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Review of Modular Arithmetic

Given a, b, n ∈ Z, a is congruent to b modulo n (a ≡ b mod n) if
n|(a− b).

If a mod n = b then a ≡ b mod n.

(a + b) mod n ≡ ((a mod n) + (b mod n)) mod n.

(a · b) mod n ≡ ((a mod n) · (b mod n)) mod n.

n partitions Z in n equivalence classes:

Zn = {0, 1 . . . , n − 1}.

On Zn, we define operators +n, ·n as +, · mod n.
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Review of Modular Arithmetic

Recall that (Zn,+n, ) form a abelian group.

In fact (Zn,+n, ·n) form a commutative ring, therefore:

1 a + (b + c) ≡ (a + b) + c mod n (associativity)

2 ab ≡ ba mod n (commutativity)

3 a(b + c) ≡ ab + ac mod n (distributivity)

These operations can help in simplifying big calculations.

For example to compute 2285 mod 31:

2285 ≡ (25)57 ≡ 3257 ≡ 157 ≡ 1 mod 31
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Modular multiplication

Modular multiplication: Given x , y , n ∈ N, compute x y mod n.

We first perform the product x y and then take modulo n which take
O(M2) where M = max{lg x , lg y , log n}.
If x , y ≤ n, and N = lgN, the cost is O(N2).
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Modular exponentiaton

Modular exponentiation: given a, b, n ∈ N, compute d = ab mod n.

Repeating squaring according to binary representation of exponent
(D&C).

The algorithm is tuned to reduce modulo n at each operation, in
particular it relies in 2 facts:

1 a · b mod n = (a mod n) · (b mod n),
2 a2c = (ac)2.

For example, to compute a1101:
a1 → a10 → a11 → a110 → a1100 → a1101.
i.e. a→ a2 → a3 → a6 → a12 → a13.
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Algorithm for d = ab mod N .

Let N = lg b and assume N ≥ max{lg a, lg n},

Expo(a, b[N − 1, . . . , 0], n)
d = 1
for i = N − 1 down to 0
do
d = (d · d) mod n
if b[i ] == 1 then
d = (d · a) mod n

end if
end for
return d

Complexity: The number of
loops is N = lg b. At each
loop, the algorithm does a
constant number of
multiplications and may be a
shifting.

The bit complexity is O(N(lg n)2) = O(N3).
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Example

Wish to compute 313 mod 5

b = 13, a = 3,N = 5,

b = 13⇒ b = (1101)2 ⇒ 13 = 23 + 22 + 20

So 313 mod 5 = 32
3+22+20 mod 5

= (((32)3 mod 5) · ((32)2 mod 5) · ((32)0 mod 5) mod 5)

i b[i ] d

3 1 1 mod 5 = 1; 3 mod 5 = 3 3

2 1 9 mod 5 = 4; 12 mod 5 = 2 2

1 0 4 mod 5 = 4 4

0 1 16 mod 5 = 1; 3 mod 5 = 3 3
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The Discrete LOG

Consider the following backwards version of modular exponentiation:

Discrete Log: given a, b, n ∈ Z+, exists y ∈ Z+ such that a = by mod n?

Difficult problem! it is not known to be in P neither NP-hard.

Given a, b, n ∈ Z+ to compute x = ab mod n can be done in O(N3)
steps (N = |b|).

Given a, b, n ∈ Z+ to compute y s.t. a = by mod n id difficult.
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Modular inverse

Modular inverse: Given x , n ∈ N, compute y such that x/y ≡ 1 mod n.

x/y mod n does not always exists.

For ex. In Z15, 3 does not have inverse in Z15. For a ∈ Zn, a−1 exists
in Zn if gcd(a, n) = 1.

Define, Z∗n = {a|a ∈ {1, 2, . . . , n − 1} ∧ gcd (a, n) = 1}.

Z∗n is the set of relative primes with n.

Example: Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}

(Z∗n, ·n) is an abelian group.

