
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002 109

Lazy Transition Systems and Asynchronous Circuit
Synthesis With Relative Timing Assumptions
Jordi Cortadella, Member, IEEE, Michael Kishinevsky, Senior Member, IEEE, Steven M. Burns,

Alex Kondratyev, Senior Member, IEEE, Luciano Lavagno, Member, IEEE, Kenneth S. Stevens, Senior Member, IEEE,
Alexander Taubin, Senior Member, IEEE, and Alexandre Yakovlev, Member, IEEE

Abstract—This paper presents a design flow for timed asyn-
chronous circuits. It introduces lazy transitions systemsas a new
computational model to represent the timing information required
for synthesis. The notion of laziness explicitly distinguishes
between the enabling and the firing of an event in a transition
system.

Lazy transition systems can be effectively used to model the be-
havior of asynchronous circuits in which relative timing assump-
tions can be made on the occurrence of events. These assumptions
can be derived from the information knowna priori about the delay
of the environment and the timing characteristics of the gates that
will implement the circuit. The paper presents necessary condi-
tions to generate circuits and a synthesis algorithm that exploits the
timing assumptions for optimization. It also proposes a method for
back-annotation that derives a set of sufficient timing constraints
that guarantee the correctness of the circuit.

Index Terms—Asynchronous circuits, lazy transition systems,
logic synthesis, relative timing.

I. INTRODUCTION

DURING the last decade, there has been significant
progress in developing methods and tools for asyn-

chronous circuit synthesis [1]–[5]. The two chief directions in
this work have been the following two synthesis approaches,
one based on the Huffman’s state machine model [6], [7] and
the other deriving from Muller’s concept ofspeed-independent
circuit [8]. The former, also known asfundamental mode
circuit design, makes strong assumptions about the delay of
the environment compared to that of the circuit. It requires
the environment to be slow enough in applying the new input
values so as to allow the circuit to stabilize after responding to
the previous input. The most well-known method associated
with this approach is the one calledburst-mode(BM) circuit
design, developed in [9], [3], and [10]. The second approach,

Manuscript received October 2, 2000; revised April 23, 2001. This work
was supported by a grant from Intel Corporation to the University Politècnica
de Catalunya, by ESPRIT ACiD-WG Nr. 21949, and by Grant EPSRC
GR/M94366. This paper was recommended by Associate Editor L. Stok.

J. Cortadella is with the Department of Software, Universitat Politècnica de
Catalunya, Barcelona, Spain.

S. M. Burns, M. Kishinevsky and K. S. Stevens are with the Strategic CAD
Lab, Intel Corporation, Hillsboro, OR 79124 USA.

A. Kondratyev is with Cadence Berkeley Labs, Berkeley, CA 94704 USA.
A. Taubin is with Theseus Logic, Sunnyvale, CA 94086 USA.
L. Lavagno is with the Department of Electronics, Politecnico di Torino,

Torino, Italy.
A. Yakovlev is with the Department of Computing Science, University of

Newcastle Upon Tyne, U.K.
Publisher Item Identifier S 0278-0070(02)01050-3.

on the contrary, makes no assumptions about the delays of
the environment, permitting some of the inputs to switch in
response to changes in some of the circuit’s outputs, without
waiting for their complete stabilization. This model is called
input–output (IO) mode. The recently developed design
methods and software based on signal transition graphs (STGs)
[5], [11] exemplify this approach and produce speed-indepen-
dent circuits, whose behavior is invariant to delays in gates but
may be sensitive to wire delays.

The synthesis techniques described in this paper are an at-
tempt to combine the expressive power of STGs (that allow a de-
signer to finely tune concurrency, sequencing and choice) with
the optimization power of BM FSMs and manual timing-driven
design [12] (that allow a designer to avoid waiting for signals
that are known to be stable). By doing so, high optimization
levels are achieved, while keeping the flexibility of our CAD
framework. Of course, this power comes at a price: our syn-
thesis algorithms are radically more complex than their BM
counterparts (but only moderately more so than speed-indepen-
dent synthesis). Exploration of efficient heuristics to cope with
large specifications are left to future work.

A. Incorporation of Timing Information

When trying to incorporate timing information in the syn-
thesis of asynchronous circuits, a chicken–egg problem is posed.
On one hand, an efficient synthesis requires knowledge of the
temporal behaviora priori. However, the actual temporal be-
havior can only be determined after synthesis, e.g., once the cir-
cuit netlist has been defined. This cyclic dependency is typically
solved by iterating and converging toward a solution that meets
the assumed timing behavior.

The computational model used in this paper is the one of
timed transition systems[13]. Besides the causal relation among
events, a lower () and upper () bound on the delay of
each event is defined. An event can onlyfire time units after
it has beenenabled, where . Thus, an explicit
distinction between theenablingand thefiring of an event is
made.

Fig. 1(a) depicts an event structure that determines a partial
order in the firing of a set of events. Delay intervals for each
event are also defined. Fig. 1(b) depicts a transition system in
which timing information is not considered. Each path repre-
sents one possible run of the system. When moving to the model
of timed transition systems, each event is associated with a time
stamp (the firing time) and each state is associated with a time

0278–0070/02$17.00 © 2002 IEEE

110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

Fig. 1. (a) Event structure with timing information, (b) transition system, (c) timed transition system, and (d) lazy transition system.

interval. Fig. 1(c) is a graphical representation of the state space
of the system, starting from time zero. Each vertical edge repre-
sents the reachable time stamps that can be associated with any
discrete state. For example, in the reachable state space one may
find time stamps for in the interval [4], [11]. Shadowed faces
represent state transitions in time-consistent runs of the system.
For example

is a time-consistent run, in which each event is associated with
the time stamp of its firing time. However, the run

is time inconsistent. This can easily be proved by realizing that
event is enabled in the state at time 2 and fires in state at
time 8, thus being enabled for six time units. However, the delay
of event in the specification is within the interval [1], [3]. The
proof that there is no valid run that visits statecan also easily
be made, since eventwill always fire before event .

In [14] and [2],timed circuitswere introduced, also exploiting
the fact that timing information can be used to reduce the reach-
able state space. This helps to eliminate undesired states that do
not fulfill implementability properties (e.g., state encoding or
persistency) and increase the don’t care space during logic min-
imization. However, it requires the definition of absolute timing
information on the delays of the components of the system.
While this is possible and useful after at least one design itera-
tion has been completed, it is much more difficult to use at the
beginning of the synthesis flow for a variety of reasons.

• Asynchronous specifications are often incomplete and re-
quire the addition of state signals, for which no absolute
timing information is available.

• Even after state encoding, no absolute timing information
about noninput signals of the circuit is known before both
technology independent (logic synthesis) and technology
dependent (technology mapping) optimizations have been
performed. This leads to a chicken and egg problem in
any method based on absolute timing information: for ef-
ficiency synthesis needs delay bounds, but delay bounds
are unknown before synthesis is completed. In timed syn-
thesis this is solved by iterating delay guessing and syn-
thesis.

• All modern synthesis flows both for custom and ASIC de-
sign include transistor or gate sizing, buffer insertion, and
selection of parameters (e.g., threshold voltage Vt) with
the goal of meeting timing constraints and optimizing dif-
ferent design aspects (power, area, delay, etc.) A netlist
can be sized differently depending on a given set of con-
straints, and the resulting gate delays may differ by an
order of magnitude depending on the sizes of devices and
other selected parameters.

• Placement and routing may further change absolute delay
information associated with circuit elements.

