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Kernelization The technique

Kernelization

Kernelization is a technique to obtain FPT algorithms for a
parameterized problem (L, κ).

Based in auto-reductions

We look for a polynomial time algorithm that transforms an instance
x in another instance x ′ of the problem (the kernel). So that

x ′ is a yes instance iff x is a yes instance.
x and x ′ are equivalent instances
the size of x ′ is upperbounded by f (κ(x)), for some computable
function f .

An algorithm that computes x ′ and solves by brute force this instance
has cost
O(p(|x |) + g(f (κ(x))
So, it is an FPT algorithm provided the problem is decidible.
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Kernelization The technique

k-Vertex Cover: reduction rules?

Often a kernelization is defined through reduction rules that, either
allow us to produce an smaller equivalent instance or to show that,
the original instance is a NO instance.

Technically, we could produce a NO instance of constant size,
however we often see the construction as a preprocesing step that has
the possibility of saying NO, and will do that as soon as possible.

Let’s look at a first kernelization for p-VC.

p-vertex cover
Input: a graph G and an integer k ,
Parameter: k
Question: ∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≥ 1?
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p-vertex cover

k-Vertex Cover: reduction rules?

Let (G , k) be a k-VC instance.

recall: Two instances x1 and x2 of decision probem P are equivalent
when ”x1 ∈ P iff x2 ∈ P”.

An isolated vertex has degree zero. Therefore it does not cover any
edge!

Obs 1

If v is an isolated vertex, (G , k) and (G − v , k) are equivalent.

A vertex with degree ≥ k + 1 must be part of a vertex cover of size
≤ k .

Obs 2

If v has degree ≥ k + 1, (G , k) and (G − v , k − 1) are equivalent.
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p-vertex cover

Reduction rules

The previous observations suggest a preprocessing of the input:

Iteratively remove isolated vertices and vertices with degree at least
k + 1, decreasing the parameter by one in the second case.

By Obs 1 and 2, the resulting instance (G ′, k ′) is equivalent to the
original instance.

Furthermore, it can be computed in polynomial time.

How big is (G ′, k ′)?
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p-vertex cover

Reduced instance

Iteratively remove isolated vertices and vertices with degree at least
k + 1, decreasing the parameter by one in the second case.

In (G ′, k ′) all the vertices have degree ≤ k .

Obs 3

If G has a vertex cover with ≤ k vertices and all the vertices have degree
≤ k , |E (G ′)| ≤ k2.

So, we can filter as no instances those leading to reduced instances
with a high number of edges!

By Obs 3, if |E (G ′)| > k2, we replace (G ′, k ′) by a trivial small
no-instance, which is again equivalent.
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p-vertex cover

Kernel

Theorem

Let (G , k) be an instance to p-VC. In polynomial time we can obtain an
equivalent p-VC instance (G ′, k ′) with |V (G ′)|, |E (G ′)| ≤ O(k2).

Such an instance is called a kernel.

A kernel

is an equivalent instance,
can be computed in polynomial time, and
has size bounded by a function of the parameter
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p-vertex cover

Kernelization algorithm

Assume that Ker-P is a polynomial time algorithm computing a
kernel for a given instance of problem P and that Alg-P is an exact
(exponential time) algorithm for P.

function AlgKernel-P(x)
z =Ker-P(x)
return (Alg-P(z))

AlgKer-p-VC is an FPT algorithm for P.
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p-vertex cover

A kernelization algorithm for p-VC

function AlgKernel-p-VC(G , k)
(G ′, k ′) = Iteratively remove isolated vertices and vertices
with degree at least k + 1, decreasing the parameter
by one in the second case.
if |E (G ′)| > k2 then return no

for each S ⊆ V ′ with |S | = k ′ do
if S is a vertex cover then return si

return no

AlgKernel-p-VC runs in O(nc + k2kk2) = O(nc) + O(k2k+2)
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p-MaxSat

1 Kernelization

2 p-vertex cover

3 p-MaxSat

4 Crown decomposition

5 Summary
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p-MaxSat

p-MaxSat

p-maxsat
Input: a Boolean CNF formula F and an integer k.
Parameter: k .
Question: Is there a variable assignment satisfying at least k clauses?

