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Hashing

Data Structures: Reminder

Given a universe U , a dynamic set of records, where each record:

k

Satellit Data

Key

Record

Array

Linked List (and variations)

Stack (LIFO): Supports push and pop

Queue (FIFO): Supports enqueue and dequeue

Deque: Supports push, pop, enqueue and dequeue

Heaps: Supports insertions, deletions, find Max and MIN

Hashing

AiC FME, UPC Hashing Fall 2023 2 / 31



Hashing

Data structures for dynamic sets

DICTIONARY
Data structure for maintaining S ⊂ U together with operations:

Search(k): decide if k ∈ S
Insert(k): S := S ∪ {k}
Delete(k): S := S\{k}

PRIORITY QUEUE
Data structure for maintaining S ⊂ U together with operations:

Insert(x , k): S := S ∪ {x}
Maximum(): Returns element of S with largest key value

Extract-Maximum(): Returns (x , k) with k largest value in S,
S = S − {x}.
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Hashing

Priority Queue implementations

Linked List:

INSERT: O(n)

EXTRACT-MAX: O(1)

Heap:

INSERT: O(lg n)

EXTRACT-MAX: O(lg n)

Using a Heap is a good compromise between fast insertion and slow
extraction.
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Hashing

Hashing

Data Structure that supports dictionary operations on an universe of
numerical keys.

Notice the number of possible keys
represented as 64-bit integers is
263 = 18446744073709551616.
Tradeoff time/space
Define a hashing table T [0, . . . ,m − 1]
a hashing function h : U → T [0, . . . ,m− 1] Hans P. Luhn

(1896-1964)

CollisionS
U

h

T
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Hashing

Simple uniform hashing function.

We want to store a maximum of n keys in a hashing table T with m
slots.

The performance of hashing depends on how well h distributes the
keys on the m slots.

h is simple uniform if it hash any key with equal probability into any
slot, independently of where other keys go.

In this way, we get a load factor α = n/m, the average number of
keys per slot.
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Hashing

How to choose h?

Advice: For an exhaustive treaty on Hashing: D. Knuth, Vol. 3 of The Art
of computing programming

h depends on the type of key:

For keys in the real interval [0, 1), we can use h(k) = bmkc.

For keys in the real interval [s, t) scale by 1/(t − s), and use the
previous method, h(k/(t − s)) = bmk/(t − s)c.
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Hashing

The division method

Choose m prime or as far as possible from a power of 2,

h(k) = k mod m .

Fast (Θ(1)) to compute in most languages (k%m)!

Be aware: if m = 2r the hash does not
depend on all the bits of K

If r = 6 with k = 1011000111 011010︸ ︷︷ ︸
=h(k)

(45530 mod 64 = 858 mod 64)
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Hashing

In some applications, the keys may be very large, for instance with
alphanumeric keys, which must be converted to ascii, and reinterpreted as
numbers in binary.

Example: averylongkey is
converted via ascii:
97 · 12811 + 118 · 12810+
101 · 1289 + 114 · 1288

+121 · 1287 + 108 · 1266

+111 · 1285 + 110 · 1284

+103 · 1283 + 107 · 1282

+101 ·1281 + 121 ·1280 = n

which has 84-bits!
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Hashing

How to deal with large n?

For large n, to compute h = n mod m, we can use mod arithmetic +
Horner’s method:

((((((((((97 · 128 + 118) · 128 + 101) · 128 + 114) · 128 + 121)

· 128 + 111) · 128 + 110) · 128 + 103) · 128 + 107)

· 128 + 101) · 128 + 121 mod m

= ((((((((((97 · 128 + 118 mod m)︸ ︷︷ ︸ ·128) mod m + 101)︸ ︷︷ ︸ · . . .))))))
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Hashing

Collision resolution: Separate chaining

For each table address, construct a linked list of the items whose keys hash
to that address.

Every key goes to the same slot

Time to explore the list =
length of the list

h(20)=h(27)=h(8)=i

27 820
i
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Hashing

Cost of average analysis of chaining

The cost of the dictionary operations using hashing:

Insertion of a new key: Θ(1).

Search of a key: O( ength of the list)

Deletion of a key: O(length of the list).

Under the hypothesis that h is simply uniform hashing, each key x is
equally likely to be hashed to any slot of T , independently of where other
keys are hashed

Therefore, the expected number of keys falling into T [i ] is α = n/m.
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Hashing

Cost of search

For an unsuccessful search (x is not in T ), we have to explore the ist
at h(x)→ T [i ]. So, the expected time to search the list at T [i ] is
O(1 + α).
(α of searching the list and Θ(1) of computing h(x) and going to slot
T [i ])

For an successful search, we obtain the same bound, although in most
of the cases we would have to search a fraction of the list until finding
the x element.)

