Hashing

AiC FME, UPC

Fall 2023

Data Structures: Reminder

Given a universe \mathcal{U}, a dynamic set of records, where each record:

Record

- Array
- Linked List (and variations)
- Stack (LIFO): Supports push and pop
- Queue (FIFO): Supports enqueue and dequeue
- Deque: Supports push, pop, enqueue and dequeue
- Heaps: Supports insertions, deletions, find Max and MIN
- Hashing

Data structures for dynamic sets

DICTIONARY

Data structure for maintaining $\mathcal{S} \subset \mathcal{U}$ together with operations:

- Search(k): decide if $k \in \mathcal{S}$
- Insert(k): $\mathcal{S}:=\mathcal{S} \cup\{k\}$
- Delete(k): $\mathcal{S}:=\mathcal{S} \backslash\{k\}$

PRIORITY QUEUE

Data structure for maintaining $\mathcal{S} \subset \mathcal{U}$ together with operations:

- Insert $(x, k): \mathcal{S}:=\mathcal{S} \cup\{x\}$
- Maximum(): Returns element of \mathcal{S} with largest key value
- Extract-Maximum(): Returns (x, k) with k largest value in \mathcal{S}, $\mathcal{S}=\mathcal{S}-\{x\}$.

Priority Queue implementations

Linked List:

- INSERT: O(n)
- EXTRACT-MAX: O(1)

Heap:

- INSERT: O $(\lg n)$
- EXTRACT-MAX: O($\lg n)$

Using a Heap is a good compromise between fast insertion and slow extraction.

Hashing

Data Structure that supports dictionary operations on an universe of numerical keys.

Notice the number of possible keys represented as 64-bit integers is $2^{63}=18446744073709551616$.
Tradeoff time/space
Define a hashing table $T[0, \ldots, m-1]$
a hashing function $h: \mathcal{U} \rightarrow T[0, \ldots, m-1]$

Hans P. Luhn (1896-1964)

Simple uniform hashing function.

- We want to store a maximum of n keys in a hashing table T with m slots.
- The performance of hashing depends on how well h distributes the keys on the m slots.
- h is simple uniform if it hash any key with equal probability into any slot, independently of where other keys go.
- In this way, we get a load factor $\alpha=n / m$, the average number of keys per slot.

How to choose h ?

Advice: For an exhaustive treaty on Hashing: D. Knuth, Vol. 3 of The Art of computing programming

How to choose h ?

Advice: For an exhaustive treaty on Hashing: D. Knuth, Vol. 3 of The Art of computing programming

h depends on the type of key:

- For keys in the real interval $[0,1)$, we can use $h(k)=\lfloor m k\rfloor$.
- For keys in the real interval $[s, t)$ scale by $1 /(t-s)$, and use the previous method, $h(k /(t-s))=\lfloor m k /(t-s)\rfloor$.

The division method

Choose m prime or as far as possible from a power of 2 ,

$$
h(k)=k \bmod m .
$$

Fast $(\Theta(1))$ to compute in most languages $(k \% m)$!
Be aware: if $m=2^{r}$ the hash does not depend on all the bits of K

If $r=6$ with $k=1011000111 \underbrace{011010}_{=h(k)}$
$(45530 \bmod 64=858 \bmod 64)$

In some applications, the keys may be very large, for instance with alphanumeric keys, which must be converted to ascii, and reinterpreted as numbers in binary.

Example: averylongkey is converted via ascii: $97 \cdot 128^{11}+118 \cdot 128^{10}+$ $101 \cdot 128^{9}+114 \cdot 128^{8}$ $+121 \cdot 128^{7}+108 \cdot 126^{6}$
$+111 \cdot 128^{5}+110 \cdot 128^{4}$
$+103 \cdot 128^{3}+107 \cdot 128^{2}$
$+101 \cdot 128^{1}+121 \cdot 128^{0}=n$

which has 84-bits!

How to deal with large n ?

For large n, to compute $h=n \bmod m$, we can use mod arithmetic + Horner's method:

$$
\begin{aligned}
& (((((((((97 \cdot 128+118) \cdot 128+101) \cdot 128+114) \cdot 128+121) \\
& \cdot 128+111) \cdot 128+110) \cdot 128+103) \cdot 128+107) \\
& \cdot 128+101) \cdot 128+121 \bmod m \\
& =(((((((((\underbrace{97 \cdot 128+118 \bmod m)} \cdot 128) \bmod m+101) \cdot \ldots))))))
\end{aligned}
$$

Collision resolution: Separate chaining

For each table address, construct a linked list of the items whose keys hash to that address.

