Hashing
AiC FME, UPC
Fall 2023
Hashing Fall 2023 1/31

Data Structures: Reminder

Given a universe U, a dynamic set of records, where each record:

Key

} Satellit Data

Record

o Array

@ Linked List (and variations)

e Stack (LIFO): Supports push and pop

@ Queue (FIFO): Supports enqueue and dequeue

@ Deque: Supports push, pop, enqueue and dequeue

@ Heaps: Supports insertions, deletions, find Max and MIN
@ Hashing

AiC FME, UPC Hashing Fall 2023 2/31

Data structures for dynamic sets

DICTIONARY

Data structure for maintaining S C U together with operations:
o Search(k): decide if k € S
o Insert(k): S :==SU{k}
o Delete(k): §:=S\{k}

PRIORITY QUEUE

Data structure for maintaining S C U together with operations:
e Insert(x, k): S :=SU{x}
e Maximum(): Returns element of S with largest key value

e Extract-Maximum(): Returns (x, k) with k largest value in S,
S=38—{x}.

AiC FME, UPC Hashing Fall 2023 3/31

Priority Queue implementations

Linked List:
o INSERT: O(n)
o EXTRACT-MAX: O(1)

Heap:
e INSERT: O(lgn)
o EXTRACT-MAX: O(Ign)

Using a Heap is a good compromise between fast insertion and slow
extraction.

Fall 2023 431

S - .5
Hashing

Data Structure that supports dictionary operations on an universe of
numerical keys.

Notice the number of possible keys
represented as 64-bit integers is

2% = 18446744073709551616.

Tradeoff time/space

Define a hashing table T[0,...,m —1]

a hashing function h: U — T[0,...,m—1]

Hans P. Luhn
(1896-1964)

Collision

HENN ENENIC

Fall 2023 5/31

Simple uniform hashing function.

@ We want to store a maximum of n keys in a hashing table T with m
slots.

@ The performance of hashing depends on how well h distributes the
keys on the m slots.

@ his simple uniform if it hash any key with equal probability into any
slot, independently of where other keys go.

@ In this way, we get a load factor &« = n/m, the average number of
keys per slot.

AiC FME, UPC Hashing Fall 2023 6/31

How to choose h?

Advice: For an exhaustive treaty on Hashing: D. Knuth, Vol. 3 of The Art
of computing programming

Fal 2023 7/31

How to choose h?

Advice: For an exhaustive treaty on Hashing: D. Knuth, Vol. 3 of The Art
of computing programming

h depends on the type of key:

@ For keys in the real interval [0,1), we can use h(k) = [mk].

@ For keys in the real interval [s, t) scale by 1/(t — s), and use the
previous method, h(k/(t —s)) = |[mk/(t —s)].

Fal 2023 7/31

The division method

Choose m prime or as far as possible from a power of 2,

h(k) =k mod m|.

Fast (©(1)) to compute in most languages (k%m)!

Be aware: if m = 2" the hash does not
depend on all the bits of K

If r = 6 with k = 1011000111 011010
—
—h(k)
(45530 mod 64 = 858 mod 64)

Fall 2023 831

In some applications, the keys may be very large, for instance with
alphanumeric keys, which must be converted to ascii, and reinterpreted as

numbers in binary.

