
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014 409

A Boolean Rule-Based Approach for
Manufacturability-Aware Cell Routing

Jordi Cortadella, Member, IEEE, Jordi Petit, Sergio Gómez, and Francesc Moll, Member, IEEE

Abstract—An approach for cell routing using gridded design
rules is proposed. It is technology-independent and parameter-
izable for different fabrics and design rules, including support
for multiple-patterning lithography. The core contribution is a
detailed-routing algorithm based on a Boolean formulation of
the problem. The algorithm uses a novel encoding scheme, graph
theory to support floating terminals, efficient heuristics to reduce
the computational cost, and minimization of the number of
unconnected pins in case the cell is unroutable. The versatility
of the algorithm is demonstrated by routing single- and double-
height cells. The efficiency is ascertained by synthesizing a library
with 127 cells in about one hour and a half of CPU time. The
layouts derived by the implemented tool have also been compared
with the ones from a commercial library; thus, showing the
competitiveness of the approach for gridded geometries.

Index Terms—Cell generation, design for manufacturability,
detailed routing, satisfiability.

I. Introduction

THE LITHOGRAPHIC gap between the light wavelength
and the actual feature sizes is having a prominent impact

on the patterns used for layout generation in current manufac-
turing processes. Various resolution enhancement techniques
are applied to obtain faithful printed feature sizes much
smaller than the light wavelength [1]. The effectiveness of
these techniques is limited, however, to certain geometrical
configurations, restricting the set of allowed layout shapes.
This fact has contributed to an enormous increase of layout
design rules at each technology generation.

Litho-friendly layout techniques are vital for current and
future technology nodes. These techniques exploit the use of
1-D features and gridded locations for the layout elements.
However, these constraints complicate the design of cell li-
braries that must be efficient in area, performance and power.
The good news is that litho-friendly layouts are more tractable
by EDA tools.

Manuscript received May 16, 2013; revised October 1, 2013; accepted
November 12, 2013. Date of current version February 14, 2014. This work was
supported in part by Intel Corporation, in part by the Project FORMALISM
under Grant CICYT TIN2007-66523, in part by the Generalitat de Catalunya
under Grant ALBCOM-SGR 2009-2013, and in part by the Spanish Ministry
of Economy and FEDER funds through the Project TEC2008-01856. This
paper was recommended by Associate Editor C. C.-N. Chu.

J. Cortadella and J. Petit are with the Department of Software,
Universitat Politècnica de Catalunya, Barcelona 08034, Spain (e-mail:
jordi.cortadella@upc.edu; jpetit@lsi.upc.edu).

S. Gómez and F. Moll are with the Department of Electronic Engineer-
ing, Universitat Politècnica de Catalunya, Barcelona 08034, Spain (e-mail:
sergio.gomez-fernandez@upc.edu; francesc.moll@upc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2292514

Fig. 1. Polysilicon and diffusion layers in a gridded layout.

A. Cell Synthesis

The synthesis of cell libraries has been one of the targets for
design automation since long ago [2], [3]. With large feature
dimensions, the layout elements could be placed with very
simple design rules. Today, the lithography gap is imposing
complex design rules that highly complicate automation.

Regularity has been recently introduced as a means to
make design automation tractable. A clear example is the
lithographer’s dream patterns (LDP) [4] in which all layout
elements are located on a virtual grid of evenly spaced points,
ideally using a grid unit that is a fraction of the wavelength
of the light sources.

A typical gridded layout for the FEOL layers of a standard
cell is depicted in Fig. 1. The transistors are aligned in two
diffusion strips (p and n), while polysilicon is laid out with
vertical rectangles [5]. The diffusion strips can be isolated by
connecting polysilicon gates to Vdd or Vss or by removing
polysilicon and diffusion.

Different approaches have been proposed using the LDP
paradigm, each of them with advantages and limitations.
In [6] and [7], a methodology based on synthesizing small
logic bricks was proposed. The approach in [7] was based
on a Boolean formulation of the problem, inspired by the
model proposed in [8] and extended to support technology-
specific design rules. However, the complexity of the problem
restricted the applicability to small cells.

The work in [5] evaluated the impact of using a regular
layout fabric in an industrial flow. Different algorithms for
design automation were proposed to synthesize a small subset
of cells. In that case, the algorithms were specially customized
for that fabric and for a specific set of design rules.

0278-0070 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

410 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

The synthesis of a standard cell is typically decomposed
into two main tasks: transistor placement and routing. The first
task calculates a linear arrangement of the p and n transistors
along the diffusion strips [9], [10]. The second task find routes
to connect transistors using the available metal layers. The
goal of this paper is to propose an algorithmic approach for a
generic cell router.

B. Generic Cell Router

Ideally, a cell router should be able to survive along the
changing parameters by using technology-independent tech-
niques. We next enumerate some desirable properties for a
generic cell router.

1) The routing algorithm should be independent from the
layout templates and the interconnect resources used
for cell synthesis. In this way, the cell router can be
parameterized with the set of resources available for
each technology generation.

2) A set of parameterizable attributes should be allowed
for every wire segment. For example, segments with dif-
ferent width (thin/thick) or assigned to different masks
(for multiple patterning) are typically used in nanometric
technologies.

3) The routing algorithm should be independent from the
set of design rules. Design rules should be a parameter of
the router and customizable according to the attributes
assigned to the wire segments. For example, different
rules might be applicable for different wire widths.

4) Nets should be allowed to have floating terminals so that
the router can select the best terminal locations.

5) In case the cell is unroutable, the router should be
allowed to have some pins connected externally. The
number of unconnected pins should be minimized.

6) Recommended design rules to improve yield should be
allowed. One of the targets should be the maximization
of the compliance of recommended design rules.

7) Wire length should be a parameter for optimization.

C. Goals and Contributions

The primary goal of this paper is to propose an algorithmic
approach for the generic problem of cell routing with the
properties described in Section I-B.

Another important goal is efficiency. The proposed router
should be able to synthesize a complete standard cell li-
brary, including complex sequential cells (e.g., scan flip-
flops). In this way, various layout templates using different
number of tracks and transistor widths can be explored and
area/performance/power metrics can be quickly evaluated.

Similarly to [7] and [8], the approach presented in this paper
is based on a generic Boolean formulation of the problem.
It uses the LDP paradigm to make the router technology
independent and the design rules parameterizable. The main
contributions of this new approach are as follows:

1) a new encoding scheme for SAT-based formulas that
makes the problem tractable for large cells;

2) new graph-theoretical results to support floating termi-
nals, which are essential to route most of the nets in
standard cells;

3) efficient windowing heuristics for incremental routing of
nets that allows to complete the routing for large cells;

4) an algorithmic-independent formalism to specify gridded
design rules and multiple-patterning constraints;

5) a strategy to allow externally-connected pins in case the
cell is unroutable;

6) a heuristic strategy for quality improvement (wirelength
and recommended design rules).

The combination of the previous contributions has enabled
the synthesis of a library with 127 standard cells in about one
hour and a half of CPU time. The synthesis results of the
complete library can be found in .

The paper is organized as follows. Section II reviews exist-
ing approaches for cell routing. Section III presents a graph
model for the routing problem and a Boolean representation
of the space of solutions. Section IV introduces the Boolean
constraints that model the routing problem, whereas Section V
introduces a Boolean formulation for the parameterizable
design rules. Section VI describes the optimization phase of
the routing algorithm. The experiments to synthesize a cell
library are reported in Section VII.

II. Cell Routing

Detailed routing is commonly considered as the problem
following global routing in which the routes of the nets must
be assigned to metal segments and vias. Conceptually, global
and detailed routing are similar problems and use related
algorithmic approaches.

The most classical algorithms for detailed routing were
designed by assuming that design rules would be implicitly
honored by defining a sufficiently large technological pitch for
the underlying routing grid. For standard cells, in which area
is limited by the cell height, compaction was often integrated
to optimize area [3].

Nowadays, the complexity of the design rules is growing
exponentially with each technology node. Design rules are
more context-sensitive and the window of influence of each
checked pattern is expanding. For this reason, manual design
of standard cells requires a titanic effort and design automation
becomes essential.