- Every key goes to the same slot
- Time to explore the list $=$ length of the list

Cost of average analysis of chaining

The cost of the dictionary operations using hashing:

- Insertion of a new key: $\Theta(1)$.
- Search of a key: O (ength of the list)
- Deletion of a key: O (length of the list).

Under the hypothesis that h is simply uniform hashing, each key x is equally likely to be hashed to any slot of T, independently of where other keys are hashed

Therefore, the expected number of keys falling into $T[i]$ is $\alpha=n / m$.

Cost of search

- For an unsuccessful search (x is not in T), we have to explore the ist at $h(x) \rightarrow T[i]$. So, the expected time to search the list at $T[i]$ is $O(1+\alpha)$.
(α of searching the list and $\Theta(1)$ of computing $h(x)$ and going to slot $T[i])$

Cost of search

- For an unsuccessful search (x is not in T), we have to explore the ist at $h(x) \rightarrow T[i]$. So, the expected time to search the list at $T[i]$ is $O(1+\alpha)$.
(α of searching the list and $\Theta(1)$ of computing $h(x)$ and going to slot $T[i])$
- For an successful search, we obtain the same bound, although in most of the cases we would have to search a fraction of the list until finding the x element.)

Cost of search

- For an unsuccessful search (x is not in T), we have to explore the ist at $h(x) \rightarrow T[i]$. So, the expected time to search the list at $T[i]$ is $O(1+\alpha)$.
(α of searching the list and $\Theta(1)$ of computing $h(x)$ and going to slot $T[i])$
- For an successful search, we obtain the same bound, although in most of the cases we would have to search a fraction of the list until finding the x element.)
- Under the assumption of simple uniform hashing, in a hash table with chaining, a search takes time $\Theta\left(1+\frac{n}{m}\right)$ on average.

Cost of search

- For an unsuccessful search (x is not in T), we have to explore the ist at $h(x) \rightarrow T[i]$. So, the expected time to search the list at $T[i]$ is $O(1+\alpha)$.
(α of searching the list and $\Theta(1)$ of computing $h(x)$ and going to slot $T[i])$
- For an successful search, we obtain the same bound, although in most of the cases we would have to search a fraction of the list until finding the x element.)
- Under the assumption of simple uniform hashing, in a hash table with chaining, a search takes time $\Theta\left(1+\frac{n}{m}\right)$ on average.
- Notice that if $n=\theta(m)$ then $\alpha=O(1)$ and search time is $\Theta(1)$.

Universal hashing: Motivation

- For every deterministic hash function, there is a set of bad instances.
- An adversary can arrange the keys so your function hashes most of them to the same slot.

Universal hashing: Motivation

- For every deterministic hash function, there is a set of bad instances.
- An adversary can arrange the keys so your function hashes most of them to the same slot.
- Create a set \mathcal{H} of hash functions on \mathcal{U} and choose a hashing function at random and independently of the keys.
- The adversary might known the probability space but not the particular selection.

Universal hashing

Let \mathcal{U} be the universe of keys and let \mathcal{H} be a collection of hashing functions with hashing table $T[0, \ldots, m-1], \mathcal{H}$ is universal if $\forall x, y \in \mathcal{U}, x \neq y$, then

$$
|\{h \in \mathcal{H} \mid h(x)=h(y)\}| \leq \frac{|\mathcal{H}|}{m} .
$$

In an equivalent way, \mathcal{H} is universal if $\forall x, y \in \mathcal{U}, x \neq y$, and for any h chosen uniformly from \mathcal{H}, we have

$$
\operatorname{Pr}[h(x)=h(y)] \leq \frac{1}{m} .
$$

Universality gives good average-case behaviour

Theorem
If we pick u.a.r. h from a universal family \mathcal{H} and build a table with size m for a set of n keys, for any given key x let C_{x} be a random variable counting the number of collisions with others keys y in T.

$$
\mathbf{E}\left[C_{x}\right] \leq n / m
$$

Construction of a universal family: \mathcal{H}

Let \mathcal{U} be the key universe and let N be the maximum key value. Our target is a hash table with m positions, $T[0, \ldots, m-1]$.

