
1492 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

Quasi-Static Scheduling of Independent Tasks
for Reactive Systems

Jordi Cortadella, Member, IEEE, Alex Kondratyev, Senior Member, IEEE, Luciano Lavagno, Member, IEEE,
Claudio Passerone, Member, IEEE, and Yosinori Watanabe, Member, IEEE

Abstract—A reactive system must process inputs from the en-
vironment at the speed and with the delay dictated by the en-
vironment. The synthesis of reactive software from a modular
concurrent specification model generates a set of concurrent tasks
coordinated by an operating system. This paper presents a synthe-
sis approach for reactive software that is aimed at minimizing the
overhead introduced by the operating system and the interaction
among the concurrent tasks. A formal model based on Petri nets
is used to synthesize the tasks and verify the correctness of their
composition. A practical application of the approach is illustrated
by means of a real-life industrial example, which shows the signif-
icant impact of the approach on the performance of the system.

Index Terms—Petri nets, reactive systems, scheduling, software
synthesis, specification languages.

I. INTRODUCTION

A. Embedded Systems

THE phenomenal growth of the complexity and breadth
of use of embedded systems can be managed only by

providing designers with efficient methods for hardware or
software synthesis from formal models that explicitly represent
the available concurrence.

Concurrent specifications, such as dataflow networks [12],
Kahn process networks (KPNs) [11], communicating sequen-
tial processes [10], synchronous languages [8], and graphical
state machines [9], are interesting because they expose the
parallelism inherent in the application, which is much harder
to recover a posteriori by optimizing compilers. However, their
mixed hardware–software implementation on heterogeneous
architectures that may include central processing units (CPUs),
digital signal processors (DSPs), application-specific integrated
circuits (ASICs), coprocessors, field-programmable gate arrays
(FPGAs), and so on, requires solving a fundamental schedul-
ing problem. We assume in the following that the allocation
problem of functional processes to architectural resources has
already been solved, and we focus on the portion of a functional
specification that has been allocated to a single architectural

Manuscript received March 30, 2004. This work was supported in part by a
grant from Cadence Design Systems and in part by CICYT TIN2004-07925.
This paper was recommended by Associate Editor R. Camposano.

J. Cortadella is with the Universitat Politècnica de Catalunya, 08034
Barcelona, Spain (e-mail: jordi.cortadella@upc.edu).

A. Kondratyev and Y. Watanabe are with the Cadence Berkeley Labora-
tories, San Jose, CA 95134 USA (e-mail: kalex@cadence.com; watanabe@
cadence.com).

L. Lavagno and C. Passerone are with the Politecnico di Torino, 10129 Turin,
Italy (e-mail: lavagno@polito.it; passerone@polito.it).

Digital Object Identifier 10.1109/TCAD.2005.852038

resource, which supports sequential code execution, i.e., a CPU
or a DSP. In this paper, we address the scheduling problem for
that portion, i.e., finding a sequence of operations (a schedule)
to be executed for a given concurrent specification that has been
allocated to a single resource with sequential code execution.
The schedule must have two important properties: 1) it must
be able to process any input from the environment in a finite
amount of time; and 2) it must use a finite amount of resources
(capacity of buffers).

Although an extension of the suggested approach to concur-
rent implementation architectures is possible (see, e.g., [6]), this
topic is outside the scope of the paper.

B. Static and Quasi-Static Scheduling

Static scheduling techniques solve the problem at compile
time. The resulting behavior is thus highly predictable and the
overhead due to task context switching is reduced. They may
also achieve very high resource utilization if the arrival rate
of inputs from the environment is regular and predictable at
compile time. Static scheduling, however, is limited to speci-
fications without run-time choice, and researchers have started
looking into ways of computing a static execution order for
operations as much as possible, while leaving data-dependent
choices at run time. This body of work is known as quasi-static
scheduling (QSS) [3]–[5], [13], [18], [19], [22]. It generates
one or more tasks that can then be managed by a (possibly
preemptive, as we will see in Section III-B) real-time operating
system (RTOS).

The QSS problem has been proven to be undecidable by [3]
for specifications with data-dependent choices in dataflow net-
works under the requirement of finite buffers. Thus, any pro-
posed solution is necessarily heuristics, which either bounds
the capacity of buffers a priori [13], [19], [20], or provides
only sufficient conditions and may fail to schedule specifi-
cations that indeed have valid schedules [3], [5], [18]. We
show in Section III-E that such bounds are very difficult to
derive a priori for some legitimate networks, and provide an
alternative solution based on heuristics that we conjecture to be
exact for a class of specifications.

C. Specification Model

Our work fits in the framework proposed by [5] and [18],
in that Petri nets (PNs) are used as an abstract model of the
specification for which schedules are sought.

We consider a system to be scheduled as a network of
communicating sequential processes. In this work, we use an

0278-0070/$20.00 © 2005 IEEE

CORTADELLA et al.: QUASI-STATIC SCHEDULING OF INDEPENDENT TASKS FOR REACTIVE SYSTEMS 1493

Fig. 1. System specification.

extension of basic KPNs [11] called Y–chart applications pro-
grammers interface (YAPI) [7], which adds a nondeterminis-
tic SELECT mechanism to increase the efficiency of handling
noncorrelated input streams. A set of input and output ports
are defined for each process, and point-to-point communication
between processes occurs through unidirectional first in, first
out (FIFO) queues between ports. These queues are referred
to as channels. Multirate communication is supported, i.e., the
number of data objects read or written by a process at any given
time may be an arbitrary constant.

The control flow of the system is represented by a PN. Each
communication action on a port, and each internal computation
action, is modeled by a transition. Places are used to represent
both sequencing within processes (a single token models the
program counter) and FIFO communication (the tokens model
the presence of the data items, while hiding their values).

In our synthesis framework, the functionality of the system is
described in a C-based language called FlowC, which extends
C with interprocess communication. Fig. 1 depicts the speci-
fication of a concurrent system with two processes, two input
ports (IN and COEF) and one output port (OUT). The processes
communicate with each other through the channel DATA.

The process GetData reads data from the environment and
sends it to the channel DATA. Moreover, after having sent N
samples (N is a constant), it also inserts their average value
in the same channel. The process Filter extracts the average
values inserted by GetData, multiplies them by a coefficient,
and sends them to the environment through the port OUT.

The operations to communicate through ports have syntax
READ(port, data, nitems), and WRITE(port, data, nitems).
The parameter nitems (a compile-time constant, in order to
be translated into a PN arc weight) indicates the number of
data objects involved in the communication. This permits the
support of multirating, although the example uses only one-
object read/write operations. A READ blocks when the number
of items in the channel is smaller than nitems.

The SELECT statement supports synchronization-dependent
control, which specifies control depending on the availability
of data objects on input ports. In the example, the SELECT
statement in Filter nondeterministically selects one of the

ports with available data objects. In case none of them has
available data objects, the process blocks until some data
becomes available. SELECT is a crucial statement to model
reactive systems with several input ports, where the system is
often waiting for the occurrence of events at any of the ports
and reacts by nondeterministically choosing one of them. As
mentioned above, this is the key difference between KPNs and
YAPI, and it allows modeling, e.g., a user-command stream
arriving at a nondeterministic rate unrelated to that of a video-
frame stream, without requiring the (computationally expen-
sive) trick of defining empty tokens to mark the absence of data
objects.

Fig. 2(a) depicts the representation of the concurrent system
specified in Fig. 1 with a PN model. This model is the one used
to synthesize a schedule.

Note that data-dependent control is modeled as nondeter-
minism in the PN. This means that we may pessimistically
reject some schedulable specification as nonschedulable. For
example, two data-dependent control constructs in a specifica-
tion may be correlated, so that if one of them is resolved in
a particular way, then the other is always resolved uniquely.
Even in such case, we model each construct independently as
a nondeterministic choice, and thus scheduling algorithms built
for this model fail to account for the correlation. We deliber-
ately decided to use this modeling mechanism despite such po-
tential drawbacks, for two reasons. First, this simple, structural
representation of data-dependent controls allows us to employ
efficient techniques, based on the structure of the PN, in order
to analyze the system behavior, which often leads to finding
a valid schedule very quickly in practice. The techniques are
presented in Section IV and their effectiveness is shown by the
experimental results. Second, correlated control constructs are
often identified before the scheduling phase in practical design
flows, either by simulation of the application code or directly
from the specification documents. Our tool environment allows
the users to specify such correlation through a simple user inter-
face on top of the FlowC code, and this information is automat-
ically translated to a PN structure that is added to the original
PN obtained from the FlowC code. In this way, the correlation
is represented in the structure of the resulting PN, and thus, the

1494 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

Fig. 2. (a) PN specification. (b) Single-source schedules.

Fig. 3. Correlated choices. (a) Original PN. (b) Translated PN.

same structural techniques can be used for finding schedules,
but this time with the specified correlation taken into account.

An example of such translation is shown in Fig. 3: let us
assume that choices represented by places p1 and p4 in Fig. 3(a)
are correlated, such that whenever transition c is chosen, tran-
sition e should be chosen, and whenever transition a is chosen,
transition g should be chosen. However, since the two choices
are structurally independent, our scheduling algorithm would
explore other combinations as well. On the other hand, if the
correlation is specified by the designer, the resulting PN would
be the one shown in Fig. 3(b), which contains two additional
places that model the correlation. This restricts the reachability
space of the system and guides the scheduling algorithm in
exploring relevant combinations of choice outcomes, avoiding
those that are not possible in reality. We have found that this
mechanism works effectively in practice [1], and that structural
nondeterminism is an effective model for data-dependent con-
trols, in the context of the theoretically undecidable scheduling
problem that we address in this paper.

In formulating the scheduling problem precisely, we need to
clarify the model and assumptions employed for representing
the behavior of the environment. We model the inputs from the
environment using source transitions, as depicted by Tin and
Tcoef in Fig. 2(a). We consider two types of inputs, and distin-
guish them by associating with each source transition, the type
of the input modeled by it. The types are called controllable and
uncontrollable, respectively. The uncontrollable inputs are the
stimuli to the system being scheduled, i.e., the system execution
takes place as a reaction to events provided by this type of
inputs. The objective of the scheduling algorithm is thus to find
a finite sequence of operations to be executed in each such
a reaction. We formulate the scheduling problem under the
assumption that all the uncontrollable inputs are independent
with respect to each other, and with respect to the execution
of the system. This means that the system cannot tell when
the stimuli are provided by the environment or how they are
related, and thus, no such information can be assumed when
schedules are sought. Therefore, a schedule must be designed

CORTADELLA et al.: QUASI-STATIC SCHEDULING OF INDEPENDENT TASKS FOR REACTIVE SYSTEMS 1495

so that when the system is ready to react to a stimulus from one
uncontrollable input, it must be ready to react to a stimulus from
any other uncontrollable input. Consumption of such stimuli
by the system is specified in FlowC by the READ primitive
introduced earlier. In Fig. 1, all the inputs are uncontrollable.

Controllable inputs, on the other hand, represent data from
the environment that the system can acquire whenever it decides
to do so. It follows that schedules can be sought under the as-
sumption that if the read operation is executed on a controllable
input, then the operation will always succeed in reading the
specified amount of data from the input without blocking the
execution of the system. In this sense, there is no semantical
difference in the context of the scheduling problem between
read operations on controllable inputs and internal operations
that do not access ports. As with uncontrollable inputs, the read
operations are specified with the READ operator in FlowC.1

The assumption of mutual independence among the uncon-
trollable inputs does not prevent us from addressing the case
where they are, in fact, dependent. In practice, our limited
classification of the types of inputs may force one to categorize
inputs as uncontrollable, if they would be treated as stimuli
to trigger reactions from the system, even though their firing
rates have some correlation. In this case, a valid schedule under
our assumption is still a valid schedule of the system; it only
implies that the execution of a part of the schedule does not
occur because of the correlation of the uncontrollable inputs.
Note also that our formulation is conservative, in the sense that
we will classify the system as nonschedulable, if we cannot find
schedules for parts of the behavior given by our model, although
dependence among the uncontrollable inputs may guarantee
that the system will never execute any such parts in reality.
This situation is similar to that of the use of nondeterministic
models for data-dependent controls. That is, even if we treat
all such controls independently, we can still handle the case
where they are correlated as discussed above, at the expense of
potential pessimism, since we may classify some schedulable
specifications as nonschedulable, or require user intervention.
In fact, one could employ the same technique to structurally
represent the correlation between the uncontrollable inputs, in
order to make the formulation less conservative.

