $X, Y \subseteq V$,
 - A separation (A, B) separates X, Y if $X \subseteq A$ and $Y \subseteq B$.
 - $\mu(X, Y) =$ minimum order of a separation separating X, Y
 - $\mu(X, Y) =$ maximum number of vertex disjoint X Y paths.

くロ とくぼ とくほ とくほ とうしょ

- We consider a connected undirected graph G = (V, E).
- (A, B) is a separation in G if $A, B \subseteq V, A \cup B = V$, and there is no edge between $A \setminus B$ and $B \setminus A$.
 - Note that $G[V \setminus (A \cap B)]$ is disconnected.
 - The separator is $A \cap B$ and the order of the separation is $|A \cap B|$.
- For $X, Y \subseteq V$,
 - A separation (A, B) separates X, Y if $X \subseteq A$ and $Y \subseteq B$.
 - $\mu(X, Y) =$ minimum order of a separation separating X, Y
 - $\mu(X, Y) =$ maximum number of vertex disjoint X Y paths.

Claim

Given G, X, Y, the value $\mu(X, Y)$ can be computed in polynomial time, as well as a separator of order $\mu(X, Y)$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

• We consider a connected graph G together with a vertex weighting function $w: V \to \mathbb{R}^+$

イロト イボト イヨト イヨト

- We consider a connected graph G together with a vertex weighting function $w: V \to \mathbb{R}^+$
- X ⊆ V is an α-balanced separator if every connected component D of G[V \ X] has w(D) ≤ α.

- We consider a connected graph G together with a vertex weighting function $w: V \to \mathbb{R}^+$
- X ⊆ V is an α-balanced separator if every connected component D of G[V \ X] has w(D) ≤ α.

Theorem

Let G = (V, E), w be a vertex weighted connected graph with $tw(G) \le k$. Then G has a 1/2-balanced separator X with $|X| \le k + 1$.

Proof.

- Let $T = (N, \{X_t\}_{t \in N}, r)$ be a tree decomposition of G with width $\leq k$.
- Let V_t be the vertices in the bags in the subtree rooted at $t \in N$.

AiC	FM	E

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof.

- Let $T = (N, \{X_t\}_{t \in N}, r)$ be a tree decomposition of G with width $\leq k$.
- Let V_t be the vertices in the bags in the subtree rooted at $t \in N$.
- Select $t \in N$ such that
 - w(t) > w(V(G))/2
 - t is at maximum distance from r (in T).

14 / 26

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof.

- Let $T = (N, \{X_t\}_{t \in N}, r)$ be a tree decomposition of G with width $\leq k$.
- Let V_t be the vertices in the bags in the subtree rooted at $t \in N$.
- Select $t \in N$ such that
 - w(t) > w(V(G))/2
 - t is at maximum distance from r (in T).
- t exists as r verifies the properties.

14 / 26

Proof.

- Let $T = (N, \{X_t\}_{t \in N}, r)$ be a tree decomposition of G with width $\leq k$.
- Let V_t be the vertices in the bags in the subtree rooted at $t \in N$.
- Select $t \in N$ such that
 - w(t) > w(V(G))/2
 - t is at maximum distance from r (in T).
- t exists as r verifies the properties.
- For each children t' of T, $w(t) \le w(V)/2$.

14 / 26

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof.

- Let $T = (N, \{X_t\}_{t \in N}, r)$ be a tree decomposition of G with width $\leq k$.
- Let V_t be the vertices in the bags in the subtree rooted at $t \in N$.
- Select $t \in N$ such that
 - w(t) > w(V(G))/2
 - t is at maximum distance from r (in T).
- t exists as r verifies the properties.
- For each children t' of T, $w(t) \le w(V)/2$.
- Furthermore, $w(V \setminus V_t) \le w(V)/2$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fall 2023

Proof.

- Let $T = (N, \{X_t\}_{t \in N}, r)$ be a tree decomposition of G with width $\leq k$.
- Let V_t be the vertices in the bags in the subtree rooted at $t \in N$.
- Select $t \in N$ such that
 - w(t) > w(V(G))/2
 - t is at maximum distance from r (in T).
- t exists as r verifies the properties.
- For each children t' of T, $w(t) \le w(V)/2$.
- Furthermore, $w(V \setminus V_t) \le w(V)/2$.
- So, X_t is a balanced separator of order $\leq k + 1$.