- Choose a prime $p, N \leq p \leq 2 N$. Then $\mathcal{U} \subset \mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$.
- Define $\mathcal{H}=\left\{h_{a, b} \mid a, b \in \mathbb{Z}_{p}, a \neq 0\right\}$.

Construction of a universal family: \mathcal{H}

Let \mathcal{U} be the key universe and let N be the maximum key value. Our target is a hash table with m positions, $T[0, \ldots, m-1]$.

- Choose a prime $p, N \leq p \leq 2 N$. Then $\mathcal{U} \subset \mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$.
- Define $\mathcal{H}=\left\{h_{a, b} \mid a, b \in \mathbb{Z}_{p}, a \neq 0\right\}$.
- To select u.a.r. $h \in \mathcal{H}$, choose independently and u.a.r. $a \in \mathbb{Z}_{p}^{+}$and $b \in \mathbb{Z}_{p}$. Given a key x define $h_{a, b}(x)=(\underbrace{(a x+b) \bmod p}_{g_{a, b}(x)}) \bmod m$.

Construction of a universal family: \mathcal{H}

Let \mathcal{U} be the key universe and let N be the maximum key value. Our target is a hash table with m positions, $T[0, \ldots, m-1]$.

- Choose a prime $p, N \leq p \leq 2 N$. Then $\mathcal{U} \subset \mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$.
- Define $\mathcal{H}=\left\{h_{a, b} \mid a, b \in \mathbb{Z}_{p}, a \neq 0\right\}$.
- To select u.a.r. $h \in \mathcal{H}$, choose independently and u.a.r. $a \in \mathbb{Z}_{p}^{+}$and $b \in \mathbb{Z}_{p}$. Given a key x define $h_{a, b}(x)=(\underbrace{(a x+b) \bmod p}_{g_{a, b}(x)}) \bmod m$.
- Example: $p=17, m=6$, we have $\mathcal{H}_{17,6}=\left\{h_{a, b}: a \in \mathbb{Z}_{p}^{+}, b \in \mathbb{Z}_{p}\right\}$ if $x=8, a=3, b=4$ then
$h_{3,4}(8)=((3 \cdot 8+4) \bmod 17) \bmod 6=5$

Properties of \mathcal{H}

(1) $h_{a b}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{m}$.
(2) $|\mathcal{H}|=p(p-1)$. (We can select a in $p-1$ ways and b in p ways)
(3) Specifying an $h \in \mathcal{H}$ requires $O(\lg p)=O(\lg N)$ bits.
(9) To choose $h \in \mathcal{H}$ select a, b independently and u.a.r. from \mathbb{Z}_{p}^{+}and \mathbb{Z}_{p}.
(6) Evaluating $h(x)$ is fast.

Theorem

The family \mathcal{H} is universal.

For the proof:
Chapter 11 of Cormen. Leiserson, Rivest, Stein: An introduction to Algorithms

Markov's inequality

Lemma (Markov's inequality)
If $X \geq 0$ is a r.v, for any constant a >0,

$$
\operatorname{Pr}[X \geq a] \leq \frac{\mathbf{E}[X]}{a}
$$

Markov's inequality

Lemma (Markov's inequality)
If $X \geq 0$ is a r.v, for any constant a >0,

$$
\operatorname{Pr}[X \geq a] \leq \frac{\mathbf{E}[X]}{a}
$$

Corollary
If $X \geq 0$ is a r.v, for any constant $b>0$,

$$
\operatorname{Pr}[X \geq b \mathrm{E}[X]] \leq \frac{1}{b}
$$

Chebyshev's Inequality

Pafnuty Chebyshev (XIXc)

If you can compute the $\operatorname{Var}[]$ then you can compute σ and get better bounds for concentration of any r.v. (positive or negative).

Theorem
Let X be a r.v. with expectation μ and standard deviation $\sigma>0$, then for any $a>0$

$$
\operatorname{Pr}[|X-\mu| \geq a \sigma] \leq \frac{1}{a^{2}}
$$

Note that $|X-\mu| \geq a \sigma \Leftrightarrow(X \geq a \sigma+\mu) \cup(X \geq \mu-a \sigma)$.

Chernoff Bounds

Sergei Bernstein (1924), Wassily Hoeffding (1964), Herman Chernoff (1952)

The Chernoff bound can be used when the random variable X is the sum of several independent Poisson trials, where each X_{i} can has probability of success p_{i}. The particular case where all p_{i} are equal is the Bernouilli trials.

