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Data Structures: Reminder

Given a universe U, a dynamic set of records, where each record:

Key

} Satellit Data

Record

o Array

@ Linked List (and variations)

e Stack (LIFO): Supports push and pop

@ Queue (FIFO): Supports enqueue and dequeue

@ Deque: Supports push, pop, enqueue and dequeue

@ Heaps: Supports insertions, deletions, find Max and MIN
@ Hashing
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Data structures for dynamic sets

DICTIONARY

Data structure for maintaining S C U together with operations:
o Search(k): decide if k € S
o Insert(k): S :==SU{k}
o Delete(k): §:=S\{k}

PRIORITY QUEUE

Data structure for maintaining S C U together with operations:
e Insert(x, k): S :=SU{x}
e Maximum(): Returns element of S with largest key value

e Extract-Maximum(): Returns (x, k) with k largest value in S,
S=38—{x}.
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Priority Queue implementations

Linked List:
o INSERT: O(n)
o EXTRACT-MAX: O(1)

Heap:
e INSERT: O(lgn)
o EXTRACT-MAX: O(Ign)

Using a Heap is a good compromise between fast insertion and slow
extraction.
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S - .5
Hashing

Data Structure that supports dictionary operations on an universe of
numerical keys.

Notice the number of possible keys
represented as 64-bit integers is

2% = 18446744073709551616.

Tradeoff time/space

Define a hashing table T[0,...,m —1]

a hashing function h: U — T[0,...,m—1]

Hans P. Luhn
(1896-1964)

Collision

HENN ENENIC
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Simple uniform hashing function.

@ We want to store a maximum of n keys in a hashing table T with m
slots.

@ The performance of hashing depends on how well h distributes the
keys on the m slots.

@ his simple uniform if it hash any key with equal probability into any
slot, independently of where other keys go.

@ In this way, we get a load factor &« = n/m, the average number of
keys per slot.
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How to choose h?

Advice: For an exhaustive treaty on Hashing: D. Knuth, Vol. 3 of The Art
of computing programming
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How to choose h?

Advice: For an exhaustive treaty on Hashing: D. Knuth, Vol. 3 of The Art
of computing programming

h depends on the type of key:

@ For keys in the real interval [0,1), we can use h(k) = [ mk].

@ For keys in the real interval [s, t) scale by 1/(t — s), and use the
previous method, h(k/(t —s)) = |[mk/(t —s)].
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The division method

Choose m prime or as far as possible from a power of 2,

h(k) =k mod m|.

Fast (©(1)) to compute in most languages (k%m)!

Be aware: if m = 2" the hash does not
depend on all the bits of K

If r = 6 with k = 1011000111 011010
—
—h(k)
(45530 mod 64 = 858 mod 64)
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In some applications, the keys may be very large, for instance with
alphanumeric keys, which must be converted to ascii, and reinterpreted as

numbers in binary.

