Computational Complexity: Classes

AiC FME, UPC

Fall 2021

AiC FME, UPC

Classifying decidable problems

® Decidable problems, admit algorithmic solutions.

® The algorithms solving such problems can use more or less
amount of resources.

® To measure the performance of an algorithm we use two
measures time and space.

® As usual we take a worst case analysis on inputs with the
same size.

AiC FME, UPC

Classifying decidable problems

® Decidable problems, admit algorithmic solutions.

® The algorithms solving such problems can use more or less
amount of resources.

® To measure the performance of an algorithm we use two
measures time and space.

® As usual we take a worst case analysis on inputs with the
same size.

® For a TM, time correspond to the length of the computation
and space to the portion of the tape accessed during the
computation.

AiC FME, UPC

Classifying decidable problems

® Decidable problems, admit algorithmic solutions.

® The algorithms solving such problems can use more or less
amount of resources.

® To measure the performance of an algorithm we use two
measures time and space.

® As usual we take a worst case analysis on inputs with the
same size.

® For a TM, time correspond to the length of the computation
and space to the portion of the tape accessed during the
computation.

® QObserve that sometimes the space used might be smaller than
the input.

AiC FME, UPC

Complexity classes: definitions

Let f: N — N,

® The class TIME(f(n)) is the class of decision problems for
which an algorithm exists that solves instances of size n in
time O(f(n)).

® The class SPACE(f(n)) is the class of decision problems for
which an algorithm exists that solves instances of size n using
space O(f(n)).

AiC FME, UPC

Some complexity classes

® P = U, TIME(n¥) = TIME(poly(n))
EXP = TIME(2ro¥(n)

2EXP = TIME(22°™"")

L = LOGSPACE = SPACE(lg n)
PSPACE = SPACE(poly(n))
EXPSPACE = SPACE(2Po(n)

AiC FME, UPC

Some complexity classes

® P = U, TIME(n¥) = TIME(poly(n))
EXP = TIME(2Po¥(n))

2EXP = TIME(22°™"")

L = LOGSPACE = SPACE(Ig n)
PSPACE = SPACE(poly(n))
EXPSPACE = SPACE(2Po(n)

L € PSPACE C EXPSPACE

AiC FME, UPC

Some complexity classes

® P = U, TIME(n¥) = TIME(poly(n))
EXP = TIME(2ro¥(n)

2EXP = TIME(22°™"")

L = LOGSPACE = SPACE(lg n)
PSPACE = SPACE(poly(n))
EXPSPACE = SPACE(2Po(n)

L € PSPACE C EXPSPACE

LCPCEXP PSPACE C EXP

AiC FME, UPC

Nondeterministic TM

A non deterministic Turing machine (NTM) M is a tuple
M= (Q.X,T, A, qo, gr), where

® () is a finite set of states,

® 3 is the input alphabet.

e [is the tape alphabet, = X U {b,»}, with b,»¢ ¥.

e ACQxTIxQxT x{1,r,n} is the transition relation.

qo is the initial state.

gr is the final or accepting state.

AiC FME, UPC

Non deterministic Turing machines: Recognizing languages

o let M=(Q,X,I,A, qo,qr) be a TM and x € ¥
® The computation of M with input x goes as follows:
® |[nitially: the state is qp; the tape has » x and all remaining
cells in the tape hold a b; the head has access to the first
symbol of x.
® \While there is a transition in § for the combination state,
symbol accessed by the head, one of such transitions is applied.

AiC FME, UPC

Non deterministic Turing machines: Recognizing languages

o let M=(Q,X,I,A, qo,qr) be a TM and x € ¥
® The computation of M with input x goes as follows:

® |[nitially: the state is qp; the tape has » x and all remaining
cells in the tape hold a b; the head has access to the first
symbol of x.

® \While there is a transition in § for the combination state,
symbol accessed by the head, one of such transitions is applied.

® Assuming that @ and I are disjoint, the word » aq(is a
configuration in which » a3 are the tape contents (b
outside), g is a state and the head is accessing the tape cell
holding the first symbol in 3.

AiC FME, UPC

Non deterministic Turing machines: Recognizing languages

Let M =(Q,X,T,A, qo,qr) be a TM and x € **
The computation of M with input x goes as follows:
® |[nitially: the state is qp; the tape has » x and all remaining
cells in the tape hold a b; the head has access to the first
symbol of x.
® \While there is a transition in § for the combination state,
symbol accessed by the head, one of such transitions is applied.

® Assuming that @ and I are disjoint, the word » aq(is a
configuration in which » a3 are the tape contents (b
outside), g is a state and the head is accessing the tape cell
holding the first symbol in 3.