Theorem ((Ch-1))
Let $\left\{X_{i}\right\}_{i=0}^{n}$ be independent Poisson trials, with $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$. Then, if $X=\sum_{i=1}^{n} X_{i}$, and $\mu=\mathbf{E}[X]$, we have
(1) $\operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}$, for $\delta \in(0,1)$.
(2) $\operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$ for any $\delta>0$.

Weak Chernoff's bound, but easy to use

Corollary (Ch-2)
Let $\left\{X_{i}\right\}_{i=0}^{n}$ be independent Poisson trials, with $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$. Then if $X=\sum_{i=1}^{n} X_{i}$, and $\mu=\mathbf{E}[X]$, we have
(1) $\operatorname{Pr}[X \leq(1-\delta) \mu] \leq e^{-\mu \delta^{2} / 2}$, for $\delta \in(0,1)$.
(2) $\operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\mu \delta^{2} / 3}$, for $\delta \in(0,1]$.

An immediate corollary to the previous result:
Corollary (Ch-3)
Let $\left\{X_{i}\right\}_{i=0}^{n}$ be independent Poisson trials, with $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$. Then if $X=\sum_{i=1}^{n} X_{i}, \mu=\mathbf{E}[X]$ and $\delta \in(0,1)$, we have

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{-\mu \delta^{2} / 3}
$$

Counting the number of distinct elements

Counting the number of distinct elements

- Distinct elements problem: Given a stream s, output $\left|\left\{j \mid f_{j}>0\right\}\right|$. where f_{j} is the frequency of the j in the stream s

Counting the number of distinct elements

- Distinct elements problem: Given a stream s, output $\left|\left\{j \mid f_{j}>0\right\}\right|$. where f_{j} is the frequency of the j in the stream s
- In order to solve the problem using sublinear space, we need to use probabilistic algorithms/data structure and some adequate notion of approximation.

An (ϵ, δ)-approximation

An (ϵ, δ)-approximation

- Let $\mathcal{A}(s)$ denote the output of a randomized streaming algorithm \mathcal{A} on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.

An (ϵ, δ)-approximation

- Let $\mathcal{A}(s)$ denote the output of a randomized streaming algorithm \mathcal{A} on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.
- \mathcal{A} is a (ϵ, δ)-approximation to Φ if we have

$$
\operatorname{Pr}\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon\right] \leq \delta
$$

An (ϵ, δ)-approximation

- Let $\mathcal{A}(s)$ denote the output of a randomized streaming algorithm \mathcal{A} on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.
- \mathcal{A} is a (ϵ, δ)-approximation to Φ if we have

$$
\operatorname{Pr}\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon\right] \leq \delta .
$$

- \mathcal{A} is a (ϵ, δ)-additive approximation to Φ if we have

$$
\operatorname{Pr}[|\mathcal{A}(s)-\Phi(s)|>\epsilon] \leq \delta
$$

An (ϵ, δ)-approximation

- Let $\mathcal{A}(s)$ denote the output of a randomized streaming algorithm \mathcal{A} on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.
- \mathcal{A} is a (ϵ, δ)-approximation to Φ if we have

$$
\operatorname{Pr}\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon\right] \leq \delta
$$

- \mathcal{A} is a (ϵ, δ)-additive approximation to Φ if we have

$$
\operatorname{Pr}[|\mathcal{A}(s)-\Phi(s)|>\epsilon] \leq \delta
$$

- When $\delta=0, \mathcal{A}$ must be deterministic.

When $\epsilon=0, \mathcal{A}$ must be an exact algorithm.

Counting the number of distinct elements

Counting the number of distinct elements

- For an integer $p>0$, let zeros (p) be the number of zeros at the end of the binary representation of p.

Counting the number of distinct elements

- For an integer $p>0$, let zeros (p) be the number of zeros at the end of the binary representation of p.
zeros $(p)=\max \left\{i \mid 2^{i}\right.$ divides $\left.p\right\}$.