To solve the problem we need to check if the inverse exists and then
compute the inverse efficiently.
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Greatest common divisor

GCD: given a, b ∈ Z+, compute gcd(a, b)

Recall that given a, b ∈∈ Z+, the gcd(a, b) is the largest integer which
divides a and b.

We can compute gcd using Euclid’s algorithm.
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Euclid’s algorithm for GCD.

Theorem (Euclid)

For any a, b ∈ Z with b > 0, gcd(a, b) = gcd(b, a mod b).

EUCLID(a, b)
if b = 0 then

return a
else if b = 1 then

return 1
else
EUCLID(b, a mod b)

end if

Each recursive call
reduces a at least for
1/2.
Now if a and b have N
bits, the division takes
O(N2) steps. So, the
cost is O(N3).

EUCLID(30,21)→EUCLID(21,9)→ EUCLID(9,3)→ EUCLID(3,0)= 3
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Extended Euclid algorithm

Recall Bezout Identity:
Given a, b ∈ Z, ∃x , y ∈ Z s.t. gcd(a, b) = d = ax + by .

The extended algorithm takes as input a, b ∈ Z and returns d ∈ Z s.t.
d = gcd(a, b), and x , y ∈ Z s.t. d = ax + by .

EXT-EUCLID(a, b)
if b = 0 then

return (a, 1, 0)
else

(d , x ′, y ′) := EXT-EUCLID (b, a mod b)
return (d , y ′, x ′ − ba/bcy ′)

end if
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EXT-EUCLID: example

Example: EXT-EUCLID(99,78)
(d , x1, y1) := EXT-EUCLID (99, 78) = (3,−11, 14)
(d , x2, y2) := EXT-EUCLID (78, 21) = (3, 3,−11)
(d , x3, y3) := EXT-EUCLID (21, 15) = (3,−2, 3)
(d , x4, y4) := EXT-EUCLID (15, 6) = (3, 1,−2)
(d , x5, y5) := EXT-EUCLID (6, 3) = (3, 0, 1)
(d , x6, y6) := EXT-EUCLID (3, 0) = (3, 1, 0)

Therefore gcd(99, 78) = 3 = 99 · 11− 78 · 14.
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EXT-EUCLID: correctness

Theorem

EXT-EUCLID(a, b) returns (d , x , y) s.t. gcd(a, b) = d = ax + by , in
O(N3) operations.

If b = 0, d = a and a = a · 1 + b · 0.

Assume that d = gcd(a, b) = gcd(b, a mod b) and that
d = b · x ′ + (a mod b) · y ′

d = bx ′ + (a− bba/bcy ′) = ay ′ + b(x ′ − ba/bcy ′)

The cost of the algorithm is the same as EUCLID.
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Modular linear equations: ax ≡ b mod n.

Recall:

ax ≡ b mod n is solvable for x iff gcd(a, n)|b.

ax ≡ b mod n either has gcd(a, n) distinct solutions mod n or it has
no solutions.

To find, if any, a solution to if ax ≡ b mod n, we use the following

Let d = gcd(a, n), use EXT-EUCLID to find d = ax ′ + by ′.
If d |b then ax ≡ b mod n has as one solution

x0 = x ′(b/d) mod n.

If ax ≡ b mod n is solvable and has x0 as first solution, then the
equation has d distinct solutions (mod n) given by

xi = x0 + i(n/d) for 0 ≤ i ≤ d − 1
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Solution of ax ≡ b mod n

The next algorithm takes as input a, b, n ∈ Z and returns all solutions of
the equation ax ≡ b mod n.

