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Algorithmics: Basic references

• Kleinberg, Tardos. Algorithm Design, Pearson Education,
2006.

• Cormen, Leisserson, Rivest and Stein. Introduction to
algorithms. Second edition, MIT Press and McGraw Hill 2001.

• Easley, Kleinberg. Networks, Crowds, and Markets: Reasoning
About a Highly Connected World, Cambridge University
Press, 2010
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Computational Complexity: Basic references

• Sipser Introduction to the Theory of Computation 2013.
• Papadimitriou Computational Complexity 1994.
• Garey and Johnson Computers and Intractability: A Guide to

the Theory of NP-Completeness 1979
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Alphabets and languages

• Alphabet: a non-empty finite set.
• Symbol: an element of an alphabet.
• Word: a finite sequence of symbols.

λ denotes the empty word, a sequence with 0 symbols.
• Language: set of words over an alphabet.
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Alphabets and languages: concatenation

• For an alphabet Σ, Σ∗ denotes the set of words over Σ.

• The basic operation on words is the concatenation.
• For x , y ∈ Σ∗, x · y is the word obtained placing the symbols

in x followed by the symbols in y .
• For example, if Σ = {0, 1}, x = 001000 and y = 11101,

xy = 00100011101.
• (Σ∗, ·) is a non-commutative monoid.

• For x ∈ Σ∗, the length of x (|x |) is the number of symbols in
x .

• |x · y | = |x | + |y |
• |λ| = 0

• A language L is a subset of Σ∗.
We can extend concatenation to languages in the usual form.

L1 · L2 = {x · y | x ∈ L1, y ∈ L2}
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Alphabets and languages: enumerability

• Let Σ be an alphabet, Σ∗ is enumerable.
• We cannot use alphabetical order a, aa, aaa, aaaa, . . .

• We use lexicographic order
• Order words by length.
• Among words with the same length order them according to

alphabetical order.

• For Σ = {0, 1} we can enumerate {0.1}∗ as

λ, 0, 1, 00, 01, 10, 11, 000, . . . , 111, 0000, . . .
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Problem types

• Decision
Input x
Property P(x)

Example: Given a graph and two vertices, is there a path
joining them?

• Function
Input x
Compute y such that Q(x , y)

Example: Given a graph and two vertices, compute the
minimum distance between them.
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Problem types

• Decision
Input x
Property P(x)

By coding inputs on alphabet Σ such a problem identifies a
language:
{⟨x⟩ | P(x)} ∈ P(Σ∗)

• Function
Input x
Compute y such that Q(x , y)

By coding inputs/outputs on alphabet Σ a deterministic
algorithm solving a problem determines a function
f : Σ∗ → Σ∗ s.t., for any x , Q(x , f (x)) is true.
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Decision problem classes

• Undecidable
No algorithm can solve the problem.

• Decidable
There is an algorithm solving them.
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Turing machines

• A Turing machine (TM) M is a tuple M = (Q, Σ, Γ, δ, q0, qF),
where

• Q is a finite set of states,
• Σ is the input alphabet.
• Γ is the tape alphabet, Γ = Σ ∪ {b,▶}, with b,▶/∈ Σ.
• δ : Q × Γ → Q × Γ × {l, r, n} is the transition function.
• q0 is the initial state.
• qF is the final or accepting state.
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Turing machines: Recognizing languages

• Let M = (Q, Σ, Γ, δ, q0, qF) be a TM and x ∈ Σ∗

• The computation of M with input x goes as follows:
• Initially: the state is q0; the tape has ▶ x and all remaining

cells in the tape hold a b; the head has access to the first
symbol of x .

• While there is a transition in δ for the combination state,
symbol accessed by the head, the transition is applied.

• Assuming that Q and Γ are disjoint, the word ▶ αqβ is a
configuration in which ▶ αβ are the tape contents (b
outside), q is a state and the head is accessing the tape cell
holding the first symbol in β.

• The computation of M on x is a sequence of configurations,
starting with ▶ q0x , so that we can pass from one
configuration to the next applying δ.
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Turing machines: Recognizing languages

• The computation of a TM on input x is a sequence of
configurations.

• If the sequence of configurations is finite, we say the M halts
on input x , we note this as M(x) ↓,
otherwise, the computation diverges or does not halt, M(x) ↑.

• When M(x) ↓,
• the number of configurations in the computation is the

computation time.
• Let ▶ αqβ be the last configuration in the computation.

• M(x) = αβ is the output,
• M halts on input x in state q.

• L(M) ⊆ Σ∗ is the set of words that M accepts, i.e, M on
input x halts in state qF.