Example: avervlongkey is Dec thout char Dec the Oct Him ony |pes b Ot Him o Des e ot Himl o
ple: yiongkey o 0 000 1L (mary) 52 20 040 <#327 Space] 64 40 100 chds © | 96 50 o eA96:
10000 508 (stare of neating) | 35 21 04) ch3s; | 65 4l lob ches; A | 5 a1 14y eher; <
. - 2 2002 T (stare of tex) 34 32 oaz c#sd © | as az 102 chess © | 59 o 14z p
Converted via ascii: 55 009 £ (and of cexty 3 20 043 ch35; ¢ | 67 43 103 cheT; C | 99 65 1as c
. 300 507 (ond of trammmission) | 36 34 04 ch36; ¢ | o 44 10a cheas b |100 o4 144 ehions o
§ 5008 0 (enuiey) 37 35 oas awor; - | 6o 48 108 ches; 135 inou;
11 10 & & 008 ACK {sokmouiadge) 36 36 ode case: < | 70 ds 10s eFos 12 a0z, ¢
59 007 et (beidy 35 30 oy cwssy | 70 a0 10 s ¢ 19 6103, ¢
97 -128** +118- 128"+ Dlmpen, prouen |Rnu e g ki .
HH G 30 0si cadl; | | 75 4o 111 ch75; © |105 69 Ls) chl0s; o
9 8 T G2 Ihosp cedz) | 7a ik 112 k74 I (105 o sz chioes 3
U I 30 05 ckda; + | 75 B 1l ca7s; ¥ [107 68 Lss cion
101 - 1289 + 114 - 128 R PN R
5o IS 20 oss ceds; - | 7 b 11 ca7%; 1 |109 6 Lss chloas u
i G 55 0% cede) - | 7o i Lis 7o) 1 |10 68 Log ewilos »
7 6 15 F 47 2F 057 e447: /|79 4F 117 €479; 0 111 6F 157 eHILL o
=+ . + . 16 10 4 30 odo cde; 0 | a0 50 120 ch0s ¢ |11z 70 Leo eHilz v
i 5 5030 ool ceasy || ol 51 121 cads o |13 71 Lel ekla;
1oz 5032 0aa c#sty 2 | oz 52 13 chozs |14 72 ez ehila; -
5 4 BRI SEa: |REZamiping g
—+ 111 -128 —+ 110-128 20 14 024 104 (dovice comtrol 4) | 52 34 0s4 452 4 | o4 5 124 choa; T |Lis 74 Lea chiles -
2115 028 1 (negacive acknoviedge) | 5 36 08 e#S3; 5 | 65 56 1as edss; U [117 75 les ¥
%2 15 oz s Taier | 5435 006 cads < | o8 58 136 cases 7 [1ie 76 les k
3 2 5317 0o £ (ena ok crans. ieck) | 50 37 087 c#sss) | 87 3 127 caon; v |10 79 167 ;
+ 103 -128 + 107 - 128 Za 10 030 Ca (sameel) 56 30 070 caser o | oo 5o 1o chv; % [120 70 170 ;
5519 0o B (end ot neatun) 59 30 070 kst 0 | oo 5o 131 ches, ¢ (121 70 171 y
52 1a 032 513 (subseicuce) 55 ok o7z caser « | ab sh 13 chso; - [122 7 172 :
1 0 27 1B 033 ESC (escape) 59 3B 073 e#59; ; 91 5B 133 #91; [(123 7B 173 (
10 1 . 128 12 1 . 128 n 2610 034 75 (file separator) 60 3C 074 c#60; < | 52 ST 134 c#92: (124 7 174 afla; |
+ + = 210 035 G5 (grow sepapatar) &1 3 075 % 5 138 chas;) [125 70 175 enisss)
50 12 036 b (Yecord sepacator) | 62 9% 076 53 58 136 choa; |13 72 176 emse)
L7 037 U5 (onae separacer) & 3F o o5 oF 137 chas; |12 77 177 enien mL

which has 84-bits!

AiC FME, UPC Hashing

Fall 2023

9/31

How to deal with large n?

For large n, to compute h = n mod m, we can use mod arithmetic +
Horner's method:

(CCCCCCC((97 - 128 + 118) - 128 + 101) - 128 + 114) - 128 + 121)
-128 + 111) - 128 4 110) - 128 + 103) - 128 + 107)

128 +101) - 128 + 121 mod m

= (((((((97- 128 + 118 mod m)-128) mod m +101)-...))))))

AiC FME, UPC Hashing Fall 2023 10/31

Collision resolution: Separate chaining

For each table address, construct a linked list of the items whose keys hash
to that address.

@ Every key goes to the same slot i
@ Time to explore the list = A@—@—@

length of the list h(20)=h(27)=h(8)=i

AiC FME, UPC Hashing Fall 2023 11/31

Cost of average analysis of chaining

The cost of the dictionary operations using hashing:
o Insertion of a new key: ©(1).
@ Search of a key: O(ength of the list)
@ Deletion of a key: O(length of the list).

Under the hypothesis that h is simply uniform hashing, each key x is
equally likely to be hashed to any slot of T, independently of where other
keys are hashed

Therefore, the expected number of keys falling into T[i] is « = n/m.

Fall 2023 12/31

Cost of search

@ For an unsuccessful search (x is not in T), we have to explore the ist
at h(x) — T[i]. So, the expected time to search the list at T[i] is
O(1+ a).