Different options can be envisioned to automatically gener-
ate DRC-compliant circuits:

1) defining an overly conservative technological pitch for
the underlying grid in a way that the spacing rules can
be ignored during detailed routing;

2) iterating detailed routing and DRC by ripping-up and
rerouting conflicting nets;

3) constructing DRC-compliant circuits by integrating
manufacturing constraints in the detailed router.

Option 1) may imply an area overhead with unacceptable
impact on manufacturing cost and yield. Option 2) may be
acceptable for noncongested routing regions [11] but may
not find an existing feasible solution for cells with congested
regions that require sinuous routes for a complete routability.

As the complexity of design rules grows, option 3) seems
to be the only one that can guarantee the synthesis of
area-efficient solutions for high-density DRC-compliant

CORTADELLA et al.: BOOLEAN RULE-BASED APPROACH FOR MANUFACTURABILITY-AWARE CELL ROUTING 411

circuits. That is the main reason why, in the last few years,
we have seen an increasing effort in integrating manufacturing
constraints in cell synthesis tools [7], [11]–[15]. However,
this integration implies a significant computational cost.

The main goal of this paper is to propose a detailed routing
approach that is computationally affordable when integrating
manufacturing constraints.

A. Concurrent Detailed Routing

There are two main strategies for routing according to the
approach used to create the routes for each net: sequential (one
net at a time) and concurrent (all nets simultaneously) [16].

For similar reasons as the ones mentioned above, sequential
routing may not guarantee a feasible solution even if it exists,
specially for high-density cells. For this reason, the most recent
approaches resort to schemes for concurrent routing.

There are two families of algorithms that can be considered
for concurrent routing depending on the objects used to take
the routing decisions: tree-based and segment-based.

Typically, tree-based algorithms work in two steps. First, a
set of candidate routing trees is generated for each net using
algorithms for the generation of multiple rectilinear Steiner
minimum trees (e.g., as in [17]). Next, a multicommodity
flow problem is formulated and solved as a 0-1 integer linear
programming problem.

Segment-based algorithms work at the level of individual
metal segments. Given the fine granularity of the decisions,
the problem becomes computationally more complex than
tree-based algorithms. However, the formulation of the
problem is much more amenable for the incorporation of
manufacturing constraints. Usually, SAT-based formulations
are used in which every wire segment is represented as a
Boolean variable [7], [8].

Tree-based approaches using SAT formulations have been
proposed in [15] and [18]. In [15], a tree-based approach at a
fine level of granularity is proposed. For every net, a maze
router generates a set of routes for all pairs of terminals.
The maze router is process-dependent, meaning that it must
be customized for a specific technology. Some of the design
rules are checked on-the-fly when the routes are generated. A
Boolean formulation guarantees the selection of a set of routes
that creates a tree connecting all terminals. Design rules are
modeled as conflicts between sets of routes.

The approach in [18] combines a segment-based with a tree-
based formulation for routing double-gate, transistor-array-
based layouts. To avoid the explosion of potential routing
paths, a greedy phase is used to preroute some nets. The
number of turns for each path is also limited to prevent the
usage of sinuous paths.

To some extent, the approaches in [15] and [18] are similar
in the sense that the branching decision during SAT are
taken based on the selection of paths (and not wires). The
formulation in [15] seems to be simpler and more effective.

In general, tree-based approaches are convenient when the
set of possible routes is not large and the design rule conflicts
can be modeled between pairs of nets. In case of an explosion
of routes, some pruning can be applied at the expense of
declaring a problem unroutable even if a solution exists.

The models can become much more complex when dealing,
for example, with floating terminals since there can be an
explosion of routes to connect different regions of the layout.

The routing models can also become complex when de-
sign rules involving several nets are required. For example,
multiple-patterning rules require the analysis of multiple nets.
This analysis can be complex if the set of valid routes for each
net is large.

The closest approach to the work presented in this paper was
proposed in [7]. It is a segment-based approach of the routing
problem inspired by the satisfiability formulation presented
in [8]. The design rules are embedded in the model as Boolean
constraints. A solution of the model represents a valid set of
routes and an unsatisfiable model corresponds to an unroutable
cell. However, no chance is given to provide a partial routing
with externally connectible pins.

The approach presented in [7] showed a high computational
complexity and only small gates could be routed. A compar-
ative analysis with the approach presented in this paper will
be discussed in Section VII.

B. Restrictive Design Rules and Pattern Constructs

At every technology node, the number and complexity
of design rules are growing exponentially. For a tractable
automation, they are usually discretized and adapted to gridded
layouts, thus generating a set of conservative restrictive design
rules (RDRs) [19], [20] extracted from the gridless design
rules associated to the technology. Obtaining a set of RDRs
is mostly a manual task based on the knowledge of manufac-
turability constraints and the structure of the underlying coarse
grid of the layout. Automating the generation of RDRs from
gridless design rules is a desirable feature of the synthesis
flows and a topic for research.

In this paper, we consider the use of RDRs that can be
sufficiently generic to cover specific manufacturing aspects
of the technology. For example, the use of different metal
widths or multiple-patterning lithography (MPL) can be easily
supported by encoding different attributes in the Boolean
formulation of the problem.

The specification of RDRs is highly simplified when MPL
constraints are provided. Usually, MPL constraints can have
simple specifications based on the definition of minimum-
distance rules [21] and enable to simplify the RDRs by
ignoring those patterns that do not honor the MPL constraints,
i.e., MPL violations can be considered as don’t care conditions
for the rest of RDRs.

The specification of design rules with Boolean formulas will
be discussed in Section V.

III. Routing Problem

Graphs are the natural formal model to represent a gridded
routing problem. Fig. 2(a) shows a particular instance of the
routing problem with two nets represented with rectangular
and oval boxes, respectively. Every net has a set of terminals
that must be connected. Each terminal is represented by a
set of vertices. Terminals with more than one vertex repre-
sent floating terminals in which every vertex is a possible

412 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

Fig. 2. (a) Graph formulation of a routing problem with two nets. (b) Illegal
solution with a short circuit. (c) Illegal solution with a design rule violation.
(d) Legal solution.

connection point. Edges represent wire segments that can be
used to connect pairs of vertices. The routing problem can be
formulated as follows:

Find a set of edges that define routes connecting the
terminals of each net. The routes must be disjoint
(cannot have common vertices) and satisfy a set of
design rules.

Let us assume that we have only one design rule that
prohibits the use of parallel edges that do not have any other
edge in between. Fig. 2(b) depicts an illegal solution since the
two routes have a common vertex. The routes in Fig. 2(c)
are disjoint; however, they violate the design rule. Finally,
Fig. 2(d) depicts two routes that conform a valid solution for
the problem.

It is important to realize that the number of possible
solutions for a gridded routing problem is finite, since the
underlying graph is also finite. Finding a legal solution for
a routing problem can be reduced to a Boolean satisfiability
problem in which a variable is associated to every edge,
representing the presence or absence of a wire.

The main goal of the approach presented in this paper
is to find a legal routing that maximizes the quality of
the solution using a satisfiability (SAT) formulation. SAT is
NP-complete, but efficient solvers can still provide solutions
for large problems in an affordable time.

Different aspects can be considered when evaluating the
quality of a solution: wirelength, number of unconnected ter-
minals, compliance of recommended design rules, etc. Unfor-
tunately, the optimization extensions of SAT (e.g., MAXSAT)
are NP-hard and soon become intractable for many problems
in which the decisional version is still tractable.

For the previous reason, we propose to solve the routing
problem in two steps:

1) finding a legal solution that honors the design rules;
2) improving the solution by iteratively rerouting nets and

using quality terms in the cost function.

This section and Sections IV and V cover the first step.
Section VI covers the second step.

Fig. 3. (a) Grid model for routing. (b) Physical and logical grid.

TABLE I

Nomenclature Used for Objects in Routing Model

The algorithms in this paper have been used for the syn-
thesis of library cells. However, the approach can be used for
any general routing problem.

A. Representation of Routing Region and Nomenclature

The interconnect model is similar to the one presented
in [8]. For the sake of simplicity in the nomenclature and
formulation of the problem, we customize the model for 3-D
grids. However, the reader will realize that the model can be
easily extended to any graph model, as it was shown in the
example of Fig. 2.