If the uncontrollable inputs are indeed independent, then a
schedule can be defined for each input independently. We refer
to such schedules as single-source schedules. If a schedule
of the system can be given as an independent set of single-
source schedules, then the size of code required for representing
the schedule is often much smaller than that for a monolithic
schedule which specifies the system execution for all the un-
controllable inputs altogether. In this paper, we first present a
formal definition of such monolithic schedules. Single-source
schedules are defined as a special subclass of monolithic sched-
ules, and we study some of their properties in Sections III-C
and III-D. In particular, we provide a condition under which
a set of single-source schedules can be used as a schedule of
the system. The scheduling algorithm proposed in Section IV

1Uncontrollable inputs are called “signals” in the reactive language Esterel
[8], while controllable inputs are called “sensors.”

can be applied to either type of schedules, and its experimental
results are given in Section V.

D. Related Work

Parks addressed the QSS problem in the context of process
networks [17] and proposed a procedure that aims to find
a schedule with minimal buffer-memory size. The proposed
method initially sets a bound on the sizes of the channel buffers,
based on the structural properties of the specification, such as
the rates given for each read and write primitive, and tries to find
a schedule within that bound. If a schedule is not found, then the
procedure heuristically increases the sizes of some channels,
which causes a deadlock, and repeats the search. In order to
claim the absence of a schedule even within a user-given bound
for the sizes of the buffers, the reachability space of the system
defined for that bound has to be completely analyzed. Since this
space can be prohibitively large for practical applications, even
for the initial structural bound, the proposed procedure is not
effective even for moderate-size examples, for which a schedule
does not exist within the initial bound. Further, identifying
which buffer sizes should be increased is not straightforward in
general, and the effectiveness of the suggested heuristics is not
clear. Our algorithm uses techniques based on the PN structure
to analyze cyclic behavior obtainable in the reachability space
of the system, and searches for schedules without commit-
ting to particular bounds (even though it is able to exploit
them, if given).

In comparison to the approaches studied based on dataflow
networks, such as in [3] and [17], our model has two funda-
mental differences.

First, these approaches do not have the notion of uncontrol-
lable inputs in the model of the environment. That is, when a
process executes read operations on the inputs, it will always
succeed in acquiring the needed data, and thus such inputs can
be classified as controllable in our model. Therefore, a system
with multiple uncontrollable inputs, such as the one shown in
Fig. 1, cannot be handled in these approaches without artificial
“empty” tokens modeling absence of data.

Second, dataflow networks do not have a mechanism to
nondeterministically choose among enabled input ports, given
by the SELECT operator in our model. This mechanism is useful,
e.g., to efficiently model data-processing filters in which the
values of coefficients may be updated nondeterministically,
based on dynamic conditions inside the environment. Such
applications cannot be handled by dataflow-based approaches,
without again requiring empty tokens.

Even though several extensions of conventional dynamic
dataflow models were suggested [4], [22] to provide designers
with more specification comfort, none of them address the
above two issues. We believe that dataflow networks are less
convenient than YAPI processes to model complex interactions
between multirating and data-dependent choices.

Our approach further differs with respect to other QSS tech-
niques described in [13], [19], and [20], in that our heuristics
do not require user-specified bounds in advance. We present a
technique that automatically identifies bounds on the channel
sizes during the schedule search in Section III-E. This technique

1496 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

is known to be a mere heuristics for general PNs, while we
conjecture that it is exact for the PNs derived from a FlowC
specification without the SELECT operator. That is, we con-
jecture that for this class of specifications, if a schedule does
not exist within the bound identified by our technique, then no
bounded memory schedule exists for the system.

Our work is complementary to classical real-time scheduling
theory (see, e.g., the pioneering work of [14] or, more recently,
[2]) in that it maximizes the work done at compile time,
and can be viewed essentially as a task-generation approach
starting from a functional modular specification. This approach
is characterized by the fact that functional units (processes) can
be split by this task-generation procedure, if their code belongs
to different “computational streams,” depending on different,
unrelated system inputs.

II. BACKGROUND

A. PNs and Transition Systems

We assume the reader to be familiar with PNs. The following
definitions are presented to introduce the nomenclature used in
the paper.
Definition 1 (Petri net): A PN is a 4-tuple N = (P, T,

F,M0), where P is the set of places, T is the set of transitions,
F : (P × T) ∪ (T × P) → N is the flow relation, and M0 :
P → N is the initial marking. The set of reachable markings
of a PN is denoted by [M0〉. The fact that M ′ is reachable from
M by firing transition t is denoted by M [t〉M ′.

Throughout this paper, we depict a PN using a graph, in
which nodes represent the places and transitions, and a directed
arc from x to y exists if F (x, y) �= 0.
Definition 2 (Presets and Postsets): Given a node x ∈ P ∪

T , the preset and postset of x are defined as follows:

•x = {y | F (y, x) �= 0} x• = {y | F (x, y) �= 0} .

Given a PN N with P = (p1, . . . , pn), the notation Pre[t] is
used to represent the vector (F (p1, t), . . . , F (pn, t)). Given a
set of nodes X , N \ {X} denotes the subnet of N obtained by
removing the nodes in X and their adjacent arcs from N . If
for every node x in N we have •x ∩ x• = ∅, then N is called
self-loop free. M(p) denotes the number of tokens in place p
under marking M . A PN is called safe if, for every reachable
marking, the number of tokens in any place is not greater
than 1.

A transition t ∈ T is enabled at marking M if its every input
place p has a number of tokens greater or equal to F (p, t).
An enabled transition t may fire, producing a new marking
M ′ according to the following marking equation: ∀p : M ′(p) =
M(p) − F (p, t) + F (t, p). A place p that has more than one
successor transition is called choice place. A pair of transitions
ti and tj is said to be in a conflict if the firing of one of them
disables the other.

In this paper, we use PNs with source transitions, i.e., with
empty presets. These transitions model the behavior of the input
stimuli to a reactive system.

Definition 3 (Source and Nonsource Transitions): The set of
transitions of a PN is partitioned into two subsets as follows:

TS = {t ∈ T | •t = ∅} , TN = T \ TS.

TS and TN are the sets of source and nonsource transitions, re-
spectively. The set of source transitions TS is further partitioned
into controllable T c

S and uncontrollable T u
S (T u

S = TS \ T c
S)

transitions.
Informally, the decision on firing controllable transitions

belongs to the scheduler, while the firing of uncontrollable tran-
sitions is governed by the environment, and is out of scheduler
control. This aspect is elaborated in more detail in Section III,
when we introduce the definition of schedule.
Definition 4 (Free-Choice Set): A free-choice set (FCS) is

a maximal subset of transitions C, for which one of the two
conditions is satisfied: 1) ∀t1, t2 ∈ C s.t. t1 �= t2, •t1 �= ∅ :
Pre[t1] = Pre[t2] ∧ C = (•t1)•; and 2) C = T u

S .
As an example, the sets {t2, t3} and {t8, t9} in Fig. 2(a) are

FCSs. The set of uncontrollable source transitions {Tin, Tcoef}
is also an FCS. However, the set {t7, t10} is not an FCS, since
the transitions do not have the same preset.
Proposition 1: The set of FCSs of a PN is a partition of the

set of transitions.
Proof: The proof immediately follows from the con-

sideration of relation R induced by FCS (i.e., t1Rt2 ⇐⇒
∃FCS C : t1, t2 ∈ C). Clearly, R is reflexive, symmetric, and
transitive and, therefore, is an equivalence relation. �

We will call FCS(t) the set of transitions that belong to the
same FCS of t. Informally, an FCS is a set of transitions with
the same preset and such that, if it contains more than one
transition, none of them has conflicts with any transition outside
the FCS. Any conflict inside an FCS is said to be free choice.
In particular, T u

S is an FCS. The enabling of one transition from
an FCS implies the enabling of other transitions from the same
FCS and the FCS itself is called enabled. If for a choice place
p all its successor transitions belong to the same FCS, then p
is called free choice. A PN in which all choice places are free
choice is called free-choice PN.
Definition 5 (Transition System): A transition system (TS) is

a 4-tuple A = (S,Σ,→, sin), where S is a set of states, Σ is an
alphabet of symbols, →⊆ S × Σ × S is the transition relation,
and sin is the initial state. Given s ∈ S, e ∈ Σ is said to be
fireable at s if there exists s′ ∈ S such that (s, e, s′) ∈→.

With an abuse of notation, we denote by s
e→ s′, s → s′,

s →,→ s, . . . different facts about the existence of a transition
with certain properties, where s and s′ denote source and
destination states, respectively, while → stands for the transi-
tion between them, possibly annotated by the corresponding
symbol. For example, s

e→ denotes the fact that there is a
transition in → from state s with symbol e, i.e., the fact that
e is fireable in state s.

A path p in a transition system is a sequence of transitions
s1

e1−→ s2
e2−→ s3 → · · · → sn

en−→ sn+1, such that the target
state of each transition is the source state of the next transition.
A path with multiple transitions can also be denoted by s

σ→ s′,
where σ is the sequence of symbols in the path.

CORTADELLA et al.: QUASI-STATIC SCHEDULING OF INDEPENDENT TASKS FOR REACTIVE SYSTEMS 1497

Given a transition system A = (S,Σ,→, sin) a set of states
S ′ ⊆ S defines a restriction of A onto S ′ obtained by removing
states S \ S ′ and their adjacent arcs from A. For a given set of
states S ′, one can define subsets of border states by which S ′ is
entered (enter(S ′) = {s′ ∈ S ′ | ∃s �∈ S ′ : s → s′}), and exited
(exit(S ′) = {s′ ∈ S ′ | ∃s �∈ S ′ : s′ → s}).

B. FlowC-Based PNs

A specification model is represented as a network of com-
municating processes, each described as a sequential (generally
nonterminating) program in FlowC. The network of processes
is transformed into a single PN, which is built in two steps.
In the first step, called compilation, a PN for each process is
constructed and each port is associated to a place of the PN.
The second step, called linking, builds a PN by “connecting”
the PNs according to the defined channels.
1) Compilation: A specification in FlowC is translated into

a set of PNs, one for each process, that communicate through
ports represented by places. Each transition is annotated with
a fragment of C code. Transitions and places are clustered as
much as possible in the compilation process, in order to reduce
the complexity of the PN, while preserving the structural prop-
erties needed for correct scheduling.2 Processes are sequential
and, therefore, their corresponding PNs have no concurrence.

If we ignore the places associated to the ports, the PN of one
process obtained by the compilation strategy mentioned above
has the following properties: 1) exactly one place is marked
at each reachable marking, the token mimics the “program
counter” of the sequential process and 2) it is free choice.
Choice places represent the evaluation of conditions (e.g., from
if–then–else or while statements), and their postset is an FCS.

When places associated to ports are also considered, the
underlying PN might no longer be free choice. The possible vi-
olations of free choice stem from two sources: 1) when the same
process reads data from the same port in different statements,
the place representing the port becomes a nonfree choice; and
2) SELECT statement gives rise to a choice whose outcome
depends upon the presence of tokens at port places. Since the
processes are sequential and the places modeling the program
counter are different, the choice of which transition to fire is
up to the process code in the first case, and up to the scheduler
(based on the availability of tokens) in the second case.
2) Linking: After compilation, a PN is obtained for each

process. Each PN has some dangling places representing the
ports.

Linking combines all the PNs generated by compilation into
a single one, by merging each pair of places corresponding to
ports connected by a channel.

For each input (respectively, output) port connected to the
environment, a source (respectively, sink) transition is con-
nected to (respectively, from) the place corresponding to the
port, where the weight of the arc denotes the size of data moved
to (respectively, from) the port.