14 / 26

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• We consider a connected graph G together with a vertex weighting function $w: V \to \mathbb{R}^+$

イロト イボト イヨト イヨト

- We consider a connected graph G together with a vertex weighting function $w: V \to \mathbb{R}^+$
- A separation (A, B) is an α-balanced separation if w(A \ B), w(B \ A) ≤ αw(V).

- We consider a connected graph G together with a vertex weighting function $w: V \to \mathbb{R}^+$
- A separation (A, B) is an α -balanced separation if $w(A \setminus B), w(B \setminus A) \leq \alpha w(V)$.

Theorem

Let G, w be a vertex weighted connected with $tw(G) \le k$. Then G has a 2/3-balanced separation of order $\le k + 1$.

Proof.

Ai	С	F	М	E

イロト イボト イヨト イヨト

э

Proof.

• Let X be a 1/2-balanced separator of order $\leq k + 1$.

э

Proof.

- Let X be a 1/2-balanced separator of order $\leq k + 1$.
- Let D_1, \ldots, D_p be the c.c. of $G[V \setminus X]$ and let $a_i = w(D_i)$, for $i \in [p]$.

イロト イポト イヨト イヨト 三日

Proof.

- Let X be a 1/2-balanced separator of order $\leq k + 1$.
- Let D_1, \ldots, D_p be the c.c. of $G[V \setminus X]$ and let $a_i = w(D_i)$, for $i \in [p]$.
- Assume that $a_1 \ge a_2 \ge \cdots \ge a_p$, and let q be the smallest index such that $S_q = \sum_{i=1}^q a_i \ge w(V)/3$ or q = p if this never happens.

くロ とくぼ とくほ とくほ とうしょ

Proof.

- Let X be a 1/2-balanced separator of order $\leq k + 1$.
- Let D_1, \ldots, D_p be the c.c. of $G[V \setminus X]$ and let $a_i = w(D_i)$, for $i \in [p]$.
- Assume that $a_1 \ge a_2 \ge \cdots \ge a_p$, and let q be the smallest index such that $S_q = \sum_{i=1}^q a_i \ge w(V)/3$ or q = p if this never happens.
- Note that if q = p, $S_q < w(V)/3 \le 2w(V)/3$ and that if q = 1, $S_q < w(V)/2 \le 2w(V)/3$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Proof.

- Let X be a 1/2-balanced separator of order $\leq k+1$.
- Let D_1, \ldots, D_p be the c.c. of $G[V \setminus X]$ and let $a_i = w(D_i)$, for $i \in [p]$.
- Assume that $a_1 \ge a_2 \ge \cdots \ge a_p$, and let q be the smallest index such that $S_q = \sum_{i=1}^q a_i \ge w(V)/3$ or q = p if this never happens.
- Note that if q = p, $S_q < w(V)/3 \le 2w(V)/3$ and that if q = 1, $S_a < w(V)/2 < 2w(V)/3$.
- If 1 < q < p, $S_{q-1} < w(V)/3$ and $a_q < a_{q-1} < S_{q-1}$. So, $S_{a} < 2w(V)/3$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● Fall 2023

16 / 26

Proof.

- Let X be a 1/2-balanced separator of order $\leq k + 1$.
- Let D_1, \ldots, D_p be the c.c. of $G[V \setminus X]$ and let $a_i = w(D_i)$, for $i \in [p]$.
- Assume that $a_1 \ge a_2 \ge \cdots \ge a_p$, and let q be the smallest index such that $S_q = \sum_{i=1}^q a_i \ge w(V)/3$ or q = p if this never happens.
- Note that if q = p, $S_q < w(V)/3 \le 2w(V)/3$ and that if q = 1, $S_q < w(V)/2 \le 2w(V)/3$.
- If 1 < q < p, $S_{q-1} < w(V)/3$ and $a_q \le a_{q-1} \le S_{q-1}$. So, $S_q \le 2w(V)/3$.
- (*A*, *B*) is 2/3-balanced.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

16 / 26

Ai	С	FI	M	E

æ

• Take
$$A = X \cup \bigcup_{i=1}^{q} D_i$$
 and $B = X \cup \bigcup_{i=q+1}^{p} D_i$.