The routing region is represented by a 3-D undirected
grid graph G(V, E), as depicted in Fig. 3(a), where the
vertices (grid points) have associated integer coordinates in
{1, . . . , W} × {1, . . . , L} × {1, . . . , H}, where W , L and H

are the width, length, and height of the grid, respectively. The
edges of the graph connect grid points. Even though the logical
grid assumes unit-length edges, the represented physical grid
may have rows and columns separated by different distances,
as depicted in Fig. 3(b). This heterogeneity will be taken into
account when instantiating the design rules at every grid point
(Section V).

Every vertex v of the grid is denoted by its coordinates
v = (x, y, z). In our context, the coordinate z represents the
layer of the layout, e.g., z ∈ {pd, m1, m2}, as depicted in
Fig. 3(a).

Table I summarizes the nomenclature used for the grid and
routing objects. The column of symbols describes the range
of letters used to denote every type of object. The subscripts
indicate the coordinates of the vertices (vijk) and the origin
points of the edges.

Edges will be denoted by their endpoints, e.g., e(u, v), or by
the coordinates of one endpoint and the direction of the edge
in the grid, as shown in Table I. The nomenclature ei•jk, eij•k,
and eijk• is used to denote edges starting at vertex vijk. The
superscript • indicates the dimension occupied by the edge, as

CORTADELLA et al.: BOOLEAN RULE-BASED APPROACH FOR MANUFACTURABILITY-AWARE CELL ROUTING 413

Fig. 4. Different connectivity models for subnets. (a) Star. (b) EMST.

shown in Table I (right). For example, vias will be represented
by vertical edges that start at the m1 level (eijm1•).

An edge e = {u, v} is said to be adjacent to vertices u and
v. Two edges are said to be adjacent if they share a common
vertex. The set of edges adjacent to a vertex v or edge e

will be denoted by adj(v) or adj(e), respectively. To simplify
the nomenclature, we use quantifiers (∀v, ∀e, . . .) without
specifying the domain, that will be implicit with the name of
the variable (∀v ∈ V , ∀e ∈ E, . . .).

B. Nets and Subnets

A net n ⊂ V is a set of grid points called terminals that
must be connected. A routing problem N is defined by a set of
nets N . The routing problem consists of finding routes along
the edges of the grid that connect all terminals of each net.
The routes must be compliant with a set of design rules.

A subnet is a pair of terminals of the same net. Finding a
routing for an n-terminal net can be reduced to the problem
of finding a routing for n − 1 subnets that connect all
terminals [8]. In [8] and [22], a star model was proposed to
connect all terminals, as shown in Fig. 4(a), in which one of
the terminals was shared by all subnets.

We propose an alternative model based on finding an
Euclidean minimum spanning tree (EMST). This model guar-
antees the connectivity of the net and minimizes the length
of the edges [see Fig. 4(b)]. The effects of using this model
to reduce the complexity of the problem are discussed in
Section IV-C.

C. Boolean Variables and SAT Formulation of Problem

The problem encoding has a direct impact on the size of
the model and the computational effort to solve it. Finding
a good set of variables and clauses can have a significant
impact on the behavior of a SAT solver [23]. On one hand,
minimizing the number of variables may result in larger
formulas and worse performance. However, smaller formulas
do not always guarantee better performance. It is usually
convenient to find encodings in which unit propagation can
be efficiently exploited by the DPLL algorithm [24].

In this paper, we have evaluated different encodings to rep-
resent a routing solution but we finally compare two of them:
the one proposed in [8] and [22] and the one proposed in this
paper that we call dense and sparse encodings, respectively.
The encodings represent the wires (edges) in the grid and their
associated nets and subnets. An important parameter of the
model is the maximum number of subnets of a net

maxS = max
n∈N

|n| − 1.

Fig. 5. Encoding schemes for the formulation of the routing problem (every
box represents a Boolean variable).

The symbol ρ is used to denote Boolean variables, abusing
from symbol overloading to simplify the nomenclature.

The dense encoding uses the smallest number of variables,
whereas the sparse encoding uses the largest. For every edge
e of the grid, three sets of variables are used (see Fig. 5).

1) ρ(e): a variable that represents when e is occupied by
a wire. This variable was not used in [8] but becomes
essential for the specification of design rules.

2) ρ(e, n): a set of variables encoding the associated net in
case e is occupied by a wire. A one-hot encoding is used
for the sparse encoding (one variable for every signal),
whereas a log-encoding is used for the dense encoding
(�log2 |N |� variables).

3) ρ(e, n, s): a set of variables to encode the subnets
associated to every wire. The dense encoding use maxS
variables for every edge. The sparse encoding uses
one variable for each possible pair (net, subnet) of the
routing problem.

We will say that e is a wired edge when ρ(e) is asserted. A
wire segment is a sequence of adjacent wired edges.

Every edge can hold more than one subnet of the same net.
Therefore, the ρ(e, n, s) variables are not one-hot encoded. For
the sparse encoding, every net has a set of subnet variables.
Since every edge can only hold one net, only the variables
of one of the sets can be asserted. Even though this seems
to be an inefficient encoding scheme, it turns out to be more
computationally efficient in practice.

The ρ(e, n, s) variables will be used for the routability
formula, whereas the ρ(e, n) and ρ(e) variables will be used
for the specification of the design rules.

Hence, for the sake of simplicity, all the constraints of the
Boolean model will be described for the sparse encoding. The
formulation for the dense encoding is conceptually similar.
The reader can resort to [8] and [22] for the details of the
dense encoding.

The routing problem is represented by a Boolean formula
F with three types of constraints

F ≡ C ∧ R ∧ DR (1)

where C represents the set of consistency constraints
(Section IV-A), R represents the routability constraints
(Section IV-B), and DR represents the design-rule constraints
(Section V).

414 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

Fig. 6. (a) Specification of floating terminals. (b) Valid solution.

IV. Consistency and Routability Constraints

A. Consistency Constraints

We next present the formulas that define relationships be-
tween the variables ρ(e), ρ(e, n) and ρ(e, n, s). Two constraints
are required.

1) If an edge is assigned to a net, then the edge must be
occupied by a wire

∀e :
∨

n∈N
ρ(e, n) =⇒ ρ(e). (C1)

2) If an edge is associated to some subnet of a net, it must
be also associated to the net:

∀e, ∀n :
∨

s∈subnets(n)

ρ(e, n, s) =⇒ ρ(e, n). (C2)

These constraints are formulated as implications (⇒) and
not equivalences (⇔) since they can be represented with
simpler CNF formulas. The equivalences are not necessary. In
some cases, a wire could appear in some edge without being
assigned to any net. These cases are not harmful since they do
not restrict the satisfiability of the problem. On the other hand,
the spurious wires will be cleaned during the optimization
phase.

More interestingly, there can be wires assigned to a net
but not assigned to any subnet. These cases are necessary.
For example, some design rules require the extension of the
wire segments to guarantee a minimum segment length. These
extensions may violate the routability rules of the subnets
(discussed in Section IV-B). Therefore, the unidirectional
implication in (C2) is not only convenient, but necessary.

B. Routability Constraints With Floating Terminals

This section presents a new routability model inspired by
the model presented in [8]. In this paper, the model is extended
to support floating terminals, which is an essential feature to
exploit the routing flexibility within the cells.

The interconnection in library cells typically requires routes
between regions of grid points, e.g., a region of diffusion
connected to a region of polysilicon, or a region of diffusion
connected to a region of metal 2 to implement an I/O pin.
In general, routing has to deal with floating terminals located
in regions of grid points. An example is shown in Fig. 6 in
which the routing of a subnet must guarantee the connectivity
between two terminals in the regions S and T .

Our model highly simplifies the routability constraints
presented in previous approaches. We resort to the theory
by Euler from his famous paper on the Seven Bridges of
Königsberg [25]. From Euler’s theory we know:

Fig. 7. Illustration of Theorem 2.

Theorem 1 (Handshake Theorem): The sum of degrees of
all vertices of a graph is an even number.

Corollary 1: The number of vertices of odd degree is even.
We now extend Euler’s theorem to support floating termi-

nals.