® The computation of M on x is a rooted tree of configurations,
the root is B ggx, so that we can pass from father to son
selecting a component in A.

AiC FME, UPC

Non deterministic Turing machines: Recognizing languages

® The computation of a TM on input x is a tree of
configurations.

® |f the tree of configurations has a leaf, we say that M halts on
input x, we note this as M(x) |, otherwise, the computation
diverges or does not halt, M(x) 1.

AiC FME, UPC

Non deterministic Turing machines: Recognizing languages

® The computation of a TM on input x is a tree of
configurations.

® |f the tree of configurations has a leaf, we say that M halts on
input x, we note this as M(x) |, otherwise, the computation
diverges or does not halt, M(x) 1.

® M accepts x if M(x) | and there is a leaf in the computation
with a configuration with state gg.

AiC FME, UPC

Non deterministic Turing machines: Recognizing languages

® The computation of a TM on input x is a tree of
configurations.

® |f the tree of configurations has a leaf, we say that M halts on
input x, we note this as M(x) |, otherwise, the computation
diverges or does not halt, M(x) 1.

® M accepts x if M(x) | and there is a leaf in the computation
with a configuration with state gg.

e [(M) C X* is the set of words that M accepts.

AiC FME, UPC

Non deterministic Turing machines: Recognizing languages

Theorem
A language L C ¥* is recognizable iff there is a NTM M with
L=L(M).

AiC FME, UPC

Non deterministic Turing machines: Deciding languages

® \We need a stopping criteria to define a non deterministic
decider.

AiC FME, UPC

Non deterministic Turing machines: Deciding languages

® \We need a stopping criteria to define a non deterministic
decider.

e ANTM M is a decider if, for each input x, the configuration
tree is finite.

AiC FME, UPC

Non deterministic Turing machines: Deciding languages

® \We need a stopping criteria to define a non deterministic
decider.

e ANTM M is a decider if, for each input x, the configuration
tree is finite.

Theorem
A language L C ¥* is decidable iff there is a decider NTM M such
that L = L(M).

AiC FME, UPC

Non deterministic Turing machines: Recognizing languages

® |n a decider, the computation tree is always finite.

AiC FME, UPC

Non deterministic Turing machines: Recognizing languages

® |n a decider, the computation tree is always finite.

® The number of configurations in the longest path from root to
leaves is the computation time.

® |n a similar way the space used is the required for the worst
computation path.

AiC FME, UPC

Complexity classes: definitions

Let f: N —= N,
® The class NTIME(f(n)) is the class of decision problems that
a non deterministic TM recognizes in time O(f(n)).

® The class NSPACE(f(n)) is the class of decision problems for
which a non deterministic TM solves instances of size n using
space O(f(n)).

AiC FME, UPC

Some complexity classes

NP = NTIME(poly(n))

NEXP = NTIME(2r°¥ (")

NL = NSPACE(lg n)

NPSPACE = NSPACE(poly(n))

AiC FME, UPC

Some complexity classes

NP = NTIME(poly(n))

NEXP = NTIME(2r°¥ (")

NL = NSPACE(lg n)

NPSPACE = NSPACE(poly(n))

LCNLCP

AiC FME, UPC

Some complexity classes

NP = NTIME(poly(n))

NEXP = NTIME(2r°¥ (")

NL = NSPACE(lg n)

NPSPACE = NSPACE(poly(n))

LCNLCP

P C NP C PSPACE = NPSPACE C EXP

AiC FME, UPC

Logic and NP

e A verifier for a language L is an algorithm A , where
L= {x| A accepts(x, c) for some word c}.

AiC FME, UPC

Logic and NP

A verifier for a language L is an algorithm A , where
L= {x| A accepts(x, c) for some word c}.

® A polynomial time verifier runs in polynomial time in the
length of x.

A language L is polynomially verifiable if it has a polynomial
time verifier.

® A verifier uses additional information, represented by the word
¢, to verify that a string x is a member of L. This information
is called a certificate, or proof, of membership in L.

A polynomial verifier can access only polynomial space.
Therefore, we can assume that |c| is polynomial in |x].

AiC FME, UPC

Decision Problems in NP: Examples

Theorem
Le NP iff L ={x |3y R(x,y)} where |y| = poly(|x|) and R can
be decided in polynomial time.

AiC FME, UPC

Decision Problems in NP: Examples

Theorem

Le NP iff L ={x |3y R(x,y)} where |y| = poly(|x|) and R can
be decided in polynomial time.

