A hybrid architecture for autonomous navigation in

dynamic environments

C. Urdiales, E.J. Perez and F. Sandoval
Dpt. Tecnologia Electrénica
University of Malaga
Email: cristina@dte.uma.es

ABSTRACT

This paper presents a hybrid architecture for au-
tonomous robot navigation. It includes a delibera-
tive layer that hierarchically extracts a global path
from a geometrical-topological model of the environ-
ment. This path is decomposed into a set of partial
goals. Then, a new case-based reasoning based re-
active layer capable of learning new local navigation
strategies moves from each partial goal to the next.
The architecture has been succesfully tested in real
dynamic environments.

KEY WORDS
deliberative planning, reactive navigation, hybrid lay-
ered architecture, case-based reasoning

1 Introduction

Navigation can be defined as the act of finding and
tracking a safe path to a defined goal. Autonomous
robotic navigation has been widely studied in the
last decades. Proposed techniques range from high-
level planning schemes to reactive control strategies.
High level planning methods require extensive world
knowledge so the robot can act in a predictable effi-
cient way. These methods typically rely in a classic
sense — model — plan — act cycle known as horizontal
decomposition [8]. Deliberative schemes are often crit-
icized for their inability to react rapidly. Also, since
they strongly depend on a world model, they are not
suitable to operate in partially or totally unknown en-
vironments nor in significantly dynamic ones [1]. Reac-
tive control methods rely on directly coupling sensors
and actuators [3]. Combinations of reactive behaviours
return emergent actions. Unlike classic deliberative
systems, reactive schemes can easily deal with several
sensors and goals. Besides, they are flexible and quite
robust against sensor errors and noise. Unfortunately,
emerging behaviours may be very unpredictable and,
in some cases, non-efficient. Reactive systems are also
prone to fall into local traps. Hybrid systems combine
deliberative and reactive schemes to achieve a better
performance. Usually, low level control is performed
in a reactive way whereas high level processing follows
a deliberative pattern. Hybrid systems are supported

J. Vazquez-Salceda

Institute of Information and Computing Sciences

Utrecht University
email: javier@cs.uu.nl

by biological evidence [1] and they can achieve effi-
cient navigation in dynamic and totally or partially
unknown environments.

This paper presents a hybrid scheme for au-
tonomous navigation in dynamic environments. Our
scheme is based on decomposing tasks in layers as pro-
posed by Brooks [3]. High level layers reason about the
environment and propose a global path to the goal.
Low level layers are in charge of safely reaching that
goal according to guidelines proposed by the high level
layers. Section 2 presents a brief global description of
the system, outlining the differences between this pro-
posal and previous ones by the authors. Section 3
presents our high level path planning technique plus a
world modelling technique. Section 4 presents a new
CBR based reactive layer. The main novelty of the
proposed architecture is this trainable reactive layer
and its integration into the hybrid architecture. Sec-
tion 5 presents experiments and results for the com-
plete hybrid structure. Finally section 6 presents con-
clusions and future work.

2 Proposed hybrid scheme

As aforementioned, hybrid systems combine deliber-
ative and reactive schemes in order achieve a better
performance. Usually, low level control is performed
in a reactive way whereas high level processing follows
a deliberative pattern. The main concern when build-
ing a hybrid scheme is to find the appropiate boundary
for the subdivision of functionality [1]. We propose an
advising scheme where navigation is performed in a
bottom-up way: the sucessively combined responses
of the low level layer provide a global goal-reaching
navigation behaviour. This hybrid structure is partic-
ularly interesting for dynamic and partially explored
environments because the system can inmediately re-
act in an efficient way to unexpected obstacles and
high level planning avoid local minima by providing
intermediate goals for the low level layer.

Our hybrid navigation architecture basically con-
sists of four layers (Fig. 1). First, a geometrical mod-
elling layer uses the on-board sensors to construct and
update an evidence grid as proposed in [12]. Then, the



1 BOUTE PLANKER

T an lavicaTeom

CERSOIRS
b .