Theorem 2 (Path with one floating terminal, see Fig. 7):
Let G = (V, E) be a graph such that s ∈ V is a vertex with
odd degree, T ⊂ V is a set of vertices with arbitrary degree
and V ′ = V \ (T ∪ {s}) are the remaining vertices, all of them
with even degree. Then, G has a path that joins s with some
vertex t ∈ T .

Proof: Let us call Gs the connected component of G that
includes vertex s. The degree of the vertices in Gs is the same
as the degree of the same vertices in G, since only vertices
disconnected from the connected component are removed. By
using Corollary 1 we conclude that Gs must have at least one
vertex t ∈ T with odd degree, otherwise Gs would have one
and only one vertex with odd degree. Since Gs is connected,
there is a path from s to t.

The previous theorem can be extended for paths with two
floating terminals.

Definition 1 (External edges): Given a subset of vertices
S ⊂ V , e = {u, v} is said to be an external edge of S if u ∈ S

and v
∈ S. We call Ext(S) the set of external edges of S.

Theorem 3 (Paths with two floating terminals):
Let G = (V, E) be a graph. Let S ⊂ V be a set of vertices
such that |Ext(S)| is odd. Let T ⊂ V be a set of vertices
with arbitrary degree and V ′ = V \ (T ∪ S) are the remaining
vertices, all of them with even degree. Then, G has a path that
joins a vertex s ∈ S with a vertex t ∈ T .

Proof: The handshake theorem indicates that the sum of
degrees of the vertices in S is odd. Let us collapse all nodes of
S into one node ŝ, preserving all edges even in the case they
are self-loops or replicated. Now ŝ has a degree equal to the
sum of degrees of the original vertices in S. Therefore, ŝ has
odd degree. We are now in the same conditions of Theorem 2,
thus guaranteeing there is a path from ŝ to a vertex t ∈ T . This
also guarantees a path from S to T in the original graph.

Corollary 2: Let G = (V, E) be a graph and S ⊂ V be a set
of vertices with |Ext(S)| = 1. Let T ⊂ V be a set of vertices
with arbitrary degree and V ′ = V \ (S ∪ T) are the remaining
vertices, all of them with degree zero or two. Then, G has a
path that joins a vertex s ∈ S with a vertex t ∈ T .

Proof: It is just a particular case of Theorem 3.
The previous results allow to formulate the routability

constraints of a subnet as a conjunction of local properties on

CORTADELLA et al.: BOOLEAN RULE-BASED APPROACH FOR MANUFACTURABILITY-AWARE CELL ROUTING 415

the vertices (odd/even degree). It also allows to have floating
vertices on every subnet.

The properties on every vertex can be defined in terms of
Theorem 3 or Corollary 2. The latter formulation leads to
solutions with simple paths (nonrepeated vertices) and smaller
Boolean formulas. For this reason, the formulation based on
Corollary 2 is preferred.

Let us now consider the routability constraints for a subnet
s of a net n. The subnet has to connect two regions, S and T .
We define a proposition to enforce one external edge on a set
S of grid points

Terminal(S, n, s) ≡
∑

e∈Ext(S)

ρ(e, n, s) = 1

where the summation represents the number of asserted vari-
ables.

We introduce some expression to denote the number of
wired edges connected to a grid point (degree of the grid point)

Nadj(v, s, n) ≡
∑

e∈adj(v)

ρ(e, n, s).

The next proposition enforces a grid point with degree zero
or two

Degree0or2(v, n, s) ≡ Nadj(v, n, s) = 0 ∨ Nadj(v, n, s) = 2.

The previous equalities can be easily transformed into
Boolean clauses using different methods (e.g., BDDs, adders,
sorters [26]).

The constraints for the routability of the subnet are as
follows:

Terminal(S, n, s) (R1)

∀v
∈ (S ∪ T) : Degree0or2(v, n, s). (R2)

Note that no constraints are imposed on the grid points of T .
Given the symmetry of the formulation, we could also choose
to impose the constraints on T and leave S unconstrained. We
choose to add the constraints for the smallest set, resulting in
smaller Boolean formulas.

The previous constraints allow each edge to be assigned
to more than one subnet, which is acceptable if the subnets
belong to the same net. Additional constraints are required
to ensure that every edge is assigned to one net at most and
two adjacent wires are assigned to the same net (otherwise a
short-circuit would be produced)

∀e, ∀n, ∀n′
= n : ρ(e, n) =⇒ ¬ρ(e, n′) (R3)

∀n, ∀e, ∀e′ ∈ adj(e) : ρ(e, n) ∧ ρ(e′) =⇒ ρ(e′, n). (R4)

For those nets requiring an input/output pin, a new subnet
is created that connects one of the poly/diffusion regions of
the net with a floating terminal in the uppermost layer (usually
metal 2).

C. Subnet Windowing

Empirically, it is easy to observe that the route of a
two-terminal subnet rarely spans beyond the bounding box
determined by the two terminals. For this reason, restricting
the routability of a subnet to a region around the bounding

Fig. 8. Using a top vertex to implement unconnected pins.

box is a strategy that contributes to reduce the complexity of
the problem.

Fortunately, the sparse encoding helps to define restricted
routing regions for each subnet by simply dropping those
variables that do not belong to the routing region. Formally,
this is equivalent to enforcing the variables outside the region
to be falsified, i.e.

∀e, ∀n, ∀s, such that e
∈ Region(n, s) : ¬ρ(e, n, s).

The elimination of the subnet variables is not possible when
using the dense encoding since these variables are associated
to all nets simultaneously.

The routing problem uses a parameter W that determines
the expansion of the routing region around the bounding box of
each subnet. Formally, the region of the grid (window) to route
a subnet is composed of all the edges inside the bounding box
and those that are not farther than W units from the bounding
box.

In practice, the window needs to be expanded few grid
points beyond the bounding box of each subnet. When using
windowing, there is a probability that no solution is found
even one exists. However, for large cells, windowing often
transforms the problem from intractable to tractable and,
therefore, losing some solution is the lesser of two evils.

Windowing is the reason why an EMST is calculated for
each net to determine the set of two-terminal subnets (see
Section III-A and Fig. 4). Using EMST guarantees that the
sum of the areas of the bounding boxes is minimized.

D. Unconnected Pins

Some unroutable cells may become routable if some pins
are left unconnected and their connection is delegated to the
upper metal layers. This option is not desirable, but necessary
if no routing solution is found. We next describe how the
problem of minimizing the number of unconnected pins can
be solved algorithmically.

Fig. 8 depicts the grid model used for the case in which
one pair of unconnected terminals is allowed. A new point
is added on top of the grid graph connected to all the points
of the upper layer, thus forming a pyramidal ceiling with a
top vertex accepting the routing of one of the subnets. The
two edges of the pyramid used for routing will determine the
unconnected pins of the cell.

This strategy can be extended to any number of unconnected
pins by allowing more subnets to be routed through the
pyramidal ceiling and adding a constraint on the number of
routed subnets.

416 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

Experimentally, we have observed that most of the cells can
be completed without unconnected pins. Only few congested
cells require some unconnected pins. In case the original
problem is unsatisfiable, one subnet is allowed to be routed
through the pyramidal ceiling. If still unsatisfiable, two subnets
are allowed, etc.

V. Design Rules

This section explains how design rules can be specified in a
grid-based router using a Boolean formulation. We first present
few examples and discuss the extension of this formulation to
handle attributes on the wires. The use of attributes will allow,
for example, to define design rules for multiple patterning
lithographies.

A technology-independent specification language for design
rules in gridded layouts has been created. It is based on a
simple subset of C++ syntax. In this way, the design rule file
can be compiled into a dynamic library that can be loaded at
execution time.

The design rule language can specify attributes for the
wire segments and Boolean predicates that model the allowed
patterns in the layout. The same language is used to specify
mandatory (hard) and recommended (soft) design rules.

Design rules are specified with two parameters, i and j,
that refer to a reference location in the grid graph. Every
design rule is expanded across the grid graph by instantiating
all possible values for i and j in the grid. The design rule
language also allows the specification of numerical constraints
that restrict the application of the rules to specific locations,
e.g., only for locations in which j is even (j mod 2 = 0), at
the left boundary of the cell (i = 0), etc.