Moreover, the formal verification problem with absolute timing
becomes drastically more complex due to the need to keep ab-
solute time information, e.g., in the form of regions, in addition
to untimed system states [15]. Instead of using absolute delay
bounds for the purpose of synthesis, we use relative delay infor-
mation between circuit events, following the established engi-
neering practice of many high-speed circuit design groups (see
e.g., design of pulse-domino logic in [16]). A verification flow
following the synthesis flow requires absolute delay informa-
tion. Different techniques for timing verification can be used,
e.g., [2] and [17]–[20] to name a few. Use of relative timing in-
formation can be beneficial for verification as well, as shown in
[19] and [20].

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 111

Fig. 2. Design flow for relative timing circuits.

B. Abstraction of Time

Rather than calculating the exact time intervals in which each
state can be visited by any valid run, it is sufficient for synthesis
to know whether each state is visited by some time-consistent
run and what the enabling conditions for every visited state are.
In other words, onlythe set of reachable states in the timed do-
main and the values of next-state function for every signal in
every reachable state are needed. This information can be rep-
resented by abstracting absolute timing out of the model. This
abstraction leads to the definition of a new computational model
called alazy transition system[21], in which timing informa-
tion is only represented by making a distinction between the en-
abling and the firing of an event.

While absolute timing requires complex techniques to rep-
resent the space of reachable timed regions or states (e.g., dif-
ference bound matrices, polyhedra, etc.), the generation of the
reachable state space for relative timing is of the same com-
plexity as for untimed systems.

Fig. 1(d) represents the lazy transition system associated to
Fig. 1(c). The dashed arc with eventfrom state indicates
that is enabled in that state, but it cannot actually fire due to
its delay. Therefore, state is unreachable.

This paper proposes a synthesis flow in which timing infor-
mation is specified as a set of assumptions that relate the firing
order of concurrently enabled events, such as eventwill always
fire before event . Lazy transition systems are used as the com-
putational model for synthesis.

C. Synthesis Flow

The synthesis flow proposed in this paper follows the par-
adigm “assume and, if useful, guarantee.”Similar principles
have been used in recent asynchronous designs [12], [22]–[24].
Given an untimed computational model, e.g., a transition
system, synthesis of an asynchronous circuit is performed as
follows.

1) Derive a set of timing assumptions on the behavior of
the system.

2) Synthesize the circuit by using a subset of useful
timing assumptions.

3) Derive a set of sufficient timing constraints that guar-
antee the correctness of the circuit’s behavior.

4) Transistor sizing and parameter selection for a set of con-
straints (and possibly some other design constraints).

5) If the set cannot be guaranteed, calculate a less strin-
gent set and go to Step 2).

In Step 1), timing assumptions can be either provided by the
designer or generated automatically [25]. In the first case, the as-
sumptions typically come from the knowledge of the temporal
behavior of the environment, e.g., some of the input events are
slow. In the second case, realistic assumptions on the implemen-
tation of a circuit can be considered, e.g., the delay of one gate
is typically shorter than the delay of two gates.

Not all the timing assumptions in may be needed to im-
prove the quality of the circuits. During synthesis, only a subset
of is used for optimization.

The goal of Step 3) is to find a less restrictive set of constraints
that guarantees the circuit’s correctness. These constraints may
not necessarily match the timing assumptions in.

Once the circuit and the sethave been derived, the designer
must guarantee that the required timing constraints are met. This
can be achieved, if necessary, by modifying the actual delays
of the components, for example, by delay padding or transistor
sizing.

Finally, Step 5) is required to converge in the chicken and egg
problem when the initial set of assumptions results in a circuit
that cannot meet the set of constraints. This design flow is
graphically represented in Fig. 2.

The main contributions of this design flow are the following.

• Lazy transition systems are used as a computational
model, thus allowing the designer to reason in terms of
a partial order of events (relative timing [22]), which is
much more intuitive than defining absolute delays when
the actual implementation of some components of the
system is unknown.

• Timing assumptions can be either provided by the designer
or automatically derived from the untimed specification
to capture realistic temporal behavior of all “reasonable”
implementations.

112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

(a) (b) (c) (d)

Fig. 3. (a) STG, (b) SG, (c) next-state functions, and (d) complex-gate implementation.

• Each circuit is back-annotated with a set of relative timing
constraints that guarantee a correct behavior.

• Relative timing allows novel timing optimizations, such as
the speculative (early) enabling of events.

It is known [2], [12], [14], [21], [25] that using timing infor-
mation can significantly improve the quality of synthesized cir-
cuits. This paper provides a global formal framework to model,
derive, and exploit this information. The synthesis algorithms
presented in this paper have been implemented and incorporated
in the tool petrify [5].

The paper is organized as follows. Section II presents the
computational models used in the paper. Section III presents an
overview of the design flow, illustrated with an example. Section
IV describes the timing assumptions proposed for circuit opti-
mization in the design flow. The synthesis of circuits from lazy
transition systems is discussed in Section V. Next, the strategy
used for the automatic generation of timing assumptions is pre-
sented in Section VI. The derivation of sufficient timing con-
straints for correctness is covered in Section VII. Experimental
results and conclusions are presented in Sections VIII and IX.

II. BASIC NOTIONS

This section presents basic definitions used in the paper. For
brevity, the reader is assumed to be familiar with Petri nets, a
formalism used to specify concurrent systems. The reader is re-
ferred to [26] for a general tutorial on Petri nets.

A. Transition Systems

A transition system(TS) is a quadruple [27]
, where is a nonemptyset of states, is

an alphabet ofevents, is a transition relation,
and is an initial state.

The elements of are called thetransitionsof the TS and are
often denoted by instead of . The notation
and is used when only one of the states of the transition is
relevant. Only finite TSs are considered in this paper, i.e., both
sets and are finite.

The following two definitions are used later in the paper.
Given a transition system , the set ofreach-
able statesfrom state is recursively defined as

Reach Reach

Henceforth, it is assumed that Reach for any TS.
Given a transition system , and two sub-

sets of states , the set of states backward reachable
within from is defined as

BackReach BackReach

In other words, BackReach are the states in that have
a path within to some state in .

B. State Graphs

In this paper, TSs are used to model asynchronous circuits.
For logic synthesis, a binary interpretation of the states and
events is required. This interpretation is captured with the no-
tion of astate graph.

A state graph(SG) is a tuple , where
is a transition system, is a set of input

and output signals and is an encoding function. is the set
of signals whose behavior is determined by the environment,
whereas is the set of signals whose behavior is implemented
by the system. Therefore, only the signals inmust be syn-
thesized. The set of eventscorresponds to rising and falling
transitions of the signals, i.e., . The symbols

and denote a rising and falling transition of signal, re-
spectively. The encoding function assigns a
binary vector to each state (). The code of state and
the value of signal in are denoted by and , respec-
tively.

The notation is used to denote a transition of signalin
which the fact of rising or falling is not relevant.

An SG isconsistentif

An example of an SG is depicted in Fig. 3(b). The symbol
0 (1) indicates that a rising (falling) transition of the corre-
sponding signal is enabled in that state.

In general, more than one state can be assigned the same code.
For simplicity and when no ambiguity is possible, states are
often named by their code.

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 113

C. Signal Transition Graph

An STG is a Petri net in which transitions are labeled with
the same type of events defined for SGs, i.e., rising and falling
signal transitions [28], [29].

An STG has an associated SG in which each reachable
marking corresponds to a state, and each transition between a
pair of markings corresponds to an arc labeled with the same
event as the transition.

Although STGs with bounded reachability space and SGs
have the same descriptive power, STGs can usually express the
same behavior (especially, when it is highly concurrent) more
succinctly. In this paper, STGs help to illustrate timing assump-
tions in a more intuitive way.

Fig. 3(a) depicts an STG with three signals. For simplicity,
places with only one input and one output transitions are
omitted. Fig. 3(b) shows the corresponding SG with encoded
states. The SG is consistent.