{ j |+ BAETRIC AP

Y

o Toroiosic fart

N - .l.ll

SO

Figure 1. Proposed hybrid scheme.

grid is processed by the topological modelling layer to
obtain a topological map proposed by the authors in
[17]. Both the geometrical and topological maps are
updated as often as possible so that reasoning is al-
ways performed over the most recent model available.
Our deliberative layer is known as route planner. It
is in charge of calculating an efficient global path free
of obstacles between a departure and an arrival point
as proposed in [17]. This layer is triggered each time
a new goal is proposed but also when the topologi-
cal map suffers significant changes in areas where the
robot is operating. It must be noted that this layer
is quite fast. Hence, it is not necessary to stop the
robot while calculating a new deliberative route. In-
stead, navigation is reactively handed until a new goal
is provided. Paths calculated at topological level can
be inmediately propagated into path regions at metric
level. These regions were the output of the deliber-
ative layer in our previous scheme [17]. However, in
the current one we thin the region into a path and de-
compose that path into segments which can be tracked
with minimum curvature changes. The joints of these
segments become partial goals to the robot and are
the output of the route planner. Instead of tracking
the path in a deliberative way as we did in [16], our
local navigation layer relies on a reactive scheme to
move safely between consecutive partial goals. A first
version of this architecture was proposed in [17]. How-
ever, in [17] the reactive layer was based on potential
fields. In this work, we have developed a new reactive
layer based on CBR (Case-Based Reasoning). Its ad-
vantages with respect to potential fields are described
in section 4.

The proposed hybrid architecture works in an ef-
ficient way because: i) the deliberative layer proposes
efficient paths to arrive to a goal; ii) these paths are
tracked in a fast reactive way to handle sensor errors
and unexpected situations; iii) the environment is rep-
resented at two hierarchical levels so that it can be

both updated and processed in a fast way; and iv) the
local navigation layer may work even when the out-
put from higher level layers is outdated. Thus, the
robot does not need to stop when a given path needs
to be recalculated because of unexpected obstacles in
the way. This architecture has been succesfully tested
in real indoor environments using a Pioneer robot.

3 Deliberative path planning

Deliberative navigation algorithms rely on world mod-
els either provided a priori or built by means of the on-
board sensors. These models can be processed by any
classic planning algorithm to calculate a safe trajec-
tory. Representations of the environment are usually
built according either to the metric or the topological
paradigm. Metric representations, most typically evi-
dence grids [12], explicity reproduce the metrical struc-
ture of the environment. Topological representations
aim at representing the environment as a set of mean-
ingful regions. Both approaches present complemen-
tary strengths and weaknesses [13]. Metric approaches
heavily rely on dead-reckoning. Also, they may involve
a huge data volume and, hence, be computationally
expensive to process. Topological maps are usually
more compact because their resolution is determined
by the complexity of the environment. They support
fast planning and provide more natural interfaces for
human instructions. However, in topological maps it is
difficult to distinguish different places characterised by
the same sensory pattern and non-explored areas are
not included in the representation. Some authors pro-
pose a combination of both topological and geomet-
rical representations by annotating topological maps
with metrical information [10] or extracting topologi-
cal maps from metric ones [13]. The authors proposed
in [17] a method to extract a grounded topological map
from an evidence grid:

1. Metric map thresholding. Cells whose occupancy
value is below threshold U; are considered free-
space (P(x,y) = cp). Cells whose occupancy
value are above U; and below threshold Us are
considered non-explored (P(z,y) = cy). Al
other cells are considered occupied (P (z,y) = co)
(Fig. 2.a).

2. Hierarchical structure generation. The thresh-
olded metric map becomes the base of a pyramidal
structure. Each level [ of this pyramid is a reduced
map with 1/4 of the cells of the level immediately
below. Each pyramid cell (z,y,[) has associated
five parameters:

e Homogeneity, H(x,y,l). H(z,y,l) is set to 1
if the four cells immediately underneath have
the same occupancy probability and their



Figure 2. Topological map extraction: a) thresh-
olded grid; b) hierarchical split; c) interlevel merging;
d)intralevel merging and resulting topological map.

homogeneity values are equal to 1. Other-
wise, it is set to 0.

e Occupancy probability, P(z,y,[). If the cell
is homogeneous, P(z,y,1) is equal to the oc-
cupancy probability value of any of the four
cells immediately underneath. If the cell is
not homogeneous, the value of P(z,y,l) is
set to a fixed value (cyp).

o Area, A(z,y,l). It is equal to the addition
of the areas of the four cells immediately un-
derneath.

o Parent link, (X,Y ). If H(z,y,l) is
equal to 1, the values of parent link of the
four cells immediately underneath are set to
(z,y). Otherwise, these four parent links are
set to a null value and they become orphan
nodes.

e Centroid, C(z,y,1). It is the centre of mass
of the base region associated to (x,y,1).

