Modular arithmetic

AiC FME, UPC

Fall 2023

Review of Modular Arithmetic

Given $a, b, n \in \mathbb{Z}, a$ is congruent to b modulo $n(a \equiv b \bmod n)$ if $n \mid(a-b)$.

Review of Modular Arithmetic

Given $a, b, n \in \mathbb{Z}, a$ is congruent to b modulo $n(a \equiv b \bmod n)$ if $n \mid(a-b)$.

- If $a \bmod n=b$ then $a \equiv b \bmod n$.
- $(a+b) \bmod n \equiv((a \bmod n)+(b \bmod n)) \bmod n$.
- $(a \cdot b) \bmod n \equiv((a \bmod n) \cdot(b \bmod n)) \bmod n$.

Review of Modular Arithmetic

Given $a, b, n \in \mathbb{Z}, a$ is congruent to b modulo $n(a \equiv b \bmod n)$ if $n \mid(a-b)$.

- If $a \bmod n=b$ then $a \equiv b \bmod n$.
- $(a+b) \bmod n \equiv((a \bmod n)+(b \bmod n)) \bmod n$.
- $(a \cdot b) \bmod n \equiv((a \bmod n) \cdot(b \bmod n)) \bmod n$.
n partitions \mathbb{Z} in n equivalence classes:

$$
\mathbb{Z}_{n}=\{0,1 \ldots, n-1\} .
$$

Review of Modular Arithmetic

Given $a, b, n \in \mathbb{Z}, a$ is congruent to b modulo $n(a \equiv b \bmod n)$ if $n \mid(a-b)$.

- If $a \bmod n=b$ then $a \equiv b \bmod n$.
- $(a+b) \bmod n \equiv((a \bmod n)+(b \bmod n)) \bmod n$.
- $(a \cdot b) \bmod n \equiv((a \bmod n) \cdot(b \bmod n)) \bmod n$.
n partitions \mathbb{Z} in n equivalence classes:

$$
\mathbb{Z}_{n}=\{0,1 \ldots, n-1\} .
$$

On \mathbb{Z}_{n}, we define operators $+_{n}, \cdot{ }_{n}$ as,$+ \cdot \bmod n$.

Review of Modular Arithmetic

Recall that $\left(\mathbb{Z}_{n},+_{n},\right)$ form a abelian group.

Review of Modular Arithmetic

Recall that $\left(\mathbb{Z}_{n},+_{n},\right)$ form a abelian group.
In fact $\left(\mathbb{Z}_{n},+_{n}, \cdot{ }_{n}\right)$ form a commutative ring, therefore:
(1) $a+(b+c) \equiv(a+b)+c \bmod n$ (associativity)
(2) $a b \equiv b a \bmod n$ (commutativity)
(3) $a(b+c) \equiv a b+a c \bmod n$ (distributivity)

Review of Modular Arithmetic

Recall that $\left(\mathbb{Z}_{n},+_{n}\right.$, $)$ form a abelian group.
In fact $\left(\mathbb{Z}_{n},+_{n}, \cdot{ }_{n}\right)$ form a commutative ring, therefore:
(1) $a+(b+c) \equiv(a+b)+c \bmod n$ (associativity)
(2) $a b \equiv b a \bmod n$ (commutativity)
(3) $a(b+c) \equiv a b+a c \bmod n$ (distributivity)

These operations can help in simplifying big calculations.
For example to compute $2^{285} \bmod 31$:

$$
2^{285} \equiv\left(2^{5}\right)^{57} \equiv 32^{57} \equiv 1^{57} \equiv 1 \quad \bmod 31
$$

Modular multiplication

Modular multiplication: Given $x, y, n \in \mathbb{N}$, compute $x y \bmod n$.

Modular multiplication

Modular multiplication: Given $x, y, n \in \mathbb{N}$, compute $x y \bmod n$.

- We first perform the product $x y$ and then take modulo n which take $O\left(M^{2}\right)$ where $M=\max \{\lg x, \lg y, \log n\}$.

Modular multiplication

Modular multiplication: Given $x, y, n \in \mathbb{N}$, compute $x y \bmod n$.