Example: avervlongkey is Dec thout char Dec the Oct Him ony |pes b Ot Him o Des e ot Himl o
ple: yiongkey o 0 000 1L (mary) 52 20 040 <#327 Space] 64 40 100 chds © | 96 50 o eA96:
10000 508 (stare of neating) | 35 21 04) ch3s; | 65 4l lob ches; A | 5 a1 14y eher; <
. - 2 2002 T (stare of tex) 34 32 oaz c#sd © | as az 102 chess © | 59 o 14z p
Converted via ascii: 55 009 £ (and of cexty 3 20 043 ch35; ¢ | 67 43 103 cheT; C | 99 65 1as c
. 300 507 (ond of trammmission) | 36 34 04 ch36; ¢ | o 44 10a cheas b |100 o4 144 ehions o
§ 5008 0 (enuiey) 37 35 oas awor; - | 6o 48 108 ches; 135 inou;
11 10 & & 008 ACK {sokmouiadge) 36 36 ode case: < | 70 ds 10s eFos 12 a0z, ¢
59 007 et (beidy 35 30 oy cwssy | 70 a0 10 s ¢ 19 6103, ¢
97 -128** +118- 128"+ Dlmpen, prouen |Rnu e g ki .
HH G 30 0si cadl; | | 75 4o 111 ch75; © |105 69 Ls) chl0s; o
9 8 T G2 Ihosp cedz) | 7a ik 112 k74 I (105 o sz chioes 3
U I 30 05 ckda; + | 75 B 1l ca7s; ¥ [107 68 Lss cion
101 - 1289 + 114 - 128 R PN R
5o IS 20 oss ceds; - | 7 b 11 ca7%; 1 |109 6 Lss chloas u
i G 55 0% cede) - | 7o i Lis 7o) 1 |10 68 Log ewilos »
7 6 15 F 47 2F 057 e447: /|79 4F 117 €479; 0 111 6F 157 eHILL o
=+ . + . 16 10 4 30 odo cde; 0 | a0 50 120 ch0s ¢ |11z 70 Leo eHilz v
i 5 5030 ool ceasy || ol 51 121 cads o |13 71 Lel ekla;
1oz 5032 0aa c#sty 2 | oz 52 13 chozs |14 72 ez ehila; -
5 4 BRI SEa: |REZamiping g
—+ 111 -128 —+ 110-128 20 14 024 104 (dovice comtrol 4) | 52 34 0s4 452 4 | o4 5 124 choa; T |Lis 74 Lea chiles -
2115 028 1 (negacive acknoviedge) | 5 36 08 e#S3; 5 | 65 56 1as edss; U [117 75 les ¥
%2 15 oz s Taier | 5435 006 cads < | o8 58 136 cases 7 [1ie 76 les k
3 2 5317 0o £ (ena ok crans. ieck) | 50 37 087 c#sss ) | 87 3 127 caon; v |10 79 167 ;
+ 103 -128 + 107 - 128 Za 10 030 Ca (sameel) 56 30 070 caser o | oo 5o 1o chv; % [120 70 170 ;
5519 0o B (end ot neatun) 59 30 070 kst 0 | oo 5o 131 ches, ¢ (121 70 171 y
52 1a 032 513 (subseicuce) 55 ok o7z caser « | ab sh 13 chso; - [122 7 172 :
1 0 27 1B 033 ESC (escape) 59 3B 073 e#59; ; 91 5B 133 #91; [ (123 7B 173 (
10 1 . 128 12 1 . 128 n 2610 034 75 (file separator) 60 3C 074 c#60; < | 52 ST 134 c#92: (124 7 174 afla; |
+ + = 210 035 G5 (grow sepapatar) &1 3 075 % 5 138 chas; ) [125 70 175 enisss )
50 12 036 b (Yecord sepacator) | 62 9% 076 53 58 136 choa; |13 72 176 emse)
L7 037 U5 (onae separacer) & 3F o o5 oF 137 chas; |12 77 177 enien mL

which has 84-bits!
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How to deal with large n?

For large n, to compute h = n mod m, we can use mod arithmetic +
Horner's method:

(CCCCCCC((97 - 128 + 118) - 128 + 101) - 128 + 114) - 128 + 121)
-128 + 111) - 128 4 110) - 128 + 103) - 128 + 107)

128 +101) - 128 + 121 mod m

= (((((((97- 128 + 118 mod m)-128) mod m +101)-...))))))
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Collision resolution: Separate chaining

For each table address, construct a linked list of the items whose keys hash
to that address.

@ Every key goes to the same slot i
@ Time to explore the list = A@—@—@

length of the list h(20)=h(27)=h(8)=i
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Cost of average analysis of chaining

The cost of the dictionary operations using hashing:
o Insertion of a new key: ©(1).
@ Search of a key: O( ength of the list)
@ Deletion of a key: O(length of the list).

Under the hypothesis that h is simply uniform hashing, each key x is
equally likely to be hashed to any slot of T, independently of where other
keys are hashed

Therefore, the expected number of keys falling into T[i] is « = n/m.
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Cost of search

@ For an unsuccessful search (x is not in T), we have to explore the ist
at h(x) — T[i]. So, the expected time to search the list at T[i] is
O(1+ a).

