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Classifying decidable problems

• Decidable problems, admit algorithmic solutions.
• The algorithms solving such problems can use more or less

amount of resources.
• To measure the performance of an algorithm we use two

measures time and space.
• As usual we take a worst case analysis on inputs with the

same size.

• For a TM, time correspond to the length of the computation
and space to the portion of the tape accessed during the
computation.

• Observe that sometimes the space used might be smaller than
the input.
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Complexity classes: definitions

Let f : N → N,
• The class TIME(f (n)) is the class of decision problems for

which an algorithm exists that solves instances of size n in
time O(f (n)).

• The class SPACE(f (n)) is the class of decision problems for
which an algorithm exists that solves instances of size n using
space O(f (n)).
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Some complexity classes

• P = ∪kTIME (nk) = TIME (poly(n))
• EXP = TIME (2poly(n))
• 2EXP = TIME (22poly(n))
• L = LOGSPACE = SPACE (lg n)
• PSPACE = SPACE (poly(n))
• EXPSPACE = SPACE (2poly(n))

L ⊆ PSPACE ⊆ EXPSPACE

L ⊆ P ⊆ EXP PSPACE ⊆ EXP
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Nondeterministic TM

A non deterministic Turing machine (NTM) M is a tuple
M = (Q, Σ, Γ, ∆, q0, qF), where

• Q is a finite set of states,
• Σ is the input alphabet.
• Γ is the tape alphabet, Γ = Σ ∪ {b,▶}, with b,▶/∈ Σ.
• ∆ ⊆ Q × Γ × Q × Γ × {l, r, n} is the transition relation.
• q0 is the initial state.
• qF is the final or accepting state.

AiC FME, UPC Computational Complexity: Classes



Complexity classes Nondeterminism NP NP problems NP problems Complements Efficiency Function problems

Non deterministic Turing machines: Recognizing languages

• Let M = (Q, Σ, Γ, ∆, q0, qF) be a TM and x ∈ Σ∗

• The computation of M with input x goes as follows:
• Initially: the state is q0; the tape has ▶ x and all remaining

cells in the tape hold a b; the head has access to the first
symbol of x .

• While there is a transition in δ for the combination state,
symbol accessed by the head, one of such transitions is applied.

• Assuming that Q and Γ are disjoint, the word ▶ αqβ is a
configuration in which ▶ αβ are the tape contents (b
outside), q is a state and the head is accessing the tape cell
holding the first symbol in β.

• The computation of M on x is a rooted tree of configurations,
the root is ▶ q0x , so that we can pass from father to son
selecting a component in ∆.
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Non deterministic Turing machines: Recognizing languages

• The computation of a TM on input x is a tree of
configurations.

• If the tree of configurations has a leaf, we say that M halts on
input x , we note this as M(x) ↓, otherwise, the computation
diverges or does not halt, M(x) ↑.

• M accepts x if M(x) ↓ and there is a leaf in the computation
with a configuration with state qF.

• L(M) ⊆ Σ∗ is the set of words that M accepts.
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Non deterministic Turing machines: Recognizing languages

Theorem
A language L ⊆ Σ∗ is recognizable iff there is a NTM M with
L = L(M).

AiC FME, UPC Computational Complexity: Classes



Complexity classes Nondeterminism NP NP problems NP problems Complements Efficiency Function problems

Non deterministic Turing machines: Deciding languages

• We need a stopping criteria to define a non deterministic
decider.

• A NTM M is a decider if, for each input x , the configuration
tree is finite.

Theorem
A language L ⊆ Σ∗ is decidable iff there is a decider NTM M such
that L = L(M).
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Non deterministic Turing machines: Recognizing languages

• In a decider, the computation tree is always finite.

• The number of configurations in the longest path from root to
leaves is the computation time.

• In a similar way the space used is the required for the worst
computation path.
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Some complexity classes

• NP = NTIME(poly(n))
• NEXP = NTIME(2poly(n))
• NL = NSPACE(lg n)
• NPSPACE = NSPACE(poly(n))

L ⊆ NL ⊆ P

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP
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Logic and NP

• A verifier for a language L is an algorithm A , where
L = {x | A accepts⟨x , c⟩ for some word c}.