(v of searching the list and ©(1) of computing h(x) and going to slot

i)

Fall 2023 13/31

Cost of search

@ For an unsuccessful search (x is not in T), we have to explore the ist
at h(x) — T[i]. So, the expected time to search the list at T[i] is
O(1+ a).

(v of searching the list and ©(1) of computing h(x) and going to slot

i)

@ For an successful search, we obtain the same bound, although in most
of the cases we would have to search a fraction of the list until finding
the x element.)

AiC FME, UPC Hashing Fall 2023 13/31

Cost of search

@ For an unsuccessful search (x is not in T), we have to explore the ist
at h(x) — T[i]. So, the expected time to search the list at T[i] is
O(1+ a).

(v of searching the list and ©(1) of computing h(x) and going to slot

i)

@ For an successful search, we obtain the same bound, although in most
of the cases we would have to search a fraction of the list until finding
the x element.)

@ Under the assumption of simple uniform hashing, in a hash table with
chaining, a search takes time ©(1 4+ -) on average.

Fall 2023 13/31

Cost of search

@ For an unsuccessful search (x is not in T), we have to explore the ist
at h(x) — T[i]. So, the expected time to search the list at T[i] is
O(1+ a).

(v of searching the list and ©(1) of computing h(x) and going to slot

i)

@ For an successful search, we obtain the same bound, although in most
of the cases we would have to search a fraction of the list until finding
the x element.)

@ Under the assumption of simple uniform hashing, in a hash table with
chaining, a search takes time ©(1 4+ -) on average.

e Notice that if n = 6(m) then o = O(1) and search time is ©(1).

AiC FME, UPC Hashing Fall 2023 13/31

Universal hashing

Universal hashing: Motivation

@ For every deterministic hash function, there is a set of bad instances.

@ An adversary can arrange the keys so your function hashes most of
them to the same slot.

Fall 2023 1431

Universal hashing

Universal hashing: Motivation

@ For every deterministic hash function, there is a set of bad instances.

@ An adversary can arrange the keys so your function hashes most of
them to the same slot.

@ Create a set H of hash functions on U and choose a hashing function
at random and independently of the keys.

@ The adversary might known the probability space but not the
particular selection.

Fall 2023 1431

Universal hashing

Universal hashing

Let U be the universe of keys and let H be a collection of hashing
functions with hashing table T[0,...,m — 1], H is universal if
Vx,y € U,x # y, then

|H|

m .

[{heH[h(x) = h(y)} <

In an equivalent way, H is universal if Vx,y € U, x # y, and for any h
chosen uniformly from H, we have

1
o

Pr[h(x) = h(y)] <

Fall 2023 1531

Universal hashing

Universality gives good average-case behaviour

Theorem

If we pick u.a.r. h from a universal family H and build a table with size m
for a set of n keys, for any given key x let Cx be a random variable
counting the number of collisions with others keys y in T.

E[C] < n/m.

Fall 2023 1631

Universal hashing

Construction of a universal family: H

Let U be the key universe and let N be the maximum key value. Our
target is a hash table with m positions, T|[0,...,m —1].

e Choose a prime p, N < p <2N. ThenU C Z, ={0,1,...,p—1}.
o Define H = {h,pla,b € Zp,a# 0}.

Fall 2023 1731

Universal hashing

Construction of a universal family: H

Let U be the key universe and let N be the maximum key value. Our
target is a hash table with m positions, T|[0,...,m —1].

e Choose a prime p, N < p <2N. ThenU C Z, ={0,1,...,p—1}.
o Define H = {h,pla,b € Zp,a# 0}.

@ To select u.a.r. h € H, choose independently and u.a.r. a € Z;r and
b € Zp. Given a key x define h, p(x) = ((ax + b) mod p) mod m.

gaﬁb(x)

Fall 2023 1731

Universal hashing

Construction of a universal family: H

Let U be the key universe and let N be the maximum key value. Our
target is a hash table with m positions, T|[0,...,m —1].

e Choose a prime p, N < p <2N. ThenU C Z, ={0,1,...,p—1}.
o Define H = {h,pla,b € Zp,a# 0}.

@ To select u.a.r. h € H, choose independently and u.a.r. a € Z;r and
b € Zp. Given a key x define h, p(x) = ((ax + b) mod p) mod m.

gaﬁb(x)
o Example: p=17,m =6, we have Hi76 = {hap:a € Z},b € Zp}
if x =8, a=3,b=14then
h34(8) = ((3:8+4) mod 17) mod 6 =5

Fall 2023 1731

Properties of H

Q hap: Zp — Ly,

@ |[H| =p(p—1). (We can select ain p— 1 ways and b in p ways)

@ Specifying an h € H requires O(lg p) = O(Ig N) bits.