Design rules can be specified as Boolean formulas only
using the ρ(e) and ρ(e, n) variables. Despite that we shall
not detail this language here, the curious reader may see an
example of a design rule file in the design rules link of the
web site. Let us discuss a few examples below.

A. Design Rule Examples

Example 1: Metal 1 can only be laid out in the horizontal
direction

∀eij•m1 : ¬ρ(eij•m1)

where eij•m1 denotes the edge in the vertical direction with
origin in (i, j) using layer m1 (see Table I).

Example 2: Any horizontal wire segment in metal 1 must have
length not shorter than two units

∀ei•jm1 : ρ(ei•jm1) =⇒ (
ρ(ei+1•jm1) ∨ ρ(ei−1•jm1)

)
.

This constraint enforces any horizontal wired edge in m1
to have an adjacent segment, thus ensuring a minimum length
of two edges.

Example 3: No adjacent vias can be connected to different
nets. Given two edges, e1 and e2, we can define a proposition
that is asserted when they are assigned to the same net

SameNet(e1, e2) ≡
∨

n

(
ρ(e1, n) ∧ ρ(e2, n)

)
.

The constraint to prevent adjacent vias is as follows:

∀eijm1• : ρ(eijm1•) =⇒ (
(¬ρ(ei−1jm1•) ∨ SameNet(eijm1• , ei−1jm1•)

) ∧(¬ρ(ei+1jm1•) ∨ SameNet(eijm1• , ei+1jm1•)
) ∧(¬ρ(eij−1m1•) ∨ SameNet(eijm1• , eij−1m1•)
) ∧(¬ρ(eij+1m1•) ∨ SameNet(eijm1• , eij+1m1•)
))

.

This constraint indicates that any via in point (i, j) implies
no vias in the four adjacent grid points, unless the vias are
connected to the same signal. A more restricted version could
be considered by involving the eight edges surrounding the
via in (i, j).

B. Assigning Attributes

For generating a gridded layout, it may not be sufficient to
only define the presence or absence of wires in the edges of
the underlying graph. Some physical aspects of the wires may
also be required for a complete description. For example, wires
might have two different widths (thin and thick) with different
associated design rules or could be assigned to different masks
to comply with multiple patterning lithography rules.

Any discrete set of attributes can also be binary-encoded
and incorporated in the Boolean formulation of the problem.
We propose to use a one-hot encoding for sets of attributes
associated to wires. We will denote by ρ(e, x) the variable that
represents the presence of attribute x in edge e.

For example, if wires can have two different widths and can
be assigned to k different masks, the following variables can
be defined for each edge e:

ρ(e,thin), ρ(e,mask1), ρ(e,mask2), . . . , ρ(e,maskk).

The assertion of ρ(e,thin) will indicate that the wire
is thin, otherwise the wire is thick. Note that the variables
representing the masks are not necessarily mutually exclusive,
thus allowing overlapping masks. Mutual exclusion between
attributes can always be enforced by Boolean constraints.

C. Multiple Patterning Lithography

We next illustrate how attributes can be used to formu-
late multiple patterning lithography (MPL) rules and enforce
MPL-compliant layouts.

Not every routing solution may be feasible when a limited
number of masks can be used. Fig. 9 shows a possible routing
for the horizontal metal layer that cannot be implemented with
only one mask if the different wire segments must be separated
by a distance greater than d. However, the problem is solvable
with two masks.

The Boolean formulation of the routing problem can
be extended to generate MPL-compliant layouts using the
ρ(e,maski) variables.

Let us consider the MPL assignment for layer m1
(metal 1). with the set of masks M = {maski}.

For a consistent encoding, these mask variables need to be
related to the routing variables

∀eijm1 : ρ(eijm1) =⇒
∨

maski∈M
ρ(eijm1,maski)

CORTADELLA et al.: BOOLEAN RULE-BASED APPROACH FOR MANUFACTURABILITY-AWARE CELL ROUTING 417

Fig. 9. Example of double-patterning lithography.

indicating that every wired edge must be assigned to one mask
at least. Note that this formulation does not prevent a wired
edge to be assigned to more than one mask, thus resulting in
overlapping segments.

Let us illustrate with an example, how constraints for MPL
could be specified for m1, assuming that m1 can only be used
for horizontal routing and any pair of wire segments must be
separated by a distance greater than d.

We first introduce a new predicate to represent the fact that
two edges are assigned to the same mask

SameMask(e1, e2) ≡
∨

mi∈M
ρ(e1,maski) ∧ ρ(e2,maski).

We specify the rule by considering two cases, depending
on whether the wire segments are in the same or in different
tracks. When belonging to different tracks, wire segments not
sufficiently spaced must be in different masks

∀ei•1j1m1, ei•2j2m1,

such that j1
= j2, Distance(ei•1j1m1, ei•2j2m1) ≤ d :

¬SameMask(ei•1j1m1, ei•2j2m1).

When belonging to the same track, disconnected wire seg-
ments that are too close must be in different masks. Wire
segments are disconnected when there is some empty slot
between both

∀ei•1jm1, ei•2jm1,

such that i1 < i2 − 1, Distance(ei•1jm1, ei•2jm1) ≤ d :
∨

i1<i<i2

¬ρ(ei•jm1) =⇒ ¬SameMask(ei•1jm1, ei•2jm1).

The important fact of this approach is that by incorporating
the MPL constraints into the Boolean formula, all the gener-
ated layouts are guaranteed to be MPL-compliant.

VI. Routing Optimization

The Boolean formula (1), if satisfiable, generates a valid
routing for the problem, which is the main goal of the cell
router. Among all valid routing solutions, the ones with the
best quality are desired. There are several parameters that
can be taken into account to improve the quality of a layout.
For example, cells with smaller wirelength are preferred. For
reliability reasons, which have a direct impact on yield, some
layout patterns are recommended, such as the addition of
redundant vias.

When the routing model is extended with a cost func-
tion, the model moves from the NP-complete (SAT) to the

NP-hard domain (MAXSAT, ILP, etc), thus involving a sub-
stantial jump in computational complexity. This section pro-
poses a heuristic method to make this problem tractable using
0-1 linear programming (0-1 LP).

Any SAT model can be reduced to a 0-1 LP model by
transforming every clause (x1 ∨ · · · ∨ xn) in the CNF formula
into a linear inequality1

n∑

i=1

xi ≥ 1

with xi being 0-1 variables. We next propose a model to
improve the quality of the routing solution.

A. Optimization of Recommended Design Rules

Let us consider a set of recommended rules RR = {r(i, j)}
applied to every point (i, j) of the grid. For every rule r(i, j),
we have an estimation of the cost for violating the rule (e.g.,
yield loss) that can be quantified as a real number αr.

With an abuse of notation, let us consider r(i, j) to be the
Boolean formula representing the same recommended design
rule. A new variable vr

ij is created for each (i, j)-instance of
r(i, j) to denote the violation of the rule, i.e.

∀i, j : r(i, j) =⇒ vr
ij.

The 0-1 linear programming model can be formulated as

min
∑

i,j,r

αrv
r
ij

s.t. F ∧ RR
(2)

where F is formula (1) and RR is the Boolean formula
representing all instances of the recommended design rules.

The previous model allows the violation of recommended
rules at the expense of increasing the value of the cost
function. Therefore, total weighted cost of the violations will
be minimized.

It is important to realize that every feasible solution of
formula F (1) is a feasible (possibly nonoptimal) solution of
the 0-1 LP model (2), since the recommended design rules
only affect the cost of the model, but not the space of solutions.

B. Examples of Recommended Design Rules

Let us consider two simple examples of recommended
design rules: via minimization and addition of redundant vias.
Via minimization is tightly related, and is a simplified version,
of the wirelength minimization problem. For simplicity in the
formulation, we focus only on via minimization.

Let us recall that vias are represented by vertical edges
from m1, i.e., eijm1• . The recommended design rule for via
minimization (VM) can be specified as

VM(i, j) ≡ ¬ρ(eijm1•)

indicating that it is not recommended to use a via in point
(i, j). The Boolean constraint to represent the violation of the
rule is

¬VM(i, j) =⇒ vVM

ij

1Any negative literal xi is expressed as (1 − xi).