- We first perform the product $x y$ and then take modulo n which take $O\left(M^{2}\right)$ where $M=\max \{\lg x, \lg y, \log n\}$.
- If $x, y \leq n$, and $N=\lg N$, the cost is $O\left(N^{2}\right)$.

Modular exponentiaton

Modular exponentiation: given $a, b, n \in \mathbb{N}$, compute $d=a^{b} \bmod n$.

Modular exponentiaton

Modular exponentiation: given $a, b, n \in \mathbb{N}$, compute $d=a^{b} \bmod n$.

- Repeating squaring according to binary representation of exponent (D\&C).

Modular exponentiaton

Modular exponentiation: given $a, b, n \in \mathbb{N}$, compute $d=a^{b} \bmod n$.

- Repeating squaring according to binary representation of exponent (D\&C).
- The algorithm is tuned to reduce modulo n at each operation, in particular it relies in 2 facts:
(1) $a \cdot b \bmod n=(a \bmod n) \cdot(b \bmod n)$,
(2) $a^{2 c}=\left(a^{c}\right)^{2}$.

Modular exponentiaton

Modular exponentiation: given $a, b, n \in \mathbb{N}$, compute $d=a^{b} \bmod n$.

- Repeating squaring according to binary representation of exponent (D\&C).
- The algorithm is tuned to reduce modulo n at each operation, in particular it relies in 2 facts:
(1) $a \cdot b \bmod n=(a \bmod n) \cdot(b \bmod n)$,
(2) $a^{2 c}=\left(a^{c}\right)^{2}$.
- For example, to compute a^{1101} :
$a^{1} \rightarrow a^{10} \rightarrow a^{11} \rightarrow a^{110} \rightarrow a^{1100} \rightarrow a^{1101}$.
i.e. $a \rightarrow a^{2} \rightarrow a^{3} \rightarrow a^{6} \rightarrow a^{12} \rightarrow a^{13}$.

Algorithm for $d=a^{b} \bmod N$.

Let $N=\lg b$ and assume $N \geq \max \{\lg a, \lg n\}$,

```
\(\operatorname{Expo}(a, b[N-1, \ldots, 0], n)\)
\(d=1\)
for \(i=N-1\) down to 0
do
    \(d=(d \cdot d) \bmod n\)
    if \(b[i]==1\) then
        \(d=(d \cdot a) \bmod n\)
    end if
end for
return d
```


Algorithm for $d=a^{b} \bmod N$.

Let $N=\lg b$ and assume $N \geq \max \{\lg a, \lg n\}$,

```
\(\operatorname{Expo}(a, b[N-1, \ldots, 0], n)\)
\(d=1\)
for \(i=N-1\) down to 0
do
```

$$
d=(d \cdot d) \bmod n
$$

$$
\text { if } b[i]==1 \text { then }
$$

$$
d=(d \cdot a) \bmod n
$$

end if
end for
return d

Complexity: The number of loops is $N=\lg b$. At each loop, the algorithm does a constant number of multiplications and may be a shifting.

The bit complexity is $O\left(N(\lg n)^{2}\right)=O\left(N^{3}\right)$.

Example

Wish to compute $3^{13} \bmod 5$

$$
b=13, a=3, N=5
$$

$$
b=13 \Rightarrow b=(1101)_{2} \Rightarrow 13=2^{3}+2^{2}+2^{0}
$$

So $3^{13} \bmod 5=3^{2^{3}+2^{2}+2^{0}} \bmod 5$
$=\left(\left(\left(3^{2}\right)^{3} \bmod 5\right) \cdot\left(\left(3^{2}\right)^{2} \bmod 5\right) \cdot\left(\left(3^{2}\right)^{0} \bmod 5\right) \bmod 5\right)$

i	$b[i]$		d
3	1	$1 \bmod 5=1 ; 3 \bmod 5=3$	3
2	1	$9 \bmod 5=4 ; 12 \bmod 5=2$	2
1	0	$4 \bmod 5=4$	4
0	1	$16 \bmod 5=1 ; 3 \bmod 5=3$	3

The Discrete LOG

Consider the following backwards version of modular exponentiation:
Discrete Log: given $a, b, n \in \mathbb{Z}^{+}$, exists $y \in \mathbb{Z}^{+}$such that $a=b^{y} \bmod n$?