When the generation step has finished, all orphan
cells presenting an homogeneity value equal to
1 are associated to a partition where complexity
strongly depends on the position of the obstacles
(Fig. 2.b). Further steps remove this problem.

3. Homogeneous cells fusion (Fig. 2.c). Cells whose
parent link values are null, (x,y,1), are linked to
the parents of neighbours cells, (xp,y,,l + 1), if
the following conditions are true:

o H(z,y,l) =1 & H(zp,yp,l+1)=1
i P(%Z/J) :P(xpaypvl+1)

o |C(z,y,1) — Clxp,yp,l + 1)|]2 < DistMax
(threshold to fix the maximum dispersion of
resulting regions).

Figure 3. Deliberative path calculation: a)
topological-metrical map, departure and arrival
points; b) resulting trajectory and partial goals.

4. Homogeneous cells classification (Fig. 2.d). Two
neighbour cells, (z1,y1,1) and (x2, y2,1), are fused
if the following conditions are true:

o (X,Y) (@, yy) =NULL

o (X,Y)(zy.950) = NULL

o H(x1,y1,l) =1& H(za,y2,1) =1

o P(x1,y1,1) = P(x2,92,1)

o ||C(z1,y1,1) — C(22,y2,0)|]2 < DistMax

Fig. 2.d shows the grid of a real environment and
its associated topological map after this final step is
accomplished. Each orphan cell is related to an ho-
mogeneous region which becomes a topological node.
Two nodes are linked if they correspond to adjacent
regions and they are not related to occupied areas. In
the corridor in Fig. 2.a there are only three nodes re-
lated to free areas: the north west and south east parts
of the corridor and the square lab in the middle. These
three nodes are linked together because it is possible
from one to any of the others. Walls are not included
in the topological map because they correspond to oc-
cupied areas. The rest of the nodes are related to
non-explored areas, but they can not be reached from
within the corridor because all doors are closed. This
means that the robot can not currently reach unex-
plored areas. The advantages and drawbacks of this
topological-metrical map are fully described in [17].
In the proposed topological map, complex areas
are related to a large number of nodes while simple
ones are related to a few. Path planning algorithms,
in our case the A* algorithm [17], work at topological
level. The resulting path of nodes is linked to a path re-
gion including the departure and arrival points at met-
rical level. In our former hybrid architecture [17], the
output of the deliberative layer was this region. How-
ever, in the present work, this region is transformed
into a path of cells as proposed in [16] by means of
a fast wave propagation algorithm. The main nov-
elty of this deliberative layer is that we do not work
with the whole path. Instead, we extract the points of
maximum curvature from the path. Those points be-
come partial goals because the robot can easily travel



between them with minimum curvature changes. Fig.
3.a shows an topological-metrical map and random de-
parture and arrival points, while Fig. 3.b shows the
resulting trajectory plus the partial goals for this par-
ticular example. It can be observed that partial goals
are not nodes of the topological map. Furthermore,
they are defined at metrical level.

It must be noted that the robot does not try to
track the deliberative path as initially proposed in [16]
because slippage, unexpected obstacles and other ex-
ternal factors make it very difficult to pursue a fixed
trajectory. Instead, it simply tries to reach the fi-
nal goal by flexibly moving from each partial goal to
the next. Sometimes, the aforementioned factors may
make a global route unfeasible despite the reactive
navigation layer. However, since the map is modified
on-line, if new detected obstacles make it impossible
to reach a partial goal, the deliberative layer is retrig-
gered to calculate a new trajectory from the current
position to the goal [17].

4 A reactive navigation layer

The potential fields method is probably one of the
most popular ones for reactive navigation both in dy-
namic and static environments [18]. It consists of cre-
ating an artificial repulsion field around the obstacles
in the environment plus an attraction field around
the goal so that the robot moves towards that goal
and away from the obstacles. Despite their simplicity
and efficiency, potential fields also present some draw-
backs. First, they make it difficult to move between
close obstacles. They also tend to present oscillations
close to occupied areas and they are not efficient for
navigating close to an obstacle. The most important
drawback, though, is that they may converge to local
minima. Alternatively, some non-purely reactive ap-
proaches based in a world model have been proposed
(i.e. [5] [15]). The main drawback of these approaches
is that they depend on many parameters which are
difficult to optimize except for ad-hoc problems.