æ

- Take $A = X \cup \bigcup_{i=1}^{q} D_i$ and $B = X \cup \bigcup_{i=q+1}^{p} D_i$.
- (A, B) is a separation and, as $A \cap B = X$, it has order $\leq k + 1$.

イロト イポト イヨト イヨト 三日

- Take $A = X \cup \bigcup_{i=1}^{q} D_i$ and $B = X \cup \bigcup_{i=q+1}^{p} D_i$.
- (A, B) is a separation and, as $A \cap B = X$, it has order $\leq k + 1$.
- $w(A \setminus B) = S_a \leq 2w(V)/3$.
- Take $A = X \cup \bigcup_{i=1}^{q} D_i$ and $B = X \cup \bigcup_{i=n+1}^{p} D_i$.
- (A, B) is a separation and, as $A \cap B = X$, it has order $\leq k + 1$.
- $w(A \setminus B) = S_a \leq 2w(V)/3$.
- Note that if q = p, $B \setminus A = \emptyset$ so $w(B \setminus A) = 0$.

- Take $A = X \cup \bigcup_{i=1}^{q} D_i$ and $B = X \cup \bigcup_{i=n+1}^{p} D_i$.
- (A, B) is a separation and, as $A \cap B = X$, it has order $\leq k + 1$.
- $w(A \setminus B) = S_a \leq 2w(V)/3$.
- Note that if q = p, $B \setminus A = \emptyset$ so $w(B \setminus A) = 0$.
- Otherwise, $w(B \setminus A) \leq w(V) S_a \leq w(v) w(V)/3 \leq 2w(V)/3$.

- Take $A = X \cup \bigcup_{i=1}^{q} D_i$ and $B = X \cup \bigcup_{i=q+1}^{p} D_i$.
- (A, B) is a separation and, as $A \cap B = X$, it has order $\leq k + 1$.
- $w(A \setminus B) = S_q \leq 2w(V)/3.$
- Note that if q = p, $B \setminus A = \emptyset$ so $w(B \setminus A) = 0$.
- Otherwise, $w(B \setminus A) \le w(V) S_q \le w(v) w(V)/3 \le 2w(V)/3.$

EndProof.

イロト 不得 トイヨト イヨト 二日

Corollary 1

Let G = (V, E) be a connected graph with $tw(G) \le k$. Let $S \subseteq V$ with |S| = 3k + 4. Then, there is a partition (S_A, S_B) of S such that $k + 2 \le |S_A||S_B| \le 2k + 2$ and $\mu(S_A, S_B) \le k + 1$.

Corollary 1

Let G = (V, E) be a connected graph with $tw(G) \le k$. Let $S \subseteq V$ with |S| = 3k + 4. Then, there is a partition (S_A, S_B) of S such that $k + 2 \le |S_A||S_B| \le 2k + 2$ and $\mu(S_A, S_B) \le k + 1$.

Proof.

・ 同 ト ・ ヨ ト ・ ヨ ト

Corollary 1

Let G = (V, E) be a connected graph with $tw(G) \le k$. Let $S \subseteq V$ with |S| = 3k + 4. Then, there is a partition (S_A, S_B) of S such that $k + 2 \le |S_A||S_B| \le 2k + 2$ and $\mu(S_A, S_B) \le k + 1$.

Proof.

• For $u \in V$, define w(u) to be 1 if $u \in S$ and 0 otherwise.

Corollary 1

Let G = (V, E) be a connected graph with $tw(G) \le k$. Let $S \subseteq V$ with |S| = 3k + 4. Then, there is a partition (S_A, S_B) of S such that $k + 2 \le |S_A||S_B| \le 2k + 2$ and $\mu(S_A, S_B) \le k + 1$.

Proof.

- For $u \in V$, define w(u) to be 1 if $u \in S$ and 0 otherwise.
- Let (A, B) be a 2/3 separation with $\mu(A, B) \leq k + 1$.

Corollary 1

Let G = (V, E) be a connected graph with $tw(G) \le k$. Let $S \subseteq V$ with |S| = 3k + 4. Then, there is a partition (S_A, S_B) of S such that $k + 2 \le |S_A||S_B| \le 2k + 2$ and $\mu(S_A, S_B) \le k + 1$.