Under the assumption of simple uniform hashing, in a hash table with
chaining, a search takes time Θ(1 + n

m ) on average.

Notice that if n = θ(m) then α = O(1) and search time is Θ(1).
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Universal hashing

Universal hashing: Motivation

For every deterministic hash function, there is a set of bad instances.

An adversary can arrange the keys so your function hashes most of
them to the same slot.

Create a set H of hash functions on U and choose a hashing function
at random and independently of the keys.

The adversary might known the probability space but not the
particular selection.
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Universal hashing

Universal hashing

Let U be the universe of keys and let H be a collection of hashing
functions with hashing table T [0, . . . ,m − 1], H is universal if
∀x , y ∈ U , x 6= y , then

|{h ∈ H | h(x) = h(y)}| ≤ |H|
m
.

In an equivalent way, H is universal if ∀x , y ∈ U , x 6= y , and for any h
chosen uniformly from H, we have

Pr [h(x) = h(y)] ≤ 1

m
.
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Universal hashing

Universality gives good average-case behaviour

Theorem

If we pick u.a.r. h from a universal family H and build a table with size m
for a set of n keys, for any given key x let Cx be a random variable
counting the number of collisions with others keys y in T .

E [Cx ] ≤ n/m.
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Universal hashing

Construction of a universal family: H

Let U be the key universe and let N be the maximum key value. Our
target is a hash table with m positions, T [0, . . . ,m − 1].

Choose a prime p, N ≤ p ≤ 2N. Then U ⊂ Zp = {0, 1, . . . , p − 1}.
Define H = {ha,b|a, b ∈ Zp, a 6= 0}.

To select u.a.r. h ∈ H, choose independently and u.a.r. a ∈ Z+
p and

b ∈ Zp. Given a key x define ha,b(x) = ((ax + b) mod p︸ ︷︷ ︸
ga,b(x)

) mod m.

Example: p = 17,m = 6, we have H17,6 = {ha,b : a ∈ Z+
p , b ∈ Zp}

if x = 8, a = 3, b = 4 then
h3,4(8) = ((3 · 8 + 4) mod 17) mod 6 = 5
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Universal hashing

Properties of H

1 hab : Zp → Zm.

2 |H| = p(p − 1). (We can select a in p − 1 ways and b in p ways)

3 Specifying an h ∈ H requires O(lg p) = O(lgN) bits.

4 To choose h ∈ H select a, b independently and u.a.r. from Z+
p and

Zp.

5 Evaluating h(x) is fast.
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Universal hashing

Theorem

The family H is universal.

For the proof:
Chapter 11 of Cormen. Leiserson, Rivest, Stein: An introduction to
Algorithms
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Concentration

Markov’s inequality

Lemma (Markov’s inequality)

If X ≥ 0 is a r.v, for any constant a > 0,

Pr [X ≥ a] ≤ E [X ]

a
.

Corollary

If X ≥ 0 is a r.v, for any constant b > 0,

Pr [X ≥ b E [X ]] ≤ 1

b
.
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Concentration

Chebyshev’s Inequality

Pafnuty Chebyshev (XIXc)
If you can compute the Var [] then you can compute σ and get better
bounds for concentration of any r.v. (positive or negative).

Theorem

Let X be a r.v. with expectation µ and standard deviation σ > 0, then for
any a > 0

Pr [|X − µ| ≥ a σ] ≤ 1

a2
.

Note that |X − µ| ≥ aσ ⇔ (X ≥ aσ + µ) ∪ (X ≥ µ− aσ).
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Concentration

Chernoff Bounds

Sergei Bernstein (1924), Wassily Hoeffding (1964),
Herman Chernoff (1952)

The Chernoff bound can be used when the random variable X is the sum
of several independent Poisson trials, where each Xi can has probability of
success pi . The particular case where all pi are equal is the Bernouilli
trials.

Theorem ((Ch-1))

Let {Xi}ni=0 be independent Poisson trials, with Pr [Xi = 1] = pi . Then, if
X =

∑n
i=1 Xi , and µ = E [X ], we have

1 Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ
, for δ ∈ (0, 1).