418 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

that is rewritten, by substitution, as2

ρ(eijm1•) =⇒ vVM

ij .

Addition of redundant vias is used for reliability reasons. The
recommended rule for redundant vias (RV) can be specified
as follows:

RV(i, j) ≡ ρ(eijm1•) =⇒(
ρ(ei−1jm1•) ∨ ρ(ei+1jm1•) ∨ ρ(eij−1m1•) ∨ ρ(eij+1m1•)

)

indicating that the presence of a via in (i, j) should imply the
presence of some via in the four neighboring grid points. The
Boolean constraint to represent the violation of the rule is

¬RV(i, j) =⇒ vRV

ij .

C. Making Optimization Model Tractable

The 0-1 LP model (2) becomes intractable when dealing
with large cells. This section proposes a heuristic to maintain
the problem tractable based on an incremental and iterative
approach for optimization.

The approach is based on the combination of integer linear
programming (ILP) with metaheuristics to solve large com-
binatorial problems [27]. In particular, large neighborhood
search (LNS) techniques [28] are proposed to reduce the com-
plexity of the problem at the expense of sacrificing optimality.

In short, the combination of ILP and LNS consists of itera-
tively solving instances of the ILP model by using a variable
fixing strategy. At each iteration, a subset of variables of the
model are fixed to the value of the current best solution. The
optimization model only considers the remaining variables.
Subsequent optimizations change the set of fixed variables
until some convergence criteria is met. As an example, this
strategy has been successfully adapted for the 0-1 knapsack
problem [29].

We adapt the ILP&LNS strategy to the routing problem by
mimicking a rip-up and reroute approach for individual nets.
The algorithm is described in Fig. 10.

Initially, the nonoptimized routing problem (1) is solved
using a SAT solver. S represents the solution (sets of values
associated to the variables) in case the formula is satisfiable.
Next, the 0-1 LP model is constructed according to model (2).

The two nested loops implement the ILP&LNS strategy.
The innermost loop iterates over each net in the circuit. The
function simplify calculates a simplified 0-1 LP model by
fixing all variables with the values in solution S, except the
ones involving net ni. The ILP solver finds the optimal solution
for net ni, under the assumption that all the other nets have
been fixed. These two steps mimic the ripping-up and rerouting
of net ni. At this point it is important to realize that:

1) the model M′ is always satisfiable, since the current
solution S is a valid solution for the model;

2) the solution delivered by the ILP solver satisfies all the
hard design rules.

2This is a particular case in which the rule can be represented with only
one literal that could be used directly in the cost function without the need
to create the new variable vVM

ij .

Fig. 10. IPL and LNS algorithm for routing optimization.

The rip-up and reroute application over all nets continues
until no significant improvement is observed (outermost loop).
In practice, two iterations of the outermost loop are sufficient
to obtain a solution close to a local minimum.

This strategy admits several variants. For example, more
than one net can be ripped-up and rerouted simultaneously,
depending on the size of the problem. The order of the nets
is also another aspect that can be explored to find better local
minima.

VII. Experiments

In this section, we present several experiments that show
the applicability of the routing algorithm.

A. Implementation and Experimental Setup

A routing tool has been implemented according to the
algorithm presented in the paper. It uses PicoSAT [30] to solve
the SAT models and Gurobi [31] to solve the optimization
models. The CNFs have been generated by obtaining product-
of-sums from BDD representations of the constraints [32]
using the CUDD package [33].

A variation with dense encoding has also been implemented
according to the constraints proposed in [22]. In this case, we
have also included constraints for the external pins of the cells
using the theory for floating terminals proposed in the current
paper.

The experiments have been performed in an Intel(R)
Xeon(R) X5670 CPU at 2800MHz using a single core and
restricting the available memory to 4GB. A complete account
of the experimental results can be found at the website:
http://sites.google.com/site/cellrouting.

B. Benchmarks, Rules, and Synthesis Flow

The 127 cells of the Nangate 45nm open cell library [34]
have been used to perform the experiments. Single- and
double-height versions of the cells have been synthesized using
two metal layers.

Specifically, polysilicon gates are equally spaced shapes
placed vertically from top to bottom of the cell. All pMOS and
nMOS transistors have a common width not being necessarily
the same for both types of transistors. Narrow metal 1 is used
for horizontal wires and wide metal 2 for vertical wires.

A set of commercial design rules has been adapted for grid-
ded layouts using 1-D gridded design rules (only rectangular
geometries [35]). The set of design rules is summarized in
Table II and its actual formulation can be found at the design
rules link of the web site.

CORTADELLA et al.: BOOLEAN RULE-BASED APPROACH FOR MANUFACTURABILITY-AWARE CELL ROUTING 419

TABLE II

Design Rules Used for Experiments

The flow to synthesize each cell is the following.
1) The SPICE transistor netlist is transformed by folding

the large transistors and equalizing the width of all
transistors in the same p or n strip. The transformation
is done in such a way that the total width of each group
of identical transistors is as similar as possible to the
original width.

2) A transistor placement is computed using a placement
tool that always guarantees an area-optimal layout. This
tool has been designed based on the principles of [36].

3) A legal routing is computed using the SAT model
described in Section III.

4) Wirelength is iteratively improved using the ILP&LNS
heuristic described in Section VI.

Finally, the generated layouts are checked for DRC and
LVS.

C. Comparison of Encoding Schemes

Our first experiment compares the dense and sparse encod-
ing schemes evaluated in this paper. Table III reports some
representative data of the Boolean formulation for the FA X1
(full adder) cell of the library. A window parameter of W = 6
has been used in the sparse enconding.

As expected, the dense encoding uses fewer variables than
the sparse encoding. Furthermore, it generates smaller formu-
las, both in the number of clauses and in the total number of

TABLE III

Encoding Differences for FA X1 as Single Height Cell

TABLE IV

Results for SAT Solving Single Height Cells

literals. Despite of that, the SAT solver can solve the routing
problem much faster with the sparse encoding than with the
dense encoding.

This is explained by two mutually related facts.
1) It is obvious that the windowing heuristic greatly reduces

the search space. This heuristic cannot be applied with
the dense encoding.

2) The structure of the clauses for each encoding is quite
different: The dense encoding generates formulas with
an average of 4.7 literals per clause, whereas this average
is 2.4 for the sparse encoding. Likewise, 40% of the
clauses of the dense encoding have two or three literals,
whereas this percentage is 98.5% for the sparse encod-
ing. Indeed, many constraints of the sparse encoding
have the form a ⇒ b or a ∧ b ⇒ c and can be
encoded with 2- and 3-literal clauses due to the one-
hot encoding of the nets. The dense encoding requires
more intricate formulas to deal with the log-encoding
of the signals. Small clauses offer a great potential for
unit propagation and simplification at every choice of
the DPLL algorithm [37].

Similar conclusions can be drawn for all the other cells.
Table IV reports results for some representative cells in the li-
brary, sorted in ascending order of area (number of polysilicon
columns). It is clear that the dense encoding does not scale
for medium and large cells. For instance, the SDFFRS X2
cell could not be routed in 40 hours with the dense encoding.

D. Wirelength Reduction

In order to show how the ILP&LNS heuristic works, Fig. 11
displays, for the FA X1, the evolution of the total wirelength
after cleaning each signal for three rounds. Starting from the
SAT solution which had wirelength 472 [see Fig. 12(a)], the
first round decreases it to 380, the second round decreases it to
364 and the third and last round sets it to 360 [see Fig. 12(b)].
Thus, a 23% reduction of wirelength is achieved. It is clear
that the first two reduction rounds have a substantial impact
on wirelength. The impact of the third round is more dubious.
With respect to the running time, the SAT phase took about

420 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

Fig. 11. Wirelength reduction from first SAT solution.

half a minute to find a satisfiable assignment for the whole
program, while each ILP&LNS iteration for an individual
signal took beetween 0.3 and 1 s, for a total of 16 s. This is
explained by the fact that the SAT problem has about 40 000
variables, while each ILP&LNS model has 1350 variables
on average. On the other hand, the complete minimization
problem (all nets simultaneously) could not be solved in 12
hours.