We used a potential field approach in a previ-
ous hybrid navigation scheme [17]. The deliberative
layer avoided potential fields from falling into local
minima. However, our previous scheme did not sup-
port navigation between close obstacles nor learning,.
The main novelty of the present work is a new CBR
(Case Based Reasoning) reactive layer. CBR has been
defined as reasoning by remembering [9]. A case can
be regarded as a vector in an N-dimensional space.
When a potentially interesting situation is detected, a
CBR cycle consists of four steps: i) retrieve the most
similar stored case; ii) adapt its solution to the cur-
rent case; iii) evaluate the results; iv) learn from the
new experience. CBR has been used in navigation be-
fore either for global path planning in static environ-
ments [4] [2] or for behaviour selection (i.e. [14]). In

these cases, CBR is meant to recall the structure of
a particular environment because no deliberative layer
is supposed to exist. Naturally, in dynamic environ-
ments these approaches may turn unefficient because
cases may become quickly obsolete. In our approach,
the CBR-based layer cooperates with a deliberative
layer and, hence, it stores no information about the
environment. Instead, it is simply meant to efficiently
avoid unexpected and moving obstacles in the way ac-
cording to guidelines which are valid for local geomet-
ric obstacle configurations. Our deliberative layer also
prevents in this case the reactive layer from falling into
local minima by providing intermediate goals globally
calculated and by recalculating complete routes when
there have been severe changes in the structure of the
environment after the last global planning.

4.1 Case definition

A case is defined by the attributes conforming the in-
put vector, how solutions can be adapted and how re-
sults are evaluated. The attributes required to define
a pure reactive layer are basically the sensor readings
and the goal. If no deliberative layer is available, either
a time sequence of sensor readings [14] or a explicit
model of the environment [11] is required. In our case,
we simply operate with the readings of 8 on-board Po-
laroid sonar sensors at a given time instant. To avoid
having too many cases derived from small perception
differences, we discretize sonar readings into 5 inter-
vals: 1) critical (0-20 cm); ii) near (20-50 cm); iii)
medium (50-100 c¢m); iv) far (100-150 cm); and v) no
influence (150-800 cm). As aforementioned, the closest
partial goal is also added to the case attributes. Since
we do not use a model of the environment in the reac-
tive layer, we can not represent the goal by means of
coordinates. Instead, we simply include the direction
of a vector joining our current position to that goal.
Using this information, the system must return a new
heading direction for the robot to safely reach the goal
in that particular situation.

Since the robot must adapt itself to dynamic en-
vironments, the solution to a single case can not be
judged good or bad in terms of arriving to a partial
goal which, in some cases, may be unreachable. In-
stead, we evaluate solutions by using three simple lo-
cal criteria. In order to provide some temporal inertia
against sonar noise and to prevent slippage as much
as possible, we try to minimize curvature changes in
the robot trajectory. The second evaluation factor is
the angle between the robot-goal vector and the ad-
vance direction, so that the robot avoids getting too
far from its partial goal. Finally, in order not to get
too close to obstacles, the smaller sonar reading is also
included as an evaluation factor. Fig. 4 shows how a
case is defined for a robot equipped with 5 sensors and
heading to the direction marked by the black arrow.



slution

: GirAL

A heading

fornmer

B Sensors

Figure 4. Case definition

The attributes of the case are the readings of the 5
sensors plus the goal direction, which is marked with
a grey arrow. The resulting vector is the large one in
gray pointing to the north of the image. Finally, the
evaluated criteria are the shortest distance to obstacle
dmin, the curvature variation a1l and the angle formed
by the heading direction and the goal direction a2.

4.2 Training stage

Before the robot starts to operate on its own, we per-
formed a supervised trained stage off-line. This stage
basically consisted of manually guiding the robot to-
wards a goal blocked by a single obstacle. The robot
was guided by three different persons through different
routes, leaving the obstacle on the left or on the right
of the robot. Cases were captured through this train-
ing stage each time the sensor readings experimented
a significant change, where cases are compared by us-
ing the Tanimoto distance. In this training stage, the
robot captured 160 cases after 6 routes. The main dif-
ferences between these routes were basically how soft
curvature changes were and how close to obstacles the
robot got depending on the relative position of the
goal. Unlike analytical approaches that tend to behave
in an homogeneous way, a human driver can get close
to obstacles if necessary depending on many different
criteria. Thus, we wanted the robot to learn when it is
better to navigate close to obstacles and when to nav-
igate far from them depending on the training and the
optimization criteria proposed in the previous section.
Ultimately, we wanted to make the robot choose the
most suitable chain of actions to reach a goal by com-
bining different drivers and routes. It must be noted
that the robot does not learn complete routes. It sim-
ply learns adequate actions for a given sensor configu-
ration. No solution on its own is enough to reach the
goal. Also, no global trajectory information is stored.
The robot only learns what the driver does in a given
situation and how adequate that action was regarding
the robot previous trajectory, the relative position of

the goal and the layout of the obstacles in that partic-
ular situation.

