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Classifying decidable problems

® Decidable problems, admit algorithmic solutions.

® The algorithms solving such problems can use more or less
amount of resources.

® To measure the performance of an algorithm we use two
measures time and space.

® As usual we take a worst case analysis on inputs with the
same size.
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Classifying decidable problems

® Decidable problems, admit algorithmic solutions.

® The algorithms solving such problems can use more or less
amount of resources.

® To measure the performance of an algorithm we use two
measures time and space.

® As usual we take a worst case analysis on inputs with the
same size.

® For a TM, time correspond to the length of the computation
and space to the portion of the tape accessed during the
computation.

® QObserve that sometimes the space used might be smaller than
the input.
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Complexity classes: definitions

Let f: N — N,

® The class TIME(f(n)) is the class of decision problems for
which an algorithm exists that solves instances of size n in
time O(f(n)).

® The class SPACE(f(n)) is the class of decision problems for
which an algorithm exists that solves instances of size n using
space O(f(n)).
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Some complexity classes

® P = U, TIME(n¥) = TIME(poly(n))
EXP = TIME(2ro¥(n)

2EXP = TIME(22°™"")

L = LOGSPACE = SPACE(lg n)
PSPACE = SPACE(poly(n))
EXPSPACE = SPACE(2Po(n)
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Some complexity classes

® P = U, TIME(n¥) = TIME(poly(n))
EXP = TIME(2ro¥(n)

2EXP = TIME(22°™"")

L = LOGSPACE = SPACE(lg n)
PSPACE = SPACE(poly(n))
EXPSPACE = SPACE(2Po(n)

L € PSPACE C EXPSPACE

LCPCEXP PSPACE C EXP
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Nondeterministic TM

A non deterministic Turing machine (NTM) M is a tuple
M= (Q.X,T, A, qo, gr), where

® () is a finite set of states,

® 3 is the input alphabet.

e [ is the tape alphabet, = X U {b,»}, with b,»¢ ¥.

e ACQxTIxQxT x{1,r,n} is the transition relation.

qo is the initial state.

gr is the final or accepting state.
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Non deterministic Turing machines: Recognizing languages

o let M=(Q,X,I,A, qo,qr) be a TM and x € ¥
® The computation of M with input x goes as follows:
® |[nitially: the state is qp; the tape has » x and all remaining
cells in the tape hold a b; the head has access to the first
symbol of x.
® \While there is a transition in § for the combination state,
symbol accessed by the head, one of such transitions is applied.
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Non deterministic Turing machines: Recognizing languages

Let M =(Q,X,T,A, qo,qr) be a TM and x € **
The computation of M with input x goes as follows:
® |[nitially: the state is qp; the tape has » x and all remaining
cells in the tape hold a b; the head has access to the first
symbol of x.
® \While there is a transition in § for the combination state,
symbol accessed by the head, one of such transitions is applied.

® Assuming that @ and I are disjoint, the word » aq( is a
configuration in which » a3 are the tape contents (b
outside), g is a state and the head is accessing the tape cell
holding the first symbol in 3.

® The computation of M on x is a rooted tree of configurations,
the root is B ggx, so that we can pass from father to son
selecting a component in A.
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Non deterministic Turing machines: Recognizing languages

® The computation of a TM on input x is a tree of
configurations.

® |f the tree of configurations has a leaf, we say that M halts on
input x, we note this as M(x) |, otherwise, the computation
diverges or does not halt, M(x) 1.
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Non deterministic Turing machines: Recognizing languages

® The computation of a TM on input x is a tree of
configurations.

® |f the tree of configurations has a leaf, we say that M halts on
input x, we note this as M(x) |, otherwise, the computation
diverges or does not halt, M(x) 1.

® M accepts x if M(x) | and there is a leaf in the computation
with a configuration with state gg.

e [(M) C X* is the set of words that M accepts.
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Non deterministic Turing machines: Recognizing languages

Theorem
A language L C ¥* is recognizable iff there is a NTM M with
L=L(M).
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Non deterministic Turing machines: Deciding languages

® \We need a stopping criteria to define a non deterministic
decider.
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Non deterministic Turing machines: Deciding languages

® \We need a stopping criteria to define a non deterministic
decider.

e ANTM M is a decider if, for each input x, the configuration
tree is finite.

Theorem
A language L C ¥* is decidable iff there is a decider NTM M such
that L = L(M).
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Non deterministic Turing machines: Recognizing languages

® |n a decider, the computation tree is always finite.
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Non deterministic Turing machines: Recognizing languages

® |n a decider, the computation tree is always finite.

® The number of configurations in the longest path from root to
leaves is the computation time.

® |n a similar way the space used is the required for the worst
computation path.
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Complexity classes: definitions

Let f: N —= N,
® The class NTIME(f(n)) is the class of decision problems that
a non deterministic TM recognizes in time O(f(n)).