NP is the class of polynomially verifiable languages.

AiC FME, UPC

Decision Problems in NP: Examples

® COMPOSITE: Given an integer n, is n composite?

AiC FME, UPC

Decision Problems in NP: Examples

® COMPOSITE: Given an integer n, is n composite?
® COMPOSITE = {n | 3Iny, ny n=ny X mp}
® The certificate has polynomial size, and the verifier runs in
polynomial time.
® So, COMPOSITE € NP.

AiC FME, UPC

Decision Problems in NP: Examples

® COMPOSITE: Given an integer n, is n composite?
® COMPOSITE = {n | 3Iny, ny n=ny X mp}
® The certificate has polynomial size, and the verifier runs in
polynomial time.
® So, COMPOSITE € NP.
® SUBSET-SUM: Given aset S ={xy,...,x,} of Z" and t € Z,
exists 5" C S with 3°, co X = 7

AiC FME, UPC

Decision Problems in NP: Examples

® COMPOSITE: Given an integer n, is n composite?
® COMPOSITE = {n | 3Iny, ny n=ny X mp}
® The certificate has polynomial size, and the verifier runs in
polynomial time.
® So, COMPOSITE € NP.
® SUBSET-SUM: Given aset S ={xy,...,x,} of Z" and t € Z,
exists 5" C S with 3°, co X = 7
® The certificate is a subset of S, it can be represented by a

boolean vector, so it has polynomial size. The verifier runs in
polynomial time.
® So, SUBSET-SUM € NP.

AiC FME, UPC

Decision Problems in NP: Examples

® COMPOSITE: Given an integer n, is n composite?
® COMPOSITE = {n | 3Iny, ny n=ny X mp}
® The certificate has polynomial size, and the verifier runs in
polynomial time.
® So, COMPOSITE € NP.
® SUBSET-SUM: Given aset S ={xy,...,x,} of Z" and t € Z,
exists 5" C S with 3°, co X = 7
® The certificate is a subset of S, it can be represented by a
boolean vector, so it has polynomial size. The verifier runs in
polynomial time.
® So, SUBSET-SUM € NP.

e HAaMILTONIAN CYCLE: Given a graph G, is G Hamiltonian?

AiC FME, UPC

Decision Problems in NP: Examples

® COMPOSITE: Given an integer n, is n composite?
® COMPOSITE = {n | 3Iny, ny n=ny X mp}
® The certificate has polynomial size, and the verifier runs in
polynomial time.
® So, COMPOSITE € NP.
® SUBSET-SUM: Given aset S ={xy,...,x,} of Z" and t € Z,
exists 5" C S with 3°, co X = 7
® The certificate is a subset of S, it can be represented by a
boolean vector, so it has polynomial size. The verifier runs in
polynomial time.
® So, SUBSET-SUM € NP.
e HAaMILTONIAN CYCLE: Given a graph G, is G Hamiltonian?
® The certificate is a permutation of V/(G), it can be represented
by a vector, so it has polynomial size. The verifier also runs in
polynomial time.
® So, HAMILTONIAN CYCLE € NP.

AiC FME, UPC

Classes of complements

® Let C be a class of decision problems. co-C is formed by the
complements of languages in C, i.e., L € co-C iff L € C.

AiC FME, UPC

Classes of complements

® Let C be a class of decision problems. co-C is formed by the
complements of languages in C, i.e., L € co-C iff L € C.

e (lasses defined by TMs are closed under complement.

P = co-P EXP = co-EXP PSPACE = co-PSPACE

AiC FME, UPC

Classes of complements

® Let C be a class of decision problems. co-C is formed by the
complements of languages in C, i.e., L € co-C iff L € C.

e (lasses defined by TMs are closed under complement.

P = co-P EXP = co-EXP PSPACE = co-PSPACE

® Not so clear for classed defined by NTMs.
co-NP = {x | VyR(x,y)} where |y| = poly(|x|) and R can be
decided in polynomial time.

® |t seems different to asses that a property holds for a leaf in a
tree than on all their leaves.

AiC FME, UPC

Decision Problems in co-NP: Examples

e PRrIME: Given an integer n, is n composite?
® PRIME = {n|Va<nn mod a#0}.
® PRIME is the complement of COMPOSITE, we have
PRIME € co-NP

AiC FME, UPC

https://en.wikipedia.org/wiki/Primality_certificate

Decision Problems in co-NP: Examples

e PRrRIME: Given an integer n, is n composite?
® PRIME = {n|Va<nn mod a#0}.
® PRIME is the complement of COMPOSITE, we have
PRIME € co-NP
® PRIME € NP as it can be verified in poly time (Pratt 1975).
So in NP N co-NP

AiC FME, UPC

https://en.wikipedia.org/wiki/Primality_certificate

Decision Problems in co-NP: Examples

e PRrIME: Given an integer n, is n composite?