@ To choose h € H select a, b independently and u.a.r. from ZI}L and
Z,p.

© Evaluating h(x) is fast.

AiC FME, UPC Hashing Fall 2023 18 /31

Universal hashing

Theorem
The family ‘H is universal. J

For the proof:

Chapter 11 of Cormen. Leiserson, Rivest, Stein: An introduction to
Algorithms

Fall 2023 1031

Concentration

Markov's inequality

Lemma (Markov's inequality)

If X >0 is a r.v, for any constant a > 0,

Pr[XZa]gﬁ.
a

Fall 2023

20/31

Markov's inequality

Lemma (Markov's inequality)

If X >0 is a r.v, for any constant a > 0,

Pr[X > a] < E[X].
a

Corollary

If X >0 is a r.v, for any constant b > 0,

Pr[X > bE[X]] <

o | =

Fall 2023 2031

Chebyshev's Inequality

Pafnuty Chebyshev (XIXc)
If you can compute the Var [| then you can compute ¢ and get better
bounds for concentration of any r.v. (positive or negative).

Theorem
Let X be a r.v. with expectation 1 and standard deviation o > 0, then for
any a>0

1
Pr[X —u|>ao] < 2

Note that | X — u| > ac < (X > ac +) U (X > p — ao).

Fall 2023 2131

Chernoff Bounds

Sergei Bernstein (1924), Wassily Hoeffding (1964),
Herman Chernoff (1952)

The Chernoff bound can be used when the random variable X is the sum
of several independent Poisson trials, where each X; can has probability of
success p;. The particular case where all p; are equal is the Bernouilli
trials.

Theorem ((Ch-1))

Let {X;}!_, be independent Poisson trials, with Pr[X; = 1] = p;. Then, if
X =>",Xi, and p = E[X], we have
6

Q@ PriX < (1-6)u < (W)’ for § € (0,1).

n
Q@ Pr(X>(1+u < (W) for any ¢ > 0.

V.

Fall 2023 22/31

Weak Chernoff's bound, but easy to use

Corollary (Ch-2)
Let {X;}!_, be independent Poisson trials, with Pr[X; = 1] = p;. Then if
X =>",Xi, and p = E[X], we have

Q PriX < (1—68)u <er’/2 fors e (0,1).

Q@ PriX > (1+68)u] < e /3 foré e (0,1].

An immediate corollary to the previous result:

Corollary (Ch-3)

Let {X;}7_, be independent Poisson trials, with Pr[X; = 1] = p;. Then if
X=>1",Xi,pn=E[X]andd € (0,1), we have

Pr[|X — | > 6] < 26 H9°/3,

Fal 2023 2331

Counting distinct elements

Counting the number of distinct elements

Fall 2023 2431

Counting distinct elements

Counting the number of distinct elements

e Distinct elements problem: Given a stream s, output [{j | f; > 0}|.
where f; is the frequency of the j in the stream s

Fall 2023 2431

Counting distinct elements

Counting the number of distinct elements

e Distinct elements problem: Given a stream s, output [{j | f; > 0}|.
where f; is the frequency of the j in the stream s

@ In order to solve the problem using sublinear space, we need to use
probabilistic algorithms/data structure and some adequate notion of
approximation.

AiC FME, UPC Hashing Fall 2023 24 /31

Counting distinct elements

An (€, d)-approximation

Fall 2023 2531

Counting distinct elements

An (e, 6)-approximation

o Let A(s) denote the output of a randomized streaming algorithm A
on input s; note that this is a random variable.

@ Let ®(s) be the function that A4 is supposed to compute.

AiC FME, UPC Hashing Fall 2023 25/31

Counting distinct elements

An (e, 6)-approximation

o Let A(s) denote the output of a randomized streaming algorithm A
on input s; note that this is a random variable.

@ Let ®(s) be the function that A4 is supposed to compute.

e Ais a (e, 0)-approximation to ® if we have

SRR

AiC FME, UPC Hashing Fall 2023 25/31

Counting distinct elements

An (e, 6)-approximation

o Let A(s) denote the output of a randomized streaming algorithm A
on input s; note that this is a random variable.