(v of searching the list and ©(1) of computing h(x) and going to slot

i)
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Cost of search

@ For an unsuccessful search (x is not in T), we have to explore the ist
at h(x) — T[i]. So, the expected time to search the list at T[i] is
O(1+ a).

(v of searching the list and ©(1) of computing h(x) and going to slot

i)

@ For an successful search, we obtain the same bound, although in most
of the cases we would have to search a fraction of the list until finding
the x element.)
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Cost of search

@ For an unsuccessful search (x is not in T), we have to explore the ist
at h(x) — T[i]. So, the expected time to search the list at T[i] is
O(1+ a).

(v of searching the list and ©(1) of computing h(x) and going to slot

i)

@ For an successful search, we obtain the same bound, although in most
of the cases we would have to search a fraction of the list until finding
the x element.)

@ Under the assumption of simple uniform hashing, in a hash table with
chaining, a search takes time ©(1 4+ -) on average.
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Cost of search

@ For an unsuccessful search (x is not in T), we have to explore the ist
at h(x) — T[i]. So, the expected time to search the list at T[i] is
O(1+ a).

(v of searching the list and ©(1) of computing h(x) and going to slot

i)

@ For an successful search, we obtain the same bound, although in most
of the cases we would have to search a fraction of the list until finding
the x element.)

@ Under the assumption of simple uniform hashing, in a hash table with
chaining, a search takes time ©(1 4+ -) on average.

e Notice that if n = 6(m) then o = O(1) and search time is ©(1).
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Universal hashing

Universal hashing: Motivation

@ For every deterministic hash function, there is a set of bad instances.

@ An adversary can arrange the keys so your function hashes most of
them to the same slot.
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Universal hashing

Universal hashing: Motivation

@ For every deterministic hash function, there is a set of bad instances.

@ An adversary can arrange the keys so your function hashes most of
them to the same slot.

@ Create a set H of hash functions on U and choose a hashing function
at random and independently of the keys.

@ The adversary might known the probability space but not the
particular selection.
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Universal hashing

Universal hashing

Let U be the universe of keys and let H be a collection of hashing
functions with hashing table T[0,...,m — 1], H is universal if
Vx,y € U,x # y, then

|H|

m .

[{heH[h(x) = h(y)} <

In an equivalent way, H is universal if Vx,y € U, x # y, and for any h
chosen uniformly from H, we have

1
o

Pr[h(x) = h(y)] <
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Universal hashing

Universality gives good average-case behaviour

Theorem

If we pick u.a.r. h from a universal family H and build a table with size m
for a set of n keys, for any given key x let Cx be a random variable
counting the number of collisions with others keys y in T.

E[C] < n/m.
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Universal hashing

Construction of a universal family: H

Let U be the key universe and let N be the maximum key value. Our
target is a hash table with m positions, T|[0,...,m —1].

e Choose a prime p, N < p <2N. ThenU C Z, ={0,1,...,p—1}.
o Define H = {h,pla,b € Zp,a# 0}.
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Universal hashing

Construction of a universal family: H

Let U be the key universe and let N be the maximum key value. Our
target is a hash table with m positions, T|[0,...,m —1].

e Choose a prime p, N < p <2N. ThenU C Z, ={0,1,...,p—1}.
o Define H = {h,pla,b € Zp,a# 0}.

@ To select u.a.r. h € H, choose independently and u.a.r. a € Z;r and
b € Zp. Given a key x define h, p(x) = ((ax + b) mod p) mod m.

gaﬁb(x)
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Universal hashing

Construction of a universal family: H

Let U be the key universe and let N be the maximum key value. Our
target is a hash table with m positions, T|[0,...,m —1].

e Choose a prime p, N < p <2N. ThenU C Z, ={0,1,...,p—1}.
o Define H = {h,pla,b € Zp,a# 0}.