4.3 Emergent behaviours

Whenever a list of partial goals is available, the robot
tries to reach the closest one ahead in a reactive way.
Basically, it tries to reach that partial goal with as few
curvature changes as possible. However, when obsta-
cles are perceived by its sensors, the reactive layer is
triggered and, if necessary, a new direction is provided
for the robot. The new heading is the best possible one
according to the sensor readings, the position of the
goal and the current direction. As soon as the robot
moves, the sensor readings change. If a new case ap-
pears, the reactive layer is retriggered and the robot
may change its direction again. Besides, the system
is constantly checking if the current partial goal has
been reached. As soon as that partial goal is left be-
hind, the robot aims for the next one from its current
position, which might not necessarily be the previous
partial goal. In some cases, the deliberative layer may
change future partial goals while the robot is navigat-
ing in a reactive way if necessarty. The final emergent
behaviour should not be totally equal to any trajectory
performed in the learning stage, but rather to a com-
bination of the best cases previously learnt according
to the current input chain of events.

In many cases, the closest case stored in the
database might not be similar to the current one, spe-
cially when training has not been exhaustive. In these
cases, the proposed solution might not fit the current
requirements of the robot. To avoid unefficient and
potentially hazardous decisions, if an input case is too
different from the closest stored one, we mutate the
proposed solution and store it as a new case. In this
work, solutions are mutated by creating repulsion vec-
tors for all obstacles at critical distance from the robot
and substracting them from the proposed solution. It
must be noted that solutions are only mutated if the
current case has no suitable match in the CBR yet.

Fig. 5 presents a real example of reactive naviga-
tion where no deliberative layer is active: the only goal
is in front of the departure point. However, the robot
must navigate between two close obstacles to reach it.
This is a traditionally hard problem for potential fields.
If we use a too large safety distance, the robot will not
navigate between the obstacles. If the safety distance
is low, the robot may crash into the second obstacle
while trying to move away from the first one, as can
be observed in the Fig.5 (continuous line). However,
the CBR has several cases stored where the training
drivers drove quite close to obstacles. The robot learnt
that it does not necessarily need to move away from a
close obstacle if the goal is ahead and there is no in-
mediate collision danger. Hence, it can be appreciated
in Fig. 5 that the robot reaches the goal by following



/™
-“.-ﬂ E ;’f ;’?

u:.i '_-_.:- : o = e
= -

Proteraial fwbde

___________ Provjwand i tive: by

e o w == £

Figure 5. Emergent reactive behaviour

approximately a straight line (dashed line). It is inter-
esting to note that the robot was trained for situations
where a single obstacle was present in the environment.
However, it can adapt itself to situations where there
are more obstacles as well without deliberative advise.

5 Experimental results

To test the performance of the proposed hybrid archi-
tecture, several tests were performed in a real envi-
ronment. The test environment was a 4x5 meters in-
door laboratory presenting flat walls, cardboard boxes,
metallic cupboards chairs and tables. We did experi-
ment for non explored and partially explored environ-
ments, both with static and moving obstacles. This
section presents some of these experiments. In all
cases, each time we provide a goal, the deliberative
layer calculates an efficient path to reach such a goal
according to the available map. Maps are updated as
often as possible. Thus, each time maps suffer signif-
icant changes, a new trajectory is calculated over the
most recently updated map from the current position
of the robot to the goal. As commented, deliberative
trajectories are decomposed into a set of partial goals.
The reactive layer is in charge of moving between each
two consecutive partial goals. It must be noted that
the reactive layer changes the robot trajectory not only
when there is an obstacle in the way but also when
there are obstacles close to the current path. If no ob-
stacles are within the reactive layer perception range,

Figure 6. Environment layout for experiment 1

the robot tends not to change its deliberative trajec-
tory and to follow a straight line towards the partial
goal.