@ Let ®(s) be the function that A4 is supposed to compute.

e Ais a (e, 0)-approximation to ® if we have

SRR

e Ais a (e, 0)-additive approximation to ® if we have

Pr[JA(s) — &(s)| > ¢] < 6.

AiC FME, UPC Hashing Fall 2023 25/31

Counting distinct elements

An (e, 6)-approximation

o Let A(s) denote the output of a randomized streaming algorithm A

on input s; note that this is a random variable.
@ Let ®(s) be the function that A4 is supposed to compute.

e Ais a (e, 0)-approximation to ® if we have

SRR

e Ais a (e, 0)-additive approximation to ® if we have
Pr[|A(s) — ®(s)| > €] < 6.

@ When § = 0, A must be deterministic.
When € = 0, A must be an exact algorithm.

AiC FME, UPC Hashing Fall 2023

25/31

Counting distinct elements

Counting the number of distinct elements

Fall 2023 2631

Counting distinct elements

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at the end
of the binary representation of p.

Fall 2023 2631

Counting distinct elements

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at the end
of the binary representation of p.

zeros(p) = max{i | 2' divides p}.

Fall 2023 2631

Counting distinct elements

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at the end

of the binary representation of p.
zeros(p) = max{i | 2' divides p}.

@ Algorithm:
: Count-Dif(stream s)
2: Choose a random hash function h: [n] — [n] form a universal
family
3 intz=0
4: while not s.end() do
5. j=s.read()
6: if zeros(h(j)) > z then
7 z = zeros(h(j))
8: endif
9: end while
10: Return 27+3

AiC FME, UPC Hashing Fall 2023

26 /31

Counting distinct elements

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at the end
of the binary representation of p.

zeros(p) = max{i | 2' divides p}.

@ Algorithm:
1: Count-Dif(stream s)
2: Choose a random hash function h: [n] — [n] form a universal
family
cintz=0
: while not s.end() do
Jj =s.read()
if zeros(h(j)) > z then
z = zeros(h(j))
end if
: end while
0: Return 27*3

© NSO R e

=

@ Assuming that there are d distinct elements, the algorithm computes
max zeros(h(j)) as a good approximation of logd.

AiC FME, UPC Hashing Fall 2023 26 /31

Counting distinct elements

Counting the number of distinct elements: Quality

@ 1 pass, O(log n+ loglog n) memory and O(1) time per item.

Fall 2023 2731

Counting distinct elements

Counting the number of distinct elements: Quality

1 pass, O(log n + loglog n) memory and O(1) time per item.
For j € [n] and r > 0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.

Let Y, = ij_>0 Xr_J'.
@ Let t denote the final value of z.

Fall 2023 2731

Counting distinct elements

Counting the number of distinct elements: Quality

1 pass, O(log n + loglog n) memory and O(1) time per item.
For j € [n] and r > 0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.

Let Yr == ZJ‘6>O Xr_J‘.
Let t denote the final value of z.
Y, > 0iff t > r, or equivalently Y, =0 iff t < r — 1.

Fall 2023 2731

Counting distinct elements

Counting the number of distinct elements: Quality

1 pass, O(log n + loglog n) memory and O(1) time per item.
For j € [n] and r > 0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.

o Let Yr - ZJ‘6>O Xr_J‘.
o Let t denote the final value of z.
o Y, >0iff t > r, or equivalently Y, =0 iff t <r — 1.
@ Since h(j) is uniformly distributed over the log n-bit strings,
. v . 1
E[X,] = Pr[zeros(h(j)) > r] = Pr[2" divides h(j)] = o

AiC FME, UPC Hashing Fall 2023 27/31

Counting distinct elements

Counting the number of distinct elements: Quality

E[X,j] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = %

Fall 2023 2831

Counting distinct elements

Counting the number of distinct elements: Quality

E[X,j] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = %

d
ElV: =) EX = o
jlf>0

Fall 2023

28/31

Counting distinct elements

Counting the number of distinct elements: Quality

E[X,j] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = %

d
ElV: =) EX = o
jlf>0

@ Random variables Y, are pairwise independent, as they come from a
universal hash family.