2Without loss of generality, in order to achieve better clarity, figures in the
paper may not show this clustering.

Fig. 2(a) depicts the PN obtained after compiling and linking
the two processes specified in Fig. 1. The dotted line separates
the PN fragments corresponding to each process. Linking is
performed by merging the ports of channel DATA into the place
with the same name.

III. SCHEDULES

Scheduling of a PN imposes the existence of an additional
control mechanism for the firing of enabled transitions. For
every marking, a scheduler defines the set of fireable transitions
as a subset of the enabled transitions. The composite system
(PN + scheduler) proceeds from state to state by firing fireable
transitions. Formally:
Definition 6 (Sequential Schedule): Given a PN N =

(P, T, F,M0), a sequential schedule of N is a transition system
Sch = (S, T,→, s0) with the following properties.

1) S is finite and there is a mapping µ : S → [M0〉, with
µ(s0) = M0.3

2) If transition t is fireable in state s, with s
t→ s′, then

µ(s)[t〉µ(s′) in N .
3) If t1 is fireable in s, then t2 is fireable in s, if and only if,

t2 ∈ FCS(t1).
4) For each state s ∈ S, there is a path s

σ−→ s′ t→ for each
uncontrollable t ∈ T u

S .

Property 2 implies trace containment between Sch and N
(any feasible trace in the schedule is feasible in the original
PN). Property 3 indicates that one FCS is scheduled at each
state. Finally, the existence of the path in property 4, coupled
with a weak fairness assumption, ensures that any input event
from the environment will be eventually served.

Given a sequential schedule, a state s is said to be an await
state if only uncontrollable source transitions are fireable in s.
An await state models a situation in which the system is
“sleeping” and waiting for the environment to produce an event.
Note that, by definition, all uncontrollable source transitions
belong to a single FCS.

Intuitively, scheduling can be deemed as a game between the
scheduler and the environment. The rules of the game are the
following.

1) The environment makes a move by firing any of the
uncontrollable source transitions.

2) The scheduler might pick up any of the enabled transi-
tions to fire (property 3) with two exceptions:
a) it has no control over choosing which one of the

uncontrollable source transitions to fire; and
b) it cannot resolve choice for data-dependent constructs,

which are described by free-choice places.
In cases a) and b), the scheduler must explore all possible
branches during the traversal of the reachability space,
i.e., fire all the transitions from the same FCS. However, it
can decide the moment for serving the source transitions
or for resolving a free choice, because it can finitely

3This mapping is required in order to enable the same state to be visited
multiple times with different termination criteria, as will be discussed in detail
in Section IV-A.

1498 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

postpone these by choosing some other enabled transi-
tions to fire.

The goal of the game is to process any input from the
environment (property 4) while keeping the traversed space,
and hence the amount of memory required to implement the
communication buffers, finite (property 1). In case of success,
the result is to both classify the original PN as schedulable and
derive the set of states (schedule) that the scheduler can visit
while serving an arbitrary mix of source transitions.

Under the assumption that the environment is sufficiently
slow to allow the scheduler to fire all nonsource transitions,
the schedule is an upper approximation of the set of states
visited during real-time operation. This is due to the fact that the
scheduler is constructed taking into account the worst possible
conditions, since it has no knowledge about the correlations
discussed above among environment inputs and among data-
dependent choices.

Note that a schedule may include transitions of processes,
even if they are not reachable from any uncontrollable source
transition through directed paths in the PN. This is because
the scheduler may freely decide to fire such transitions as long
as they are enabled at given markings. While such transitions
may be unnecessary to constitute schedules, and thus may
be redundant in the resulting behavior, there are cases where
such transitions must be fired in any schedule. For example,
if one process autonomously generates a sequence of random
numbers that is written to a channel to another process, while
the second process combines the sequence with a data stream
from the environment, then the transitions of the first process
are not structurally reachable from the uncontrollable source
transition that triggers the second process. However, any se-
quential schedule of this system will include the transitions
of the first process, because they are necessary for the second
process to fire the transition for the operation that reads from
the channel, which in turn must be included to constitute a
schedule. Our scheduling procedure includes such transitions,
using the t-invariant heuristics described in Section IV.

The notion of sequential schedule is illustrated in Figs. 4 and
5. Fig. 4 shows two nonschedulable specifications and parts of
their reachability spaces.

The impossibility of finding a schedule for the PN in Fig. 4(a)
stems from the inability of a scheduler to control the firing of
the uncontrollable source transitions (from now on uncontrol-
lable transitions are depicted in figures as shadowed boxes). A
cyclic behavior in this PN is possible only with correlated input
rates of transitions a and b, as shown by the corresponding part
of a reachability graph. On the other hand, the PN in Fig. 4(b) is
nonschedulable because of the lack of control on the outcome of
free-choice resolution for place p1. Bounding the reachability
space would require alternation in the firing of transitions a and
b. Note that the relative firing rates of the two transitions could
also be chosen by the scheduler, following the approach of [12],
when input transitions are controlled by the scheduler.

Fig. 5(a) presents an example of arbitration with two pro-
cesses competing for the same resource (modeled by a token
in choice place p0). The schedule for this specification is given
in Fig. 5(b), where await states are shown by shadowed rec-

Fig. 4. Nonschedulable PNs: all source transitions are of the uncontrollable
type.

tangles.4 Note that the scheduler makes a “smart” choice about
which one among the concurrently enabled transitions a, d, or f
fires in state {p4, p5}, by first scheduling transition f to release
the common resource (token in p0) as quickly as possible. This
helps to represent the schedule as a composition of two inde-
pendent components (see Section III-B).

A. Reactive Schedules

In general, a system needs to be initialized before entering the
normal (repetitive) mode of operation. Initialization is usually
not part of system functionality, because it is performed only
once, and during it, the system response to the environment is
often irrelevant. The following definitions help in distinguish-
ing between the initialization and reactive parts of a schedule.
Definition 7 (Initialization Part): The initialization part of

a sequential schedule Sch = (S, T,→, s0) is the restriction of
Sch to the unique maximal connected set of states Si reachable
from s0 and not containing any await state.

Intuitively, the initialization part is obtained as a maximal
schedule prefix before reaching await states. If there is a
unique await state sr

0 that terminates the initialization part
(enter(S \ Si) = sr

0) then we will call a schedule well ini-
tialized. The rest of this section considers only well-initialized
schedules.
Definition 8 (Reactive Part): The reactive part of a well-

initialized sequential schedule Sch = (S, T,→, s0) is a tran-
sition system Schr = (S r, T,→, sr

0) obtained as the restriction
of Sch to the set of states Sr reachable in Sch from sr

0 =
enter(S \ Si).

Fig. 6 shows examples of different shapes of the initializa-
tion and reactive parts for well-initialized schedules. Fig. 6(a)

4When no two states of a schedule are mapped to the same marking, with
some abuse of notation, we will not distinguish between schedule states and
PN markings.

CORTADELLA et al.: QUASI-STATIC SCHEDULING OF INDEPENDENT TASKS FOR REACTIVE SYSTEMS 1499

Fig. 5. Processes with arbitration: both source transitions are of the uncontrollable type.

Fig. 6. Well-initialized schedules.

illustrates that the well-initialization conditions do not require a
fully deterministic initialization behavior (see, e.g., the choice
state s), but they do demand nondeterminism to be resolved
before reaching the reactive part (state sr

0). Fig. 6(b) shows that
the initialization and reactive parts do not partition the set of
schedule states, because they can partially overlap (see the part
of TS from state s up to the first await state sr

0).
Definition 8 allows us to remove the unnecessary details

of initialization from a schedule, and to concentrate solely
on the reactive mode of system operation. For a PN N =
(P, T, F,M0) with well-initialized schedule Sch, abstracting
the initialization behavior translates to changing the initial
marking M0 to marking M r

0, corresponding to the entry state
sr
0 of the reactive part of Sch (M r

0 = µ(sr
0)). Such PN N =

(P, T, F,M r
0) is called a reactive PN. From a reactive PN, it is

possible to derive the reactive part of a schedule by imposing
additional constraints on Definition 6.
Definition 9 (Reactive Schedule): Given a PN N =

(P, T, F,M r
0), a reactive schedule of N is a sequential schedule

in which only source transitions are fireable in the initial state
s0 : µ(s0) = M r

0.
The correspondence between the original PN and its sequen-

tial schedule and their reactive counterparts is illustrated by
Fig. 7.

Fig. 7. Reactive objects in scheduling.

B. Single-Source Schedules: Rationale

As discussed in Section I, if the uncontrollable inputs are
totally independent, a schedule may be given as a set of tasks,
where each task defines a schedule for a particular uncontrol-
lable input. We call such a task single-source schedule (SSS).

An SSS is a reactive schedule associated to a single source
transition. Each SSS serves only one input channel as if other
source transitions were never produced by the environment. In
that way, an SSS gives a projection of the scheduler activity in
which only one source transitions is fireable.

The advantages of SSSs over a single reactive schedule can
be summarized as follows:

1) Lower complexity for the generation of SSSs. The size of
a monolithic reactive schedule can be exponentially larger
than the size of the set of SSSs.

2) SSSs give a natural decomposition of a sequential sched-
ule that is beneficial for implementation as interrupt
service routines on an RTOS.

3) A scheduler that behaves according to SSSs provides a
uniform response for all firings of the same source tran-
sitions, since each SSS often has just a single await state.
This uniformity can be exploited during code generation,
and provides potentially smaller code size due to the
higher probability for sharing pieces of code.

However, we can enjoy this advantage only if the set of
SSSs indeed implements the system execution. In other words,
we need to ensure that the composition of the SSSs fulfills
the properties of reactive schedule (see definition 9). In the
following two subsections, we present a formal definition of
an SSS and provide a condition under which the set of SSSs

1500 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

can be used as a schedule of the system, instead of a monolithic
reactive schedule.

C. Single-Source Schedules: Definition and Composition

Definition 10 (Single-Source Schedule): Given a reactive PN
N = (P, T, F,M r

0), a single-source schedule of N with respect
to uncontrollable source transition a ∈ T u

S is a reactive schedule
of a net in which all uncontrollable transitions except a are
deleted (N \ (T u

S \ {a})).
The sequential composition of a set of SSSs is defined

as follows. The intuitive idea behind this composition is as
follows. Each transition system represents a task associated to a
source transition. When a task is active, it cannot be preempted,
i.e., only events from that task can be fired. A task can only be
preempted when it is waiting for an event from the environment
(source transition). The composition builds a system that can
serve all the events of the environment sequentially.
Definition 11 (Sequential Composition): Let N = (P, T,

F,M r
0) be a reactive PN and X = {SSS(ti) = (Si, Tti

,→i,
s0i

) | ti ∈ T u
S } be a set of SSSs of N . The sequential com-

position of X is a transition system A = (S, T,→, s0) defined
as follows:

1) s0 = (s01 , . . . , s0k
);

2) S ⊆ S1 × · · · × Sk is the set of states reachable from s0

according to →. A state is called an await state if all its
components are await states in their corresponding SSS;

3) for every state s = (s1, . . . , sk):
a) if s is an await state, then the set of fireable tran-

sitions from s is the set of source transitions, i.e.,
(s1, . . . , si, . . . , sk) ti−→ (s1, . . . , s

′
i, . . . , sk) in A, if

and only if, si
ti−→ s′i in SSS(ti);

b) if s is not an await state, there is one, and only
one,5 state component si of s, such that si is not
an await state in SSS(ti). Then the set of fire-
able transitions from s is the set of fireable transi-
tions from si in SSS(ti), i.e., (s1, . . . , si, . . . , sk) t−→
(s1, . . . , s

′
i, . . . , sk) in A, if and only if, si

t−→ s′i in
SSS(ti).