@ To select u.a.r. h € H, choose independently and u.a.r. a € Z;r and
b € Zp. Given a key x define h, p(x) = ((ax + b) mod p) mod m.

gaﬁb(x)
o Example: p=17,m =6, we have Hi76 = {hap:a € Z},b € Zp}
if x =8, a=3,b=14then
h34(8) = ((3:8+4) mod 17) mod 6 =5
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Properties of H

Q hap: Zp — Ly,

@ |[H| =p(p—1). (We can select ain p— 1 ways and b in p ways)

@ Specifying an h € H requires O(lg p) = O(Ig N) bits.

@ To choose h € H select a, b independently and u.a.r. from ZI}L and
Z,p.

© Evaluating h(x) is fast.
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Universal hashing

Theorem
The family ‘H is universal. J

For the proof:

Chapter 11 of Cormen. Leiserson, Rivest, Stein: An introduction to
Algorithms
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Concentration

Markov's inequality

Lemma (Markov's inequality)

If X >0 is a r.v, for any constant a > 0,

Pr[XZa]gﬁ.
a

Fall 2023
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Markov's inequality

Lemma (Markov's inequality)

If X >0 is a r.v, for any constant a > 0,

Pr[X > a] < E[X].
a

Corollary

If X >0 is a r.v, for any constant b > 0,

Pr[X > bE[X]] <

o | =
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Chebyshev's Inequality

Pafnuty Chebyshev (XIXc)
If you can compute the Var [| then you can compute ¢ and get better
bounds for concentration of any r.v. (positive or negative).

Theorem
Let X be a r.v. with expectation 1 and standard deviation o > 0, then for
any a>0

1
Pr[ X —u|>ao] < 2

Note that | X — u| > ac < (X > ac + ) U (X > p — ao).
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Chernoff Bounds

Sergei Bernstein (1924), Wassily Hoeffding (1964),
Herman Chernoff (1952)

The Chernoff bound can be used when the random variable X is the sum
of several independent Poisson trials, where each X; can has probability of
success p;. The particular case where all p; are equal is the Bernouilli
trials.

Theorem ((Ch-1))

Let {X;}!_, be independent Poisson trials, with Pr[X; = 1] = p;. Then, if
X =>",Xi, and p = E[X], we have
6

Q@ PriX < (1-6)u < (W)’ for § € (0,1).

n
Q@ Pr(X>(1+u < (W) for any ¢ > 0.

V.

Fall 2023 22/31



Weak Chernoff's bound, but easy to use

Corollary (Ch-2)
Let {X;}!_, be independent Poisson trials, with Pr[X; = 1] = p;. Then if
X =>",Xi, and p = E[X], we have

Q PriX < (1—68)u <er’/2 fors e (0,1).

Q@ PriX > (1+68)u] < e /3 foré e (0,1].

An immediate corollary to the previous result:

Corollary (Ch-3)

Let {X;}7_, be independent Poisson trials, with Pr[X; = 1] = p;. Then if
X=>1",Xi,pn=E[X]andd € (0,1), we have

Pr[|X — | > 6] < 26 H9°/3,
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Counting distinct elements

Counting the number of distinct elements

Fall 2023 2431



Counting distinct elements

Counting the number of distinct elements

e Distinct elements problem: Given a stream s, output [{j | f; > 0}|.
where f; is the frequency of the j in the stream s
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Counting distinct elements

Counting the number of distinct elements

e Distinct elements problem: Given a stream s, output [{j | f; > 0}|.
where f; is the frequency of the j in the stream s

@ In order to solve the problem using sublinear space, we need to use
probabilistic algorithms/data structure and some adequate notion of
approximation.
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Counting distinct elements

An (€, d)-approximation
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Counting distinct elements

An (e, 6)-approximation

o Let A(s) denote the output of a randomized streaming algorithm A
on input s; note that this is a random variable.

@ Let ®(s) be the function that A4 is supposed to compute.
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Counting distinct elements

An (e, 6)-approximation

o Let A(s) denote the output of a randomized streaming algorithm A
on input s; note that this is a random variable.

@ Let ®(s) be the function that A4 is supposed to compute.

e Ais a (e, 0)-approximation to ® if we have

SRR
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Counting distinct elements

An (e, 6)-approximation

o Let A(s) denote the output of a randomized streaming algorithm A
on input s; note that this is a random variable.