The Discrete LOG

Consider the following backwards version of modular exponentiation:
Discrete Log: given $a, b, n \in \mathbb{Z}^{+}$, exists $y \in \mathbb{Z}^{+}$such that $a=b^{y} \bmod n$?

- Difficult problem! it is not known to be in P neither NP-hard.
- Given $a, b, n \in \mathbb{Z}^{+}$to compute $x=a^{b} \bmod n$ can be done in $O\left(N^{3}\right)$ steps $(N=|b|)$.
- Given $a, b, n \in \mathbb{Z}^{+}$to compute y s.t. $a=b^{y} \bmod n$ id difficult.

Modular inverse

Modular inverse: Given $x, n \in \mathbb{N}$, compute y such that $x / y \equiv 1 \bmod n$.

- $x / y \bmod n$ does not always exists.
- For ex. In $Z_{15}, 3$ does not have inverse in Z_{15}. For $a \in Z_{n}, a^{-1}$ exists in Z_{n} if $\operatorname{gcd}(a, n)=1$.

Modular inverse

Modular inverse: Given $x, n \in \mathbb{N}$, compute y such that $x / y \equiv 1 \bmod n$.

- $x / y \bmod n$ does not always exists.
- For ex. In $Z_{15}, 3$ does not have inverse in Z_{15}. For $a \in Z_{n}, a^{-1}$ exists in Z_{n} if $\operatorname{gcd}(a, n)=1$.

Define, $\mathbb{Z}_{n}^{*}=\{a \mid a \in\{1,2, \ldots, n-1\} \wedge \operatorname{gcd}(a, n)=1\}$.

- \mathbb{Z}_{n}^{*} is the set of relative primes with n.
- Example: $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$
- $\left(\mathbb{Z}_{n}^{*},{ }_{n}\right)$ is an abelian group.

Modular inverse

Modular inverse: Given $x, n \in \mathbb{N}$, compute y such that $x / y \equiv 1 \bmod n$.

- $x / y \bmod n$ does not always exists.
- For ex. In $Z_{15}, 3$ does not have inverse in Z_{15}. For $a \in Z_{n}, a^{-1}$ exists in Z_{n} if $\operatorname{gcd}(a, n)=1$.

Define, $\mathbb{Z}_{n}^{*}=\{a \mid a \in\{1,2, \ldots, n-1\} \wedge \operatorname{gcd}(a, n)=1\}$.

- \mathbb{Z}_{n}^{*} is the set of relative primes with n.
- Example: $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$
- $\left(\mathbb{Z}_{n}^{*}, \cdot{ }_{n}\right)$ is an abelian group.

To solve the problem we need to check if the inverse exists and then compute the inverse efficiently.

Greatest common divisor

GCD: given $a, b \in \mathbb{Z}^{+}$, compute $\operatorname{gcd}(a, b)$
Recall that given $a, b \in \in \mathbb{Z}^{+}$, the $\operatorname{gcd}(a, b)$ is the largest integer which divides a and b.

We can compute gcd using Euclid's algorithm.

Euclid's algorithm for GCD.

```
Theorem (Euclid)
For any }a,b\in\mathbb{Z}\mathrm{ with }b>0,\operatorname{gcd}(a,b)=\operatorname{gcd}(b,a\operatorname{mod}b)
```

$\operatorname{EUCLID}(a, b)$
if $b=0$ then return a
else if $b=1$ then return 1
else $\operatorname{EUCLID}(b, a \bmod b)$ end if

Each recursive call reduces a at least for $1 / 2$.
Now if a and b have N bits, the division takes $O\left(N^{2}\right)$ steps. So, the cost is $O\left(N^{3}\right)$.
$\operatorname{EUCLID}(30,21) \rightarrow \operatorname{EUCLID}(21,9) \rightarrow \operatorname{EUCLID}(9,3) \rightarrow \operatorname{EUCLID}(3,0)=3$

Extended Euclid algorithm

Recall Bezout Identity:

Given $a, b \in \mathbb{Z}, \exists x, y \in \mathbb{Z}$ s.t. $\operatorname{gcd}(a, b)=d=a x+b y$.