Fig. 8 depicts the sequential composition of two SSSs ob-
tained from the PN in Fig. 5. The shadowed circles correspond
to await states. Initially, both SSSs are in await states. Thus,
only uncontrollable source transitions a and d are fireable in
state 00 of the composition. The firing of any of them, e.g., d,
moves the corresponding SSS from the await state and forces
the composition to proceed according to the chosen SSS(d)
until a new await state is reached (state 3 of SSS(d)). In
the corresponding state of the composition (state 03), both
state components are await states and, therefore, both source
transitions a and d are fireable again.
Definition 12 (Sequential Independence): Given a reactive

PN N = (P, T, F,M r
0), a set of single-source schedules X is

said to be sequentially independent if its sequential composition
is isomorphic to a reactive schedule of N .

5This claim can be easily proved by induction from the definition of → and
from the fact that s0 is an await state.

Fig. 8. Two single-source schedules and their sequential composition.

One can easily check that the sequential composition in
Fig. 8 is isomorphic to the reactive schedule in Fig. 5(b)
and, therefore, the set {SSS(a),SSS(b)} is sequentially
independent.

From the definition of SSS, it follows that the existence of
a reactive schedule implies the existence of SSSs (once a reac-
tive schedule has been obtained all SSSs can be immediately
derived by using the subgraphs in which only one source tran-
sition fires). Moreover, Definition 12 indicates that sequential
independence for a set of SSSs is a sufficient condition for
the existence of a reactive schedule. In fact, it even gives a
constructive way for deriving such a schedule by using the
sequential composition of SSSs. For this reason, checking the
independence of a set of SSSs is a key issue in the suggested
approach.

D. Checking Sequential Independence

Given a reactive PN N and a set X of single-source schedules
of N , checking their independence can be done as follows.

1) Build the sequential composition A of X .
2) Check that A is a reactive schedule of N , according to

Definition 9.

This approach is computationally expensive because it re-
quires the explicit derivation of the composition of SSSs.

We next propose an alternative way for checking the inde-
pendence of SSSs that does not require the calculation of their
composition. Let us consider the case in which the SSSs are not
independent, resulting in a failure to find an isomorphic reactive
schedule Sch for A. Let us consider paths from the initial states
of A and Sch, where Sch mimics A and keeps track of the
reachable markings in the PN. For nonindependent A and Sch,
there will be two paths that lead to states s and s′ in A and
Sch, respectively, in which some transition t is enabled in s but
not enabled in s′, i.e., the PN cannot simulate the sequential
composition of SSSs. Fig. 9 shows the structure of the paths,
where shadowed circles denote await states.

In the last await state sf before s, SSS(tk) is chosen to
proceed in the composition by firing transition tk. The only
reason for t being disabled in state s′ ∈ Sch might come from
the “interference” of the execution of the schedules SSS(ti) and
SSS(tj) preceding sf with SSS(tk). Simply speaking, SSS(ti)

CORTADELLA et al.: QUASI-STATIC SCHEDULING OF INDEPENDENT TASKS FOR REACTIVE SYSTEMS 1501

Fig. 9. Matching SSS composition with a reactive schedule.

and SSS(tj) must consume tokens from some place p in the
preset of t.

The following hierarchy of notions is used for the formula-
tion of independence via marking properties.6

1) For X = {SSS(ti) | ti ∈ T u
S } and given place p

a) for SSS(ti) with set of states Sti
and set of await

states Sa
ti

:
i) for state s ∈ Sti

let change(p, s) = µ(s0)(p) −
µ(s)(p), i.e., the difference in token counts for
place p between markings corresponding to the
initial state of SSS(ti) and state s.

ii) let SSS_change(p, ti) = maxs∈Sti
change(p, s),

i.e., the maximal change in token count for place
p in markings corresponding to states of SSS(ti)
with respect to the initial marking.

iii) let await_change(p, ti) = maxs∈Sa
ti

change

(p, s), i.e., the maximal change in token count
for place p in markings corresponding to the
await states of SSS(ti) with respect to the initial
marking.

b) Let worst_change(p, ti) =
∑

tj �=ti,tj∈Tu
S

await_
change(p, tj), i.e., the sum of await_change for all
SSS except for SSS(ti).

Here is the semantics of the introduced notions.

1) SSS_change(p, ti) shows how much the original token
count for place p deviates while executing the single
source schedule SSS(ti). If SSS(ti) started from the
initial marking with a number of tokens in p less than
SSS_change(p, ti), then SSS(ti) would deadlock due to
a lack of tokens to fire some transition in the postset of p.

2) await_change(p, ti) gives a quantitative measure of the
influence of SSS(ti) on the other schedules. Indeed, as
await states are the only points where the scheduler
switches among tasks (SSSs), the change in PN markings
due to the execution of SSS(ti) is fully captured by
the markings of await states, where await_change(p, ti)
gives the worst possible scenario.

3) worst_change(p, ti) generalizes the notion of await_
change(p, ti) to the set of all SSSs, except for the chosen
SSS(ti). The execution of other SSSs has a cumulative
influence on SSS(ti) expressed by worst_change(p, ti).

Fig. 10 depicts a diagram that represents the changes on a
place p produced by three single-source schedules. The hor-

6For convenience, we assume PNs without self-loops. This does not impose
any constraint on the class of specification that can be handled, because any
PN with self-loops can be equivalently transformed into a self-loop-free PN by
inserting silent transitions.

izontal axis represents the evolution of the schedule through
different states, and the black dots represent await states. The
solid line represents a partial trace of the system, in which all
schedules but one (SSS(t1) and SSS(t2)) are in await states,
whereas the other schedule (SSS(t3)) is in an arbitrary state.
For the trace to be fireable, we need the condition that the
accumulated changes on p do not lead to a negative number
of tokens.

The following theorem establishes the bridge between the
sequential independence of SSSs and the firing rule of PNs,
when the schedules are executed.
Theorem 1: A set of single source schedules X =

{SSS(ti) | ti ∈ T u
S } derived from a self-loop-free reactive PN

N = (P, T, F,M r
0) is sequentially independent if, and only if,

∀p ∈ P and ∀SSS(ti) ∈ X , the following inequality is true:

M r
0(p) − worst_change(p, ti) − SSS_change(p, ti) ≥ 0

(IE.1)

Proof: ⇒. Suppose that X is sequentially independent,
but there exists a place p for which inequality (IE.1) is not
satisfied. Sequential independence implies the existence of a
reactive schedule isomorphic to the composition of X . Abusing
notation, we will make no distinction between the states of the
composition and the corresponding reactive schedule.

In the set of states of the sequential composition of X , let
us choose an await state s = (s1, . . . , sk), such that for any
SSS(tj), tj �= ti, the corresponding await component sj of s
is chosen to maximize the token consumption in place p,
while si is chosen to be the initial state of SSS(ti). From the
choice of state s, it follows that by reaching s in the compo-
sition, the corresponding marking for place p equals M r

0(p) −
worst_change(p, ti). Let us execute SSS(ti) from s. By the
definition of SSS_change(p, ti), there is a state s′i ∈ SSS(ti)
such that the token count for place p in the marking corre-
sponding to s′i reduces by SSS_change(p, ti), with respect to
the initial marking from which SSS(ti) starts. From this follows
that if M r

0(p) − worst_change(p, ti) − SSS_change(p, ti) <
0, then in the reactive schedule isomorphic to the sequential
composition of X it would be impossible to fire some transition
t that enters state s′, where s′ = (s1, . . . , s

′
i, . . . , sk). The latter

contradicts the isomorphism between the composition and the
reactive schedule.
⇐. Suppose that inequality (IE.1) is satisfied but X is not

sequentially independent. In the set of all reactive schedules,
let us choose the schedule Sch that is isomorphic to the
largest subpart of the sequential composition A. That is, if a
mismatch like the one in Fig. 9 is found by simulating Sch
and A, then there does not exist any other reactive schedule

1502 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

Fig. 10. Changes on the marking of p produced by the composition of sequential schedules.

Fig. 11. Process with arbitration and its single-source schedules.

with a state s′′ isomorphic to s and capable of firing transition
t. Let us rearrange the sequence in Fig. 9 by first executing
the schedules other than SSS(ti), and let sf be the first await
node in which SSS(ti) is chosen. Then the token count for
place p in the marking corresponding to sf is larger than
M r

0(p) − worst_change(p, ti). By definition, the execution
of SSS(ti) cannot reduce it by more than SSS_change(p, ti).
Then due to the validity of (IE.1) when state s′ is reached in
SSS(ti), transition t cannot lack tokens in p needed for its
enabling. The case of Fig. 9 is impossible. �

One could thus derive from Theorem 1 a simple sufficient
condition for checking sequential independence.
Corollary 1: A set of single source schedules

X = {SSS(ti)} is sequentially independent if for any marking
M corresponding to an await state s of SSS(ti) (M = µ(s))
we have ∀p : M(p) ≥ M r

0(p).
Proof: The proof follows from inequality (IE.1) by taking

into account two observations.
1) If for any marking M of the await state s we have

M(p) ≥ M r
0(p), then worst_change(p, ti) ≤ 0.

2) The ability of any SSS(ti) to be executed from M r
0 means

that for any place p, M r
0(p) − SSS_change(p, ti) ≥ 0.

Note that this captures the case of arbitrary PNs (not self-
loop free only). �

We will illustrate the suggested approach for checking the
independence of SSSs by using the example of processes
with arbitration in Fig. 5. Two different sets of single-source
schedules for this example are shown in Fig. 11(b) and (c).

The only place shared by both SSS(a) and SSS(d) is
place p0. We can immediately infer the irrelevance of other
places with respect to independence violation. Checking the
marking count for p0 in SSS(d) in Fig. 11(b) gives the fol-
lowing results: worst_change(p0, d) = 0 [p0 is marked in
both await nodes of SSS(d)] and SSS_change(p0, d) = 1,
due to the consumption of p0 in nonawait states of SSS(d)
(see the marking {p4, p5}, e.g.). From similar considerations:
worst_change(p0, a) = 0 and SSS_change(p0, a) = 1. It is
easy to see that under the initial marking M r

0(p0) = 1, inequal-
ity (IE.1) is satisfied for both SSS(a) and SSS(d). This is in
full correspondence with the conclusion about the sequential
independence of SSS(a) and SSS(d) that was derived earlier
through the explicit construction of their composition (see
Fig. 8).

Reversing the order of firing for transitions d and f in SSS(d)
from Fig. 11(c) results in worst_change(p0, d) increasing to
1 (in the await state {p4, p5}, place p0 is unmarked). The
latter leads to the violation of inequality (IE.1) for SSS(a)
and reveals the dependence between SSS(a) and SSS(d) from

CORTADELLA et al.: QUASI-STATIC SCHEDULING OF INDEPENDENT TASKS FOR REACTIVE SYSTEMS 1503

Fig. 12. Design flow for quasi-static scheduling.

Fig. 11(c). Note that the same result could be immediately con-
cluded by considering the await states of SSS(d) and applying
Corollary 1.

From the above example, it follows that from the very same
specification one can obtain both independent and dependent
sets of SSSs. In case an independent set exists (this does
not happen for all PNs), it would be desirable to find it.
However, this is difficult because in the worst case it requires
the exhaustive exploration of the concurrence in all SSSs.
Therefore, for practicality, we suggest using a “try and check”
approach in which a set of SSSs is derived, and if they are
not independent, a reactive schedule is immediately constructed
(if possible). This design flow for scheduling is illustrated
by Fig. 12.

E. Termination Criteria

Sequential schedules are derived by exploring the reachabil-
ity graph of a PN with source transitions. Unfortunately, this
graph is infinite.

A possible approach to tackle the problem of dealing with an
infinite reachability graph is to explore only a finite subset de-
fined heuristically or by some formal criteria. One enumerative
formal criterion that provides a semidecision procedure (that
succeeds if the PN is schedulable) can be derived following
the approach in [17], by initially setting some bounds on
all places based on the structural properties of the PN, and
increasing the bounds every time a deadlock due to capacity is
reached. However, this approach needs to exhaustively analyze
the reachability space for each set of bounds if a schedule
does not exist within them, and it is not applicable in practice
because of the prohibitively large reachability spaces even for
the initial bounds.