Counting the number of distinct elements

- For an integer $p>0$, let zeros (p) be the number of zeros at the end of the binary representation of p.

$$
\operatorname{zeros}(p)=\max \left\{i \mid 2^{i} \text { divides } p\right\}
$$

- Algorithm:

1: Count-Dif(stream s)
2: Choose a random hash function $h:[n] \rightarrow[n]$ form a universal family
3: int $z=0$
4: while not s.end () do
5: $\quad j=\operatorname{s.read}()$
6: if $\operatorname{zeros}(h(j))>z$ then
7: $\quad z=\operatorname{zeros}(h(j))$
8: end if
9: end while
10: Return $2^{z+\frac{1}{2}}$

Counting the number of distinct elements

- For an integer $p>0$, let zeros (p) be the number of zeros at the end of the binary representation of p.

$$
\operatorname{zeros}(p)=\max \left\{i \mid 2^{i} \text { divides } p\right\}
$$

- Algorithm:

1: Count-Dif(stream s)
2: Choose a random hash function $h:[n] \rightarrow[n]$ form a universal family
3: int $z=0$
4: while not s.end() do
5: $\quad j=\operatorname{s.read}()$
6: if $\operatorname{zeros}(h(j))>z$ then
7: $\quad z=\operatorname{zeros}(h(j))$
8: end if
9: end while
10: Return $2^{z+\frac{1}{2}}$

- Assuming that there are d distinct elements, the algorithm computes $\max \operatorname{zeros}(h(j))$ as a good approximation of $\log d$.

Counting the number of distinct elements: Quality

- 1 pass, $O(\log n+\log \log n)$ memory and $O(1)$ time per item.

Counting the number of distinct elements: Quality

- 1 pass, $O(\log n+\log \log n)$ memory and $O(1)$ time per item.
- For $j \in[n]$ and $r \geq 0$, let $X_{r, j}$ be the indicator r.v. for

$$
\operatorname{zeros}(h(j)) \geq r .
$$

- Let $Y_{r}=\sum_{j \mid f_{j}>0} X_{r, j}$.
- Let t denote the final value of z.

Counting the number of distinct elements: Quality

- 1 pass, $O(\log n+\log \log n)$ memory and $O(1)$ time per item.
- For $j \in[n]$ and $r \geq 0$, let $X_{r, j}$ be the indicator r.v. for

$$
\operatorname{zeros}(h(j)) \geq r .
$$

- Let $Y_{r}=\sum_{j \mid f_{j}>0} X_{r, j}$.
- Let t denote the final value of z.
- $Y_{r}>0$ iff $t \geq r$, or equivalently $Y_{r}=0$ iff $t \leq r-1$.

Counting the number of distinct elements: Quality

- 1 pass, $O(\log n+\log \log n)$ memory and $O(1)$ time per item.
- For $j \in[n]$ and $r \geq 0$, let $X_{r, j}$ be the indicator r.v. for

$$
\operatorname{zeros}(h(j)) \geq r .
$$

- Let $Y_{r}=\sum_{j \mid f_{j}>0} X_{r, j}$.
- Let t denote the final value of z.
- $Y_{r}>0$ iff $t \geq r$, or equivalently $Y_{r}=0$ iff $t \leq r-1$.
- Since $h(j)$ is uniformly distributed over the $\log n$-bit strings,

$$
E\left[X_{r, j}\right]=\operatorname{Pr}[\operatorname{zeros}(h(j)) \geq r]=\operatorname{Pr}\left[2^{r} \text { divides } h(j)\right]=\frac{1}{2^{r}}
$$

Counting the number of distinct elements: Quality

$$
E\left[X_{r, j}\right]=\operatorname{Pr}[\text { zeros }(h(j)) \geq r]=\operatorname{Pr}\left[2^{r} \text { divides } h(j)\right]=\frac{1}{2^{r}} .
$$

Counting the number of distinct elements: Quality

$$
\begin{gathered}
E\left[X_{r, j}\right]=\operatorname{Pr}[\text { zeros }(h(j)) \geq r]=\operatorname{Pr}\left[2^{r} \text { divides } h(j)\right]=\frac{1}{2^{r}} . \\
E\left[Y_{r}\right]=\sum_{j \mid f_{j}>0} E\left[X_{r, j}\right]=\frac{d}{2^{r}}
\end{gathered}
$$

Counting the number of distinct elements: Quality

$$
\begin{gathered}
E\left[X_{r, j}\right]=\operatorname{Pr}[\text { zeros }(h(j)) \geq r]=\operatorname{Pr}\left[2^{r} \text { divides } h(j)\right]=\frac{1}{2^{r}} . \\
E\left[Y_{r}\right]=\sum_{j \mid f_{j}>0} E\left[X_{r, j}\right]=\frac{d}{2^{r}}
\end{gathered}
$$

- Random variables Y_{r} are pairwise independent, as they come from a universal hash family.