D. Circuit Implementation

Given a transition system in which is the set of states, the
firing regionof an event , denoted by FR , is the set of states

.
The concept of firing region can be trivially extended to SGs.

Quiescent regionsare defined as complements to firing regions

FR QR FR

FR QR FR

where “ ” stands for the set difference.
In Fig. 3(b), FR and QR

.
The implementation of an SG as a logic circuit is done by

deriving anext-state function, , for each output signal,,
and binary vector, . It is defined as follows:

if FR QR
if FR QR
otherwise.

(1)

E. Implementability Properties

The next-state function of each output signal is correctly
defined when the SG has thecomplete state coding(CSC) prop-
erty, i.e., when there is no pair of states such that

and FR QR and FR QR .
Note that is an incompletely specified function with adon’t
care(DC) set corresponding to those binary vectors without any
associated state in the SG.

In the SG of Fig. 3(b), the DC set is empty since all binary
vectors have a corresponding state in the SG. As an example,

since signals and are enabled in that state.
The Karnaugh maps for the next-state functions of signals,,
and are depicted in Fig. 3(c).

Besides consistency and CSC, another property is required
for an SG to be implementable as a speed-independent circuit:
output persistency [30]. A pair of events () is persistentif
for any transition such that , FR

FR , i.e., is not disabled by the firing of another event. State
is called nonpersistent if the above condition is violated, i.e.,

FR FR
An SG is calledoutput persistentif for any pair () of non-

persistent events, bothand are events on input signals. In
Fig. 3(b), the pair of events () is persistent in the state
100, since the firing of leads to the state 101 in which is
still enabled, and vice versa.

In summary, an SG is implementable as a speed-independent
circuit if the following three properties hold:consistency, com-
plete state coding, andoutput persistency. In the SG of Fig. 3(b),
all the implementability properties for a speed-independent cir-
cuit hold.

F. Logic Synthesis

From the next-state functions, a speed-independent circuit
can be derived by implementing the Boolean equation of each
output signal as an atomic complex gate [8], as shown in
Fig. 3(d).

In general, the Boolean equations may be too complex to
be implemented as an atomic gate in a specific technology.
Methods for logic decomposition and technology mapping that
overcome this limitation have been proposed [31], [32]. This
paper does not address the problem of technology mapping.
However, the proposed optimization methods can be easily
combined with existing methods for logic decomposition that
can be targeted to technology mapping into given gate libraries.

G. Monotonic Covers

The following definition is related to hazards in the behavior
of asynchronous circuits.

Given two sets of states and of an SG, is amonotonic
coverof if and for any transition

Intuitively, once is entered, the only way to leave it is via a
state in its subset (“exit border”) .

In the SG of Fig. 3(b), the set is a monotonic
cover of FR . However, the set is not,

since the transition violates the conditions for
monotonicity.

H. Lazy Transition Systems

A lazy transition system(LzTS) is a pair ER ,
where is a transition system and ER

is a function that defines theenabling regionof each event,
in such a way that FR ER for any . An event is
said to belazy if ER FR .

The distinction between enabling and firing regions is the ab-
straction that represents the delay between the enabling of an
event and its firing. ER FR is the set of states in which
is enabled but cannot fire. Note that a TS can be considered as a
particular case of LzTS in which ER FR for any event.

The binary interpretation of an LzTS is alazy state graph
(LzSG) , where is an LzTS and and
have the same interpretation as in the previous definition of SG.

114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

(a) (b) (c) (d)

Fig. 4. xyzexample. Optimization by timed unreachable states.

Fig. 5. xyzexample. Optimization by lazy behavior.

The concept oflazy quiescent region(LzQR) is useful for the
synthesis of circuits. It is defined as follows:

LzQR QR ER

LzQR QR ER

Synthesis of asynchronous circuits from LzSGs is discussed
in Section V.

III. M OTIVATING EXAMPLE

This section gives an intuitive picture of the optimizations
based on timing assumptions. It is illustrated by an implementa-
tion of thexyzspecification shown in Fig. 3(a). This specifica-
tion describes an autonomous circuit and therefore every signal
in the corresponding STG is treated as output. The starting point
for optimizations is given by the speed-independent implemen-
tation shown in Fig. 3(d).

Speed-independence gives a rather conservative view on
gate delays: they are finite but arbitrary. However, more precise
timing relationships, considering the time required by a signal
to propagate through different stages of logic, can be expressed.
For example, one can assume that a signal propagates through
a single gate faster than throughgates (), where is
an implementation and/or technology dependent parameter.1

Similar assumptions were successfully exploited in [33] for
area and performance optimization.

Let us assume that the delay of two gates is always longer
than the delay of one gate in the circuit for thexyzexample,
using a given technology. Under this assumption, even though
the transitions and are potentially concurrent in the STG,

would always occurbefore in a circuit. In the STG,
this timing assumption can be expressed by a specialtiming
arc going from to [34] [denoted by a dashed line in

1This can be formalized in terms of delay range for gates. If a delay range is
[� ; �] then the assumption can be posed ask � � > � .

Fig. 4(a)]. Timing restricts possible behaviors of the implemen-
tation. In particular, state 001 becomesunreachablebecause it
can only be entered when fires before . In unreachable
states, the next state logic functions for all signals can be de-
fined arbitrarily [see (1)]. Therefore, the use of timing assump-
tions increases the DC space for output functions, thus giving
extra room for optimization.

For thexyzexample, moving the state 001 into the DC set of
simplifies its function from to a buffer (),

as shown in Fig. 4(c) and (d). State 101 can be included into
the enabling region of . The selected implementation for
signal , is the same as for the untimed spec-
ification and corresponds to the ER FR .
Signal in this implementation is not lazy and no timing con-
straints are required. An alternative implementation could have
been taken with corresponding to ER

FR . It might have shorter latency for
but requires timing constraint before for correct opera-
tion of signal .

For more aggressive optimizations, let us consider the concur-
rent transitions and . They are triggered by the same event

and, because of the timing assumption , no
gate can fire until both outputsand are set to 1. Therefore,
for all other signals of the circuit, the difference in firing times
of and is negligible. This means that, for the rest of the
circuit, the firings of and aresimultaneousandindistin-
guishable, and they can replace each other in the causal relations
with other events.

In thexyzexample, is the only transition that is affected
by or . The dashed hyper-arc from to [see
Fig. 5(a)] represents the simultaneity of and with respect
to . Formally, it means that for the triggering of , any
nonempty subset of the set of events can be chosen.
This gives a set of states in which can be enabled, ER ,
which is shadowed in Fig. 5(b).

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 115

It is important to note the following.

• Even though might be enabled in any state of ER ,
its firing (due to timing assumptions) can occur only after

and have fired. This defines FR .
This behavior is called lazy because a signal is not eager
to fire immediately after its enabling, but waits until some
other events have fired.

• Performance can be slightly affected, either positively or
negatively, by the fact that the arrival time of the new
trigger signals may be different from the ones in the spec-
ification.

• The specified ER gives anupper boundfor the set of states
in which a signal can be enabled. In a particular imple-
mentation, the actual enabling region can be a subset of
the specified enabling region. By exploring different sub-
sets, several implementations can be obtained and evalu-
ated according to some given cost criteria (e.g., area and
performance).

The ER of a signal implicitly results in a set of vertices in the
DC space of the corresponding logic function. For the enabling
of in the xyzexample, different subsets of
can be chosen. Transition fires at state 111, i.e., FR

and, therefore, any definition of ER should cover
the state 111, since FR ER . Enabling in the
other two states 101 and 110 can be chosen arbitrarily, i.e., these
states can be moved into the DC set of the function for[see
Fig. 5(c)]. After logic minimization, the function for, which
simply becomes an inverter, is defined to be 0 in state 110 and
1 in 101, i.e., the enabling region corresponding to the imple-
mentation is ER . The back-annotation of
this implementation is shown in the STG of Fig. 5(e) in which

is triggered by instead of . This change of causal de-
pendencies is valid under the assumption thatand are
simultaneous with respect to and results in firing before

. This is indicated by a timing (dashed) arc.