Next, we discuss conservative heuristic approaches to prune
the exploration of the reachability space while constructing
a schedule, which allow our approach to always terminate.
Conservatism refers to the fact that schedules may not be
found in cases in which they exist. Our approach attempts to
prune the state space when the search moves towards directions
that are qualified as nonpromising, i.e., where the chances to
find a valid schedule are remote. The approach is based on
defining the notion of irrelevant marking. This definition is
done in two steps: 1) bounds on places are calculated from the
structure of the PN and 2) markings are qualified as irrelevant
during the exploration of the state space if they both cover
some preceding marking and exceed the calculated bounds.
Note that the property of irrelevance, as defined below, is not
local and depends on the prehistory of the marking, i.e.,

on the sequence of markings visited before it from the ini-
tial one.
Definition 13 (Place Degree): The degree of a place p is

defined as

degree(p) = max
(

M0(p),max
t∈•p

F (t, p) + max
t∈p• F (p, t) − 1

)
.

Place degree intuitively models the “saturation” of p. If the
token count of p is maxt∈•p F (p, t) or more, then adding tokens
to p cannot help in enabling output transitions of p. The firing of
a single input transition of p can add at most maxt∈•p F (t, p)
tokens, which gives the expression for place degree shown in
Definition 13.
Definition 14 (Irrelevant Marking): A marking M is called

irrelevant with respect to the reachability tree rooted in initial
marking M0, if the tree contains marking M1 such that:

1) M is reachable from M1;
2) no place has more tokens in M1 than in M ; and
3) for every place p at which M has more tokens than M1,

the number of tokens in M1 is equal to or greater than
degree(p).

The example in Fig. 13 illustrates the crucial difference
between the approaches based on predefined place bounds and
irrelevant markings.

The maximal place degree in the PN of Fig. 13(a) is k. This
information is the best (as far as we know) one can extract
from the PN structure about place bounds. The predefined
bounds for places should be chosen to at least exceed place
degrees. Suppose that, based on this rationale, the bounds are
chosen as the maximal place degree multiplied by some con-
stant margin.

Let us assume for our example that place bounds are assigned
to be 2k − 1 and consider the PN reachability space when
k = 2. When the schedule is checked with the pruning based
on predefined place bounds, any marking that has more than
three tokens in a place should be discarded. Clearly no schedule
could be found in that reachability space because after a, a, b,
a occurs, the only enabled transition is a, but its firing produces
four tokens in place p2 (see the part of the reachability graph
shown in Fig. 13(b), where superscripts near places show the
number of tokens the place has under the current marking). The
search fails.

The irrelevance criterion handles this problem more gra-
ciously. It guides the search towards the “proper” direction in
the reachability space by avoiding the irrelevant markings. The
first guidance is given when marking {p2

5, p
2
1, p

2
2} is reached.

In that marking, the scheduler must choose which transitions,

1504 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

Fig. 13. Constraining the search space by irrelevance criterion.

a or b, to fire from the enabled set. The firing of a however
produces marking {p2

5, p
3
1, p

3
2}, which is irrelevant because it

covers {p2
5, p

2
1, p

2
2}, where places p1 and p2 are already sat-

urated. Therefore transition b should be chosen to fire. After
this, a fires twice, resulting in the marking {p2

5, p3, p
2
1, p

4
2}.

Note that even though the place degree for p2 is exceeded in
this marking, the marking is not irrelevant, because in all the
preceding markings containing p3, p1 is not saturated. From this
marking, the system is guided to fire b because the firing of a
again would enter the irrelevant space [see Fig. 13(b)]. Finally,
this procedure succeeds and finds a valid SS schedule.

Though pruning, the search using irrelevance seems a more
justified criterion than using place bounds (as used, e.g., in [13],
[19]), it is not exact for general PNs. There exist PNs for which
any possible schedule enters the irrelevant space. This is due
to the fact that for general PNs, accumulating tokens in choice
places after their saturation could influence the resolution of
choice (e.g., by splitting token flows in two choice branches
simultaneously). If for any choice place p in PN, either at most
one of the transitions in p• is enabled (unique choice) or every
transition in p• is enabled (free choice), then adding tokens to p
does not change the choice behavior of a PN. This gives the
rationale behind our conjecture that the irrelevance criterion
is exact for PNs with choice places that are either unique or
free choice. Note that FlowC specifications without the SELECT
operator belong to this class. However, we have so far been
unable either to prove the exactness of this criterion, or to find
a counterexample. This issue is left open for the moment.

IV. ALGORITHM FOR SCHEDULE GENERATION

In this section, we present an algorithm for computing a
sequential schedule of a given PN. This algorithm can also be
used to compute a single-source schedule for a source transition

ti, if it takes as input a reactive PN in which all the source
transitions except ti are deleted (see Definition 10). Finally a
sequential program is generated from the resulting schedule by
the procedure described in Section IV-C.

A. Synthesis of Sequential Schedules

Given a PN N , the scheduling algorithm creates a di-
rected tree, where nodes and edges are associated with mark-
ings and transitions of N , respectively. In the sequel, µ(v)
denotes the marking associated with a node v of the tree,
while T ([v, w]) denotes the transition for an edge [v, w].
Initially, the root r is created and µ(r) is set to the ini-
tial marking of N . We then call function EP(r, r), shown
in Fig. 14(a). If this function returns successfully, a post-
processing step is invoked to create a cycle for each leaf. The
resulting graph represents a sequential schedule (S, T,→, r),
where S is the set of nodes of the graph, T is the set of

transitions of N , and → is given by v
T ([v,w])→ w for each

edge [v, w].
EP takes as input a leaf v of the current tree and its ancestor

target. We say that a node u is an ancestor of v, denoted by
u ≤ v, if u is on the path from the root to v. If, in addition,
u �= v, u is a proper ancestor of v, denoted by u < v. EP creates
a tree rooted at v, where each node x is associated with at
most one FCS enabled at µ(x). The goal is to find a tree at
the root v with two properties. First, each leaf has a proper
ancestor with the same marking. Second, each nonleaf x is
associated with an FCS so that for each transition t of the FCS,
x has a child y with T ([x, y]) = t. If such a tree is contained
in the one created by EP, we say that EP succeeds at v. FCSs
are associated so that the conditions given in the definition of
sequential schedules (Definition 6) are satisfied, which will be
elaborated next.

CORTADELLA et al.: QUASI-STATIC SCHEDULING OF INDEPENDENT TASKS FOR REACTIVE SYSTEMS 1505

Fig. 14. The two main functions called in computing a sequential schedule.

EP returns three values, denoted by status(v), ap(v), and
ep(v). There are two terminal cases, given in the third and
fourth lines of the code in Fig. 14(a), for which the returned
values are presented, respectively. Suppose that v does not fall
into the terminal cases. status(v) is a Boolean variable, which
is 1 if, and only if, EP succeeds at v. The other two values are
meaningful only if status(v) is 1. ap(v) is a Boolean variable,
which is 1 if, and only if, v has a path to an await node in the
created tree such that for each edge on the path, say [x, y], an
FCS is associated with x and T ([x, y]) is in the FCS. A node
is said to be await if it is associated with an FCS and this is the
set of source transitions TS.

ep(v) is called an entry point of v, which is recursively
defined for nodes and FCSs enabled at their markings. If v is
a leaf and has a proper ancestor with the same marking, the
ancestor is the entry point of v. Otherwise, ep(v) is an entry
point of some FCS enabled at µ(v). An entry point epF of an
FCS F is defined if the following two conditions hold. First,
for each transition t of the F , a child w has been created
with T ([v, w]) = t and µ(v)[t〉µ(w). Second, for each such
w, status(w) = 1 and either ap(w) = 1 or ep(w) ≤ v. In this
case, epF is the minimum among the ep(w) for all w such that
ep(w) ≤ v, i.e., the one closest to the root r. If no ep(w) is an
ancestor of v, epF is undefined. If there is no FCS that satisfies
these conditions, or epF is undefined for each FCS that satisfies
the conditions, ep(v) is undefined and set to UNDEF. Intuitively,
if ep(v) is not UNDEF, it means that there exists an FCS enabled
at µ(v) with the property that for each transition t of the FCS,
if ep(w) ≤ v holds for the corresponding child w, there is a
sequence of transitions starting from t that can be fired from
µ(v) with the resulting marking equal to that of the node given
by ep(w). Further, at each marking obtained during the firing
of the sequence, there is an FCS enabled at the marking that
satisfies this property. If there exists such an FCS at v, EP further
checks if there is one that also satisfies ep(v) ≤ target. If this
is the case, EP associates one of them with v, which is denoted
by FCS(v) in the algorithm. Otherwise, EP associates any FCS

with the conditions above. If no such FCS exists, no FCS is
associated and FCS(v) is set to empty. To find such an FCS,
EP calls function EP_FCS for each FCS enabled at µ(v). If EP
succeeds at the root r, we call the postprocessing step to create
a schedule and terminate. Otherwise, we report no schedule
and terminate.

The algorithm can use any termination condition at line 2 of
Fig. 14(a), if it can be evaluated on the tree being constructed
and the nodes v and target. Such a condition includes the one
given in Section III-E, as well as the one that specifies bounds
on the number of tokens at the places.

Fig. 15 illustrates the algorithm for the PN given in Fig. 2.
Fig. 15(a) shows the tree obtained just before the postprocess-
ing, when the algorithm is applied to the PN of Fig. 2. Suppose
that we use bounds on marking of places as the termination
condition, where we set a bound for each place equal to 1. The
marking associated with each node is shown in thee parentheses
adjacent to the name of the node. Fig. 15(b) presents the final
schedule.

At each node we assume that the FCS shown is processed
first, among those enabled at the marking. Suppose that the pro-
cedure has arrived at v2. EP(v2, r) is called at this node, which
then calls EP_FCS({t3, t2}, v2, r). EP_FCS creates a node v3 for
the transition t3 and calls EP(v3, r). The only FCS enabled at
the marking of v3 is the set TS of the source transitions. Thus
EP sets current_target to v3 and calls EP_FCS(TS, v3, v3).
EP_FCS then processes each of the two source transitions.

Consider transition Tin, and suppose that the procedure
has arrived at the point where v7 is created in EP_FCS. The
target is still v3, and thus EP(v7, v3) is applied. EP calls
EP_FCS with the FCS {t8, t9}. EP_FCS then creates a node
v8 for the transition t9 and calls EP(v8, v3). Since the mark-
ing of v8 is equal to that of v2, EP returns (1, 0, v2). It
then processes the other transition t8, for which EP returns
(1, 0, v2).

Suppose now that the procedure has come back to the node
v3, at which EP_FCS(TS, v3, v3) returns (1, 0, v2). Since

1506 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

Fig. 15. Scheduling tree and final schedule for the PN of Fig. 2.

current_target had been set to v3 in EP(v3, r), v2 ≤
current_target holds. Therefore, EP(v3, r) immediately re-
turns (1, 0, v2) to EP_FCS({t2, t3}, v2, r). FCS(v3), the FCS
assigned at v3, is TS, and therefore EP_FCS({t3, t2}, v2, r) sets
apF to 1 and current_target to v2. It then continues for the
transition t2 by calling EP(v12, v2). It will return (1, 0, v2)
and EP_FCS({t2, t3}, v2, r) returns (1, 1, v2). These values are
propagated to the root, and are finally returned by EP(r, r). The
postprocessing step is then called, which deletes the nodes v8,
v9, v11, v15, and v17, and creates cycles as shown in Fig. 15(b).

The postprocessing step consists of two parts. First, we
retain only those parts of the tree that are used in the resulting
schedule, and delete the rest. The root is retained, and a node w
is retained if its parent v is retained and the transition T ([v, w])
is in FCS(v). Second, a cycle is created for each leaf w of
the retained portion of the tree, by merging w with its proper
ancestor u such that µ(u) = µ(w). By construction, such a u
uniquely exists for w. The graph obtained at the end is returned.
It can be shown that this algorithm always finds a schedule,
if there exists one in the space defined by the termination
conditions employed in EP.