Proof.

- For $u \in V$, define w(u) to be 1 if $u \in S$ and 0 otherwise.
- Let (A, B) be a 2/3 separation with $\mu(A, B) \leq k + 1$.
- $|A \setminus B|, |B \setminus A| \le 2w(V)/3 = 2|S|/3 \le 2(3k+4)/3 \le 2k+8/3$ as the sizes are integer values the obtained upper bound is 2k+2.

Fall 2023

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

18 / 26

Corollary 1

Let G = (V, E) be a connected graph with $tw(G) \le k$. Let $S \subseteq V$ with |S| = 3k + 4. Then, there is a partition (S_A, S_B) of S such that $k + 2 \le |S_A||S_B| \le 2k + 2$ and $\mu(S_A, S_B) \le k + 1$.

Proof.

- For $u \in V$, define w(u) to be 1 if $u \in S$ and 0 otherwise.
- Let (A, B) be a 2/3 separation with $\mu(A, B) \leq k + 1$.
- $|A \setminus B|, |B \setminus A| \le 2w(V)/3 = 2|S|/3 \le 2(3k+4)/3 \le 2k+8/3$ as the sizes are integer values the obtained upper bound is 2k+2.
- Furthermore, $|(A \setminus B) \cap S||, |(B \setminus A) \cap S| \le 2k + 2$.

イロト イポト イヨト イヨト 三日

•	:0	•	Ν.Λ	
		-	V	

æ

• Set
$$S_A = (A \setminus B) \cap S$$
 and $S_B = (B \setminus A) \cap S$.

æ.

- Set $S_A = (A \setminus B) \cap S$ and $S_B = (B \setminus A) \cap S$.
- The vertices u ∈ A ∩ B ∩ S are assigned in order to S_A or to S_B depending on which is the smallest at this time. Arbitrarily if they have equal size.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

- Set $S_A = (A \setminus B) \cap S$ and $S_B = (B \setminus A) \cap S$.
- The vertices u ∈ A ∩ B ∩ S are assigned in order to S_A or to S_B depending on which is the smallest at this time. Arbitrarily if they have equal size.
- Since |S| ≤ 3k + 4 < 2(2k + 2), the assignment guarantees that they can not be larger that 2k + 2.

- Set $S_A = (A \setminus B) \cap S$ and $S_B = (B \setminus A) \cap S$.
- The vertices u ∈ A ∩ B ∩ S are assigned in order to S_A or to S_B depending on which is the smallest at this time. Arbitrarily if they have equal size.
- Since $|S| \le 3k + 4 < 2(2k + 2)$, the assignment guarantees that they can not be larger that 2k + 2.
- As, $(S_A \cup S_B) = S$, $|S_A||S_B| \ge 3k + 4 (2k + 2) = k + 2$.

19/26

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Set $S_A = (A \setminus B) \cap S$ and $S_B = (B \setminus A) \cap S$.
- The vertices u ∈ A ∩ B ∩ S are assigned in order to S_A or to S_B depending on which is the smallest at this time. Arbitrarily if they have equal size.
- Since |S| ≤ 3k + 4 < 2(2k + 2), the assignment guarantees that they can not be larger that 2k + 2.
- As, $(S_A \cup S_B) = S$, $|S_A||S_B| \ge 3k + 4 (2k + 2) = k + 2$.
- Finally, $\mu(S_A \cup S_B) \le |A \cap B| \le k+1$.

19/26

くロ とくぼ とくほ とくほ とうしょ

- Set $S_A = (A \setminus B) \cap S$ and $S_B = (B \setminus A) \cap S$.
- The vertices u ∈ A ∩ B ∩ S are assigned in order to S_A or to S_B depending on which is the smallest at this time. Arbitrarily if they have equal size.
- Since $|S| \le 3k + 4 < 2(2k + 2)$, the assignment guarantees that they can not be larger that 2k + 2.
- As, $(S_A \cup S_B) = S$, $|S_A||S_B| \ge 3k + 4 (2k + 2) = k + 2$.
- Finally, $\mu(S_A \cup S_B) \le |A \cap B| \le k+1$.

EndProof.