Extended Euclid algorithm

Recall Bezout Identity:
Given $a, b \in \mathbb{Z}, \exists x, y \in \mathbb{Z}$ s.t. $\operatorname{gcd}(a, b)=d=a x+b y$.
The extended algorithm takes as input $a, b \in \mathbb{Z}$ and returns $d \in \mathbb{Z}$ s.t. $d=\operatorname{gcd}(a, b)$, and $x, y \in \mathbb{Z}$ s.t. $d=a x+b y$.

Extended Euclid algorithm

Recall Bezout Identity:
Given $a, b \in \mathbb{Z}, \exists x, y \in \mathbb{Z}$ s.t. $\operatorname{gcd}(a, b)=d=a x+b y$.
The extended algorithm takes as input $a, b \in \mathbb{Z}$ and returns $d \in \mathbb{Z}$ s.t. $d=\operatorname{gcd}(a, b)$, and $x, y \in \mathbb{Z}$ s.t. $d=a x+b y$.

EXT-EUCLID (a, b)
if $b=0$ then
return $(a, 1,0)$
else

```
    (d, \mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime}):= EXT-EUCLID (b,a mod b)
    return (d, y', x' - \lfloora/b\rfloor\mp@subsup{y}{}{\prime})
end if
```


EXT-EUCLID: example

Example: EXT-EUCLID $(99,78)$
$\left(d, x_{1}, y_{1}\right):=$ EXT-EUCLID $(99,78)=(3,-11,14)$
$\left(d, x_{2}, y_{2}\right):=$ EXT-EUCLID $(78,21)=(3,3,-11)$
$\left(d, x_{3}, y_{3}\right):=$ EXT-EUCLID $(21,15)=(3,-2,3)$
$\left(d, x_{4}, y_{4}\right):=$ EXT-EUCLID $(15,6)=(3,1,-2)$
$\left(d, x_{5}, y_{5}\right):=$ EXT-EUCLID $(6,3)=(3,0,1)$
$\left(d, x_{6}, y_{6}\right):=$ EXT-EUCLID $(3,0)=(3,1,0)$
Therefore $\operatorname{gcd}(99,78)=3=99 \cdot 11-78 \cdot 14$.

EXT-EUCLID: correctness

Theorem

$\operatorname{EXT-EUCLID}(a, b)$ returns (d, x, y) s.t. $\operatorname{gcd}(a, b)=d=a x+b y$, in $O\left(N^{3}\right)$ operations.

EXT-EUCLID: correctness

Theorem
$\operatorname{EXT-EUCLID}(a, b)$ returns (d, x, y) s.t. $\operatorname{gcd}(a, b)=d=a x+b y$, in $O\left(N^{3}\right)$ operations.

- If $b=0, d=a$ and $a=a \cdot 1+b \cdot 0$.

EXT-EUCLID: correctness

Theorem

$\operatorname{EXT-EUCLID}(a, b)$ returns (d, x, y) s.t. $\operatorname{gcd}(a, b)=d=a x+b y$, in $O\left(N^{3}\right)$ operations.

- If $b=0, d=a$ and $a=a \cdot 1+b \cdot 0$.
- Assume that $d=\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ and that $d=b \cdot x^{\prime}+(a \bmod b) \cdot y^{\prime}$

$$
d=b x^{\prime}+\left(a-b\lfloor a / b\rfloor y^{\prime}\right)=a y^{\prime}+b\left(x^{\prime}-\lfloor a / b\rfloor y^{\prime}\right)
$$

EXT-EUCLID: correctness

Theorem

$\operatorname{EXT-EUCLID}(a, b)$ returns (d, x, y) s.t. $\operatorname{gcd}(a, b)=d=a x+b y$, in $O\left(N^{3}\right)$ operations.

- If $b=0, d=a$ and $a=a \cdot 1+b \cdot 0$.
- Assume that $d=\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ and that $d=b \cdot x^{\prime}+(a \bmod b) \cdot y^{\prime}$

$$
d=b x^{\prime}+\left(a-b\lfloor a / b\rfloor y^{\prime}\right)=a y^{\prime}+b\left(x^{\prime}-\lfloor a / b\rfloor y^{\prime}\right)
$$

- The cost of the algorithm is the same as EUCLID.

Modular linear equations: $a x \equiv b \bmod n$.

Recall:

- $a x \equiv b \bmod n$ is solvable for x iff $\operatorname{gcd}(a, n) \mid b$.
- $a x \equiv b \bmod n$ either has $\operatorname{gcd}(a, n)$ distinct solutions $\bmod n$ or it has no solutions.