Recall that the size of a CNF formula is the sum of clause lengths (#
literals); we ignore as usual log-factors.
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p-MaxSat

p-MaxSat: Reduction rules

A clause in F is trivial if it contains both a positive and negative
literal in the same variable.

Obs 1

Let F ′ be obtained from formula F by removing all t trivial clauses.
(F ′, k − t) and (F , k) are equivalent.
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p-MaxSat

p-MaxSat: Reduction rules

A clause in (F , k) is long if it contains at least k literals, and short
otherwise.

If F contains at least k long clauses, (F , k) is a yes instance of
p-MaxSat.

Obs 2

Let Fs be obtained from formula F by removing all ` < k long clauses.
(Fs , k − `) and (F , k) are equivalent.
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p-MaxSat

p-MaxSat: Reduction rules

Obs 3

If F contains at least 2k clauses, (F , k) is a yes instance of p-MaxSat.

Proof.

Take an arbitrary truth assignment x and its complement x obtained by
flipping all variables. Every clause of F is satisfied by x or by overlinex (or
by both). The one that satisfies most clauses satisfies at least k
clauses.
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p-MaxSat

A kernelization algorithm for p-MaxSat

1: function AlgKernel-p-MaxSat(F , k)
2: Remove from F all t trivial clauses and set k = k − t
3: if F has at least k long clauses then return yes

4: Remove from F all ` long clauses and set k = k − `
5: if F has at least 2k clauses then return yes
6: for each set of k clauses do
7: for each selection of one literal per clause in the set do
8: if selection has a compatible truth assignment then
9: return yes

10: return no

After step 5, F contains at most 2k ′ clauses with at most k ′ literals, for
k ′ = k − t − `.
AlgKernel-p-MaxSat is an FPT algorithm for p-MaxSat.
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Crown decomposition

Crown decomposition is a general kernelization technique based on
some results on matchings.

For disjoint vertex subsets U,W of a graph G , M is a matching of U
into W if every edge of M connects a vertex of U and a vertex of W
and every vertex of U is an endpoint of some edge of M.
We also say that M saturates U.

If M saturates U, |U| ≤ |W |
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Crown decomposition

Crown decomposition: Definition

A crown decomposition of a graph G = (V ,E ) is a partitioning of V
into three parts C , H and R, such that

C 6= ∅ is an independent set.
There are no edges between vertices of C and R.
Removing H separates C from R.
Let E ′ be the set of edges between vertices of C and H. Then E ′

contains a matching of H into C .
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Crown decomposition

Computing a crown decomposition

Theorem (König’s theorem)

In every undirected bipartite graph the size of a maximum matching is
equal to the size of a minimum vertex cover.

Theorem (Hall’s theorem)

Let G = (V1,V2,E ) be an undirected bipartite graph. G has a matching
saturating V1 iff for all X ⊆ V1, we have |N(X )| ≥ |X |.

Can you obtain a minimum vertex cover in a bipartite graph in polynomial
time?

YES!
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Crown decomposition

Computing a crown decomposition

Theorem (Hopcroft-Karp, SIAM J. Computing 2, 225–231 (1973))

Let G = (V1,V2,E ) be an undirected bipartite graph on n vertices and m
edges. Then we can find a maximum matching as well as a minimum
vertex cover of G in time O(m

√
n). Furthermore, in time O(m

√
n) either

we can find a matching saturating V1 or an inclusion-wise minimal set
X ⊆ V1 such that |N(X )| < |X |.
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Crown decomposition

Crown lemma

Lemma

Let G = (V ,E ) be a graph without isolated vertices and with at least
3k + 1 vertices. There is a polynomial-time algorithm that either

finds a matching of size k + 1 in G; or

finds a crown decomposition of G.

