
An Introduction to PDDL

Malte Helmert October 16th, AI Planning 1/15



What is PDDL?

PDDL = Planning Domain Definitio Language

; standard encoding language for “classical” planning tasks

Components of a PDDL planning task:

• Objects: Things in the world that interest us.
• Predicates: Properties of objects that we are interested in; can be true or false.
• Initial state: The state of the world that we start in.
• Goal specification Things that we want to be true.
• Actions/Operators: Ways of changing the state of the world.

Malte Helmert October 16th, AI Planning 2/15



How to Put the Pieces Together

Planning tasks specifie in PDDL are separated into two files

1. A domain fil for predicates and actions.
2. A problem fil for objects, initial state and goal specification

Malte Helmert October 16th, AI Planning 3/15



Domain Files

Domain file look like this:

(define (domain <domain name>)
<PDDL code for predicates>
<PDDL code for first action>
[...]
<PDDL code for last action>

)

<domain name> is a string that identifie the planning domain, e.g. gripper.

Malte Helmert October 16th, AI Planning 4/15



Problem Files

Problem file look like this:

(define (problem <problem name>)
(:domain <domain name>)
<PDDL code for objects>
<PDDL code for initial state>
<PDDL code for goal specification>

)

<problem name> is a string that identifie the planning task, e.g. gripper-four-balls.

<domain name> must match the domain name in the corresponding domain fil .

Malte Helmert October 16th, AI Planning 5/15



Running Example

Gripper task with four balls:

There is a robot that can move between two rooms and pick up or drop balls with either of
his two arms. Initially, all balls and the robot are in the firs room. We want the balls to be in
the second room.

• Objects: The two rooms, four balls and two robot arms.
• Predicates: Is x a room? Is x a ball? Is ball x inside room y? Is robot arm x empty? [...]
• Initial state: All balls and the robot are in the firs room. All robot arms are empty. [...]
• Goal specification All balls must be in the second room.
• Actions/Operators: The robot can move between rooms, pick up a ball or drop a ball.

Malte Helmert October 16th, AI Planning 6/15



Gripper task: Objects

Objects:
Rooms: rooma, roomb
Balls: ball1, ball2, ball3, ball4
Robot arms: left, right

In PDDL:

(:objects rooma roomb
ball1 ball2 ball3 ball4
left right)

Malte Helmert October 16th, AI Planning 7/15



Gripper task: Predicates

Predicates:
ROOM(x) – true iff x is a room
BALL(x) – true iff x is a ball
GRIPPER(x) – true iff x is a gripper (robot arm)
at-robby(x) – true iff x is a room and the robot is in x
at-ball(x, y) – true iff x is a ball, y is a room, and x is in y
free(x) – true iff x is a gripper and x does not hold a ball
carry(x, y) – true iff x is a gripper, y is a ball, and x holds y

In PDDL:

(:predicates (ROOM ?x) (BALL ?x) (GRIPPER ?x)
(at-robby ?x) (at-ball ?x ?y)
(free ?x) (carry ?x ?y))

Malte Helmert October 16th, AI Planning 8/15



Gripper task: Initial state

Initial state:
ROOM(rooma) and ROOM(roomb) are true.
BALL(ball1), ..., BALL(ball4) are true.
GRIPPER(left), GRIPPER(right), free(left) and free(right) are true.
at-robby(rooma), at-ball(ball1, rooma), ..., at-ball(ball4, rooma) are true.
Everything else is false.

In PDDL:

(:init (ROOM rooma) (ROOM roomb)
(BALL ball1) (BALL ball2) (BALL ball3) (BALL ball4)
(GRIPPER left) (GRIPPER right) (free left) (free right)
(at-robby rooma)
(at-ball ball1 rooma) (at-ball ball2 rooma)
(at-ball ball3 rooma) (at-ball ball4 rooma))

Malte Helmert October 16th, AI Planning 9/15



Gripper task: Goal specificatio

Goal specification
at-ball(ball1, roomb), ..., at-ball(ball4, roomb) must be true.
Everything else we don’t care about.

In PDDL:

(:goal (and (at-ball ball1 roomb)
(at-ball ball2 roomb)
(at-ball ball3 roomb)
(at-ball ball4 roomb)))

Malte Helmert October 16th, AI Planning 10/15



Gripper task: Movement operator

Action/Operator:

Description: The robot can move from x to y.
Precondition: ROOM(x), ROOM(y) and at-robby(x) are true.
Effect: at-robby(y) becomes true. at-robby(x) becomes false.

Everything else doesn’t change.

In PDDL:

(:action move :parameters (?x ?y)
:precondition (and (ROOM ?x) (ROOM ?y)

(at-robby ?x))
:effect (and (at-robby ?y)

(not (at-robby ?x))))

Malte Helmert October 16th, AI Planning 11/15



Gripper task: Pick-up operator

Action/Operator:

Description: The robot can pick up x in y with z.
Precondition: BALL(x), ROOM(y), GRIPPER(z), at-ball(x, y),

at-robby(y) and free(z) are true.
Effect: carry(z, x) becomes true. at-ball(x, y) and free(z)

become false. Everything else doesn’t change.

In PDDL:

(:action pick-up :parameters (?x ?y ?z)
:precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)

(at-ball ?x ?y) (at-robby ?y) (free ?z))
:effect (and (carry ?z ?x)

(not (at-ball ?x ?y)) (not (free ?z))))

Malte Helmert October 16th, AI Planning 12/15



Gripper task: Drop operator

Action/Operator:

Description: The robot can drop x in y from z.

(Preconditions and effects similar to the pick-up operator.)

In PDDL:

(:action drop :parameters (?x ?y ?z)
:precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)

(carry ?z ?x) (at-robby ?y))
:effect (and (at-ball ?x ?y) (free ?z)

(not (carry ?z ?x))))

Malte Helmert October 16th, AI Planning 13/15



A Note on Action Effects

Action effects can be more complicated than seen so far.

They can be universally quantifie :

(forall (?v1 ... ?vn)
<effect>)

They can be conditional:

(when <condition>
<effect>)

Malte Helmert October 16th, AI Planning 14/15



Questions?

Malte Helmert October 16th, AI Planning 15/15