Modular linear equations: $a x \equiv b \bmod n$.

Recall:

- $a x \equiv b \bmod n$ is solvable for x iff $\operatorname{gcd}(a, n) \mid b$.
- $a x \equiv b \bmod n$ either has $\operatorname{gcd}(a, n)$ distinct solutions $\bmod n$ or it has no solutions.

To find, if any, a solution to if $a x \equiv b \bmod n$, we use the following

- Let $d=\operatorname{gcd}(a, n)$, use EXT-EUCLID to find $d=a x^{\prime}+b y^{\prime}$.

Modular linear equations: $a x \equiv b \bmod n$.

Recall:

- $a x \equiv b \bmod n$ is solvable for x iff $\operatorname{gcd}(a, n) \mid b$.
- $a x \equiv b \bmod n$ either has $\operatorname{gcd}(a, n)$ distinct solutions $\bmod n$ or it has no solutions.

To find, if any, a solution to if $a x \equiv b \bmod n$, we use the following

- Let $d=\operatorname{gcd}(a, n)$, use EXT-EUCLID to find $d=a x^{\prime}+b y^{\prime}$. If $d \mid b$ then $a x \equiv b \bmod n$ has as one solution

$$
x_{0}=x^{\prime}(b / d) \quad \bmod n
$$

Modular linear equations: $a x \equiv b \bmod n$.

Recall:

- $a x \equiv b \bmod n$ is solvable for x iff $\operatorname{gcd}(a, n) \mid b$.
- $a x \equiv b \bmod n$ either has $\operatorname{gcd}(a, n)$ distinct solutions $\bmod n$ or it has no solutions.

To find, if any, a solution to if $a x \equiv b \bmod n$, we use the following

- Let $d=\operatorname{gcd}(a, n)$, use EXT-EUCLID to find $d=a x^{\prime}+b y^{\prime}$. If $d \mid b$ then $a x \equiv b \bmod n$ has as one solution

$$
x_{0}=x^{\prime}(b / d) \quad \bmod n
$$

- If $a x \equiv b \bmod n$ is solvable and has x_{0} as first solution, then the equation has d distinct solutions $(\bmod n)$ given by

$$
x_{i}=x_{0}+i(n / d) \text { for } 0 \leq i \leq d-1
$$

Solution of $a x \equiv b \bmod n$

The next algorithm takes as input $a, b, n \in \mathbb{Z}$ and returns all solutions of the equation $a x \equiv b \bmod n$.

SOLVE (a, b, n)
$\left(d, x^{\prime}, y^{\prime}\right)=$ EXT-EUCLID (a, n)
if $d \mid b$ then

$$
\begin{aligned}
& x_{0}=x^{\prime}(b / d) \bmod n \\
& \text { for } i=1 \text { to } d-1 \text { do }
\end{aligned}
$$

return $\left(x_{0}+i(n / d)\right) \bmod n$
end for
else
return no solution
end if
Complexity: If $N=\max \{\log n, \log a, \log b\}$, then $T(n)=O\left(N^{3}\right)$.

Example

Solve $14 x \equiv 30 \bmod 100$
$\operatorname{SOLVE}(14,30,100)$
as $d=2 \mid 30$:

- $\left(d, x^{\prime}, y^{\prime}\right)=(2,-7,1)$
- $x_{0}=(-7)(15) \bmod 100=95$
- $x_{1}=95+50 \bmod 100=45$
- Solutions: 45, 95

Finding the multiplicative inverse of $a \in \mathbb{Z}_{n}^{*}$

Modular division: given $x, y, n \in \mathbb{N}$, compute $x / y \bmod n$ (if it exists!).

Finding the multiplicative inverse of $a \in \mathbb{Z}_{n}^{*}$

Modular division: given $x, y, n \in \mathbb{N}$, compute $x / y \bmod n$ (if it exists!).

- As $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$ is an abelian group, then $\forall a \in \mathbb{Z}_{n}^{*}, \exists a^{-1} \in \mathbb{Z}_{n}^{*}$ the multiplicative inverse such that $a \cdot a^{-1} \equiv 1 \bmod n$

Finding the multiplicative inverse of $a \in \mathbb{Z}_{n}^{*}$

Modular division: given $x, y, n \in \mathbb{N}$, compute $x / y \bmod n$ (if it exists!).