The timed circuit in Fig. 5(d) is much simpler than the speed-
independent one in Fig. 3(d). Moreover, if just a single timing
constraint“the delay of is less than sum of the delays of

and ” is satisfied, then the optimized circuit is a correct
implementation of the original specification. Section VII dis-
cusses how to derive, from the untimed specification and logic
implementation, areducedset of constraints that are sufficient
to guarantee its correctness.

Two potential sources of optimizations based on timing as-
sumptions can now be applied:

1) unreachability of some states due to timing (timed un-
reachable states).

2) freedom in choosing enabling regions for signals due
to early enabling or simultaneity of transitions (lazy
behavior).

In both cases, the DC space for the logic functions increases,
thus leading to simpler implementations. Unreachable states
provide global don’t cares (DC for all next state functions),
while lazy enabling provides additional local don’t cares (DC
for the corresponding lazy signal only).

The idea of using the DC space coming from the timed un-
reachable states is due to [14] and [2] and was successfully ex-
ploited in the ATACS tool for the design of timed circuits. To
our knowledge, the observation about the additional DC space
coming from the lazy behavior appears for the first time in [21]
and is the main theoretical contribution of this work. This con-
cept is developed in more detail in the next section.

IV. TIMING ASSUMPTIONS

Timing assumptions could be defined in the form of a partial
order in the firing of sets of events, e.g., eventfires before
event . However, this form is ambiguous for cyclic specifica-
tions because their transitions can be instantiated many times
and different instances may have different ordering relations.
More rigor can be achieved at the unfolding level [35], i.e.,
when the original specification is unfolded into an equivalent
acyclic description. The theory of timed unfoldings is however
restricted to simple structural classes of STGs and the timing
analysis algorithms are computationally expensive [36], [17].
This work relies on a more conservative approximation of
timing assumptions in LzTSs.

On the other hand, some specifications explicitly have mul-
tiple instances of the same event, e.g., and , with
different causality and concurrency relations. For simplicity in
the nomenclature, this paper considers that the same timing as-
sumptions are applied to all instances of the same event. Ex-
tending the approach to different assumptions for different in-
stances is quite straightforward.2

Some ordering relations between events are first introduced.
Definition 1: (Conflict) An event disablesanother

event if such that ER and
ER . Two events are inconflict if disables
or disables .

Definition 2: (Concurrency) Two events are con-
current (denoted by) if:

1) ER ER and they are not in conflict;
2) FR FR

The second condition is the analogue of the nonconflict require-
ment but is applied to the FR rather than the ER . It also requires
a “diamond” shaped organization of the FR (sometimes called
local confluence).

Definition 3: (Trigger) An event triggers another
event (denoted by) if such that
ER and ER .

This section proposes three types of timing assump-
tions. Each assumption enables transformation of an
LzTS ER into another LzTS

ER in which the set of events
and the initial state remain the same, but there is typically
more freedom for logic optimization. In enabling regions
are defined by ERasupper boundsof enabling regions in all

2The tool petrify allows us to derive and specify relative timing assumptions
for individual instances of the same event.

116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

(a) (b) (c) (d) (e)

Fig. 6. (a) STG, (b) transition system, (c) LzTS after difference assumption, (d) LzTS after simultaneity and early enabling assumptions, and (e) STGwith timing
assumptions.

possible implementations according to the considered timing
assumption.

A. Difference Assumptions

Given two concurrent eventsand , adifference assumption
assumes that fires earlier than . Formally, it can be

defined through themaximum separation between
both events [17], [37]. The maximum separation gives an upper
bound on the difference between the firing times ofand . If

then always fires earlier than.
In an LzTS, this assumption can be represented by thecon-

currency reductionof with respect to . The new LzTS is
obtained from as follows.

• Let ER ER .
• BackReachFR .
• Reach .
• For any : ER ER .

is the set of states in whichand are both enabled (con-
current). The transformation removes the arcs labeled with event

that start in states from or states from ER preceding .
All timing assumptions can be formalized by using the no-

tion of event separation. However, intuition on local timing be-
havior is enough to reason about the assumptions presented in
this paper.

Let us illustrate the application of a difference assumption
in the example of Fig. 6(a) and (b). 1010 and

BackReachFR 1010 . Thus, the arc 1010 1011
is removed from . After that, the set of states1011 1001 be-
comes unreachable. The resulting LzSG is depicted in Fig. 6(c)
with a lazy event in which FR 1110 0110 and
ER FR 1010 .

Difference assumptions are the main source for the elimina-
tion of timed unreachable states [14], [2], but they cannot fully
express the lazy behavior of signals.

B. Simultaneity Assumptions

Simultaneity among a set of events is another kind of timing
assumption that has not been exploited explicitly in previous
work.3 It is relative notionwhich is defined on a set of events

3Multiple input change in fundamental mode, as defined by Huffman [6],
required inputs to change “simultaneously,” i.e., within a small time window�.
However, this was not really exploited for optimization, and it did not result in
a clean design methodology.

with respect to a reference event, trig-
gered by some of the events in . From the point of view of
, the skew in firing times of events in is negligible. For-

mally this can be defined by the following separation inequali-
ties: , where
is a lower bound for the delay of event.

The assumptions are only applicable under the following con-
ditions:

• ;
• .

Informally, the simultaneity conditions only hold when the
events in are concurrent and at least one of them triggers.

The new LzTS is obtained from as follows.

• Let ER .
• BackReachFR .
• Reach .
• ER ER .
• For any ER ER

is the set of states in which some event inhas already
fired but some other events in are still enabled. Let us con-
sider the simultaneity assumption between transitionsand

with respect to , being an output signal, in the LzSG
from Fig. 6(c). In this case, 1100 1010 . This assump-
tion influences the LzSG in two ways.

1) State 0100, which is entered when fires before
, becomes unreachable. From

(coming from the simultaneity assumption)
and 0 (coming from the causality
between and), the difference assumption

0 can be inferred as well.
2) ER is extended to the state 1010 [see Fig. 6(d)].

The second point implies that simultaneity constraints, and
hence the possibility of optimization based on them, are
inherently more powerful than difference constraints only (that
capture only the first point).

C. Early Enabling Assumptions

The simultaneity assumptions exploit “laziness” between
concurrent transitions. This idea can be generalized for ordered
transitions as well. Assume that eventtriggers event and
that the implementation of is “faster” than that of (or
more formally:). Then, the enabling of

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 117

could be started simultaneously with the enabling of, and the
proper ordering of before would be ensured by the timing
properties of the implementation. In the LzTS this would result
in the expansion of ER into ER .

Formally, theearly enablingof event with respect to can
be applied when . The new LzTS is obtained from
as follows.

• Let ER ER .
• .
• .
• ER ER .
• For any ER ER .

The early enabling of with respect to is illustrated in
Fig. 6(d). All of the introduced timing assumptions are shown
in the STG of Fig. 6(e), where the dashed arc () cor-
responds to the difference constraint , the hyper-arc
() corresponds to the simultaneity of with re-
spect to , and the triggering of by and (instead of

) shows the early enabling of (the timing arc () is
needed to keep the information about the original ordering be-
tween and). The transformation for early enabling has
been defined only in the case of one backward step, i.e., the im-
plementation of one signalthat triggers is faster than that of
, and hence can be enabled at the same time asand still fire

after purely due to timing. This definition can be generalized
for multiple backward steps, i.e., the total delay of the imple-
mentations of two signals and such that triggers and
triggers is faster than the implementation of, that can thus
be enabled together with and still fire after . Of course as-
sumptions going beyond one step are often much less realistic
and harder to satisfy.