Var[Y,] = Y Var[X)1 < Y E[XZl= > E[X.] :%

jlf>0 JIf>0 JIf>0

AiC FME, UPC Hashing Fall 2023 28 /31

Counting distinct elements

Counting the number of distinct elements: Quality

e E[Y,] = Var[Y,] =d/2"
@ Using Markov's and Chebyshev's inequalities,

PrlY, > 0] = Pr[Y, > 1] < E[Y] %
PriY, = 0] = Pr{|Y, — E[V}]| = 21,] < (V;/r%g =g

AiC FME, UPC Hashing Fall 2023

29/31

Counting distinct elements

Counting the number of distinct elements: Quality

o PrlY, >0] < £ and Pr[Y, =0] < 2.

Fall 2023 3031

Counting distinct elements

Counting the number of distinct elements: Quality

o PrlY, >0] < £ and Pr[Y, =0] < 2.
o Let d be the estimate of d, d = 2t+3 .

Fall 2023

30/31

Counting distinct elements

Counting the number of distinct elements: Quality

o PrlY, >0] < £ and Pr[Y, =0] < 2.
o Let d be the estimate of d, d = 2t*2,
@ Let a be the smallest integer so that 27+3 > 3d,

%

Prld > 3d] = Pr[t > a] = Pr[Y, = 0] < 21

Fall 2023

30/31

Counting distinct elements

Counting the number of distinct elements: Quality

o PrlY, >0] < £ and Pr[Y, =0] < 2.
o Let d be the estimate of d, d = 2t*2,
@ Let a be the smallest integer so that 27+3 > 3d,
A d 2
Prid > 3d] = Pr[t > a] = Pr[Y,=0] < 2— \3[
@ Let b be the largest integer so that obt3 < 3d,
~ 2b+1 2
Prd < 3d) = Prlt < b] = Pr[Ypiy = 0] < = < \3[

AiC FME, UPC Hashing Fall 2023

30/31

Counting distinct elements

Counting the number of distinct elements: Quality

o Pr[d >3d] < *2 and Pr[d < 3d] < ‘2.

V2

@ Thus the algorithm provides a (2, 5*)-approximation.

Fall 2023

31/31

Counting distinct elements

Counting the number of distinct elements: Quality

o Pr[d >3d] < *2 and Pr[d < 3d] < ‘2.

V2

@ Thus the algorithm provides a (2, 5*)-approximation.

@ How to improve the quality of the approximation?

Fall 2023

31/31

Counting distinct elements

Counting the number of distinct elements: Quality

Prld > 3d] < ¥ and Pr[d < 3d] < ‘2.
@ Thus the algorithm provides a (2, @)—approximation_

How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the algorithm
and take the best information from them, in this case,

AiC FME, UPC Hashing Fall 2023 31/31

Counting distinct elements

Counting the number of distinct elements: Quality

Prld > 3d] < ¥ and Pr[d < 3d] < ‘2.
@ Thus the algorithm provides a (2, @)—approximation_

How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the algorithm
and take the best information from them, in this case, the median of
the k answers.

Fall 2023 31/31

Counting distinct elements

Counting the number of distinct elements: Quality

Prld > 3d] < ¥ and Pr[d < 3d] < ‘2.
@ Thus the algorithm provides a (2, @)—approximation_

How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the algorithm
and take the best information from them, in this case, the median of
the k answers.

If the median exceed 3d at least k/2 of the runs do.

AiC FME, UPC Hashing Fall 2023 31/31

Counting distinct elements

Counting the number of distinct elements: Quality

o Pr[d >3d] < *2 and Pr[d < 3d] < ‘2.
o Thus the algorithm provides a (2, ?)—approximation.

@ How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the algorithm
and take the best information from them, in this case, the median of
the k answers.

If the median exceed 3d at least k/2 of the runs do.

@ By standard Chernoff bounds, the median exceed 3d with probability

2=K) and the median is below 3d with probability 2~ (k).

AiC FME, UPC Hashing Fall 2023 31/31

Counting distinct elements

Counting the number of distinct elements: Quality

o Pr[d >3d] < *2 and Pr[d < 3d] < ‘2.
o Thus the algorithm provides a (2, ?)—approximation.

@ How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the algorithm
and take the best information from them, in this case, the median of
the k answers.

If the median exceed 3d at least k/2 of the runs do.

@ By standard Chernoff bounds, the median exceed 3d with probability
2=K) and the median is below 3d with probability 2~ (k).

@ Choosing k = O(log(1/¢)), we can make the sum to be at most J. So
we get a (2,)-approximation. However, the used memory is now

O(log(1/9) log n).

AiC FME, UPC Hashing Fall 2023 31/31

	Hashing
	Universal hashing
	Concentration
	Counting distinct elements