SOLVE (a, b, n)
(d , x ′, y ′) = EXT-EUCLID (a, n)
if d |b then
x0 = x ′(b/d) mod n
for i = 1 to d − 1 do

return (x0 + i(n/d)) mod n
end for

else
return no solution

end if

Complexity: If N = max{log n, log a, log b}, then T (n) = O(N3).
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Example

Solve 14x ≡ 30 mod 100

SOLVE(14, 30, 100)

as d = 2|30:

(d , x ′, y ′) = (2,−7, 1)

x0 = (−7)(15) mod 100 = 95

x1 = 95 + 50 mod 100 = 45

Solutions: 45, 95

AiC FME, UPC Modular arithmetic Fall 2023 17 / 24



Finding the multiplicative inverse of a ∈ Z∗n

Modular division: given x , y , n ∈ N, compute x/y mod n (if it exists!).

As (Z∗n, ·) is an abelian group, then ∀a ∈ Z∗n,∃a−1 ∈ Z∗n the
multiplicative inverse such that a · a−1 ≡ 1 mod n

To compute the multiplicative inverse of a ∈ Z∗n: use
EXT-EUCLID(a, n) to get ax + ny = 1 or ax ≡ 1 mod n

Therefore, x = a−1 and it can be computed in time O(N3).
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Find the multiplicative inverse of 5 mod 11:
EXT-EUCLID (5, 11) = (1,−2, 1) ⇒ 5 · (−2) ≡ 1( mod 11),
and −2 is the multiplicative inverse of 5 mod 11. (−2 = 9 in Z∗11)

Find the multiplicative inverse of 21 mod 91
Notice 91 = 13 · 7 and 21 = 3 · 7 therefore gcd(91, 21) = 7 ⇒ 21 does’t
have inverse mod 91.
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Chinese Remainder Theorem

The Chinese Remainder Theorem provides a correspondence between
a system of equations mod pairwise primes and an equation mod their
product.

Given groups G1,G2 their cartesian product
G1 × G2 = {(a1, a2)|a1 ∈ G1, a2 ∈ G2}.

Multiplication: (a1, a2) · (b1, b2) = (a1 · b1, a2 · b2)

If n = q1q2 · · · qk , with gcd(qi , qj) = 1, the CRT describes the
structure of (Zn,+n, ·n) as identical to Zq1 × Zq2 × · × Zqk , each with
+qi , ·qi .

It has a many applications into algorithmics and cryptography, as
working in (Zqi ,+qi , ·qi ) could be more efficient than working in
(Zn,+n, ·n)
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Chinese Remainder Theorem

Lemma

If gcd(q1, q2) = 1, then Zq1q2
∼= Zq1 × Zq2 .

Sketch Proof Define f : Zq1q2 → Zq1 × Zq2 by f (a) = (a mod q1, a
mod q2) ad prove that f is a bijection. 2

By using inductively the previous lemma:

Theorem (CRT, Sun Tzi Suan Ching, III), Euler XVIII)

Let n = q1 · q2 · qk with gcd(qi , qj) = 1. Then,

Zn
∼= Zq1 × · · · × Zqk .

Notice we must have qi = pci for prime pi and constant c .
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Chinese Remainder Theorem

Corollary

Let n = q1 · q2 · qk with gcd(qi , qj) = 1, let r1, . . . , rn be integers s.t.
0 ≤ ri < 0, for 1 ≤ i ≤ k. Then, the system of simultaneous k equations:
{x ≡ ri mod qi}ki=1, has a unique solution.
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CRT: Example-1

The procedure to apply CRT:

1 For all i , 1 ≤ i ≤ k :
• mi = n/qi ,
• ci = mi (m

−1
i mod qi ),

2 x ≡
∑n

i=1 rici ( mod n).

Sun Tzi Suan Ching’s problem: We have a number of things, but we do not know
exactly how many. If we count them by threes we have two left over. If we count them
by fives we have three left over. If we count them by sevens we have two left over. How
many things are there?

x ≡2 mod 3

x ≡3 mod 5

x ≡2 mod 7

which yields x ≡ 23 mod 105
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CRT: Example-2

We want to do arithmetic on integers modulo n = 8633.
n = 8633 = 89× 97 = q1q2 ⇒ m1 = 97,m2 = 89
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