The above three types of timing assumptions are the corner-
stone for timing optimization. Note that difference constraints
are mainly used for removal of the timed unreachable states,
while simultaneity and early enabling open a new way for sim-
plifying logic by choosing a particularly useful lazy behavior of
the signals.

V. SYNTHESIS WITH RELATIVE TIMING

This section presents the theory for the synthesis of
hazard-free asynchronous circuits with relative timing assump-
tions. Lazy transition systems are used as the specification
model that incorporates timing.

A. Implementability Properties

Thenext-state functiondefined for each output signal for the
implementation of an LzSG as a circuit is as follows:

if FR LzQR
if FR LzQR
otherwise

(2)
Note that this definition generally gives more don’t cares than
the (1) for SGs due to two reasons.

• More states are unreachable, since timing assumptions can
reduce concurrency.

• States in ER FR do not belong to either FR, or LzQR ,
and hence are included into the DC-set.

For an LzSG to be implementable as a hazard-free circuit, the
properties of CSC and output persistency must be extended.

The CSC property holds in an LzSG whenis well defined,
that is if (but not only if) there exists no pair of states
such that and ER LzQR and

ER LzQR . The condition can be relaxed be-
cause CSC conflicts that involve states from ERFR could be
eliminated by treating ER FR as a DC-set for . However,
in order to simplify things, we treat CSC conflicts only in the
framework of the above sufficient condition.

The notion of output persistency (see Section II) can also be
extended to LzTSs. If an LzTS is output persistent, then all sig-
nals are hazard-free both for the pure and inertial bounded gate
delay models [38] when the bounds satisfy the timing assump-
tions implied by the LzTS.

Definition 4: (Persistency) Given an LzTS ER
with , an event is persistent if is
persistent in and ER is a monotonic cover of FR .

Intuitively, persistency in LzTS indicates that once ERhas
been entered, it can only be exited by firing. Moreover, persis-
tency in indicates that no transition can switch an event from
fireable (in FR) to only enabled (in ER FR).

Thus, an LzSG is implementable as a hazard-free circuit with
pure and bounded delays of its gates if the following properties,
extended to LzSGs, hold: consistency, complete state coding,
and output persistency. These conditions are an extension to
circuits with inputs and relative timing of the semimodularity
conditions used by Muller to guarantee hazard-freedom for au-
tonomous circuits with unbounded delays [8], [39], [40].

B. Synthesis Flow With Relative Timing

The flow for logic synthesis with relative timing assumptions
is the following.

1) Define a set of timing assumptions on a TSand derive
a specification LzTS ER according to the
defined assumptions.

These assumptions must be provided by the designer
or generated automatically (e.g., for inserted state sig-
nals, as described below). They allow the transformation
of the TS in Fig. 3(b) to the LzTS in Fig. 5(b). This paper
proposes three types of timing assumptions. They are de-
scribed in Section IV.

2) The second step of synthesis is state encoding, that is in-
serting state signals for resolving CSC conflicts and thus
making an LzSG implementable. State encoding in our
logic synthesis framework is automatically solved using
an extension of the method presented in [41].

• Only those encoding conflicts reachable in the
timed domain are considered in the cost function
(no effort is invested in solving unreachable con-
flicts).

• Timing assumptions can be generated for inserted
state signals using the rules from Section VI, im-
plying that the events of state signals can also be
lazy.

118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

It is important to notice that the automatic generation of
timing assumptions is crucial to optimize the behavior of
the circuit when signals not observable in the specifica-
tion, e.g., signals for state encoding, are considered.

3) Derive another implementation LzTS ER
in which the implementability conditions hold and
ER ER for any event .

is the LzTS that defines the upper bounds on the
ERs of the events, i.e., how early each event can be en-
abled without firing. defines a particular implementa-
tion in which the enabling of each event cannot be earlier
than the one defined by . The method for defining
from is done through logic minimization and is ex-
plained in detail in Section V-C.

4) Derive a circuit implementation for the corresponding
LzSG according to the logic functions defined by (2).

5) Back-annotate timing constraints sufficient to the correct-
ness of the implementation.

Steps 3) and 4) are discussed in Section V. Steps 1) and
5) are presented in Sections VI and 7, respectively. Step
2) is not discussed in more detail, since the basic theory
is similar to that for speed-independent circuit synthesis
presented in [41].

In the example of Fig. 5(b), the only lazy event is . For
signal , the following regions are defined:

ER LzQR
ER LzQR

For the circuit in Fig. 5(e), the corresponding fulfills the
properties for implementability and has the following regions
for signal :

ER LzQR
ER LzQR

C. Synthesis Algorithm

The method presented in the previous sections has been im-
plemented in the tool petrify that can synthesize asynchronous
circuits from STG specifications.

The timing assumptions on the behavior of the circuit and
the environment can be specified by the designer or generated
automatically (see Section VI). Two types of assumptions are
accepted.

• , indicating that event will occur before
event . In case both events are concurrent, it corresponds
to a different assumption. In casetriggers , it corre-
sponds to the early enabling ofwith respect to .

• , indicating that the firing of and can
be considered simultaneous with regard to(simultaneity
assumption).

In the example of Fig. 5, the following assumptions have been
specified for optimization:

and wrt

Fig. 7. Algorithm for logic synthesis of output signalx.

The algorithm for the synthesis of each output signalis shown
in Fig. 7, in which the definition of has been extended to sets
of states and boolean vectors as follows:

The algorithm takes an LzTS, , as input and generates an-
other LzTS, , and a logic function for each output
signal, according to the design flow described in Section V-B.
In case each function is implemented as a complex gate,
the circuit is guaranteed to be hazard-free under the given timing
assumptions.

This heuristic algorithm calculates ERiteratively until a
monotonic cover is found. Initially, ON and OFF are defined
in such a way that the states in ER FR and
ER FR are not covered, i.e., their binary codes
are in the DC set. Boolean minimization is invoked by defining
the ON- and the OFF-set, and a completely specified function
is obtained. Next, monotonicity of is checked. is
the set of states in ER covered by that lead to
another state in ER not covered by . These states
are removed from ER for the next iteration. The loop
converges monotonically to a valid solution bounded by the
case ER FR . A similar procedure is performed
on the complement of for ER . Thus, the DC set
is reduced at each iteration of the algorithm to enforce the
monotonicity of the cover. This reduction is illustrated in Fig. 8.

In practice, most covers are monotonic after the first
Boolean minimization and no iteration is required. Only in some
rare cases, more than two iterations are executed.

Petrify includes a Boolean minimizer that delivers several
covers with similar cost. One is selected among them by using
a prioritized cost function that takes into account monotonicity,
literal count, and concurrency. Those covers that include a larger
number of states from ERare considered to be more concur-
rent and hence potentially exhibit better global performance.

The algorithm in Fig. 7 generates a netlist of complex gates
based on the functions obtained by the minimization pro-
cedure. This algorithm can be easily extended to the synthesis of
asynchronous circuits with C elements and Set/Reset functions,

and , corresponding to the enabling of and ,

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 119

Fig. 8. Iteration to reduceER for nonmonotonic covers.

respectively. The monotonicity conditions for and
have also been studied in [42] and [43].