@ Let ®(s) be the function that A4 is supposed to compute.

e Ais a (e, 0)-approximation to ® if we have

SRR

e Ais a (e, 0)-additive approximation to ® if we have

Pr[JA(s) — &(s)| > ¢] < 6.
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Counting distinct elements

An (e, 6)-approximation

o Let A(s) denote the output of a randomized streaming algorithm A

on input s; note that this is a random variable.
@ Let ®(s) be the function that A4 is supposed to compute.

e Ais a (e, 0)-approximation to ® if we have

SRR

e Ais a (e, 0)-additive approximation to ® if we have
Pr[|A(s) — ®(s)| > €] < 6.

@ When § = 0, A must be deterministic.
When € = 0, A must be an exact algorithm.
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Counting distinct elements

Counting the number of distinct elements
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Counting distinct elements

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at the end
of the binary representation of p.
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Counting distinct elements

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at the end
of the binary representation of p.

zeros(p) = max{i | 2' divides p}.
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Counting distinct elements

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at the end

of the binary representation of p.
zeros(p) = max{i | 2' divides p}.

@ Algorithm:
: Count-Dif(stream s)
2: Choose a random hash function h: [n] — [n] form a universal
family
3 intz=0
4: while not s.end() do
5. j=s.read()
6: if zeros(h(j)) > z then
7 z = zeros(h(j))
8: endif
9: end while
10: Return 27+3

AiC FME, UPC Hashing Fall 2023
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Counting distinct elements

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at the end
of the binary representation of p.

zeros(p) = max{i | 2' divides p}.

@ Algorithm:
1: Count-Dif(stream s)
2: Choose a random hash function h: [n] — [n] form a universal
family
cintz=0
: while not s.end() do
Jj =s.read()
if zeros(h(j)) > z then
z = zeros(h(j))
end if
: end while
0: Return 27*3

© NSO R e

=

@ Assuming that there are d distinct elements, the algorithm computes
max zeros(h(j)) as a good approximation of logd.
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Counting distinct elements

Counting the number of distinct elements: Quality

@ 1 pass, O(log n+ loglog n) memory and O(1) time per item.
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Counting distinct elements

Counting the number of distinct elements: Quality

1 pass, O(log n + loglog n) memory and O(1) time per item.
For j € [n] and r > 0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.

Let Y, = ij_>0 Xr_J'.
@ Let t denote the final value of z.
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Counting distinct elements

Counting the number of distinct elements: Quality

1 pass, O(log n + loglog n) memory and O(1) time per item.
For j € [n] and r > 0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.

Let Yr == ZJ‘6>O Xr_J‘.
Let t denote the final value of z.
Y, > 0iff t > r, or equivalently Y, =0 iff t < r — 1.
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Counting distinct elements

Counting the number of distinct elements: Quality

1 pass, O(log n + loglog n) memory and O(1) time per item.
For j € [n] and r > 0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.

o Let Yr - ZJ‘6>O Xr_J‘.
o Let t denote the final value of z.
o Y, >0iff t > r, or equivalently Y, =0 iff t <r — 1.
@ Since h(j) is uniformly distributed over the log n-bit strings,
. v . 1
E[X, ] = Pr[zeros(h(j)) > r] = Pr[2" divides h(j)] = o
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Counting distinct elements

Counting the number of distinct elements: Quality

E[X,j] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = %
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Counting distinct elements

Counting the number of distinct elements: Quality

E[X,j] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = %

d
ElV: =) EX = o
jlf>0
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Counting distinct elements

Counting the number of distinct elements: Quality

E[X,j] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = %

d
ElV: =) EX = o
jlf>0

@ Random variables Y, are pairwise independent, as they come from a
universal hash family.