We present here two experiments for extreme
cases. In the first one, the environment is partially
explored before a goal is set and we purposefully pre-
vented the deliberative layer from being retriggered
to force the reactive layer to deal with all unex-
pected events. In the second case, we set a goal in a
completely unknown environment where the metrical-
topological map is continuously modified while the
robot navigates towards the goal. Fig. 7.a presents the
fully explored metrical map for our first experiment. It
presents three nodes corresponding to free space plus
11 corresponding to non-explored areas. Thus far, all
nodes are reachable. Nevertheless, in this experiment
our path goes through explored space. Fig. 7.b shows
the path proposed by the deliberative layer including
all partial goals. It can be observed that partial goals
basically appear where the robot must change its direc-
tion and where the layout of the environment is more
complicated. In a first test, we let the robot navigate
to its goal without changing the environment. Fig.
8.a shows the whole trajectory for this test. It can be
observed that the trajectory is quite soft. It presents
a soft oscillation at the beginning which is caused by
sonar errors. It can also be noted that there is a sharp
curvature change when the robot turns right to reach
the final goals. It appears because cases are mutated
to contemplate the narrow corridor conformed by the
cardboard box and the cupboard on the right in Fig.
6. When cases are mutated, curvature is not preserved
for the sake of safety. Nevertheless, after several mu-
tations, these sharp curvature changes tend to diss-
appear from the CBR database. Our second exper-
iment in this layout consisted of including an unex-
pected cardboard box on the right of the robot at the
beginning of the path (Fig. 6). Even though card-
board boxes are difficult to include in models because
of sonar reflections, this box can be slighly appreciated
in the upper part of the metric map in Fig. 7.b on the
right of the resulting trajectory. It can be noted that
the robot turns left until the box is no longer in the
way and then it basically repeats the previous path.
The final sharp curvature change leads to a softer fi-
nal trajectory to the goal because the robot adquired
a new case in the previous test.

Fig. 10 presents a test where the robot operates
in a completely unknown environment. The environ-
ment layout in this particular experiment is presented
in Fig. 9. The initial topological map presents 13
nodes and it is possible to move between all of them
because, as far as the robot knows, there are no ob-
stacles around (Fig. 10.a). It must be noted that this
map would yield a single node if we had not fixed a
Dist Max threshold in the topological map extraction
algorithm. In this situation, the resulting deliberative



Figure 7. Deliberative path calculation: a) explored
geometrical-topological map; b) resulting path and
partial goals

path has a single partial goal (Fig. 10.a). As soon
as the robot starts to move, the metrical map changes
drastically and a new deliberative path is calculated
to reach the goal in a more efficient way. Fig. 10.b
shows the new topological and metrical maps. Behind
the robot current position, the path resulting from the
reactive layer can be observed. It can be noted that,
despite the changes in the map, the position of the
partial and final goals is practically the same than in
Fig. 10.a. Also, it can be observed that a cardboard
box is captured by the sensors on the right side of the
robot. This box triggers the reactive layer and makes
the robot turns slightly to the left to avoid it (Fig.
10.c). Then, the robot senses an obstacle in front of
it. After mapping it both in the geometrical and topo-
logical representation, the position of the partial goal
shifts down. After that newly detected obstacle is left
on the left side of the robot, the deliberative layer de-
cides that no intermediate goals are required anymore
and that the goal can be reached in a straight way
(Fig. 10.d). However, when the robot gets closer to
the final goal, a wall is detected in its position, mak-
ing it unreachable. Hence, the deliberative layer de-
cides to stop. Fig. 10.e shows the final position of the
robot, including the whole path tracked by the reactive
layer. In that final path it can be clearly appreciated
how the robot reacts to unexpected obstacles appear-
ing too close to its path. It can also be appreciated
both in Fig. 10.d and e that the robot moves between

fa) )

Figure 8. Resulting path for: a) no unexpected obsta-
cles; b) unexpected obstacles

close obstacles with minimum oscillations (Fig. 9).

6 Conclusions

This paper has presented a hybrid scheme for au-
tonomous navigation in dynamic environments. It re-
lies on a geometrical-topological model of the environ-
ment. A deliberative layer calculates a global path at
topological level and decomposes it into a set of partial
goals at metrical level. Then, a reactive layer based on
CBR is used to move the robot from goal to goal in a
safe, efficient way. This layer is designed to learn local
navigation strategies both supervisedly and unsuper-
visedly. The scheme has been succesfully tested in real
dynamic environments. Its main advantages are that
it does not fall into local minima and it is capable of
learning when it is necessary to navigate close to ob-
stacles and when it is not. Further work will focus on
improving the current localization strategy by taking
advantage from the linked geometrical and topological
models.