$$
\operatorname{Var}\left[Y_{r}\right]=\sum_{j \mid f_{j}>0} \operatorname{Var}\left[X_{r, j}\right] \leq \sum_{j \mid f_{j}>0} E\left[X_{r, j}^{2}\right]=\sum_{j \mid f_{j}>0} E\left[X_{r, j}\right]=\frac{d}{2^{r}}
$$

Counting the number of distinct elements: Quality

- $E\left[Y_{r}\right]=\operatorname{Var}\left[Y_{r}\right]=d / 2^{r}$
- Using Markov's and Chebyshev's inequalities,

$$
\begin{gathered}
\operatorname{Pr}\left[Y_{r}>0\right]=\operatorname{Pr}\left[Y_{r} \geq 1\right] \leq \frac{E\left[Y_{r}\right]}{1}=\frac{d}{2^{r}} . \\
\operatorname{Pr}\left[Y_{r}=0\right]=\operatorname{Pr}\left[\left|Y_{r}-E\left[Y_{r}\right]\right| \geq \frac{d}{2^{r}}\right] \leq \frac{\operatorname{Var}\left[Y_{r}\right]}{\left(d / 2^{r}\right)^{2}} \leq \frac{2^{r}}{d} .
\end{gathered}
$$

Counting the number of distinct elements: Quality

- $\operatorname{Pr}\left[Y_{r}>0\right] \leq \frac{d}{2^{r}}$ and $\operatorname{Pr}\left[Y_{r}=0\right] \leq \frac{2^{r}}{d}$.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}\left[Y_{r}>0\right] \leq \frac{d}{2^{r}}$ and $\operatorname{Pr}\left[Y_{r}=0\right] \leq \frac{2^{r}}{d}$.
- Let \hat{d} be the estimate of $d, \hat{d}=2^{t+\frac{1}{2}}$.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}\left[Y_{r}>0\right] \leq \frac{d}{2^{r}}$ and $\operatorname{Pr}\left[Y_{r}=0\right] \leq \frac{2^{r}}{d}$.
- Let \hat{d} be the estimate of $d, \hat{d}=2^{t+\frac{1}{2}}$.
- Let a be the smallest integer so that $2^{a+\frac{1}{2}} \geq 3 d$,

$$
\operatorname{Pr}[\hat{d} \geq 3 d]=\operatorname{Pr}[t \geq a]=\operatorname{Pr}\left[Y_{a}=0\right] \leq \frac{d}{2^{a}} \leq \frac{\sqrt{2}}{3}
$$

Counting the number of distinct elements: Quality

- $\operatorname{Pr}\left[Y_{r}>0\right] \leq \frac{d}{2^{r}}$ and $\operatorname{Pr}\left[Y_{r}=0\right] \leq \frac{2^{r}}{d}$.
- Let \hat{d} be the estimate of $d, \hat{d}=2^{t+\frac{1}{2}}$.
- Let a be the smallest integer so that $2^{a+\frac{1}{2}} \geq 3 d$,

$$
\operatorname{Pr}[\hat{d} \geq 3 d]=\operatorname{Pr}[t \geq a]=\operatorname{Pr}\left[Y_{a}=0\right] \leq \frac{d}{2^{a}} \leq \frac{\sqrt{2}}{3}
$$

- Let b be the largest integer so that $2^{b+\frac{1}{2}} \leq 3 d$,

$$
\operatorname{Pr}[\hat{d} \leq 3 d]=\operatorname{Pr}[t \leq b]=\operatorname{Pr}\left[Y_{b+1}=0\right] \leq \frac{2^{b+1}}{d} \leq \frac{\sqrt{2}}{3}
$$

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case,

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.
If the median exceed $3 d$ at least $k / 2$ of the runs do.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.
If the median exceed $3 d$ at least $k / 2$ of the runs do.
- By standard Chernoff bounds, the median exceed $3 d$ with probability $2^{-\Omega(k)}$ and the median is below $3 d$ with probability $2^{-\Omega(k)}$.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.
If the median exceed $3 d$ at least $k / 2$ of the runs do.
- By standard Chernoff bounds, the median exceed $3 d$ with probability $2^{-\Omega(k)}$ and the median is below $3 d$ with probability $2^{-\Omega(k)}$.
- Choosing $k=\Theta(\log (1 / \delta))$, we can make the sum to be at most δ. So we get a $(2, \delta)$-approximation. However, the used memory is now $O(\log (1 / \delta) \log n)$.