Note that the resulting graph may have more than one node
with the same marking. Further, FCSs associated with these
nodes may not be the same. The freedom of associating differ-
ent FCSs at nodes with the same marking allows the algorithm
to explore a larger solution space and thus classify more PNs as
schedulable. However, it is also possible to force the graph to
have at most one node for a given marking, and thus require less
memory at scheduling time, by slightly changing the algorithm.
Specifically, in EP_FCS, before creating a node w for a given
transition t, we first compute the marking obtained by firing
t at µ(v), and check if there is a node y in the graph such

that µ(y) is equal to the marking and status(y) = 1. If so,
instead of creating a node w, we create an edge [v, y], set
(status, ap, ep) to (1, ap(y), ep(y)), and continue to the next
transition.

B. Sorting Enabled FCSs

The pseudocode for EP shown in Fig. 14(a) processes all
the enabled FCSs before completing the function, unless there
is one with which either apF = 1 or epF ≤ current_target
holds, i.e., with this FCS, v will either have a path to an
await node, or ep(v) will be an ancestor of current_target.
In practice, there is an FCS for which neither of the con-
ditions holds, but its entry point epF is a proper ancestor
of v. Although the pseudocode does not immediately re-
turn with such an FCS, the FCS can lead to a valid sched-
ule if there is a node between epF and v at which there
is an enabled FCS, whose entry point is an ancestor of
current_target. The algorithm can be implemented to take
advantage of this possibility, with potential cost of backtrack-
ing. Specifically, if EP_FCS has returned (1, apF , epF) for
an enabled FCS F with epF < v, EP immediately returns
(1, apF , epF). This will let the procedure return to EP process-
ing the node epF , i.e., the end of line 10 of the pseudocode
where EP_FCS returns for the FCS being tried in the EP. If the
returned values from EP_FCS do not satisfy the conditions to let
EP further return, then it recursively goes back to its children
to process FCSs for which EP_FCS has not been called. This
implementation often finds a schedule more quickly than the
original algorithm. We call this heuristic speculative-FCS, and
compare its effectiveness to that of the original algorithm in
Section V.

CORTADELLA et al.: QUASI-STATIC SCHEDULING OF INDEPENDENT TASKS FOR REACTIVE SYSTEMS 1507

In general, the number of nodes created in the algorithm
depends on the order of FCSs explored in EP. Although the
ordering does not influence the worst case search space or run
time of the algorithm, some orderings lead to a schedule sooner
than others. We employ a heuristic approach of sorting the
FCSs for this reason, which also provides us with a sufficient
nonschedulability condition, i.e., if the condition holds, we can
immediately terminate the procedure, reporting no schedule.
It tries to find a short sequence of transitions such that if
the sequence is fired from the node being processed in EP,
a marking associated with some ancestor of the node can be
obtained. Such an ancestor becomes a candidate to be an entry
point for the node. We represent the sequence using a vector
of nonnegative integers, which we call a promising vector. Its
positions correspond to transitions, and each entry represents
the number of occurrences of the corresponding transition in the
sequence. It is taken as additional input by both EP and EP_FCS,
where it is initially set to the null vector. When it is null, EP
computes one, sorts the FCSs, and then passes it to EP_FCS.
In EP_FCS, for each transition to be processed, the integer at
the corresponding position in the vector is decreased by 1, and
the result is passed to EP. If the resulting integer is negative, the
null vector is passed.

We use t-invariants [16] to find such a vector. A t-invariant is
a vector of nonnegative integers that solves the system of homo-
geneous marking equations Cx = 0, where C is the incidence
matrix of the PN. The incidence matrix is a matrix of |P | × |T |
integers defined as Cij = F (tj , pi) − F (pi, tj), where pi and
tj correspond to the ith place and jth transition, respectively.
A t-invariant represents sequences in which the number of
occurrences of the jth transition is equal to the integer at the jth
position of the t-invariant. Each such sequence has the property
that if it can be fired from a marking M , the marking obtained
after the firing is also M . We call a nonnegative basis of the
homogeneous marking equations a basis of t-invariants, which
can be computed by existing methods [16]. Since a schedule
does not exist if there is no basis of t-invariants, if the algorithm
identifies this case, it terminates immediately without applying
the function EP.

Suppose that a basis of t-invariants is found. The heuristic
first finds a subset of the basis with the property described in
Theorem 2 below, then sorts FCSs using it. The property is
related to the t-invariant being enabled. A known problem with
t-invariants is that it is in general difficult to identify whether a
t-invariant is enabled at a given marking, where we say that a
vector of transitions is enabled if some sequence of transitions
represented by the vector is enabled. For our case, however,
due to the structure of the PN generated from a FlowC spec-
ification, a necessary condition can be obtained for an invariant
to be enabled. For the sake of simplicity, we assume that the
specification does not contain SELECT statements, although
the extension to handle them is straightforward. To describe the
condition, let us introduce some terminology. An FCS is said
to be pseudoenabled at a marking M , if some transition of the
FCS has a predecessor place p such that p is marked at M and
p does not correspond to an FIFO queue in the original network
specified in FlowC. This definition implies that the FCS does
not contain a source transition and that it originates from the

code of a single FlowC process. Further, we say that a process
appears in a vector, if there exists a transition in the process
that appears in the vector. Then the following theorem shows
the necessary condition.
Theorem 2: For any vector of transitions enabled at a reach-

able marking M in the PN obtained from a FlowC specification
without SELECT, and for any pseudoenabled FCS at M , if
the process of the FCS appears in the vector, the FCS has a
transition that appears in the vector.

Proof: Suppose, for the sake of contradiction, that there
exists a pseudoenabled FCS at M , say F , such that its process
appears in the vector, but no transition of F appears in the
vector. Let t1 be a transition in the process that appears in
the vector. By definition, t1 does not belong to F . Since the
specification does not have SELECT statements, the PN frag-
ment created for the process from the FlowC specification has
exactly one pseudoenabled FCS at M . This is because tokens
model either data presence or program counters (one counter
for each process) and for any place that does not model FIFO
queues, its successors constitute a single FCS. This implies the
following two statements. First, the FCS containing t1 is not
pseudoenabled at M . Second, if a sequence of transitions is
enabled at M and the marking reached after the firing enables
t1, the sequence must contain a transition of F . For each
sequence of transitions represented by the vector, since it does
not contain any transition of F but contains t1, the sequence is
not enabled at M . It follows that the vector is not enabled at M ,
which is a contradiction. �

Our heuristic finds a subset with minimal cardinality of the
basis of t-invariants, such that the sum of the t-invariants in
the subset satisfies this necessary condition at µ(v), where
v is the current node being processed in EP. This problem
can be formulated as a binate covering problem. Consider a
matrix A, such that columns correspond to the invariants of the
basis and rows correspond to pseudoenabled FCSs at M(v).
The row corresponding to FCS F has 0 at a given column, if
the process of F appears in the invariant b corresponding to
the column, but none of the transitions of F appears in b, 1
if F contains a transition that appears in b, and 2 otherwise.
A subset of the columns of A is said to be a feasible solution
of the binate covering problem, if for each row i of A, either
there is no column j in the subset such that Aij = 0, or there
is a column j such that Aij = 1. Informally, it means that for
each pseudoenabled FCS F , if the process of F appears in
some basis invariant included in a feasible solution, then there
is a basis invariant in the solution that contains a transition of
F . It follows that the subset of the basis given by a feasible
solution of binate covering satisfies the necessary condition
Theorem 2. We employ a method given in [15] that always
finds a feasible solution, if it exists, while the cardinality of
the subset is heuristically made minimum. In case no feasible
solution exists, we set the subset to empty.

Once the subset is obtained, EP takes the sum of the invari-
ants in the subset as a promising vector, and sorts FCSs enabled
at µ(v) as follows. It favors most an FCS such that some of
its transitions appear in the vector, and none of the transitions
appears in the path from the root to v. This is followed by
FCSs with some of their transitions in the vector. The rest is

1508 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

favored least. Ties can be broken by further using heuristics; for
example, those that do not violate the termination conditions at
their children are favored over those that do, or those with single
transitions are favored over those with multiple transitions.

C. Code Generation

The code generation algorithm takes a graph of a sequential
schedule and synthesizes code. In the sequel, we make no
distinction between the graph and the schedule it represents.
A direct translation of the schedule into code is possible, but
it usually increases the code size, since different paths of the
schedule may be associated with the same sequence of transi-
tions, which yields a similar code segment. We thus perform
optimizations to reduce the code size.

The code generation procedure that we have implemented
uses two successive traversals of the schedule: the first identifies
the initialization part and stops as soon as an await node
is encountered; the second starts from the await node and
identifies the reactive part. Both traversals follow the same
approach divided in two steps: at first, a set of code segments
is extracted from the schedule during the traversal; then, code
for each segment is synthesized so that the behavior is correctly
implemented.
1) Schedule Traversal: In the first step, the schedule is

traversed in a depth-first manner to extract sequences of actions
that are candidates to be shared in the generated code. In
particular, the graph is divided into a set of code segments. A
code segment is a directed rooted tree that associates an action
with each edge, and a state to each node. A code segment is a
schedule, in which await nodes can only be at the root, or at
the leaves. It is not necessary for a code segment to have an
await node. During code generation, code segments isomorphic
to subtrees of the schedule are created.

As we shall see later, code segments represent uninterruptible
sequences of actions. Since await nodes require the execution
to be suspended, they are forbidden within a code segment. The
goal of code generation is to find the minimum set of disjunct
code segments such that:

1) an action in the schedule belongs to one, and only one,
code segment;

2) each code segment is isomorphic to a set of subtrees of
the schedule, such that each arc of each subtree has the
same action as the corresponding arc of the segment;

3) the set covers the entire schedule, i.e., each node of
the graph of the schedule is in a subtree, for which an
isomorphic code segment exists.

The state of a node of a code segment is used to keep track of
the flow of control, in case the same code segment is used to
execute different paths in the schedule.

The first property above guarantees that we minimize the
memory requirements, since code is maximally shared. The
second property tells us that within a code segment there can
only be local jumps (such as if− then− else), while global
jumps from one code segment to another occur only at the
leaves. This means that once the execution of a segment starts, it
continues until a leaf is reached. Moreover, looking at the min-
imum set of code segments means that they are maximal, since

if a segment is not maximal, then it can be made isomorphic
to a larger subtree of the schedule, by merging it with another
code segment that corresponds to the newly covered subgraph,
without violating the above properties. Therefore, we minimize
the performance loss due to jumping from one code segment to
another. The third property guarantees that the entire behavior
can be represented in terms of code segments.

The algorithm for the traversal is polynomial with respect
to the size of the input graph. The traversal itself, being depth
first, is linear, but to guarantee properties, we need to search
already created code segments, at most once for each node of
the graph. As the total size of the code segments is never greater
than that of the initial graph, even a simple linear searching
technique would make the overall algorithm quadratic in the
size of the graph. Using a slightly more sophisticated search,
the algorithm can be made O(n log n), where n is the number
of nodes of the graph.

Fig. 16 shows an example of code segment extraction using
the same schedule computed in Fig. 15(b), for the PN given in
Fig. 2. Fig. 16(a) and (b) compute the initialization part, while
Fig. 16(c) and (d) compute the reactive part.

During the traversal, nodes are flagged as visited, so that
when a loop is found the traversal stops at that particular
branch. However, a new node for the destination of the loop
is created in the code segment that is being built. These flags
are reset when the second traversal to identify the reactive
part is started. As illustrated, code segments that are created at
the beginning of the traversal may need to be split in order to
guarantee that the above properties hold.