- As $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$ is an abelian group, then $\forall a \in \mathbb{Z}_{n}^{*}, \exists a^{-1} \in \mathbb{Z}_{n}^{*}$ the multiplicative inverse such that $a \cdot a^{-1} \equiv 1 \bmod n$
- To compute the multiplicative inverse of $a \in \mathbb{Z}_{n}^{*}$: use $\operatorname{EXT}-\operatorname{EUCLID}(a, n)$ to get $a x+n y=1$ or $a x \equiv 1 \bmod n$

Finding the multiplicative inverse of $a \in \mathbb{Z}_{n}^{*}$

Modular division: given $x, y, n \in \mathbb{N}$, compute $x / y \bmod n$ (if it exists!).

- As $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$ is an abelian group, then $\forall a \in \mathbb{Z}_{n}^{*}, \exists a^{-1} \in \mathbb{Z}_{n}^{*}$ the multiplicative inverse such that $a \cdot a^{-1} \equiv 1 \bmod n$
- To compute the multiplicative inverse of $a \in \mathbb{Z}_{n}^{*}$: use $\operatorname{EXT}-\operatorname{EUCLID}(a, n)$ to get $a x+n y=1$ or $a x \equiv 1 \bmod n$
- Therefore, $x=a^{-1}$ and it can be computed in time $O\left(N^{3}\right)$.

Find the multiplicative inverse of $5 \bmod 11$:
EXT-EUCLID $(5,11)=(1,-2,1) \Rightarrow 5 \cdot(-2) \equiv 1(\bmod 11)$, and -2 is the multiplicative inverse of $5 \bmod 11 .\left(-2=9\right.$ in $\left.\mathbb{Z}_{11}^{*}\right)$

Find the multiplicative inverse of $21 \bmod 91$
Notice $91=13 \cdot 7$ and $21=3 \cdot 7$ therefore $\operatorname{gcd}(91,21)=7 \Rightarrow 21$ does't have inverse $\bmod 91$.

Chinese Remainder Theorem

- The Chinese Remainder Theorem provides a correspondence between a system of equations mod pairwise primes and an equation mod their product.

Chinese Remainder Theorem

- The Chinese Remainder Theorem provides a correspondence between a system of equations mod pairwise primes and an equation mod their product.
- Given groups G_{1}, G_{2} their cartesian product $G_{1} \times G_{2}=\left\{\left(a_{1}, a_{2}\right) \mid a_{1} \in G_{1}, a_{2} \in G_{2}\right\}$.
Multiplication: $\left(a_{1}, a_{2}\right) \cdot\left(b_{1}, b_{2}\right)=\left(a_{1} \cdot b_{1}, a_{2} \cdot b_{2}\right)$

Chinese Remainder Theorem

- The Chinese Remainder Theorem provides a correspondence between a system of equations mod pairwise primes and an equation mod their product.
- Given groups G_{1}, G_{2} their cartesian product $G_{1} \times G_{2}=\left\{\left(a_{1}, a_{2}\right) \mid a_{1} \in G_{1}, a_{2} \in G_{2}\right\}$.

Multiplication: $\left(a_{1}, a_{2}\right) \cdot\left(b_{1}, b_{2}\right)=\left(a_{1} \cdot b_{1}, a_{2} \cdot b_{2}\right)$

- If $n=q_{1} q_{2} \cdots q_{k}$, with $\operatorname{gcd}\left(q_{i}, q_{j}\right)=1$, the CRT describes the structure of $\left(\mathbb{Z}_{n},+_{n},{ }_{n}\right)$ as identical to $\mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \cdot \times \mathbb{Z}_{q_{k}}$, each with $+q_{i}, \cdot q_{i}$.

Chinese Remainder Theorem

- The Chinese Remainder Theorem provides a correspondence between a system of equations mod pairwise primes and an equation mod their product.
- Given groups G_{1}, G_{2} their cartesian product $G_{1} \times G_{2}=\left\{\left(a_{1}, a_{2}\right) \mid a_{1} \in G_{1}, a_{2} \in G_{2}\right\}$.