VI. A UTOMATIC GENERATION OF RELATIVE TIMING

ASSUMPTIONS

The timing assumptions described in the previous section can
be provided by the designer based on the knowledge the she or
he may have of the circuit and its environment. However, many
assumptions can be derived automatically by considering some
simple delay model, e.g., a unit gate delay model, that may ap-
proached to the reality by allowing delay padding or transistor
sizing on the synthesized circuit. Here are two typical assump-
tions that illustrate what can be assumed by the synthesis tool
and what must be provided by the designer.

• Synthesis assumption: when two internal signals are
enabled simultaneously, one of them can fire before the
other. This assumption can be ensured after synthesis by
padding some delay to the signal that has been assumed
to be slower.

• User-defined assumption: when two inputs are enabled,
one will fire before the other. This assumption requires
some knowledge about the environment. No assumption
can be madea priori about the firing order of the events
without that knowledge.

The tool petrify enables the designer to provide timing as-
sumptions. These assumptions are checked to be consistently
defined according to the behavior of the system, e.g., no differ-
ence constraints can be specified between a pair of events that
are not concurrent. Moreover, the tool is also capable of gen-
erating synthesis assumptions based on a simple delay model.
This automatic generation leverages the task of the designer in
providing timing information and allows the tool to make as-
sumptions on signals inserted during synthesis and not observ-
able in the specification (e.g., state encoding signals). These as-
sumptions are checked not to contradict any of the user-defined
assumptions.

This section presents a method for automatic generation of
relative timing assumptions. First, ordering relations between
events are defined. Then, the intuition behind this method is

explained using a simple delay model for input and noninput
events and rules for deriving timing assumptions are given.

A. Ordering Relations

Let ER be a lazy transition system.
Definition 5: (Enabled Before) Let be two con-

current events. can be enabled before4 (denoted by)
if such that ER ER and ER
ER .

Definition 6: (Enabled Simultaneously) Let be
two concurrent events. and can be enabled simultaneously
(denoted by) if such that ER
ER and ER ER .

The following definition is an extension of definition 5 to sets
of events. For a proper understanding, some intuition is required.
It is helpful to model the situation in which an eventis much
slower than another set of eventsand is never enabled be-
fore any of the events in (see Section VI-C.3). This situation
occurs in systems in which the input events (environment) are
much slower than the output events. The expected behavior is,
thus, that the input event fires after all the output events. The
definition itself, however, is concerned with the opposite case,
in which an eventcan be enabledbefore a set of events ,
and hence it describes the conditions when timing optimization
cannot be applied.

Definition 7: (Enabled Before a Set of Events) Let
be an event pairwise concurrent with all the events in the set

. can be enabled before (denoted by

) if such that ER ER , ER
ER and , where ER ER ER .

In the above definition, is an event pairwise concurrent with
all the events in . Let us call ER the union of all excitation
regions of the events in . Since is concurrent with all events
in , then ER ER is not empty.

Now assume that is a slow event (e.g., from the environ-
ment). Assume that internal/output events are very fast (this is a
similar situation as in fundamental mode asynchronous circuits

4We say “can be” because different occurrences ofe can be both before and
aftere . This definition is concerned only with the existence of the former.

120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

(a) (b)

Fig. 9. (a) Petri net and (b) transition system.

[7]). If we know that is never enabled before entering ER ,
then we know that all events in will fire before . This even
considers the possibility that the events inhave causality re-
lations among them.

Fig. 9(b) depicts the transition system derived from the
Petri net of Fig. 9(a). Events and are not concurrent, since
ER and ER are disjoint. Events
and are concurrent. Moreover,can be enabled beforesince
there is a transition such that ER ER and

ER ER . However, cannot be enabled before
. Events and are also concurrent and they can be enabled

before each other (see transitions and).
Events and are also concurrent but none can be enabled
before each other, i.e., they are always enabled simultaneously.

Let us now analyze the enabling relation of eventwith
some sets of events. Eventcannot be enabled before
but can be enabled before since there is a transition

such that ER ER , ER
ER and . On the other hand,cannot be
enabled before .

B. Delay Model

This section presents avery simpledelay model for events of
a TS that gives an intuitive motivation for the automatic gener-
ation of timing assumptions. A simple delay model is needed,
similar to the literal count in combinational logic synthesis that
can be computedbeforederiving a logic implementation and
that allows us to bootstrap the timing optimization process. The
model, although simple, generates reasonable timing assump-
tions that can be satisfied by gate selection or transistor sizing.
This fact will be shown by comparison with manual designs in
Section VIII. This delay model can be changed depending on
the design requirements.

The delay of an event is defined as the difference between
its enabling time and its firing time. Three types of events are
considered5 :

Noninput events:their delay is in the interval1 1 ;
Fast input events:their delay is in the interval1 ;
Slow input events:their delay is in the interval .

In this context, denotes the maximum allowed delay variation
of each event with regard to a unit delay. The synthesis approach
also assumes that:

• the delay of a gate implementing a noninput event can be
increased to be larger than that of another gate by delay
padding or transistor sizing;

• the delay of two gates can always be made longer than the
delay of one gate. Hence, this imposes the constraint that

1 3;
• the circuit will never take longer than time units (min-

imum delay of a slow input event) in becoming stable from
any state of the system assuming a quiescent environment
(no input events firing).

The previous assumptions on the timing behavior of the cir-
cuit can be translated into assumptions on the firing order of the
events.

C. Rules for Deriving Timing Assumptions

Rules for deriving timing assumptions are presented in the
following format.

Ordering relations:ordering relations that must be satis-
fied in an LzTS for a rule to be applied.
Timing assumption:a timing assumption that can be gen-
erated automatically.

5“Very fast” input events that are not slower than some internal events can be
considered as well and treated more or less like noninput events. This consider-
ation is omitted here for simplicity.

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 121

Justifying delay assumptions:informal justification of a
rule based on the above delay model.

1) Assumptions Between Noninput Events:Assume that
are noninput events. The first three rules apply

when events and are concurrent. The fourth one applies
when triggers . The following rules can be applied for
deriving timing assumptions between noninput events:

I) Event enabled before another event.
Ordering relations:

.
Difference timing assumption: fires before
Justifying delay assumptions:the delay of one gate

can be made shorter than the delay of two gates.
II) Events simultaneously enabled.

Ordering relations: .
Difference timing assumption: fires before
Justifying delay assumptions:the delay of the gate

implementing can be made longer than the delay of
the gate implementing .

III) Event triggered by events simultaneously enabled.
Ordering relations:

.
Simultaneity timing assumption: and are si-

multaneous with respect to .
Justifying delay assumptions:the difference in delay

of two gates can be made shorter than the delay of one
gate.

IV) Early enabling for ordered events.
Ordering relations: .
Early enabling timing assumption: fires before

(but can be enabled concurrently with).
Justifying delay assumptions:the delay of the gate

implementing can be made shorter than the delay of
the gate implementing .

Let us illustrate the previous cases with the example of Fig. 9.
Let us assume that all events are noninput. Timing assumptions
of Type I can be derived for the pairs of events ,
and , where the first element of the pair is assumed to fire
before the second.

Timing assumptions of Type II can be applied to the pairs
and . Note that in both cases, the enabling condi-

tions are symmetric, i.e., both events are always enabled simul-
taneously. However, only one firing order can be chosen by as-
suming that one of the events can be delayed by increasing the
delay of its corresponding gate. This choice can be done heuris-
tically by considering different implementation factors. For ex-
ample, the choice of one specific firing order may make some
states with encoding conflicts unreachable. Another possible
heuristic would be to estimate the complexity of the logic for
each event. If the gate corresponding to one event is more com-
plex than the other, it can be assumed that the former will be
slower than the latter (thus avoiding delay padding to meet the
timing assumption).

Timing assumptions of Type III can be applied to the events
triggered by the pairs and . Let us analyze the pair

that triggers the events, , and . The timing assumption
informally means that the difference between the firing times

of and is indistinguishable from the point of view of,
and . This opens new possibilities for optimization by using
the simultaneity constraints mentioned in Section IV.