The algorithm recursively traverses the schedule to identify
the code segments, stopping at each await node or when a
transition that is already in a code segment is found: the first
step for the initialization part creates code segment cs1 shown
in (a), where the pairs of a marking and an FCS are indicated
in parentheses for the root and the leaf nodes. It stops at node
u3 as the corresponding node v3 in the schedule is an await
node, and at nodes u14 and u16 because the outgoing transition
from v14 and v16 is t1, already present in cs1. The second step
starts from v14: it immediately recognizes that cs1 should be
split, because from t1 you can either go to t6, or to the choice
between t3 and t2; therefore we get three code segments, as
shown in Fig. 16(b). The third step starts from v16 and does not
need to create any new code segment. No further traversal is
needed because the frontier is an await node. The traversal for
the reactive part starts from v3 and creates a new code segment
cs4 rooted at u3: it stops at u′

3 and u′′
3 (an await node is reached),

at v12 (the next transition is t7, which is already present in cs4),
and u8 (the corresponding node v2 has already been visited and
it is flagged); cs4 thus needs to be split: the new cs4, cs5, and
cs6 that are generated are shown in Fig. 16(d). The traversal
continues from v12 and does not need to create any new code
segment until node v14 is reached, where cs7 is finally created.

2) Code Synthesis: The second step generates the code to
be used to implement a task. It does so by generating code
for each code segment, adding a structure to jump from one
code segment to another to reflect the original schedule. For
this purpose, state variables are introduced for places and the
markings in the tree are represented with them.

CORTADELLA et al.: QUASI-STATIC SCHEDULING OF INDEPENDENT TASKS FOR REACTIVE SYSTEMS 1509

Fig. 16. Illustration of the code-generation algorithm for the schedule of Fig. 15(b).

The structure of a code segment is always the same and can
be separated into three sections: execution, update, and jump.

1) Execution: It contains the real code for actions and data-
dependent choices, taken from the original specification.
It always starts with a unique label. The label is used to
jump to the code segment.

The graph for the code segment is traversed in a depth-
first search manner. For each node, the code for the
corresponding action is copied into the output file. If the
node is a choice, then an if− then− else construct is
generated using the condition specified in the node.

When a leaf is reached, the update and jump sections
are generated before going back in the traversal.7

2) Update: At each leaf of a code segment, the marking must
be properly updated so that:
a) the next code segment to execute in order to complete

the computation can be correctly selected;
b) the marking at the end of a sequence of code segments

corresponds to the node in the schedule reached by the
execution.

If multiple code segments are traversed during a single
reaction, each one of them is responsible for updating
the state variable to reflect the change between the root
node of the code segment, and the leaf that is reached.
The sequence of these updates constitutes the global state
change for that particular reaction.8

7If there are choices in the code segment, then multiple update and jump
sections are synthesized; however, if it can be statically determined that
those sections are all identical, then they are merged after the closing of the
if− then− else.

8As an optimization, although all state changes are tracked in the code
segments, code is generated only for those that actually affect conditions to
select jumps.

3) Jump: This section must find which code segment to
call next, or should return if the reaction is finished. A
switch construct on state variables is used to select a goto
statement, which will cause the execution to jump to the
unique label that identifies the next code segment. If the
destination is an await node, then a return is generated
instead of a goto.

Synthesis will therefore generate a set of functions: one
for the initialization, and one for each input that should be
served. They have no local variables and start with the first
code segment (for the initialization part, it always corresponds
to the root of the schedule; for the reactive part, it is always an
await node), followed by all the others as needed by the jump
sections. When the last code segment of a function is generated,
the function is closed. These functions have just one entry point,
but may have several exit points corresponding to all the leaves
that perform a return.

Also, code for channels between processes that have been
merged into a single schedule is generated. For each such
channel, we define a circular buffer and replace write and read
operations for the channel that appear in the generated code
with operations on the buffer. The size of the buffer can be
statically identified as the upper bound found in the schedule. If
the buffer has size 1, it is substituted by a single variable.

Fig. 17(a)–(c) show the code synthesized for the initializa-
tion and the reactive parts of the code segments illustrated in
Fig. 16. Only places p1 and p5 are used to determine jumps,
so they are the only ones whose marking is tracked in the
code. Global variables are declared outside these functions (the
code is not shown). From the schedule, it can be statically
determined that place DATA holds at most one token, therefore
a simple variable with assignments is used instead of a circular
buffer.

1510 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

Fig. 17. (a)–(c) Synthesized code for the initialization and reactive parts. (d), (e) Code after compiler optimizations.

Knowing that function Init is called only once before all
other functions have a chance to run, the code for the initial-
ization part can be optimized using constant propagation and
dead code elimination: variable i is always 0, therefore the
condition in the first line of cs3 is always true if N > 0, and
the else part can be eliminated. Also, variable p5 is equal
to 1 when the switch statement in cs1 is executed, therefore
the code can be further optimized. The new code is shown as
function Init_optimized in Fig. 17(d). Function Tin can also
be simplified, mainly by rearranging code and eliminating some
useless gotos. The result is shown in Fig. 17(e).

The synthesized functions shown in Fig. 17 must be com-
pared to those listed in Fig. 2(b), which were manually derived
by looking at the specification. They are remarkably similar,
the most important difference being that duplicated code in
function Tin has disappeared in the automatically synthesized
one, which uses variable p1 to implement the same behavior.

V. EXPERIMENTAL RESULTS

We used as our test system a moving pictures experts group
(MPEG)-2 video decoder developed by Philips (see [21]). The
system is composed of a set of concurrent processes, as shown
in Fig. 18. Processes Thdr and Tvld parse the input video
stream; Tisiq and Tidct implement spatial compression decod-
ing; TdecMV, Tpredict, and Tadd are responsible for decoding
temporal compression (i.e., forward and backward predictions)
and generating the image; Tmemory, TwriteMB, TmemMan,
and Toutput manage the frame store and produce the output to
be sent to a visualization device. Communication is by means of
channels, which have FIFO semantics and can handle arbitrary
data types. Philips used approximately 7700 lines of code to
describe 11 processes, and 51 channels to connect them. An

average of 16 communication primitives per process are used
to transfer data through those channels.

In the original implementation, all processes were sched-
uled at run time using the plug-in Silicon Operating System
(pSOS) RTOS. Our objective was to reduce run-time scheduling
overhead due to context switchings, by merging processes as
much as possible into quasi-statically scheduled ones. This also
leads to further improvements in performance, since internal
communication between merged processes reduces to simple
assignments rather than a full FIFO implementation (e.g., as a
circular buffer in memory).

We focused our attention on five processes: Tisiq, Tidct,
TdecMV, Tpredict, and Tadd. They consist of about 3000 lines
of code and account for more than half of all communications
occurring in the system. Even though we generated PNs for
other processes as well, we did not schedule the entire system,
because we wanted to preserve some concurrence between
processes and to verify the interaction between the generated
code and the rest of the specification. Moreover, we report
profiling results on a single processor machine, but this partition
would also allow us to map the MPEG-2 video decoder to
different tasks on multiple processors.The inputs to these five
processes from the rest of the system are correlated. This means
that once a reaction is triggered by the first input, the other will
follow in a known sequence. We thus modeled all inputs as
controllable, except the first one received, which is modeled as
an uncontrollable source. As a result, our procedure generated a
single source schedule for this trigger input, rather than several
schedules for each of the original inputs.

The PN generated from the FlowC specification had 18 free
choices, due to data-dependent conditions in the code; however,
it was identified from the specification that ten of those free
choices modeled conditions that were correlated, and thus the

CORTADELLA et al.: QUASI-STATIC SCHEDULING OF INDEPENDENT TASKS FOR REACTIVE SYSTEMS 1511

Fig. 18. MPEG-2 video-decoder block diagram.

Fig. 19. (a) Example of FlowC specification. (b) Portion of the generated code for the MPEG-2 decoder.

technique described in [1] was used to model the correlation
in the PN originally generated from the FlowC code. The
resulting PN had 115 places, 106 transitions, and 309 arcs. Our
algorithm generated a single process with the same interface
as the original ones, which could be plugged into the MPEG-2
netlist, replacing the original five processes.

The data-dependent conditions modeled by free choices are
resolved based on data values of the received video bit stream
and local variables. Communication operations occur, depend-
ing on the outcome of these conditions. Also, the number of
times a given communication is performed may also depend
on them, for instance, in loops whose bounds are known only
at run time, as shown in Fig. 19(a). The figure shows a small
fragment of code taken from the two processes, Tpredict and
Tadd, connected through a channel. Both processes implement
while loops in which they exchange data: a macroblock is
written from Tpredict to Tadd. A free choice is used to model
the evaluation of the condition for each while loop. The source

code is manually annotated to identify the correlation of the two
choices.

On the other hand, Fig. 19(b) shows the same fragment of
code automatically generated by our procedure, where the two
were merged into a single entity. We generate a single loop,
containing the appropriate interleaving of statements from the
two original processes, similar to what an experienced designer
would have written for a monolithic implementation. Note that
the WRITE and READ statements in processes Tpredict and
Tadd occurring on the channel connecting them have been
transformed into assignments to and from a temporary variable
(which can be easily eliminated by an optimizing compiler).
The WRITE statement in Tadd on the output channel is instead
preserved as is, and needs to be expanded to match the commu-
nication protocol used in the rest of the system (in our case, it
is an FIFO).

Of the two choices found in the processes’ code of Fig. 19(a),
matching to the conditions in the while loops, only one is used

1512 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

Fig. 20. Run-time-dependent communication.

TABLE I
EFFICIENCY OF QSS HEURISTICS

as the termination condition of the merged loop in the generated
code. This is because the two conditions were correlated, and
the correlation was specified as described above. The other con-
dition appears in line 4. The resulting code executes this state-
ment because the expression may involve some operations other
than the conditional check itself, but does not use the outcome
of the condition.

The same situation was also observed in the code from
process Tisiq shown in Fig. 20. A very similar piece of code is
present in the receiving process Tidct, and the two are merged
as a single entity in the schedule generated by our procedure,
and thus in the resulting code.

We first show the efficiency of the heuristics used in the
proposed scheduling algorithm. In Table I, columns “Created,”
“Final,” and “Deleted” show the number of nodes visited during
the scheduling, the number of nodes of the resulting schedule,
and the difference between the two, i.e., the redundancy of a
scheduling algorithm. The column “CPU” shows the CPU time
needed to obtain a schedule, on a Sun Ultra Enterprise 250 with
2 GB of main memory and two processors running at 400 MHz.
The first row shows the case where we used the t-invariant
heuristic, as well as the heuristic with speculative-FCS de-
scribed in the beginning of Section IV-B. It shows that the
algorithm finds a schedule without visiting any additional node
during the schedule search. In the second row, we disabled the
t-invariant heuristic, while the other heuristic was still applied.
The result shows that the search visited nearly nine times more
nodes than the first case, deleted about 75% of them, and ended
up with approximately twice as much generated code as the
first case. Finally, when we also disabled the speculative-FCS
heuristic, the search could not complete in reasonable time and
memory: after 100 minutes, it had created more than 1 500 000
nodes and the memory size was around 400 MB.

Even for this size of PN obtained for the MPEG example,
and even for the minimum bounds set on the places (equal to
the maximum rates specified in the communication operations
for the port modeled by each place), the reachability space
of the PN includes several millions of states. It leaves little
hope to successfully apply the exhaustive analysis of the space
needed by the method in [17] when a schedule for minimally
sized buffers does not exist. Contrary to [17], our approach
generates assumptions on the required buffer size on the fly and

TABLE II
CPU TIME (SECONDS) OF THE MPEG-2 EXAMPLE

TABLE III
CPU TIME (SECONDS) AND CODE SIZE

OF THE FIVE SELECTED PROCESSES

manages to find schedules by exploring only a small part of the
reachability space, as shown in Table I.

Secondly, we compared the performance of the original
concurrent specification of the MPEG-2 decoder with that of
the same system where a single statically scheduled process is
used in place of the five initial ones. In both cases, we removed
the processes that manage and implement the memory, but we
kept those that parse the input MPEG stream. Both systems
received as input a standard video stream composed of four
images (one intra, one predicted, two bidirectional predicted).

Table II summarizes the total execution time, on the same
Sun machine used for finding the schedule, for the two im-
plementations. It also shows the individual contributions due
to the processes implementing the MPEG-2 decoder (split
among the parser and the five processes that we scheduled
together), the test-bench, and the operating system (that dy-
namically schedules the tasks). The increase in performance is
around 45%. The gain is concentrated in the statically sched-
uled processes, due to the reduction in the number of FIFO-
based communications, and in the operating system, due to the
reduction in the number of context switches.