7 Acknowledgements

This work has been partially supported by the Span-
ish Ministerio de Ciencia y Tecnologia (MCYT) and
FEDER funds, project TIC2001-1758.

References

[1] Arkin, R.C., "Behaviour based robotics”, MIT
Press, Cambridge, 1998

[2] Branting, L.K. and Aha, D.W., ”Stratified case-
based reasoning: Reusing hierarchical prob-
lem solving episodes”, Proc. of the 14th Int.
Joint Conf. on Artificial Intelligence, Montreal,
Canada, 1995

[3] Brooks, R. A., "Intelligence Without Reason”,
Proceedings IJCAI-91°, pp. 569-595, Sydney, Aus-
tralia, 1991.

[4] Fox, S. and Leake, D.B., ”Combining case-based
planning and introspective reasoning”, Proc. of

oy

Figure 9. Environment layout for experiment 2



Figure 10. Experiment 2

the 6th Midwest Artificial Intelligence and Cogni-
tive Science Society Conference, Carbondale, IL,
1995

Fox, D., Burgard, W. and Thrun, S., "The
Dynamic Window Approach to Collision Avoid-
ance”, IEEE Robotics & Automation Magazine,
4(1), 1997

Ge, S.S. and Cui, Y.J., ”Dynamic Motion Plan-
ning for Mobile Robots Using Potential Field
Method”, Autonomous Robots, 13, pp. 207-222,
2002

[7]

(14]

(15]

(16]

(17]

(18]

Haigh, K.Z., and Veloso, M., "Route planning by
analogy” Proc. of Int. Conf. on Case-Based Rea-
soning, Springer Verlag: Berlin, pp. 160-180, 1995

Hu, H. and Brady, M., ” A parallel processing ar-
chitecture for sensor based control of intelligent
mobile robots”, Robotics and autonomous sys-
tems, 17, pp. 235-257, 1996

Kolodner, J.L., Case-Based Reasoning, Morgan
Kaufmann Publishers Inc., 1993.

Kuipers, B.J. and Byun, Y.T. ”A robot explo-
ration and mapping strategy based on a semantic
hierarchy of spatial representation”, J. Robot. Au-
tonomous Systems, 8, pp. 47-63, 1991

Kruusmaa, M., "Global navigation in dynamic
environments using Case-Based Reasoning”, Au-
tonomous Robots, 14, pp. 71-91, 2003

Moravec, H. P., ”Sensor fusion in certainty grids
for mobile robots”, AI Magazine 9, pp. 61-74,
1988

Thrun, S., Bucken, A., Burgard, W., Fox, D.,
Frohlinghaus, T., Hennig, D., Hofmann, T., Krell,
M., and Schimdt, T., "Map learning and high-
speed navigation in RHINO”, MIT/AAAI Press,
Cambridge, 1998

Ram, A. and Santamaria, J.C., ”A multistrat-
egy case-based and reinforcement learning ap-
proach to self-improving reactive control systems
for autonomous robotic navigation”, Proc. of the
2nd Int. Workshop on Multistrategy Learning,
Harpers Ferry, WV, 1993

Ulrich, I. and Borenstein, J., ”VFH: Local Ob-
stacle Avoidance with Look-Ahead Verification”,
Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pp. 2505-
2511, San Francisco, CA, April 2000

Urdiales, C., Bandera, A., Arrebola, F. y San-
doval, F. ”Multi-level path planning algorithm for
autonomous robots”, Electronics Letters, 34 (2),
pp. 223-224,1998

C. Urdiales, A. Bandera, E. J. Perez, A. Poncela
and F. Sandoval, "Hierarchical planning in a mo-
bile robot for map learning and navigation”, in
Autonomous Robotic Systems - Soft Computing
and Hard Computing Methodologies and Applica-
tions, D. Maravall, D. Ruan and C. Zhou (eds),
Springer Verlag Pub pp. 165-188, 2003

Zelek, J.S., "Dynamic issues for mobile robot real-
time discovery and path planning”, Proc. of Com-
putational Intelligence in Robotics and Automa-
tion (CIRA’99), pp. 232-237, 1999