Multiplication: $\left(a_{1}, a_{2}\right) \cdot\left(b_{1}, b_{2}\right)=\left(a_{1} \cdot b_{1}, a_{2} \cdot b_{2}\right)$

- If $n=q_{1} q_{2} \cdots q_{k}$, with $\operatorname{gcd}\left(q_{i}, q_{j}\right)=1$, the CRT describes the structure of $\left(\mathbb{Z}_{n},+_{n},{ }_{n}\right)$ as identical to $\mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \cdot \times \mathbb{Z}_{q_{k}}$, each with $+q_{i}, \cdot q_{i}$.
- It has a many applications into algorithmics and cryptography, as working in $\left(\mathbb{Z}_{q_{i}},+_{q_{i}}, \cdot q_{i}\right)$ could be more efficient than working in $\left(\mathbb{Z}_{n},+_{n},{ }_{n}\right)$

Chinese Remainder Theorem

Lemma
If $\operatorname{gcd}\left(q_{1}, q_{2}\right)=1$, then $\mathbb{Z}_{q_{1} q_{2}} \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}}$.
Sketch Proof Define $f: \mathbb{Z}_{q_{1} q_{2}} \rightarrow \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}}$ by $f(a)=\left(a \bmod q_{1}, a\right.$ $\left.\bmod q_{2}\right)$ ad prove that f is a bijection.

Chinese Remainder Theorem

Lemma
If $\operatorname{gcd}\left(q_{1}, q_{2}\right)=1$, then $\mathbb{Z}_{q_{1} q_{2}} \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}}$.
Sketch Proof Define $f: \mathbb{Z}_{q_{1} q_{2}} \rightarrow \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}}$ by $f(a)=\left(a \bmod q_{1}, a\right.$ $\left.\bmod q_{2}\right)$ ad prove that f is a bijection.

By using inductively the previous lemma:
Theorem (CRT, Sun Tzi Suan Ching, III), Euler XVIII)
Let $n=q_{1} \cdot q_{2} \cdot q_{k}$ with $\operatorname{gcd}\left(q_{i}, q_{j}\right)=1$. Then,

$$
\mathbb{Z}_{n} \cong \mathbb{Z}_{q_{1}} \times \cdots \times \mathbb{Z}_{q_{k}}
$$

Notice we must have $q_{i}=p_{i}^{c}$ for prime p_{i} and constant c.

Chinese Remainder Theorem

Corollary

Let $n=q_{1} \cdot q_{2} \cdot q_{k}$ with $\operatorname{gcd}\left(q_{i}, q_{j}\right)=1$, let r_{1}, \ldots, r_{n} be integers s.t. $0 \leq r_{i}<0$, for $1 \leq i \leq k$. Then, the system of simultaneous k equations: $\left\{x \equiv r_{i} \bmod q_{i}\right\}_{i=1}^{k}$, has a unique solution.

CRT: Example-1

The procedure to apply CRT:
(1) For all $i, 1 \leq i \leq k$:

- $m_{i}=n / q_{i}$,
- $c_{i}=m_{i}\left(m_{i}^{-1} \bmod q_{i}\right)$,
(2) $x \equiv \sum_{i=1}^{n} r_{i} c_{i}(\bmod n)$.

CRT: Example-1

The procedure to apply CRT:
(1) For all $i, 1 \leq i \leq k$:

- $m_{i}=n / q_{i}$,
- $c_{i}=m_{i}\left(m_{i}^{-1} \bmod q_{i}\right)$,
(2) $x \equiv \sum_{i=1}^{n} r_{i} c_{i}(\bmod n)$.

Sun Tzi Suan Ching's problem: We have a number of things, but we do not know exactly how many. If we count them by threes we have two left over. If we count them by fives we have three left over. If we count them by sevens we have two left over. How many things are there?

$$
\begin{array}{ll}
x \equiv 2 & \bmod 3 \\
x \equiv 3 & \bmod 5 \\
x \equiv 2 & \bmod 7
\end{array}
$$

which yields $x \equiv 23 \bmod 105$

CRT: Example-2

We want to do arithmetic on integers modulo $n=8633$. $n=8633=89 \times 97=q_{1} q_{2} \Rightarrow m_{1}=97, m_{2}=89$