Table III compares the execution times due to computation
and communication of the five considered processes, both in the
original system and in the quasi-statically scheduled one. As
expected, computation and external communication (i.e., with
the environment) are not significantly affected by our proce-
dure. However, internal communication is significantly im-
proved: this is because after scheduling it can be statically
determined that all channels connecting the five considered
processes never contain more than one data item at a time.
Therefore, communication is automatically performed by as-
signment, rather than by using an FIFO or a circular buffer. The
table also reports the object code size, which increases in the
generated single task with respect to the five separated process,
due to the presence of the control structures representing the
static schedule in the synthesized code.

VI. CONCLUSION

This paper has proposed a method that bridges the gap
between the specification and the implementation of reactive
systems. From a specification given in terms of communicating
processes, and by deriving an intermediate representation based

CORTADELLA et al.: QUASI-STATIC SCHEDULING OF INDEPENDENT TASKS FOR REACTIVE SYSTEMS 1513

on PNs, a set of concurrent tasks that serve input events with
minimum communication effort is obtained.

We also presented a first effort towards automating this step.
Experiments show promising results and encourage further re-
search in the area.

We are currently working towards a more general definition
of schedule, considering sequential and concurrent implemen-
tations on several resources (e.g., CPUs and/or custom data-
paths) [6]. We are also planning to look further into providing
a structural characterization of schedulability, if possible, for
different classes of PNs. Another body of future research con-
cerns an extension of the notion of a schedule into the time
domain. Currently, timing guarantees come from the assump-
tion that an environment is slow, while an implemented system
is fast. If this is the case, then any event from the environment
is served by a schedule that is bounded in length and space,
i.e., has finite buffer sizes. However, such timing guarantees
are weak when an implementation needs to meet predefined
hard timing constraints on its response time. For timing critical
applications, we work on extending our scheduling framework
through explicit annotation of system events with delays and
using timing-driven algorithms for a schedule construction.

REFERENCES

[1] G. Arrigoni, L. Duchini, L. Lavagno, C. Passerone, and Y. Watanabe,
“False path elimination in quasi-static scheduling,” in Proc. Design Au-
tomation and Test Europe Conf., Paris, France, Mar. 2002, pp. 964–970.

[2] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings,
“Fixed priority pre-emptive scheduling: An historical perspective,” Real-
Time Syst., vol. 8, no. 2/3, pp. 173–198, 1995.

[3] J. Buck, “Scheduling dynamic dataflow graphs with bounded memory us-
ing the token flow model,” Ph.D. dissertation, Dept. Elect. Eng. Comput.
Sci., Univ. California, Berkeley, 1993.

[4] J. T. Buck, “Static scheduling and code generation from dynamic dataflow
graphs with integer valued control streams,” in Proc. 28th Asilomar
Conf. Signals, Systems, and Computers, Pacific Grove, CA, Oct. 1994,
pp. 508–513.

[5] J. Cortadella, A. Kondratyev, L. Lavagno, M. Massot, S. Moral,
C. Passerone, Y. Watanabe, and A. Sangiovanni-Vincentelli, “Task gen-
eration and compile-time scheduling for mixed data-control embedded
software,” in Proc. 37th Design Automation Conf., Los Angeles, CA,
Jun. 2000, pp. 489– 494.

[6] J. Cortadella, A. Kondratyev, L. Lavagno, A. Taubin, and Y. Watanabe,
“Quasi-static scheduling for concurrent architectures,” Fundam. Inform.,
vol. 62, no. 2, pp. 171–196, 2004.

[7] E. A. de Kock, G. Essink, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel,
W. M. Kruijtzer, P. Lieverse, and K. A. Vissers, “YAPI: Application mod-
eling for signal processing systems,” in Proc. 37th Design Automation
Conf., Los Angeles, CA, Jun. 2000, pp. 402– 405.

[8] N. Halbwachs, Synchronous Programming of Reactive Systems. Nor-
well, MA: Kluwer, 1993.

[9] D. Har’el, H. Lachover, A. Naamad, A. Pnueli et al., “STATEMATE: A
working environment for the development of complex reactive systems,”
IEEE Trans. Softw. Eng., vol. 16, no. 4, pp. 403–414, Apr. 1990.

[10] C. A. R. Hoare, Communicating Sequential Processes, ser. International
Series in Computer Science. Englewood Cliffs, NJ: Prentice-Hall, 1985.

[11] G. Kahn, “The semantics of a simple language for parallel programming,”
in Proc. Int. Federation Information Processing (IFIP) Congr., Stock-
holm, Sweden, Aug. 1974, pp. 471–475.

[12] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow graphs for digital signal processing,” IEEE Trans. Comput.,
vol. C-36, no. 1, pp. 24–35, Jan. 1987.

[13] B. Lin, “Software synthesis of process-based concurrent programs,” in
Proc. 35th ACM/IEEE Design Automation Conf., San Francisco, CA,
Jun. 1998, pp. 502–505.

[14] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. Assoc. Comput. Mach., vol. 20,
no. 1, pp. 46–61, Jan. 1973.

[15] H. Mathony, “Universal logic design algorithm and its application to the
synthesis of two-level switching circuits,” Inst. Elect. Eng. Proc., vol. 136,
pt. E, no. 3, pp. 171–177, May 1989.

[16] T. Murata, “Petri Nets: Properties, analysis and applications,” Proc. IEEE,
vol. 77, no. 4, pp. 541–580, Apr. 1989.

[17] T. M. Parks, “Bounded scheduling of process networks,” Dept. Elect. Eng.
Comput. Sci., Univ. California, Berkeley, Tech. Rep. UCB/ERL 95/105,
Dec. 1995.

[18] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli,
“Synthesis of embedded software using free-choice Petri nets,” in Proc.
36th ACM/IEEE Design Automation Conf., New Orleans, LA, Jun. 1999,
pp. 805–810.

[19] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst et al., “Scheduling hard-
ware/software systems using symbolic techniques,” in Proc. Int. Work-
shop Hardware/Software Codesign, Rome, Italy, 1999, pp. 173–177.

[20] F. Thoen, M. Cornero, G. Goossens, and H. De Man, “Real-time multi-
tasking in software synthesis for information processing systems,” in
Proc. Int. System Synthesis Symp., Cannes, France, 1995, pp. 48–53.

[21] P. van der Wolf, P. Lieverse, M. Goel, D. L. Hei, and K. Vissers, “An
MPEG-2 decoder case study as a driver for a system level design method-
ology,” in Proc. 7th Int. Workshop Hardware/Software Codesign, Rome,
Italy, May 1999, pp. 33–37.

[22] P. Wauters, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
dynamic dataflow,” in Proc. 4th EUROMICRO Workshop Parallel and
Distributed Processing, Braga, Portugal, Jan. 1996, pp. 319–326.

Jordi Cortadella (S’87–M’88) received the M.S.
and Ph.D. degrees in computer science from the
Universitat Politècnica de Catalunya, Barcelona,
Spain, in 1985 and 1987, respectively.

He is a Professor in the Department of Soft-
ware at the Universitat Politècnica de Catalunya. In
1988, he was a Visiting Scholar at the University of
California, Berkeley. His research interests include
formal methods and computer-aided design of VLSI
systems, with special emphasis on asynchronous cir-
cuits, concurrent systems, and logic synthesis. He

has coauthored over 130 research papers in technical journals and conferences.
Dr. Cortadella has served on the technical committees of several interna-

tional conferences in the field of design automation and concurrent systems.
He received the Best Paper Award at both the International Symposium on
Advanced Research in Asynchronous Circuits and Systems (2004) and the
Design Automation Conference (2004).

Alex Kondratyev (M’94–SM’97) received the M.S.
and Ph.D. degrees in computer science from the
Electrotechnical University of St. Petersburg, St Pe-
tersburg, Russia, in 1983 and 1987, respectively.

He joined the R&D Coop TRASSA, St. Peters-
burg, Russia, in 1988, where he was a Senior Re-
searcher. From 1993 to 1999, he was an Associate
Professor in the Hardware Department at the Uni-
versity of Aizu, Fukushima-ken, Japan. In 2000,
he joined Theseus Logic, Orlando, FL, as a Senior
Scientist. Since 2001, he has been with the Ca-

dence Berkeley Laboratories, Berkeley, CA, as a Research Scientist. He has
coauthored two books on formal methods for asynchronous design, and has
published over 70 journal and conference papers. His research interests include
formal methods in system design, synthesis of asynchronous circuits, computer-
aided-design methodology, and theory of concurrence.

Dr. Kondratyev was a cochair of the Async’96 Symposium, cochair of the
CSD’98 Conference, and has served as a member of the program committees
for several conferences.

1514 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

Luciano Lavagno (S’88–M’93) graduated magna
cum laude in electrical engineering from the Politec-
nico di Torino, Turin, Italy, in 1983. In 1992, he re-
ceived the Ph.D. degree in electrical engineering and
computer science from the University of California,
Berkeley.

He was with CSELT Laboratories, Turin, Italy,
from 1984 to 1988. In 1988, he joined the De-
partment of Electrical Engineering and Computer
Science, University of California, Berkeley, where he
worked on logic synthesis and testing of synchronous

and asynchronous circuits. Between 1993–1998, he was an Assistant Professor
at the Politecnico di Torino and between 1998–2001, he was an Associate
Professor with the University of Udine, Udine, Italy. Between 1993–2000,
he was the Architect of the POLIS project (a cooperation between the Uni-
versity of California, Berkeley, Cadence Design Systems, Magneti Marelli,
and Politecnico di Torino), developing a complete hardware/software codesign
environment for control-dominated embedded systems. He is currently an As-
sociate Professor with the Politecnico di Torino, and a Research Scientist with
Cadence Berkeley Laboratories, Berkeley, CA. He is a coauthor of two books
on asynchronous circuit design and a book on hardware/software codesign of
embedded systems, and has published over 100 journal and conference papers.
His research interests include the synthesis of asynchronous and low-power
circuits, the concurrent design of mixed hardware and software embedded
systems, and dynamically reconfigurable processors.

Dr. Lavagno received the Best Paper award at the 28th Design Automation
Conference in 1991, in San Francisco, CA. He has served on the technical
committees of several international conferences in his field (e.g., the Design
Automation Conference, the International Conference on Computer-Aided
Design, the International Conference on Computer Design, and Design Au-
tomation and Test in Europe) and of various other workshops and symposia.

Claudio Passerone (M’98) received the M.S. de-
gree in electrical engineering from the Politecnico di
Torino, Turin, Italy, and the Ph.D. degree in electri-
cal engineering and communication from the same
university, in 1994 and in 1998, respectively.

He is currently an Assistant Professor in the
Electronic Department of Politecnico di Torino. His
research interests include system-level design of em-
bedded systems, electronic system simulation and
synthesis, and reconfigurable computing. He is a
coauthor of a book on hardware/software codesign of

embedded systems, and has published over 40 journal and conference papers.
Dr. Passerone has served on the technical committee of the Design Automa-

tion and Test in Europe Conference. In 2002, he received the Best Paper Award
at the 9th International Conference on Electronics, Circuits, and Systems.

Yosinori Watanabe (S’88–M’93) received the Ph.D.
degree in electrical engineering and computer sci-
ences from the University of California, Berkeley, in
1994.

He joined Digital Equipment Corporation, May-
nard, MA, in 1994. He was a Member of the Design
Team for the ALPHA microprocessor, while being
engaged in logic synthesis for high-performance mi-
croprocessors. Since 1997, he has been with Cadence
Berkeley Laboratories, Berkeley, CA, where he has
been involved in research projects for developing a

design environment and methodologies for embedded systems.
Dr. Watanabe received the IEEE Circuits and Systems (CAS) Society Out-

standing Young Author Award and the IEEE CAS Best Paper Award from
the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS in 1995 and 1998, respectively.