2 Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
for any δ > 0.
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Concentration

Weak Chernoff’s bound, but easy to use

Corollary (Ch-2)

Let {Xi}ni=0 be independent Poisson trials, with Pr [Xi = 1] = pi . Then if
X =

∑n
i=1 Xi , and µ = E [X ], we have

1 Pr [X ≤ (1− δ)µ] ≤ e−µδ
2/2, for δ ∈ (0, 1).

2 Pr [X ≥ (1 + δ)µ] ≤ e−µδ
2/3, for δ ∈ (0, 1].

An immediate corollary to the previous result:

Corollary (Ch-3)

Let {Xi}ni=0 be independent Poisson trials, with Pr [Xi = 1] = pi . Then if
X =

∑n
i=1 Xi , µ = E [X ] and δ ∈ (0, 1), we have

Pr [|X − µ| ≥ δµ] ≤ 2e−µδ
2/3.
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Counting distinct elements

Counting the number of distinct elements

Distinct elements problem: Given a stream s, output |{j | fj > 0}|.
where fj is the frequency of the j in the stream s

In order to solve the problem using sublinear space, we need to use
probabilistic algorithms/data structure and some adequate notion of
approximation.
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Counting distinct elements

An (ε, δ)-approximation

Let A(s) denote the output of a randomized streaming algorithm A
on input s; note that this is a random variable.

Let Φ(s) be the function that A is supposed to compute.

A is a (ε, δ)-approximation to Φ if we have

Pr

[∣∣∣∣A(s)

Φ(s)
− 1

∣∣∣∣ > ε

]
≤ δ.

A is a (ε, δ)-additive approximation to Φ if we have

Pr [|A(s)− Φ(s)| > ε] ≤ δ.

When δ = 0, A must be deterministic.
When ε = 0, A must be an exact algorithm.
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Counting distinct elements

Counting the number of distinct elements

For an integer p > 0, let zeros(p) be the number of zeros at the end
of the binary representation of p.

zeros(p) = max{i | 2i divides p}.

Algorithm:
1: Count-Dif(stream s)
2: Choose a random hash function h : [n]→ [n] form a universal

family
3: int z = 0
4: while not s.end() do
5: j = s.read()
6: if zeros(h(j)) > z then
7: z = zeros(h(j))
8: end if
9: end while

10: Return 2z+ 1
2

Assuming that there are d distinct elements, the algorithm computes
max zeros(h(j)) as a good approximation of log d .
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Counting distinct elements

Counting the number of distinct elements: Quality

1 pass, O(log n + log log n) memory and O(1) time per item.

For j ∈ [n] and r ≥ 0, let Xr ,j be the indicator r.v. for
zeros(h(j)) ≥ r .

Let Yr =
∑

j |fj>0 Xr ,j .

Let t denote the final value of z .

Yr > 0 iff t ≥ r , or equivalently Yr = 0 iff t ≤ r − 1.

Since h(j) is uniformly distributed over the log n-bit strings,

E [Xr ,j ] = Pr [zeros(h(j)) ≥ r ] = Pr [2r divides h(j)] =
1

2r
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E [Xr ,j ] = Pr [zeros(h(j)) ≥ r ] = Pr [2r divides h(j)] =
1

2r
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Counting distinct elements

Counting the number of distinct elements: Quality

E [Yr ] = Var [Yr ] = d/2r

Using Markov’s and Chebyshev’s inequalities,

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E [Yr ]

1
=

d

2r
.

Pr [Yr = 0] = Pr [|Yr − E [Yr ]| ≥ d

2r
] ≤ Var [Yr ]

(d/2r )2
≤ 2r

d
.
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Counting distinct elements

Counting the number of distinct elements: Quality

Pr [Yr > 0] ≤ d
2r and Pr [Yr = 0] ≤ 2r

d .

Let d̂ be the estimate of d , d̂ = 2t+ 1
2 .

Let a be the smallest integer so that 2a+ 1
2 ≥ 3d ,

Pr [d̂ ≥ 3d ] = Pr [t ≥ a] = Pr [Ya = 0] ≤ d

2a
≤
√

2

3
.

Let b be the largest integer so that 2b+ 1
2 ≤ 3d ,

Pr [d̂ ≤ 3d ] = Pr [t ≤ b] = Pr [Yb+1 = 0] ≤ 2b+1

d
≤
√

2

3
.
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Counting distinct elements

Counting the number of distinct elements: Quality

Pr [d̂ ≥ 3d ] ≤
√

2
3 and Pr [d̂ ≤ 3d ] ≤

√
2

3 .

Thus the algorithm provides a (2,
√

2
3 )-approximation.

How to improve the quality of the approximation?

Usual technique: run k several independent copies of the algorithm
and take the best information from them, in this case, the median of
the k answers.
If the median exceed 3d at least k/2 of the runs do.

By standard Chernoff bounds, the median exceed 3d with probability
2−Ω(k) and the median is below 3d with probability 2−Ω(k).

Choosing k = Θ(log(1/δ)), we can make the sum to be at most δ. So
we get a (2, δ)-approximation. However, the used memory is now
O(log(1/δ) log n).
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