Timing assumptions of Type IV can be applied, e.g.,
to the event triggered by the event . For this as-
sumption, the enabling region for includes the states

in addition to the states
already in the firing region.

2) Assumptions Between Noninput and Input
Events: Assume that are a noninput and an input
event, respectively, and that they are concurrent.

V) Input not enabled before noninput event.
Ordering relations: .
Difference timing assumption: fires before .
Justifying delay assumptions:the delay of environ-

ment is longer than the delay of one gate.

This assumption is similar to Types I and II for the case in
which is an input event. The delay assumption used in this
case states that the response time of the environment (both slow
and fast) will always be longer than the delay of one gate.

3) Assumptions Between Noninput Events and Slow
Input Events: Assume that is a slow input event,

is a set of noninput events andis
pairwise concurrent with all the events in.

VI) Slow input not enabled before noninput events.
Ordering relations: .
Difference timing assumptions: fires before .
Justifying delay assumptions:the delay of the slow

input event is longer than (the delay required by the
circuit to stabilize under a quiescent environment).

To illustrate the meaning of this timing assumption, the ex-
ample of Fig. 9 is considered, whereis an input event and
is a slow input event. The rest of the events are noninput. After
firing the events , and a state in which , and are en-
abled is reached (). At this point it can be assumed thatand

will fire before (two gate delays versus slow environment).
However, no assumptions can be made about the firing order
between and since is preceded by an input event () for
which no upper bound on the delay can be assumed. Ifhad
been a noninput event,would be assumed to fire afterand
also.

VII. B ACK-ANNOTATION OF TIMING CONSTRAINTS

Logic synthesis with relative timing assumptions is able to
derive a hazard-free circuit that is correct in the timed domain,
i.e., in that subset of states of the untimed domain that is reach-
able by applying the timing assumptions. After the logic syn-
thesis step the assumptions contributing to the synthesis results
are propagated to the back-end (e.g., sizing) tools as a set of con-
straints to be satisfied. After back-end design is completed the
validity of the timing constraints must be verified or validated
to ensure the correct function of the circuit.

Some of the timing assumptions provided by the user or au-
tomatically generated do not contribute to restricting the set of
reachable states or the set of transitions and hence are redun-
dant. Moreover, the circuit netlist derived by logic synthesis may

122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

Fig. 10. (a), (c) SGs with timed domains. (b) Circuit.

be correct for a set of stateslarger than the one defined by the
timed domain, i.e., one which can be obtained by a set of less
stringent timing assumptions. In other words, some of the timing
assumptions are redundant for a particular logic synthesis solu-
tion, while some other can be relaxed. This section attempts to
answer the following question:

Can we derive a minimal set of timing assumptions sufficient
for a circuit to be correct?

This set of timing assumptions back-annotated for a given
logic synthesis solution is calledtiming constraints. Timing as-
sumptions (both manual and automatic) are part of the spec-
ification and provide additional freedom for logic synthesis,
while timing constraints are a part of the implementation, since
they constitutesufficientrequirements to be met for a particular
netlist solution to be valid.

A. Example 1

Let us analyze the example in Fig. 10. The shadowed states in
the SG of Fig. 10(a) correspond to the timed domain determined
by the timing assumptions

and

Under these assumptions, logic synthesis can be performed by
considering the states 110 and 001 unreachable.

The circuits of Figs. 4(d) and 10(b) have a correct behavior
under the stated assumptions. Looking at the circuit of Fig. 4(d)
the following can be observed.

• The gates and are correct imple-
mentations for the whole untimed domain.

• The gate is a correct implementation for all the
states except for 001. In this state, is enabled according
to the next state function of the implementation, but it is
not enabled according to the specification.

Thus, even though the circuit has been obtained using the DC
set implied by both assumptions, only one relative timing con-
straint must be ensured for the circuit to be correct,
becauseonly part of the enlarged DC set has been used in a

way that is inconsistent with the original specification. In gen-
eral, each gate of the circuit is correct for a subset of the untimed
domain which is also a superset of the timed domain. The cir-
cuit is correct for those states in which all gates are correct.

B. Example 2

Let us now take the implementation of Fig. 10(b) and ana-
lyze the gate , while ignoring the other gates for now.
With regard to the untimed domain, the next-state function for

disagrees with the gate in three states: 001, 110, and
101. But the consequences are different in each state. In 110,
should remain stable at 1. However, the gate makes the
transition enabled in state 110. To preserve circuit correct-
ness two options are possible.

1) The state 110 could be made unreachable by concurrency
reduction. This in turn could be achieved in two ways:
• by concurrency reduction in the untimed domain,

based on changing logic (i.e., trigger) dependencies
between signals as described in [44], [45];

• by concurrency reduction in the timed domain, based
on relative timing constraints that would preserve
concurrency forenabling, but restrict concurrency for
firing of signal transitions.

2) The state 110 could remain reachable, whilewould be
enabled but not fireable, since another enabled transition
fires before . More formally: 110 ER FR .

Similar considerations can be made for state 001.
State 101 illustrates a different case. According to the orig-

inal specification SG, is enabled in 101. In the implemen-
tation, however, signal is stable in 101. This corresponds to a
concurrency reduction for signalin the untimed domain, and
this is generally considered to be a valid implementation of the
original specification. Concurrency is reduced because state 101
becomes a don’t care vector for signalwhen 001 is assumed
to be unreachable (see Section IV). In summary, for the correct-
ness of the gate , it is sufficient that the states 110 and
001 are unreachable. However, the gate ensures that state
001 is unreachable. Hence only 110 must be made unreachable

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 123

TABLE I
CORRECTNESSREQUIREMENTS FOR THE

CIRCUIT OF FIG. 10(B)

by timing constraints or by further concurrency reduction at the
logic level.

A similar analysis can be done for the gates and .
The sufficient requirements for the correctness of all three gates
are summarized in Table I. Interestingly, it can be concluded
that the circuit is correct under any timing assumption, i.e., it is
speed-independent, since all states required to be unreachable
are forced to be unreachable by the concurrency reduction due
to the chosen gate implementation. In particular, state 001 needs
to be unreachable for gate to be a correct implementation
of signal and it is made unreachable by implementing signal

with a gate

C. Example 3

Let us consider the same example under the assumption “
and are simultaneous with respect to .” Under this

assumption, state 001 is unreachable. In addition, states 101
and 110 become don’t cares for signal, since both belong to
ER according to the semantics of the simultaneity assump-
tion.

Only one timing constraint, , is sufficient for the
circuit in Fig. 5(d) to be correct. Gate is not enabled
in 101, hence concurrency is reduced in this state with respect
to the original specification and state 001 becomes unreachable
under any gate delay. On the contrary, state 110 corresponds to
the expansion of ER . This enabling is lazy since 110
ER FR .

D. Correctness Conditions

The synthesis flow presented in this paper starts with an un-
timed specification . After logic synthesis
with timing assumptions, a gate implementation is obtained.

Let us consider the circuit operation, ignoring timing assump-
tions. The untimed behavior of the gate implementation from a
given initial state can be represented by a transition system

. is obtained from by substi-
tuting with the new transition relation , that coincides with

for the input events and models the behavior of the gates for
the output events. Finally, and are calculated by only
considering the reachability set from .6

In the remainder of this section the following assumptions are
used entirely for the sake of simplicity of exposition. They are
not the constraints of the theory or the implementation.

• The set of signals of and are assumed to be the same
and the states are assumed to be uniquely identified by
their encoding.

6Obviously, circuit operation withinA , may not be correct outside timing
domain, e.g., it may be hazardous.