• A language L ⊆ Σ∗ is recognizable iff there is a TM M with
L = L(M).
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The Church-Turing thesis: Problems and programs

• TM is a synonym of program. However, a program allows
different construction rules than a TM but, so far,
programmable as TM.

• The input to a program has to be fitted into main memory, so
it can be identified with a string in {0, 1}∗ (or in another
suitable alphabet).

• The set of TM is enumerable (easy to see), so the set of all
programs is enumerable.

• So, we can identify TMs with the natural numbers. Let Mx be
the x -th TM.
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The Church-Turing thesis: Problems and programs

• In fact, a TM/program is a word in an adequate alphabet. So,
we can consider a TM/program as the input to a
TM/program.

• The universal TM designed by Turing, has input x , y and
outputs the result of executing TM x on input y . This has an
equivalent in the language interpreter.

• Technically x , y is not a well defined input. Nevertheless,
N × N is enumerable, so we have a bijection to N (or Σ∗) that
allow us to recover the original words. We denote this
effective codification as ⟨x , y⟩ ∈ Σ∗.
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The Entscheidungsproblem.

• David Hilbert, ICM Bolonia-1929, The Entscheidungsproblem:
Find a procedure to decide the validity of a given a first-order
logic expression, in a finite number of operations.

Ex: Is it true that
¬∃x , y , z , n ∈ N : (n ≥ 3) ∧ (xn + yn = zn)?

• Reflecting Hilbert’s dream of a mechanical procedure that can
prove or refute any mathematical claim.

If the Entscheidungsproblem is solved ⇒ all mathematics
could be mechanized.
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Hilbert program fails: Gödel’s theorem
• The framework

• Formal system: a language, a finite set of axioms and a set of
inference rules used to derive an expression from a set of
axioms.

• A statement S in a formal system is decidable: if there is a
finite proof, according to the inference rules, which will
correctly prove that S is true or not. Otherwise the statement
is undecidable

• A formal system is complete: every statement can be proved or
disproved. Otherwise the system is incomplete.

• K. Gödel’s incompleteness theorem (1931):
In any formal system sufficiently powerful to include ordinary
arithmetic, there will be undecidable statements.
There are statements in the arithmetic (N with +, x), which
can not be proved or disproved.
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The Entscheidungsproblem unsolvable: Turing’s approach

• Consider the set of TMs, i.e., tuples (Q, Σ, Γ, δ, q0, qF), this
set is enumerable.

• The set of languages is P(Σ∗), which is not enumerable.
• By Cantor’s theorem there are languages that are not

recognizable.
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The Entscheidungsproblem unsolvable: Turing’s approach

• A TM M stops always on accepted inputs, but it may stop or
not on rejected inputs.

• A TM M is a decider if it stops on any input x ∈ Σ∗.

• A language L ⊆ Σ∗ is decidable iff there is a decider M such
that L = L(M).
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An undecidable language

Theorem
The language ATM = {⟨x , w⟩ | w ∈ L(Mx )} is undecidable.

Proof.

• Suppose that My is a decider for ATM .
• On input ⟨x , w⟩, My halts and accepts if Mx on input w halts

and accepts. Furthermore, it halts and rejects if Mx fails to
accept w .

• Consider the following TM, M, that on input x :
• Executes My on input ⟨x , x⟩
• If My accepts, reject, otherwise, accept

• What happens when we run M with its own number z as
input?
M = Mz accepts z iff My rejects ⟨z , z⟩ iff Mz rejects z .
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A unrecognizable language

Theorem
A language L is decidable iff L and L are recognizable.

Proof.
• If L is decidable, the TM M deciding L recognizes L.

Consider M ′ that is equal to M but: add a new final state q′
F

and, for any missing transition (q, a) in δ with q ̸= qF, add
transition δ′(q, a) = (q′

F, a, n).
• When L and L are recognizable, the trick is consider the two

TM and to run one step of each machine until one of them
stops and accepts. Determine acceptance according to the
machine that accepted.

ATM is not recognizable.
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stops and accepts. Determine acceptance according to the
machine that accepted.

ATM is not recognizable.
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Many-one reducibility

• E. L. Post, 1944

• A TM can be extended to produce an output by interpreting
the block of symbols left in the tape between ▶ and the first
b. M(w) ∈ Σ∗ represents the output of M on input w .

• A function f : Σ∗ → Σ∗ is computable if, for some TM M, on
every input w , M(w) ↓ and M(w) = f (w).

• Problem A is many-one reducible to problem B (A ≤m B)
if there is a computable function f so that x ∈ LA iff
f (x) ∈ LB.