E. Routing of Single-Height Cells for Complete Library

The layouts for single-height cells were generated for the
complete Nangate 45nm Library. All cells were routed using
W = 6. The total CPU time to route without optimizing all
the cells was about 45 minutes. The longest one (DFFR X1)
took 9 min.

In order to reduce the wirelength, two optimization rounds
were performed, reducing the wirelength of one net at a time.
More rounds did not reduce the wirelength substantially. On
average, wirelength was reduced by about 35% at the expense
of doubling the total CPU time (93 min). This time was
distributed as follows: 41% of the time was spent in solving
the SAT models to find a legal routing, 49% applying the
ILP&LNS heuristic for wirelength reduction, and the rest in
generating and simplifying the CNF formulas before feeding
them to the solvers.

Individual data and layouts for each cell can be found in
the link “Single-height cells” of the website.

F. Synthesis of Double-Height Cells

Similarly, double-height layouts were generated for the 37
largest cells in the library (those having, at least, seven polysil-
icon columns). The same wirelength optimization process than
before was applied but setting the windowing parameter to
W = 8.

All but three original double-height cells could be routed;
let us analyze the cases that could not be directly routed.

1) On one hand, the minimum placements of the
DFFR X2 and SDFFR X2 cells were so congested,
that they could never be routed. To solve this issue, we
substantially reduced their congestion by increasing their
area by a polysylicon column, and could then route them
normally.

Fig. 12. FA X1 before and after wirelength optimization. (a) Before opti-
mization. (b) After optimization.

2) On the other hand, no routing of the FA X1 cell
could be found in less than 12 hours, even though its
congestion is moderate. In this case, we allowed the
router to use the pyramidal ceiling for just one signal
(as described in Section IV-D), and a valid routing was
delivered in half a minute.

Taking into account the previous items, the total CPU time
to route (without wirelength optimization) this subset of cells
was 112 min. The longest one (DFFRS X2) took 48 min.
The total CPU time to route and reduce the wirelength was
2 hours and 35 min. One can observe that double-height cells
require more effort from the SAT solver than single height
cells.

Individual data and layouts for each cell can be found in
the link “Double-height cells” of the website.

G. Commercial Cell Library

In order to evaluate the quality of the results obtained by the
algorithms presented in this paper, we compared the layouts
of a commercial library with the one derived by our tool. The
comparison was done for a low-power 10-track library with
206 cells. The layouts were using 1D geometries for poly,

CORTADELLA et al.: BOOLEAN RULE-BASED APPROACH FOR MANUFACTURABILITY-AWARE CELL ROUTING 421

TABLE V

Results From a Commercial Library

M2 and M3, and 2-D geometries for M1. M3 was only used
occasionally to route complex cells. In this library, the FEOL
geometries (poly and diffusion) were always aligned with a
uniform grid.

The experiment was performed as follows.

1) The FEOL geometries and the coordinates of the in-
put/output terminals were extracted from the GDSII
file. Therefore, the area of the standard cells was not
modified.

2) A set of gridded design rules was created (about 30 de-
sign rules) to satisfy the ungridded design rules defined
by the technology.

3) The cells were routed on the same grid defined for the
FEOL layers. M3 was only used when the cell was
unroutable with only two metal layers.

4) DRC was run on the final layouts to check conformance
with the original (ungridded) design rules.

5) The wirelength for every metal layer and the number
of vias were calculated for the original and the newly
created cells.

Table V reports a summary of the results for the original
library and the one obtained by our routing tool (automatic).
The first important observation is that the original library used
M3 for eight cells, whereas our tool only required M3 for
two cells. The eight cells (full/half adders and some flip-
flops) showed highly congested layouts that were difficult to
complete with only two metal layers.

The layouts produced by our tool had a total wirelength
reduction of 1.6% with regard to the original layouts. We can
conclude that the tool can derive very competitive results, even
with the constraint of using gridded layouts.

The main reduction produced by our tool was in horizontal
and vertical M1 (M1H and M1V), but this reduction was
compensated by an increase of vertical M2 (M2V), which also
results in an increase of M1-M2 vias. The reduction in M3 and
M2-M3 vias is due to the fact that only two cells required the
M3 for the completion of routing.

VIII. Conclusion

Regular fabrics open a new avenue of opportunities for
physical design automation. This paper has presented an
approach to solve the problem of detailed routing for the
synthesis of library cells in which parameterization and tech-
nology independence are key aspects.

The discretization of the cell routing problem and the
embedding into a grid graph enables the modeling as a

combinatorial problem for which powerful heuristics can be
used to solve it. The algorithmic approach presented in this
paper has been shown to be versatile and competitive.

Current SAT solvers have powerful resolution engines and
the problem encoding proposed in this paper has contributed
to reduce the CPU time by few orders of magnitude with
regard to previous encoding schemes. However, the lack of
information about the nature of the problem often lets the SAT
solver to do an unguided exploration of infertile branches of
the tree. We believe that a guided selection of the branching
variables may contribute to speed-up even more the algorithm.

Performance, power and area are interrelated factors that
need to be tradedoff in a different way for each particular
design. The availability of this type of EDA tools will enable
the exploration and characterization of a wide range of layout
templates for cell libraries. This is one of the directions for
future work.

References

[1] R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques
for future electronics,” Proc. IEEE, vol. 96, no. 2, pp. 248–270,
Feb. 2008.

[2] J. C. Poirier, “Excellerator: Custom CMOS leaf cell layout generator,”
IEEE Trans. Comput. Aided Design, vol. 8, no. 7, pp. 744–755, Jul. 1989.

[3] M. Guruswamy, R. L. Maziasz, D. Dulitz, S. Raman, V. Chiluvuri,
A. Fernandez, et al., “CELLERITY: A fully automatic layout synthesis
system for standard cell libraries,” in Proc. ACM/IEEE Design Autom.
Conf., 1997, pp. 327–332.

[4] W. Maly, Y.-W. Li, and M. Marek-Sadowska, “OPC-free and minimally
irregular IC design style,” in Proc. ACM/IEEE Design Autom. Conf.,
2007, pp. 954–957.

[5] N. Ryzhenko and S. Burns, “Physical synthesis onto a layout fabric
with regular diffusion and polysilicon geometries,” in Proc. ACM/IEEE
Design Autom. Conf., 2011, pp. 83–88.

[6] V. Kheterpal, V. Rovner, T. Hersan, D. Motiani, Y. Takegawa,
A. J. Strojwas, et al., “Design methodology for IC manufacturability
based on regular logic-bricks,” in Proc. ACM/IEEE Design Autom. Conf.,
2005, pp. 353–358.

[7] B. Taylor and L. Pileggi, “Exact combinatorial optimization methods
for physical design of regular logic bricks,” in Proc. ACM/IEEE Design
Autom. Conf., 2007, pp. 344–349.

[8] W. Hung, X. Song, T. Kam, L. Cheng, and G. Yang, “Routability
checking for three-dimensional architectures,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 12, no. 12, pp. 1371–1374, Dec. 2004.

[9] S. Wimer, R. Y. Pinter, and J. A. Feldman, “Optimal chaining of CMOS
transistors in a functional cell,” IEEE Trans. Comput. Aided Design,
vol. 6, no. 5, pp. 795–801, Sep. 1987.

[10] C.-Y. Hwang, Y.-C. Hsieh, Y.-L. Lin, and Y.-C. Hsu, “A fast transistor-
chaining algorithm for CMOS cell layout,” IEEE Trans. Comput. Aided
Design, vol. 9, no. 7, pp. 781–786, Jul. 1990.

[11] F. Yang, Y. Cai, Q. Zhou, and J. Hu, “SAT based multi-net rip-up-and-
reroute for manufacturing hotspot removal,” in Proc. DATE, Mar. 2010,
pp. 1369–1372.

[12] L.-D. Huang and M. Wong, “Optical proximity correction (OPC)-
friendly maze routing,” in Proc. ACM/IEEE Design Autom. Conf.,
Jul. 2004, pp. 186–191.

[13] J. Mitra, P. Yu, and D. Z. Pan, “RADAR: RET-aware detailed routing
using fast lithography simulations,” in Proc. ACM/IEEE Design Autom.
Conf., Jun. 2005, pp. 369–372.