® The class NSPACE(f(n)) is the class of decision problems for
which a non deterministic TM solves instances of size n using
space O(f(n)).
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Some complexity classes

NP = NTIME(poly(n))

NEXP = NTIME(2r°¥ (")

NL = NSPACE(lg n)

NPSPACE = NSPACE(poly(n))
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Some complexity classes

NP = NTIME(poly(n))

NEXP = NTIME(2r°¥ (")

NL = NSPACE(lg n)

NPSPACE = NSPACE(poly(n))

LCNLCP

P C NP C PSPACE = NPSPACE C EXP
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Logic and NP

e A verifier for a language L is an algorithm A , where
L= {x| A accepts(x, c) for some word c}.

AiC FME, UPC



Logic and NP

A verifier for a language L is an algorithm A , where
L= {x| A accepts(x, c) for some word c}.

® A polynomial time verifier runs in polynomial time in the
length of x.

A language L is polynomially verifiable if it has a polynomial
time verifier.

® A verifier uses additional information, represented by the word
¢, to verify that a string x is a member of L. This information
is called a certificate, or proof, of membership in L.

A polynomial verifier can access only polynomial space.
Therefore, we can assume that |c| is polynomial in |x].
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Decision Problems in NP: Examples

Theorem
Le NP iff L ={x |3y R(x,y)} where |y| = poly(|x|) and R can
be decided in polynomial time.
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Decision Problems in NP: Examples

Theorem

Le NP iff L ={x |3y R(x,y)} where |y| = poly(|x|) and R can
be decided in polynomial time.

NP is the class of polynomially verifiable languages.
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Decision Problems in NP: Examples

® COMPOSITE: Given an integer n, is n composite?
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Decision Problems in NP: Examples

® COMPOSITE: Given an integer n, is n composite?
® COMPOSITE = {n | 3Iny, ny n=ny X mp}
® The certificate has polynomial size, and the verifier runs in
polynomial time.
® So, COMPOSITE € NP.
® SUBSET-SUM: Given aset S ={xy,...,x,} of Z" and t € Z,
exists 5" C S with 3°, co X = 7
® The certificate is a subset of S, it can be represented by a
boolean vector, so it has polynomial size. The verifier runs in
polynomial time.
® So, SUBSET-SUM € NP.
e HAaMILTONIAN CYCLE: Given a graph G, is G Hamiltonian?
® The certificate is a permutation of V/(G), it can be represented
by a vector, so it has polynomial size. The verifier also runs in
polynomial time.
® So, HAMILTONIAN CYCLE € NP.
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Classes of complements

® Let C be a class of decision problems. co-C is formed by the
complements of languages in C, i.e., L € co-C iff L € C.
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Classes of complements

® Let C be a class of decision problems. co-C is formed by the
complements of languages in C, i.e., L € co-C iff L € C.

e (lasses defined by TMs are closed under complement.

P = co-P EXP = co-EXP PSPACE = co-PSPACE

® Not so clear for classed defined by NTMs.
co-NP = {x | VyR(x,y)} where |y| = poly(|x|) and R can be
decided in polynomial time.

® |t seems different to asses that a property holds for a leaf in a
tree than on all their leaves.
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Decision Problems in co-NP: Examples

e PRrIME: Given an integer n, is n composite?
® PRIME = {n|Va<nn mod a#0}.
® PRIME is the complement of COMPOSITE, we have
PRIME € co-NP
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https://en.wikipedia.org/wiki/Primality_certificate

Decision Problems in co-NP: Examples

e PRrRIME: Given an integer n, is n composite?
® PRIME = {n|Va<nn mod a#0}.
® PRIME is the complement of COMPOSITE, we have
PRIME € co-NP
® PRIME € NP as it can be verified in poly time (Pratt 1975).
So in NP N co-NP
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Decision Problems in co-NP: Examples

e PRrIME: Given an integer n, is n composite?

® PRIME = {n|Va<nn mod a#0}.

® PRIME is the complement of COMPOSITE, we have
PRIME € co-NP

® PRIME € NP as it can be verified in poly time (Pratt 1975).
So in NP N co-NP

® A polynomial time algorithm O(lg n®) was devised by Agrawal,
Kayal and Saxena in 2002.
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Decision Problems in NP: Examples

® FACTORIZATION: Given an integer n, are there primes
P1y.-., Pk St. X =p1 X ... X pgk.
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Decision Problems in NP: Examples

® FACTORIZATION: Given an integer n, are there primes

P1,..., Pk St. x=p1 X ... X pk.
® pi1,...,pk is the certificate.
® k and all the possible factors p are < n.
® The verifier, on input n and ps, ..., px, computes

p1 X ... X pk, checks if the result is n. If so, checks that all the
values are prime numbers.

® This takes time O(klgn® + kg n®).

® So, FACTORIZATION € NP.
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Open questions

Is P = NP?

P # EXP, but is NP = EXP?

P € NP N co-NP, but is P = NP N co-NP?
Is L =NL?
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Efficient algorithms?

Feasible problem there is an algorithm to find a solution efficiently.
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Efficient algorithms?

Feasible problem there is an algorithm to find a solution efficiently.

The Determinant Problem: Given an n x n matrix M = (my),
compute

det(M) = 3 (=1)" [T mii;

ﬂ'ESn

where (—1)7 = {—1 if mhas odd parity,

+1 if m has even parity.
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Efficient algorithms?