• f is called the reduction.
If A ≤m B

• B is decidable ⇒ A is decidable.
• A is undecidable ⇒ B is undecidable.

Algorithms and Complexity



References Problems Algorithms Undecidability Reducibility

Many-one reducibility

• E. L. Post, 1944
• A TM can be extended to produce an output by interpreting

the block of symbols left in the tape between ▶ and the first
b. M(w) ∈ Σ∗ represents the output of M on input w .

• A function f : Σ∗ → Σ∗ is computable if, for some TM M, on
every input w , M(w) ↓ and M(w) = f (w).

• Problem A is many-one reducible to problem B (A ≤m B)
if there is a computable function f so that x ∈ LA iff
f (x) ∈ LB.

• f is called the reduction.
If A ≤m B

• B is decidable ⇒ A is decidable.
• A is undecidable ⇒ B is undecidable.

Algorithms and Complexity



References Problems Algorithms Undecidability Reducibility

Many-one reducibility

• E. L. Post, 1944
• A TM can be extended to produce an output by interpreting

the block of symbols left in the tape between ▶ and the first
b. M(w) ∈ Σ∗ represents the output of M on input w .

• A function f : Σ∗ → Σ∗ is computable if, for some TM M, on
every input w , M(w) ↓ and M(w) = f (w).

• Problem A is many-one reducible to problem B (A ≤m B)
if there is a computable function f so that x ∈ LA iff
f (x) ∈ LB.

• f is called the reduction.
If A ≤m B

• B is decidable ⇒ A is decidable.
• A is undecidable ⇒ B is undecidable.

Algorithms and Complexity



References Problems Algorithms Undecidability Reducibility

Many-one reducibility

• E. L. Post, 1944
• A TM can be extended to produce an output by interpreting

the block of symbols left in the tape between ▶ and the first
b. M(w) ∈ Σ∗ represents the output of M on input w .

• A function f : Σ∗ → Σ∗ is computable if, for some TM M, on
every input w , M(w) ↓ and M(w) = f (w).

• Problem A is many-one reducible to problem B (A ≤m B)
if there is a computable function f so that x ∈ LA iff
f (x) ∈ LB.

• f is called the reduction.
If A ≤m B

• B is decidable ⇒ A is decidable.
• A is undecidable ⇒ B is undecidable.

Algorithms and Complexity



References Problems Algorithms Undecidability Reducibility

Many-one reducibility

• E. L. Post, 1944
• A TM can be extended to produce an output by interpreting

the block of symbols left in the tape between ▶ and the first
b. M(w) ∈ Σ∗ represents the output of M on input w .

• A function f : Σ∗ → Σ∗ is computable if, for some TM M, on
every input w , M(w) ↓ and M(w) = f (w).

• Problem A is many-one reducible to problem B (A ≤m B)
if there is a computable function f so that x ∈ LA iff
f (x) ∈ LB.

• f is called the reduction.

If A ≤m B
• B is decidable ⇒ A is decidable.
• A is undecidable ⇒ B is undecidable.

Algorithms and Complexity



References Problems Algorithms Undecidability Reducibility

Many-one reducibility

• E. L. Post, 1944
• A TM can be extended to produce an output by interpreting

the block of symbols left in the tape between ▶ and the first
b. M(w) ∈ Σ∗ represents the output of M on input w .

• A function f : Σ∗ → Σ∗ is computable if, for some TM M, on
every input w , M(w) ↓ and M(w) = f (w).

• Problem A is many-one reducible to problem B (A ≤m B)
if there is a computable function f so that x ∈ LA iff
f (x) ∈ LB.

• f is called the reduction.
If A ≤m B

• B is decidable ⇒ A is decidable.
• A is undecidable ⇒ B is undecidable.

Algorithms and Complexity



References Problems Algorithms Undecidability Reducibility

Some undecidable problems

• Halt: Given a program P and an input x , does P halt on
input x?

• Given a program P, does P halt on input 0?

• Given a program P, is the set of inputs x on which P halts
finite?

• Given a program P, is there an input x s.t. P(x) = x?
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Semi-Thue systems
Introduced by Axel Thue (1863-1922)

• A rewriting system or semi-Thue system is a tuple (Σ, R)
where

• Σ is an alphabet, usually assumed finite.
• R is a binary relation on strings, i.e., R ⊆ Σ∗ × Σ∗.

• Each element (u, v) ∈ R is called a (rewriting) rule and is
usually written u → v .