• A polynomial time verifier runs in polynomial time in the
length of x .

• A language L is polynomially verifiable if it has a polynomial
time verifier.

• A verifier uses additional information, represented by the word
c, to verify that a string x is a member of L. This information
is called a certificate, or proof, of membership in L.

• A polynomial verifier can access only polynomial space.
Therefore, we can assume that |c| is polynomial in |x |.
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Decision Problems in NP: Examples

Theorem
L ∈ NP iff L = {x | ∃y R(x , y)} where |y | = poly(|x |) and R can
be decided in polynomial time.

NP is the class of polynomially verifiable languages.
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Decision Problems in NP: Examples

• Composite: Given an integer n, is n composite?

• Composite = {n | ∃n1, n2 n = n1 × n2}
• The certificate has polynomial size, and the verifier runs in

polynomial time.
• So, Composite ∈ NP.

• Subset-Sum: Given a set S = {x1, . . . , xn} of Z+ and t ∈ Z,
exists S ′ ⊆ S with

∑
xj ∈S′ xj = t?

• The certificate is a subset of S, it can be represented by a
boolean vector, so it has polynomial size. The verifier runs in
polynomial time.

• So, Subset-Sum ∈ NP.
• Hamiltonian Cycle: Given a graph G , is G Hamiltonian?

• The certificate is a permutation of V (G), it can be represented
by a vector, so it has polynomial size. The verifier also runs in
polynomial time.

• So, Hamiltonian Cycle ∈ NP.

AiC FME, UPC Computational Complexity: Classes



Complexity classes Nondeterminism NP NP problems NP problems Complements Efficiency Function problems

Decision Problems in NP: Examples

• Composite: Given an integer n, is n composite?
• Composite = {n | ∃n1, n2 n = n1 × n2}
• The certificate has polynomial size, and the verifier runs in

polynomial time.
• So, Composite ∈ NP.

• Subset-Sum: Given a set S = {x1, . . . , xn} of Z+ and t ∈ Z,
exists S ′ ⊆ S with

∑
xj ∈S′ xj = t?

• The certificate is a subset of S, it can be represented by a
boolean vector, so it has polynomial size. The verifier runs in
polynomial time.

• So, Subset-Sum ∈ NP.
• Hamiltonian Cycle: Given a graph G , is G Hamiltonian?

• The certificate is a permutation of V (G), it can be represented
by a vector, so it has polynomial size. The verifier also runs in
polynomial time.

• So, Hamiltonian Cycle ∈ NP.

AiC FME, UPC Computational Complexity: Classes



Complexity classes Nondeterminism NP NP problems NP problems Complements Efficiency Function problems

Decision Problems in NP: Examples

• Composite: Given an integer n, is n composite?
• Composite = {n | ∃n1, n2 n = n1 × n2}
• The certificate has polynomial size, and the verifier runs in

polynomial time.
• So, Composite ∈ NP.

• Subset-Sum: Given a set S = {x1, . . . , xn} of Z+ and t ∈ Z,
exists S ′ ⊆ S with

∑
xj ∈S′ xj = t?

• The certificate is a subset of S, it can be represented by a
boolean vector, so it has polynomial size. The verifier runs in
polynomial time.

• So, Subset-Sum ∈ NP.
• Hamiltonian Cycle: Given a graph G , is G Hamiltonian?

• The certificate is a permutation of V (G), it can be represented
by a vector, so it has polynomial size. The verifier also runs in
polynomial time.

• So, Hamiltonian Cycle ∈ NP.

AiC FME, UPC Computational Complexity: Classes



Complexity classes Nondeterminism NP NP problems NP problems Complements Efficiency Function problems

Decision Problems in NP: Examples

• Composite: Given an integer n, is n composite?
• Composite = {n | ∃n1, n2 n = n1 × n2}
• The certificate has polynomial size, and the verifier runs in

polynomial time.
• So, Composite ∈ NP.