® PRIME = {n|Va<nn mod a#0}.

® PRIME is the complement of COMPOSITE, we have
PRIME € co-NP

® PRIME € NP as it can be verified in poly time (Pratt 1975).
So in NP N co-NP

® A polynomial time algorithm O(lg n®) was devised by Agrawal,
Kayal and Saxena in 2002.

AiC FME, UPC

https://en.wikipedia.org/wiki/Primality_certificate

Decision Problems in NP: Examples

® FACTORIZATION: Given an integer n, are there primes
P1y.-., Pk St. X =p1 X ... X pgk.

AiC FME, UPC

Decision Problems in NP: Examples

® FACTORIZATION: Given an integer n, are there primes

P1,..., Pk St. x=p1 X ... X pk.
® pi1,...,pk is the certificate.
® k and all the possible factors p are < n.
® The verifier, on input n and ps, ..., px, computes

p1 X ... X pk, checks if the result is n. If so, checks that all the
values are prime numbers.

® This takes time O(klgn® + kg n®).

® So, FACTORIZATION € NP.

AiC FME, UPC

Open questions

Is P = NP?

P # EXP, but is NP = EXP?

P € NP N co-NP, but is P = NP N co-NP?
Is L =NL?

AiC FME, UPC

Efficient algorithms?

Feasible problem there is an algorithm to find a solution efficiently.

AiC FME, UPC

Efficient algorithms?

Feasible problem there is an algorithm to find a solution efficiently.

The Determinant Problem: Given an n x n matrix M = (my),
compute

det(M) = 3 (=1)" [T mii;

ﬂ'ESn

where (—1)7 = {—1 if mhas odd parity,

+1 if m has even parity.

AiC FME, UPC

Efficient algorithms?

Feasible problem there is an algorithm to find a solution efficiently.

The Determinant Problem: Given an n x n matrix M = (my),
compute

det(M) = 3 (=1)" [T mii;

ﬂ'ESn

where (—1)7 = {—1 if mhas odd parity,

+1 if m has even parity.

Can be solved in O(n?), using the LU decomposition.

AiC FME, UPC

Efficient algorithms?

The Permanent Problem: Given an n x n matrix M = (mj;),

compute
perm(M) = Z H mj = (i)-
€S, i=1
a b c
Perm | d e f | = aei+ bfg+ cdh+ ceg + bdi + afh
g h i

Probably exponential Valiant 1979, best complexity known,
O(n2™). Glynn 2010

AiC FME, UPC

Efficient algorithms?

The Permanent Problem: Given an n x n matrix M = (mj;),

compute
perm(M) = Z H mj = (i)-
€S, i=1
a b c
Perm | d e f | = aei+ bfg+ cdh+ ceg + bdi + afh
g h i

Probably exponential Valiant 1979, best complexity known,
O(n2™). Glynn 2010

Main difference det(M; x My) = det(M) x det(M>) but
perm(M; x M) # perm(M;) x perm(My)

AiC FME, UPC

Godel's letter to von Neumann (1954)

Godel considered the Truncated Entscheidungsproblem: given any
statement in first order-logic, decide if there is a proof of the
statement with finite length of at most m lines, where m could be
any large but finite number.

AiC FME, UPC

Godel's letter to von Neumann (1954)

Godel considered the Truncated Entscheidungsproblem: given any
statement in first order-logic, decide if there is a proof of the
statement with finite length of at most m lines, where m could be
any large but finite number.

For instance, decide if there is a proof with at most m = 10 lines
to3x,y,z,ne N—{0} : (n>3)A(x"+y"=2").

AiC FME, UPC

Godel's letter to von Neumann (1954)

Godel considered the Truncated Entscheidungsproblem: given any
statement in first order-logic, decide if there is a proof of the
statement with finite length of at most m lines, where m could be
any large but finite number.

For instance, decide if there is a proof with at most m = 10 lines
to3x,y,z,ne N—{0} : (n>3)A(x"+y"=2").

The Truncated Entscheidungsproblem is decidable!

AiC FME, UPC

Godel's letter to von Neumann (1954)

Godel considered the Truncated Entscheidungsproblem: given any
statement in first order-logic, decide if there is a proof of the
statement with finite length of at most m lines, where m could be
any large but finite number.