イロト 不得 トイヨト イヨト 二日

Fall 2023

A component of the algorithm

```
Assume G is connected.
procedure FINDSPLIT(W, S)
     G = G[W]
    if |S| < 3k + 4 then
                                                                      \triangleright W \setminus S \neq \emptyset
         Choose u \in W \setminus S
        return S \cup \{u\}
                                                                    arphi |S| = 3k + 4
    else
         for S_A, S_B \subseteq S with k+2 \leq |S_A||S_B| \leq 2k+2 do
             if \mu(S_A, S_B) < k+1 then
                 Find a separation (A, B) separating S_A, S_B
                 with |A \cap B| \leq k+1
                 return S \cup A \cap B
         stop tw(G) > k
                                                                       ▷ By Coro 1
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@ Fall 2023

20 / 26

Claim

Let G be a graph, let $S, W \subseteq V$, and let $k \in \mathbb{N}$. Assume that

- 2 G[W] and $G[W \setminus S]$ are connected, and

$$S = N_G[W \setminus S]$$

Then, FINDSPLIT(S, W) either discovers that tw(G) > k or returns a set \hat{S} verifying

$$\ \, {\bf 0} \ \, S \subsetneq \hat{S}, \ \, |\hat{S}| \le 4k+5,$$

2 every c.c. of $G[W \setminus \hat{S}]$ is adjacent to at most 3k + 4 vertices of \hat{S} .

Furthermore, the running time FINDSPLIT is at most $2^{2(3k+4)}p(n)$.

(人間) トイヨト (日) (日)

Proof.

AiC	FM	Г

・ロト ・四ト ・ヨト ・ヨト

æ.

Proof.

- When |S| < 3k + 4:
 - Clearly $S \subsetneq \hat{S}$, and $|\hat{S}| \le 3k + 4 \le 4k + 5$
 - For every c.c. of $G[W \setminus \hat{S}]$ is adjacent only to vertices in \hat{S} , so (2) holds.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• When
$$|S| = 3k + 4$$
:

・ロト ・四ト ・ヨト ・ヨト

- When |S| = 3k + 4:
 - FINDSPLIT correctly reports that tw(G) > k.
 - As $|A \cap B| \le k+1$, $|\hat{S}| \le 3k+4+k+1 = 4k+5$.
 - (A, B) separates some $S_A, S_B \subseteq S$ with $k+2 \leq |S_A||S_B| \leq 2k+2$

э

- When |S| = 3k + 4:
 - FINDSPLIT correctly reports that tw(G) > k.
 - As $|A \cap B| \le k+1$, $|\hat{S}| \le 3k+4+k+1 = 4k+5$.
 - (A, B) separates some $S_A, S_B \subseteq S$ with $k+2 \leq |S_A||S_B| \leq 2k+2$
 - As $k + 2 \leq |S_A|, |S_B|$ and $|A \cap B| \leq k + 1$, $S_A \setminus (A \cap B), S_B \setminus (A \cap B) \neq \emptyset$.
 - We can pick $u_A \in S_A \setminus (A \cap B)$ and $u_B \in S_B \setminus (A \cap B)$.
 - As G[W] and G[W \ S] are connected and S = N_G[W \ S], there is a path from s_A to s_B in G[W] that contains a vertex u_{AB} ∈ (W \ S) ∩ (A ∩ B).

- When |S| = 3k + 4:
 - FINDSPLIT correctly reports that tw(G) > k.
 - As $|A \cap B| \le k+1$, $|\hat{S}| \le 3k+4+k+1 = 4k+5$.
 - (A, B) separates some $S_A, S_B \subseteq S$ with $k+2 \leq |S_A||S_B| \leq 2k+2$
 - As $k + 2 \leq |S_A|, |S_B|$ and $|A \cap B| \leq k + 1$, $S_A \setminus (A \cap B), S_B \setminus (A \cap B) \neq \emptyset$.
 - We can pick $u_A \in S_A \setminus (A \cap B)$ and $u_B \in S_B \setminus (A \cap B)$.
 - As G[W] and G[W \ S] are connected and S = N_G[W \ S], there is a path from s_A to s_B in G[W] that contains a vertex u_{AB} ∈ (W \ S) ∩ (A ∩ B).
 - Therefore, $S \subsetneq \hat{S}$ and condition (1) holds.