Proof

We compute a maximal matching M in G .
If |M| ≥ k + 1, we are done.
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Crown decomposition

Now, 1 ≤ |M| ≤ k + 1.
Let VM be the end points of M and I = V − VM .

M is a maximal matching, so I is an independent set.

Let GI ,VM
be the bipartite subgraph induced in G by I and VM .

In polynomial time, we compute a minimum size vertex cover X and a
maximum matching M ′ in GI ,VM

.

If |M ′| ≥ k , we are done. From now on, |M ′| ≤ k and also |X | ≤ k .

If X ∩ VM = ∅, X = I . Then, |I | = |X | ≤ k and
|V | = |I |+ |X | ≤ k + 2k ≤ 3k!

Then, X ∩ VM 6= ∅

AiC FME, UPC Parameterization: Kernelization Fall 2023 24 / 37



Crown decomposition

We obtain a crown decomposition (C ,H,R) as follows.

Since |X | = |M ′|, every edge of the matching M ′ has exactly one
endpoint in X .

Let M∗ be the subset of M ′ such that every edge from M∗ has
exactly one endpoint in X ∩ VM and let VM∗ denote the set of
endpoints of edges in M∗.

Set head H = X ∩ VM = X ∩ VM∗ , crown C = VM∗ ∩ I , and the
remaining part is R.

C is an independent set and, by construction, M∗ is a matching of H
into C .

Since X is a vertex cover of GI ,VM
, every vertex of C can be adjacent

only to vertices of H.

End proof
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Crown decomposition

An example with k = 3
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Crown decomposition

Crown decomposition: Vertex cover

Consider a Vertex Cover instance (G , k).

By an exhaustive application of the isolated vertex reduction rule, we
may assume that G has no isolated vertices.

If |V (G )| > 3k , we use the crown lemma to get either

a matching of size k + 1, (so (G , k) is a no-instance) or a crown
decomposition C , H, R.
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Crown decomposition

Crown decomposition: Vertex cover

From the crown decomposition C , H, R of G , let M be a matching of H
into C .

The matching M witnesses that, for every vertex cover X of G , X
contains at least |M| = |H| vertices of H ∩C to cover the edges of M.

H covers all edges of G that are incident to H ∪ C .

So, there exists a minimum vertex cover of G that contains H, and
we may reduce (G , k) to (G − H, k − |H|).

Further, in (G − H, k − |H|), c ∈ C is isolated and can be eliminated.
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Crown decomposition

Crown decomposition: Vertex cover

As the crown lemma promises that H 6= ∅, we can always reduce the graph
as long as |V (G )| > 3k .

Lemma

Vertex Cover admits a kernel with at most 3k vertices.
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Crown decomposition

Crown decomposition: Max SAT

Lemma

Max SAT admits a kernel with at most k variables and 2k clauses.
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Summary

Kernelization: summary

For parameterized problems, kernelization algorithms are a method to
obtain FPT algorithms.

These are preprocessing algorithms that can add to any algorithmic
method (e.g. approximation/exact algorithms).

Kernelization algorithms usually consist of reduction rules, which
reduce simple local structures (degree 1 vertices / high degree
vertices / long clauses, etc), and a bound f (k) for irreducible
instances (X , k) that allows us to

return no if |X | > f (k), for minimization problems, or
return yes if |X | > f (k), for maximization problems.
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Summary

Designing kernelization algorithms

What are the trivial substructures, where an optimal solution of a
certain form can be guaranteed?

Is there a reduction rule reflecting this?

Can a bound be proved for irreducible instances? If not, which
structures are problematic? Etc...

Any problem in FPT admits a kernelization.

Hardness notion?

We would like to get a kernel as small as possible.

Statements like: (L, κ) does not admit a linear (quadratic) kernel
unless some complexity assumption fails are the kind of results
showing kernelization hardness.
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