For instance, decide if there is a proof with at most m = 10 lines
to3x,y,z,ne N—{0} : (n>3)A(x"+y"=2").

The Truncated Entscheidungsproblem is decidable!

In his letter Godel asked if there is a O(m) or O(m?) algorithm to
decide it.

AiC FME, UPC

Efficient algorithms?

® In computational complexity efficient algorithm is synonym of
polynomial time.

® |n practice, it is synonym of a low degree polynomial time.

® Nevertheless, we some times use efficient as synonym of best
known cost.

AiC FME, UPC

Efficient algorithms?

® In computational complexity efficient algorithm is synonym of
polynomial time.

® |n practice, it is synonym of a low degree polynomial time.

® Nevertheless, we some times use efficient as synonym of best
known cost.

® How to differentiate strict exponential time from polynomial
time?

® We cannot do that in most of the cases, we relate such
answers to some of the open complexity questions.

AiC FME, UPC

Complexity classes for other types of problems

In the same way we can define complexity classes for other types of
problems

AiC FME, UPC

Complexity classes for other types of problems

In the same way we can define complexity classes for other types of
problems

® Function problems
Given x, compute y such that R(x,y) holds.

AiC FME, UPC

Complexity classes for other types of problems

In the same way we can define complexity classes for other types of
problems
® Function problems

Given x, compute y such that R(x,y) holds.
Classes: FP, FNP, FEXP, ...

AiC FME, UPC

Complexity classes for other types of problems

In the same way we can define complexity classes for other types of
problems
® Function problems
Given x, compute y such that R(x,y) holds.
Classes: FP, FNP, FEXP, ...
® Optimization problems
Given x, compute y such that R(x,y) holds and m(x,y) is
maximum/minimum.

AiC FME, UPC

Complexity classes for other types of problems

In the same way we can define complexity classes for other types of
problems
® Function problems
Given x, compute y such that R(x,y) holds.
Classes: FP, FNP, FEXP, ...
® Optimization problems
Given x, compute y such that R(x,y) holds and m(x,y) is

maximum/minimum.
Classes: PO, NPO, EXPO, ...

AiC FME, UPC

Complexity classes for other types of problems

In the same way we can define complexity classes for other types of
problems

® Function problems
Given x, compute y such that R(x,y) holds.
Classes: FP, FNP, FEXP, ...

® Optimization problems
Given x, compute y such that R(x,y) holds and m(x,y) is

maximum/minimum.
Classes: PO, NPO, EXPO, ...

® Counting problems
Given x, how many y are there such that R(x,y)?

AiC FME, UPC

Complexity classes for other types of problems

In the same way we can define complexity classes for other types of
problems
® Function problems

Given x, compute y such that R(x,y) holds.
Classes: FP, FNP, FEXP, ...

® Optimization problems
Given x, compute y such that R(x,y) holds and m(x,y) is
maximum/minimum.
Classes: PO, NPO, EXPO, ...

® Counting problems
Given x, how many y are there such that R(x,y)?
Classes: #P

AiC FME, UPC

Function Problems: Examples

® Reachability: Given a direct graph G and two vertices v and
v, find a path a path from u to v, if one exists.

® Eulerian cycle: Given a graph G, find an Eulerian cycle that
traverses all the edges exactly once, if such a cycle exists.

® Factoring: Given an integer n, find its prime factors.

® Subset Sum: Given a sequence of positive integers
S={a1,...,ap} and t € Z, obtain I C {1,...,n} s.t.
Zie/ aj = t.

AiC FME, UPC

Optimization Problems: Examples

e Max Cut: Given a graph G, find a partition a partition V into
V1, V,, such that it maximizes the number of crossing edges
between V; and V5.

e Min Cut: Given a digraph G, find a partition V into Vi, V5,
such that it minimizes the number of edges going from V; to
Va.

® Shortest path: Given a connected and edge weighted digraph
G and s, t € V(G), find a path between s and t minimizing
the sum of the weights in the path.

AiC FME, UPC

Counting problems

® How many perfect matchings are there for a given bipartite
graph?

® How many graph colorings using k colors are there for a
particular graph G?

® What is the value of the permanent of a given matrix whose
entries are 0 or 17

® How many different variable assignments will satisfy a given
general boolean formula?

AiC FME, UPC

More complexity classes?

Sure, plenty!
Look into the Complexity zoo.
Around 546 the last time I've had a look!

AiC FME, UPC

https://complexityzoo.net/Complexity_Zoo

	Complexity classes
	Nondeterminism
	NP
	NP problems
	NP problems
	Complements
	Efficiency
	Function problems