• Subset-Sum: Given a set S = {x1, . . . , xn} of Z+ and t ∈ Z,
exists S ′ ⊆ S with

∑
xj ∈S′ xj = t?

• The certificate is a subset of S, it can be represented by a
boolean vector, so it has polynomial size. The verifier runs in
polynomial time.

• So, Subset-Sum ∈ NP.

• Hamiltonian Cycle: Given a graph G , is G Hamiltonian?
• The certificate is a permutation of V (G), it can be represented

by a vector, so it has polynomial size. The verifier also runs in
polynomial time.

• So, Hamiltonian Cycle ∈ NP.

AiC FME, UPC Computational Complexity: Classes



Complexity classes Nondeterminism NP NP problems NP problems Complements Efficiency Function problems

Decision Problems in NP: Examples

• Composite: Given an integer n, is n composite?
• Composite = {n | ∃n1, n2 n = n1 × n2}
• The certificate has polynomial size, and the verifier runs in

polynomial time.
• So, Composite ∈ NP.

• Subset-Sum: Given a set S = {x1, . . . , xn} of Z+ and t ∈ Z,
exists S ′ ⊆ S with

∑
xj ∈S′ xj = t?

• The certificate is a subset of S, it can be represented by a
boolean vector, so it has polynomial size. The verifier runs in
polynomial time.

• So, Subset-Sum ∈ NP.
• Hamiltonian Cycle: Given a graph G , is G Hamiltonian?

• The certificate is a permutation of V (G), it can be represented
by a vector, so it has polynomial size. The verifier also runs in
polynomial time.

• So, Hamiltonian Cycle ∈ NP.

AiC FME, UPC Computational Complexity: Classes



Complexity classes Nondeterminism NP NP problems NP problems Complements Efficiency Function problems

Decision Problems in NP: Examples

• Composite: Given an integer n, is n composite?
• Composite = {n | ∃n1, n2 n = n1 × n2}
• The certificate has polynomial size, and the verifier runs in

polynomial time.
• So, Composite ∈ NP.

• Subset-Sum: Given a set S = {x1, . . . , xn} of Z+ and t ∈ Z,
exists S ′ ⊆ S with

∑
xj ∈S′ xj = t?

• The certificate is a subset of S, it can be represented by a
boolean vector, so it has polynomial size. The verifier runs in
polynomial time.

• So, Subset-Sum ∈ NP.
• Hamiltonian Cycle: Given a graph G , is G Hamiltonian?

• The certificate is a permutation of V (G), it can be represented
by a vector, so it has polynomial size. The verifier also runs in
polynomial time.

• So, Hamiltonian Cycle ∈ NP.
AiC FME, UPC Computational Complexity: Classes



Complexity classes Nondeterminism NP NP problems NP problems Complements Efficiency Function problems

Classes of complements

• Let C be a class of decision problems. co-C is formed by the
complements of languages in C, i.e., L ∈ co-C iff L ∈ C.

• Classes defined by TMs are closed under complement.

P = co-P EXP = co-EXP PSPACE = co-PSPACE

• Not so clear for classed defined by NTMs.
co-NP = {x | ∀yR(x , y)} where |y | = poly(|x |) and R can be
decided in polynomial time.

• It seems different to asses that a property holds for a leaf in a
tree than on all their leaves.
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Decision Problems in co-NP: Examples

• Prime: Given an integer n, is n composite?
• Prime = {n | ∀a ≤ n n mod a ̸= 0}.
• Prime is the complement of Composite, we have

Prime ∈ co-NP

• Prime ∈ NP as it can be verified in poly time (Pratt 1975).
So in NP ∩ co-NP

• A polynomial time algorithm O(lg n6) was devised by Agrawal,
Kayal and Saxena in 2002.
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Decision Problems in NP: Examples

• Factorization: Given an integer n, are there primes
p1, . . . , pk s.t. x = p1 × . . . × pk .

• p1, . . . , pk is the certificate.
• k and all the possible factors p are ≤ n.
• The verifier, on input n and p1, . . . , pk , computes

p1 × . . . × pk , checks if the result is n. If so, checks that all the
values are prime numbers.