Fall 2023

• When
$$|S| = 3k + 4$$
:

・ロト ・四ト ・ヨト ・ヨト

- When |S| = 3k + 4:
 - Let D be a c.c. of $G[W \setminus \hat{S}]$.
 - G[D] is connected in G[W] and $D \ cap(A \cap B) = \emptyset$, so either $D \subseteq A \setminus B$ or $D \subseteq B \setminus A$.

イロト 不得 トイヨト イヨト 二日

- When |S| = 3k + 4:
 - Let D be a c.c. of $G[W \setminus \hat{S}]$.
 - G[D] is connected in G[W] and $D cap(A \cap B) = \emptyset$, so either $D \subseteq A \setminus B$ or $D \subseteq B \setminus A$.
 - Assume that $D \subseteq A \setminus B$.
 - The vertices in Ŝ that are adjacent to D belong either to (A \ B) ∩ S or to A ∩ B.
 - Therefore, D is adjacent to at most $|(A \setminus B) \cap S| + |A \cap B|$ vertices.

24 / 26

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- When |S| = 3k + 4:
 - Let D be a c.c. of $G[W \setminus \hat{S}]$.
 - G[D] is connected in G[W] and $D cap(A \cap B) = \emptyset$, so either $D \subseteq A \setminus B$ or $D \subseteq B \setminus A$.
 - Assume that $D \subseteq A \setminus B$.
 - The vertices in Ŝ that are adjacent to D belong either to (A \ B) ∩ S or to A ∩ B.
 - Therefore, D is adjacent to at most $|(A \setminus B) \cap S| + |A \cap B|$ vertices.
 - As $|(A \setminus B) \cap S| \le |S| \le 3k + 4$ and $|A \cap B| \le k + 1$ condition (2) holds.

24 / 26

くロ とくぼ とくほ とくほ とうしょ

- When |S| = 3k + 4:
 - Let D be a c.c. of $G[W \setminus \hat{S}]$.
 - G[D] is connected in G[W] and $D \ cap(A \cap B) = \emptyset$, so either $D \subseteq A \setminus B$ or $D \subseteq B \setminus A$.
 - Assume that $D \subseteq A \setminus B$.
 - The vertices in Ŝ that are adjacent to D belong either to (A \ B) ∩ S or to A ∩ B.
 - Therefore, D is adjacent to at most $|(A \setminus B) \cap S| + |A \cap B|$ vertices.
 - As $|(A \setminus B) \cap S| \le |S| \le 3k + 4$ and $|A \cap B| \le k + 1$ condition (2) holds.

EndProof

くロ とくぼ とくほ とくほ とうしょ

Fall 2023

24 / 26

A tree with small with

An approximate algorithm for small treewidth decomposition

Assume G = (V, E) is connected. procedure Decompose(W, S) $\hat{S} = \text{FINDSPLIT}(G, S)$ Let D_1, \ldots, D_p be the c.c. of $G[W \setminus \hat{S}]$. for $i \in [p]$ do $T_i = \text{Decompose}(N[D_i], N(D_i))$ Construct T from T_1, \ldots, T_p , adding a rot r having as children of r the roots of the T_i's and setting $X_r = \hat{S}$ stop tw(G) > k▷ By Coro 1 return T

25 / 26

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・ ・ 日

DECOMPOSE

Claim

In every call Decompose(W, S) from the initial call $Decompose(V, \emptyset)$ the sets W, S verify:

- $\ \, \bullet S \subsetneq W \subseteq V, \ |S| \leq 3k+4, \ W \setminus S = \emptyset,$
- **2** G[W] and $G[W \setminus S]$ are connected, and
- $S = N_G[W \setminus S].$

26 / 26

伺 ト イヨト イヨト

DECOMPOSE

Claim

In every call Decompose(W, S) from the initial call $Decompose(V, \emptyset)$ the sets W, S verify:

- $\ \, \bullet S \subsetneq W \subseteq V, \ |S| \leq 3k+4, \ W \setminus S = \emptyset,$
- **2** G[W] and $G[W \setminus S]$ are connected, and

$$S = N_G[W \setminus S].$$

Proof.

Follows directly from the previous claim and the selection of parameters in the recursive call.

26 / 26