Var[Y,] = Y Var[X )1 < Y E[XZl= > E[X.] :%

jlf>0 JIf>0 JIf>0
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Counting distinct elements

Counting the number of distinct elements: Quality

e E[Y,] = Var[Y,] =d/2"
@ Using Markov's and Chebyshev's inequalities,

PrlY, > 0] = Pr[Y, > 1] < E[Y] %
PriY, = 0] = Pr{|Y, — E[V}]| = 21,] < (V;/r%g =g

AiC FME, UPC Hashing Fall 2023
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Counting distinct elements

Counting the number of distinct elements: Quality

o PrlY, >0] < £ and Pr[Y, =0] < 2.
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Counting distinct elements

Counting the number of distinct elements: Quality

o PrlY, >0] < £ and Pr[Y, =0] < 2.
o Let d be the estimate of d, d = 2t+3 .
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Counting distinct elements

Counting the number of distinct elements: Quality

o PrlY, >0] < £ and Pr[Y, =0] < 2.
o Let d be the estimate of d, d = 2t*2,
@ Let a be the smallest integer so that 27+3 > 3d,

%

Prld > 3d] = Pr[t > a] = Pr[Y, = 0] < 21

Fall 2023
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Counting distinct elements

Counting the number of distinct elements: Quality

o PrlY, >0] < £ and Pr[Y, =0] < 2.
o Let d be the estimate of d, d = 2t*2,
@ Let a be the smallest integer so that 27+3 > 3d,
A d 2
Prid > 3d] = Pr[t > a] = Pr[Y,=0] < 2— \3[
@ Let b be the largest integer so that obt3 < 3d,
~ 2b+1 2
Prd < 3d) = Prlt < b] = Pr[Ypiy = 0] < = < \3[

AiC FME, UPC Hashing Fall 2023
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Counting distinct elements

Counting the number of distinct elements: Quality

o Pr[d >3d] < *2 and Pr[d < 3d] < ‘2.

V2

@ Thus the algorithm provides a (2, 5*)-approximation.
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Counting distinct elements

Counting the number of distinct elements: Quality

o Pr[d >3d] < *2 and Pr[d < 3d] < ‘2.

V2

@ Thus the algorithm provides a (2, 5*)-approximation.

@ How to improve the quality of the approximation?

Fall 2023

31/31



Counting distinct elements

Counting the number of distinct elements: Quality

Prld > 3d] < ¥ and Pr[d < 3d] < ‘2.
@ Thus the algorithm provides a (2, @)—approximation_

How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the algorithm
and take the best information from them, in this case,
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Counting distinct elements

Counting the number of distinct elements: Quality

Prld > 3d] < ¥ and Pr[d < 3d] < ‘2.
@ Thus the algorithm provides a (2, @)—approximation_

How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the algorithm
and take the best information from them, in this case, the median of
the k answers.
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Counting distinct elements

Counting the number of distinct elements: Quality

Prld > 3d] < ¥ and Pr[d < 3d] < ‘2.
@ Thus the algorithm provides a (2, @)—approximation_

How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the algorithm
and take the best information from them, in this case, the median of
the k answers.

If the median exceed 3d at least k/2 of the runs do.
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Counting distinct elements

Counting the number of distinct elements: Quality

o Pr[d >3d] < *2 and Pr[d < 3d] < ‘2.
o Thus the algorithm provides a (2, ?)—approximation.

@ How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the algorithm
and take the best information from them, in this case, the median of
the k answers.

If the median exceed 3d at least k/2 of the runs do.

@ By standard Chernoff bounds, the median exceed 3d with probability

2=K) and the median is below 3d with probability 2~ (k).
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Counting the number of distinct elements: Quality

o Pr[d >3d] < *2 and Pr[d < 3d] < ‘2.
o Thus the algorithm provides a (2, ?)—approximation.

@ How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the algorithm
and take the best information from them, in this case, the median of
the k answers.

If the median exceed 3d at least k/2 of the runs do.

@ By standard Chernoff bounds, the median exceed 3d with probability
2=K) and the median is below 3d with probability 2~ (k).

@ Choosing k = O(log(1/¢)), we can make the sum to be at most J. So
we get a (2, )-approximation. However, the used memory is now

O(log(1/9) log n).
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