• When R is symmetric the system is called a Thue system.
• The rewriting rules in R are extended to strings, for any

strings s, t ∈ Σ∗,
s−→

R
t iff there exist x , y , u, v ∈ Σ∗ s.t. s = xuy , t = xvy , and

u → v .
• A zero-or-more-steps rewriting is captured by the reflexive

transitive closure of −→
R

, ∗−→
R

.
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The word problem for finite semi-Thue systems

WP: Given a finite list of rewriting rules R and two words u, v ,
u ∗−→

R
v?

rules a → aa bb → b aaaaaa → bbbb
words start b end a
solution there is no solution

rules a → aa bb → b aaaaaa → bbbb
words start aba endl ba
solution aba → aaba → aaaba → aaaaba → aaaaaba → aaaaaaba

→ bbbbba → bbbba → bbba → bba → ba
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WP is undecidable

Theorem
ATM ≤m WP

• Let ⟨M, x⟩ be an input to ATM , x ∈ Σ∗ and
M = (Q, Σ, Γ, δ, q0, qF ).

• From M and x , we construct the following input to WP with
alphabet the union of Γ, Q and an additional symbol #

• The rewriting rules are
for q, p ∈ Q, with q ̸= qF and for a, b, c ∈ Γ

(qa, bp) si δ(q, a) = (p, b, r)
(cqa, pcb) si δ(q, a) = (p, b, l)
(q#, bp#) si δ(q, b) = (p, b, r)
(cq#, pcb#) si δ(q, b) = (p, b, l)

for a ∈ Γ, (aqF , qF ) and (qF a, qF )
• The start word is u =▶ q0x#, and the final word is v = qF #

• x ∈ L(M) iff there is a finite computation ▶ q0x , . . . , αqF β iff
▶ q0x# ∗−→

R
qF #
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Post Correspondence Problem

Introduced by by Emil Post in 1946.
PCP: Given two lists of words with the same length
A = (x1, . . . , xn) and B = (y1, . . . , yn). Is there a finite sequence
(i1, . . . , ir ), r ≥ 1 such that xi1 · · · xir = yi1 · · · yir ?

A B
1 01 011
2 10 010
3 001 01
4 1011 10

Is a ”yes” instance as (1, 2, 2, 1, 3, 4, 3) gives 011010010011011001
in both systems.
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Post Correspondence Problem

PCP: Given two lists of words with the same length
A = (x1, . . . , xn) and B = (y1, . . . , yn). Is there a finite sequence
(i1, . . . , ir ), r ≥ 1 such that xi1 · · · xir = yi1 · · · yir ?

A B
1 101 0100
2 100 10
3 0110 01
4 1010 10

Is a ”no” instance, the number of ones in words 1,3,4 is higher in
A than in B and equal for word 2.
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Modified Post Correspondence Problem

MPCP: Given two lists of words with the same length
A = (x1, . . . , xn) and B = (y1, . . . , yn). Is there a finite sequence
(1, i2 . . . , ir ), r ≥ 1 such that x1xi2 · · · xir = y1yi2 · · · yir ?

• The main difference is that we are forcing to start with the
first word in A and B,

• MPCP is a subproblem of PCP,
• If PCP is decidable, MPCP is decidable.
• We wan to prove that MPCP is undecidable
• Then, extend this result to show that PCP is undecidable.
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MPCP is undecidable

Theorem
WP ≤m MPCP

Proof

• Let (R, u, v) be an input to WP with
R = {(u1, v1), . . . , (un, vn)} over an alphabet Σ.

• Let # be a symbol not in Σ.
• Define (A, B) as

A B
# #u#
ui vi (ui , vi) ∈ R
a a a ∈ Σ
# #

v## #
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MPCP is undecidable

A B
# #u#
ui vi (ui , vi) ∈ R
a a a ∈ Σ
# #

v## #

• When (R, u, v) ∈ WP , there is a
word #u#x1# . . . #xm#v#,
where each intermediate word is
obtained by applying a rule to
the previous word.

• We can reach this word starting
from the first rule, and applying
the corresponding rewriting rule.
In B we go one word/letter in
advance with respect to A.
Using the last rule, we balance
at the end.

• So, (A, B) ∈ MCPC.
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MPCP is undecidable

A B
# #u#
ui vi (ui , vi) ∈ R
a a a ∈ Σ
# #

v## #

• Assume (A, B) ∈ MCPC.

• The solution must start by the
first rule and finalize with the
last, so there is a common word
#u#x1# . . . #xm#v#.

• As the correspondence copies or
rewrites according to the Thue
system, each intermediate word
is obtained by applying a rule to
the previous word.

• So,(R, u, v) ∈ WP.
End Proof
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