• This takes time O(k lg n2 + k lg n6).
• So, Factorization ∈ NP.
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Open questions

• Is P = NP?
• P ̸= EXP, but is NP = EXP?
• P ⊆ NP ∩ co-NP, but is P = NP ∩ co-NP?
• Is L = NL?
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Efficient algorithms?

Feasible problem there is an algorithm to find a solution efficiently.

The Determinant Problem: Given an n × n matrix M = (mij),
compute

det(M) =
∑

π∈Sn

(−1)π
n∏

i=1
mi ,π(i),

where (−1)π =
{

−1 if πhas odd parity,
+1 if π has even parity.

Can be solved in O(n3), using the LU decomposition.
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+1 if π has even parity.

Can be solved in O(n3), using the LU decomposition.
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Efficient algorithms?

The Permanent Problem: Given an n × n matrix M = (mij),
compute

perm(M) =
∑

π∈Sn

n∏
i=1

mi ,π(i).

Perm

 a b c
d e f
g h i

 = aei + bfg + cdh + ceg + bdi + afh

Probably exponential Valiant 1979, best complexity known,
O(n2n). Glynn 2010

Main difference det(M1 × M2) = det(M1) × det(M2) but
perm(M1 × M2) ̸= perm(M1) × perm(M2)
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Gödel’s letter to von Neumann (1954)

Gödel considered the Truncated Entscheidungsproblem: given any
statement in first order-logic, decide if there is a proof of the
statement with finite length of at most m lines, where m could be
any large but finite number.

For instance, decide if there is a proof with at most m = 1010 lines
to ∃x , y , z , n ∈ N − {0} : (n ≥ 3) ∧ (xn + yn = zn).

The Truncated Entscheidungsproblem is decidable!

In his letter Gödel asked if there is a O(m) or O(m2) algorithm to
decide it.
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Efficient algorithms?

• In computational complexity efficient algorithm is synonym of
polynomial time.

• In practice, it is synonym of a low degree polynomial time.
• Nevertheless, we some times use efficient as synonym of best

known cost.

• How to differentiate strict exponential time from polynomial
time?

• We cannot do that in most of the cases, we relate such
answers to some of the open complexity questions.
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Complexity classes for other types of problems

In the same way we can define complexity classes for other types of
problems

• Function problems
Given x , compute y such that R(x , y) holds.
Classes: FP, FNP, FEXP, . . .

• Optimization problems
Given x , compute y such that R(x , y) holds and m(x , y) is
maximum/minimum.
Classes: PO, NPO, EXPO, . . .

• Counting problems
Given x , how many y are there such that R(x , y)?
Classes: #P
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Function Problems: Examples

• Reachability: Given a direct graph G and two vertices u and
v , find a path a path from u to v , if one exists.

• Eulerian cycle: Given a graph G , find an Eulerian cycle that
traverses all the edges exactly once, if such a cycle exists.

• Factoring: Given an integer n, find its prime factors.
• Subset Sum: Given a sequence of positive integers

S = {a1, . . . , an} and t ∈ Z, obtain I ⊆ {1, . . . , n} s.t.∑
i∈I ai = t.
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Optimization Problems: Examples

• Max Cut: Given a graph G , find a partition a partition V into
V1, V2, such that it maximizes the number of crossing edges
between V1 and V2.

• Min Cut: Given a digraph G , find a partition V into V1, V2,
such that it minimizes the number of edges going from V1 to
V2.

• Shortest path: Given a connected and edge weighted digraph
G and s, t ∈ V (G), find a path between s and t minimizing
the sum of the weights in the path.
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Counting problems

• How many perfect matchings are there for a given bipartite
graph?

• How many graph colorings using k colors are there for a
particular graph G?

• What is the value of the permanent of a given matrix whose
entries are 0 or 1?

• How many different variable assignments will satisfy a given
general boolean formula?
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More complexity classes?

Sure, plenty!
Look into the Complexity zoo.
Around 546 the last time I’ve had a look!
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https://complexityzoo.net/Complexity_Zoo
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