[14] H. Yao, Y. Cai, and X. Hong, “CMP-aware maze routing algorithm
for yield enhancement,” in Proc. IEEE Comput. Soc. Annu. Symp. Very
Large Scale Integr. Syst., Mar. 2007, pp. 239–244.

[15] N. Ryzhenko and S. Burns, “Standard cell routing via Boolean satisfia-
bility,” in Proc. ACM/IEEE Design Autom. Conf., 2012, pp. 603–612.

[16] J. Hu and S. Sapatnekar, “A survey on multi-net global routing for
integrated circuits,” Integr. VLSI J., vol. 31, no. 1, pp. 1–49, 2001.

[17] R. Carden, J. Li, and C.-K. Cheng, “A global router with a theoretical
bound on the optimal solution,” IEEE Trans. Comput. Aided Design,
vol. 15, no. 2, pp. 208–216, Feb. 1996.

422 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

[18] Y.-W. Lin, M. Marek-Sadowska, and W. Maly, “Layout generator
for transistor-level high-density regular circuits,” IEEE Trans. Comput.
Aided Design, vol. 29, no. 2, pp. 197–210, Feb. 2010.

[19] M. Lavin, F.-L. Heng, and G. Northrop, “Backend CAD flows for
‘restrictive design rules’,” in Proc. ICCAD, 2004, pp. 739–746.

[20] D. Abercrombie, P. Elakkumanan, and L. Liebmann, “Restrictive design
rules and their impact on 22 nm design and physical verification,” in
Proc. EDPS, 2009.

[21] A. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decomposition for
double patterning lithography,” in Proc. ICCAD, 2008, pp. 465–472.

[22] B. Taylor, “Automated layout of regular fabric bricks,” Master’s thesis,
Dept. of Elect. Comput. Eng., Carnegie Mellon University, Pittsburgh,
PA, USA, Dec. 2005.

[23] S. Prestwich, “CNF encodings,” in Handbook of Satisfiability, A. Biere,
M. Heule, H. v. Maaren, and T. Walsh, Eds. Amsterdam, The Nether-
lands: IOS Press, 2009, pp. 75–97.

[24] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” J. ACM, vol. 7, no. 3, pp. 201–215, 1960.

[25] L. Euler,“Solutio problematis ad geometriam situs pertinentis,”Commen-
tarii academiae scientiarum Petropolitanae, vol. 8, pp. 128–140, 1741.

[26] N. Eén and N. Sörensson, “Translating pseudo-Boolean constraints into
SAT,” J. Satisfiability, Boolean Model. Comput., vol. 2, pp. 1–26, 2006.

[27] G. R. Raidl and J. Puchinger, “Combining (integer) linear programming
techniques and metaheuristics for combinatorial optimization,” in Hy-
brid Metaheuristics (Studies in Computational Intelligence), vol. 114,
C. Blum, M. Blesa, A. Roli, and M. Sampels, Eds. Springer-Verlag
Berlin Heidelberg, 2008, pp. 31–62.

[28] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen, “A survey of
very large-scale neighborhood search techniques,” Discrete Appl. Math.,
vol. 123, nos. 1–3, pp. 75–102, 2002.

[29] J. Puchinger, G. R. Raidl, and U. Pferschy, “The core concept for
the multidimensional knapsack problem,” in Proc. Conf. Evol. Comput.
Combinatorial Optimiz., LNCS 3906. 2006, pp. 195–208.

[30] A. Biere. PicoSAT [Online]. Available: http://fmv.jku.at/picosat
[31] Gurobi Optimization, Inc. (2012). Gurobi Optimizer Reference Manual

[Online]. Available: http://www.gurobi.com
[32] S. Minato, “Fast generation of prime-irredundant covers from binary

decision diagrams,” IEICE Trans. Fund. Electron. Commun. Comput.
Sci., vol. E76-A, no. 6, pp. 967–973, Jun. 1993.

[33] F. Somenzi. CUDD: CU Decision Diagram Package [Online]. Available:
http://vlsi.colorado.edu

[34] NanGate 45nm Open Cell Library[Online]. Available:http://nangate.com
[35] M. Smayling, “Gridded design rules: 1-D approach enables scaling of

CMOS logic,” Nanochip Technol. J., vol. 6, no. 2, pp. 33–37, 2008.
[36] R. Bar-Yehuda, J. A. Feldman, R. Y. Pinter, and S. Wimer, “Depth-

first-search dynamic programming algorithms for efficient CMOS
cell generation,” IEEE Trans. Comput. Aided Design, vol. 8, no. 7,
pp. 737–743, Jul. 1989.

[37] C. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Chapter 2: Satisfia-
bility solvers,” in Handbook of Knowledge Representation (Foundations
of Artificial Intelligence), vol. 3, F. Harmelen, V. Lifschitz, and B. Porter,
Eds. Amsterdam, The Netherlands: Elsevier, 2008, pp. 89–134.

Jordi Cortadella (M’88) received the M.S. and
Ph.D. degrees in computer science from the Uni-
versitat Politècnica de Catalunya, Barcelona, Spain,
in 1985 and 1987, respectively.

He is currently a Professor with the Department
of Software, Universitat Politècnica de Catalunya.
In 1988, he was a Visiting Scholar with the Uni-
versity of California, Berkeley, CA, USA. He has
co-authored numerous research papers and has been
invited to present tutorials at various conferences.
His current research interests include formal meth-

ods and computer-aided design of very large scale integration systems with
a special emphasis on asynchronous circuits, concurrent systems, and logic
synthesis.

Dr. Cortadella has served on technical committees of several international
conferences in the fields of design automation and concurrent systems.
He received the Best Paper Awards at the International Symposium on
Advanced Research in Asynchronous Circuits and Systems in 2004, the
Design Automation Conference in 2004, and the International Conference
on Application of Concurrency to System Design in 2009. In 2003, he was
the recipient of a Distinction for the Promotion of the University Research
by the Generalitat de Catalunya. He is a member of the Academia Europaea.

Jordi Petit received the M.S. degree in computing
engineering and the Ph.D. degree in computer sci-
ence from the Universitat Politècnica de Catalunya,
Barcelona, Spain, in 1996 and 2001, respectively.

Since 2002, he has been an Associate Profes-
sor with the Facultat d’Informàtica de Barcelona,
Barcelona, and with the Facultat de Matemàtiques i
Estadı́stica, within the Departament de Llenguatges i
Sistemes Informàtics. He has co-authored numerous
research papers published in peer-reviewed journals
and international conferences. His current research

interests include algorithm engineering. He has worked on topics such as
the design, analysis, and implementation of algorithms and data structures
(in sequential, distributed, and parallel settings), heuristic approaches to
combinatorial optimization problems (e.g., on layout and routing), and the use
of probabilistic models to study fundamental aspects of sensor networks. Most
of his work tries to bridge the gap between theory and practice and involves
development of usable software for various state-of-the-art infrastructures.

Sergio Gómez received the M.S. degree in
telecommunication engineering from the Universitat
Politècnica de Catalunya (UPC), Barcelona, Spain,
in 2009. He is currently pursuing the Ph.D. de-
gree with the Department of Electronic Engineering,
UPC.

He spent one year researching wireless mesh net-
works at King’s College, London, U.K. His current
research interests include very large scale integration
design, design for manufacturability, lithography en-
hanced layout design, and litho-friendly standard cell

library creation.

Francesc Moll (M’92) received the M.S. degree in
physics from the Universitat de les Illes Balears,
Palma, Spain, and the Ph.D. degree in electronic
technology from the Universitat Politècnica de
Catalunya (UPC), Barcelona, Spain.

He has been a Professor of electronic technol-
ogy with the Department of Electronic Engineering,
UPC, since 1993. He is a member of the Research
Group HIPICS. He has published numerous papers
in international conferences and journals. His current
research interests include very large scale integration

design and test, manufacturing variations, and defect modeling in integrated
circuits, defect and fault tolerant systems, resilient mechanisms, low-power
nanoelectronics, and energy harvesting systems.

Dr. Moll serves on the technical committees of several international con-
ferences in the fields of integrated circuit design and as a reviewer in several
international journals.