Feasible problem there is an algorithm to find a solution efficiently.

The Determinant Problem: Given an n x n matrix M = (my),
compute

det(M) = 3 (=1)" [T mii;

ﬂ'ESn

where (—1)7 = {—1 if mhas odd parity,

+1 if m has even parity.

Can be solved in O(n?), using the LU decomposition.
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Efficient algorithms?

The Permanent Problem: Given an n x n matrix M = (mj;),

compute
perm(M) = Z H mj = (i)-
€S, i=1
a b c
Perm | d e f | = aei+ bfg+ cdh+ ceg + bdi + afh
g h i

Probably exponential Valiant 1979, best complexity known,
O(n2™). Glynn 2010
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Efficient algorithms?

The Permanent Problem: Given an n x n matrix M = (mj;),

compute
perm(M) = Z H mj = (i)-
€S, i=1
a b c
Perm | d e f | = aei+ bfg+ cdh+ ceg + bdi + afh
g h i

Probably exponential Valiant 1979, best complexity known,
O(n2™). Glynn 2010

Main difference det(M; x My) = det(M) x det(M>) but
perm(M; x M) # perm(M;) x perm(My)
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Godel's letter to von Neumann (1954)

Godel considered the Truncated Entscheidungsproblem: given any
statement in first order-logic, decide if there is a proof of the
statement with finite length of at most m lines, where m could be
any large but finite number.
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For instance, decide if there is a proof with at most m = 10 lines
to3x,y,z,ne N—{0} : (n>3)A(x"+y"=2").

AiC FME, UPC



Godel's letter to von Neumann (1954)

Godel considered the Truncated Entscheidungsproblem: given any
statement in first order-logic, decide if there is a proof of the
statement with finite length of at most m lines, where m could be
any large but finite number.

For instance, decide if there is a proof with at most m = 10 lines
to3x,y,z,ne N—{0} : (n>3)A(x"+y"=2").

The Truncated Entscheidungsproblem is decidable!

AiC FME, UPC



Godel's letter to von Neumann (1954)

Godel considered the Truncated Entscheidungsproblem: given any
statement in first order-logic, decide if there is a proof of the
statement with finite length of at most m lines, where m could be
any large but finite number.

For instance, decide if there is a proof with at most m = 10 lines
to3x,y,z,ne N—{0} : (n>3)A(x"+y"=2").

The Truncated Entscheidungsproblem is decidable!

In his letter Godel asked if there is a O(m) or O(m?) algorithm to
decide it.
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Efficient algorithms?

® In computational complexity efficient algorithm is synonym of
polynomial time.

® |n practice, it is synonym of a low degree polynomial time.

® Nevertheless, we some times use efficient as synonym of best
known cost.
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Efficient algorithms?

® In computational complexity efficient algorithm is synonym of
polynomial time.

® |n practice, it is synonym of a low degree polynomial time.

® Nevertheless, we some times use efficient as synonym of best
known cost.

® How to differentiate strict exponential time from polynomial
time?

® We cannot do that in most of the cases, we relate such
answers to some of the open complexity questions.
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Complexity classes for other types of problems

In the same way we can define complexity classes for other types of
problems
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In the same way we can define complexity classes for other types of
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® Optimization problems
Given x, compute y such that R(x,y) holds and m(x,y) is

maximum/minimum.
Classes: PO, NPO, EXPO, ...

® Counting problems
Given x, how many y are there such that R(x,y)?

AiC FME, UPC



Complexity classes for other types of problems

In the same way we can define complexity classes for other types of
problems
® Function problems

Given x, compute y such that R(x,y) holds.
Classes: FP, FNP, FEXP, ...

® Optimization problems
Given x, compute y such that R(x,y) holds and m(x,y) is
maximum/minimum.
Classes: PO, NPO, EXPO, ...

® Counting problems
Given x, how many y are there such that R(x,y)?
Classes: #P
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Function Problems: Examples

® Reachability: Given a direct graph G and two vertices v and
v, find a path a path from u to v, if one exists.

® Eulerian cycle: Given a graph G, find an Eulerian cycle that
traverses all the edges exactly once, if such a cycle exists.

® Factoring: Given an integer n, find its prime factors.

® Subset Sum: Given a sequence of positive integers
S={a1,...,ap} and t € Z, obtain I C {1,...,n} s.t.
Zie/ aj = t.
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Optimization Problems: Examples

e Max Cut: Given a graph G, find a partition a partition V into
V1, V,, such that it maximizes the number of crossing edges
between V; and V5.

e Min Cut: Given a digraph G, find a partition V into Vi, V5,
such that it minimizes the number of edges going from V; to
Va.

® Shortest path: Given a connected and edge weighted digraph
G and s, t € V(G), find a path between s and t minimizing
the sum of the weights in the path.
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Counting problems

® How many perfect matchings are there for a given bipartite
graph?

® How many graph colorings using k colors are there for a
particular graph G?

® What is the value of the permanent of a given matrix whose
entries are 0 or 17

® How many different variable assignments will satisfy a given
general boolean formula?
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More complexity classes?

Sure, plenty!
Look into the Complexity zoo.
Around 546 the last time I've had a look!
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