• The set of states reachable by circuit in the untimed
domain can be much bigger than the original setdue to
the possibility of reaching incorrect corners of behavior. It
is sufficient to calculate only a border of incorrect behav-
iors instead of the entire .

• The original transition system is not required to be
untimed. It can include some timing assumptions (e.g.,
user-defined timing assumptions regarding the behavior of
the environment). This helps to reduce the state space of
the original specification for large circuits.

Since is an untimed behavior, may contain transi-
tions not present in , e.g., those transitions reachable when
the timing assumptions used for synthesis are not considered
for calculating the reachability space. On the other hand, some
transitions in may not belong to due to the concurrency
reduction imposed by the implementation.

The problem to be solved is to find a set of timing constraints
such that, after being applied to , a new lazy (timed) transi-
tion system ER is obtained in such
a way that and the gate netlist derived for is
still a valid implementation for .7

Here,valid implementation should satisfy three conditions.

1) The sequences of signal transitions produced by the cir-
cuit, when operated within an originally specified envi-
ronment and timing constraints, are asubsetof the se-
quences allowed by the STG (no new transitions is al-
lowed).

2) No new8 deadlocks (states in which no signal transition
is enabled) are created.

3) The implementation is hazard-free, i.e., is output per-
sistent.

Let us define three predicates characterizing the above con-
ditions:

new tr

These are transitions that can fire in (untimed circuit) but
cannot fire in the original specification.

Due to the concurrency reduction that might have been ap-
plied during logic synthesis, some states ofmay become un-
reachable in . The concurrency reduction eliminates some
transitions in that might result in new deadlock states if all
outgoing transitions from a reachable state are removed. Such
deadlocks can be avoided by making them unreachable during
legal circuit operation. Thus, we define

is a deadlock in

but not in

New hazardous states are captured with the following predi-
cate:

to hazards is output nonpersistent

in but not in

7The set of states is implicitly induced by the initial state and the transition
relation.

8One may argue that the original STG should not have contained any dead-
locks any way, but we do not make such an assumption in the following, i.e.,
deadlocking specifications are considered legal, and we just do not introduce
new ones.

124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

Fig. 11. Formulation of the back-annotation problem. {C ;C } is a set of
timing constraints sufficient for the correctness of the circuit.

Finally, we define

valid new tr to deadlock

to hazards

E. Problem Formulation

The problem to be solved consists of finding a setof timing
constraints, not more stringent than the ones used for synthesis,
such that the set of transitions obtained after applying the
constraints is a subset of valid .

A trivial solution to this problem is to take the complete set of
timing assumptions used for logic synthesis. Our goal, however,
is to find a less stringent set of constraints sufficient to make the
circuit correct. In general, we should look for such a set of con-
straints that “makes most sense” or that is easiest to satisfy. But
the solution of this optimization problem, unfortunately charac-
terized by a very fuzzy cost function, is left to future work.

Instead, a state-based cost function is used to guide heuristics
aiming at finding the set of timing constraints. The cost func-
tion is based on the following observation: large state spaces
generally require simple constraints.

A corner case of the back-annotation problem would be the
situation in which a speed-independent circuit is derived after
synthesis with timing assumptions. In that case, the solution to
the problem would be an empty set of timing constraints (see
Example 2 in this section).

Fig. 11 illustrates the back-annotation problem. The arrows
denote the invalid transitions of the circuit. The “timed domain”
represents that state space of the circuit under all timing assump-
tions. represents the state space in which the circuit be-
haves correctly. Similarly for the transitions not exiting .
The constraints and are less stringent than the timed do-
main defined by all timing assumptions and are enough to guar-
antee the correctness of the circuit. Note that the states in
are those eliminated by concurrency reduction. Also note that
constraint 1 cuts one of the transitions from the timing do-
main to the region of incorrect behavior, which otherwise might
occur due to early enabling.

F. Finding a Set of Timing Constraints

Relative timing constraints are defined in terms of firing order
of events. Constraining the firing order between a pair of events
only makes sense when they are concurrently enabled. Thus,
each timing constraint can be denoted by an ordered pair of

Fig. 12. Example for back-annotation.

TABLE II
UNREACHABLE STATES FOREACH PAIR OF ORDEREDEVENTS e < e

IN THE EXAMPLE OF FIG. 12. THE PAIRS IN BOLD INDICATE THOSE

CONSTRAINTSTHAT PRESERVE THETIMED DOMAIN

concurrent events, e.g., . Given a constraint
, the set of arcs are defined as

FR

FR FR

In particular, the path can be empty if
FR FR . is the set of arcs with label
that must not fire in order for to fire before , i.e., those
arcs with source states in which both events are concurrent or
preceding FR FR inside FR .

Given a set of constraints ,
can be used to compute that is the set of reachable transitions
after removing the ones in

Finding a set that removes all transitions not in
can be posed as a covering problem in which all possible firing
order constraints of pairs of events are the covering elements.

Currently, petrify uses a greedy approach to solve the cov-
ering problem. It merely consists of choosing the constraint
that removes the maximum number transitions not in
and that have not been removed by previous constraints. This
process is repeated until all reachable transitions become valid.

G. Example 4

Fig. 12 shows an example with a simplified version of the
back-annotation problem, given that the removed objects are
states instead of transitions. Assume that the set of states

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 125

TABLE III
EXPERIMENTAL RESULTS: SPECIFICATIONSWITHOUT CSC (A) AND WITH CSC (B)

is reachable by the untimed implementation of the
circuit and that the set of states is the
one reachable after considering the delays of the circuit. How-
ever, incorrect behavior is only manifested in the statesand

. Table II contains the set of states that become unreachable
by reducing the concurrency between each pair of concurrent
events.9 For example, by imposing the order , the states

and become unreachable.
The problem to be solved is the following: find asmall set

of ordering constraints between pairs of events such that the
new set of reachable states does not intersect the set of incorrect
states . Moreover, we want tomaximize the set of reach-
able states, i.e., to find a set of timing constraints that makes a
small number of correct states unreachable and keeps the TS
strongly connected. Larger sets of reachable states heuristically
result in less stringent sets of constraints, thus simplifying the
validation or verification of the circuit. Moreover, they often
imply more concurrency and hence heuristically result in better
global performance.

The problem can be posed as acovering problem. The cells
of Table II in bold correspond to those constraints that do not
remove any state from the timed domain. The covering problem
can be formulated as follows:

The constraint is the simplest one removing the state.
Any other one (e.g.,) is more stringent. The constraints

and are the ones that can remove the state. The
minimum-cost solution is

and

9For simplicity, unreachable states are reported in the table for this example.
In general, the analysis must be performed by calculating the removeddisabled
arcs. In this particular case, the resulting analysis is the same.

VIII. E XPERIMENTAL RESULTS

The techniques for automatic derivation of relative timing as-
sumptions and synthesis of asynchronous circuits using lazy
transition systems have been implemented in the tool petrify
and applied to control circuits from RAPPID [12] and a set
of other benchmarks. First, results for a standard set of aca-
demic benchmarks using conservative (unfavorable for RT) per-
formance estimates are shown. Then a detailed analysis of a
FIFO example is presented for estimating the real advantages
in performance offered by RT, with automatic timing assump-
tions versus a speed-independent solution with concurrency re-
duction. Finally, a comparison of RT solutions derived automat-
ically versus manual solutions is presented.

A. Academic Examples

The results for a well-known set of academic benchmarks are
presented in Table III.Table III(a) and (b) present the results for
specifications without and withstate coding conflictsrespec-
tively.

The experiments have been performed as follows.

• Columns labeled with report results for speed-inde-
pendent circuits derived by inserting state signals with the
aim of minimizing area.

• Columns labeled with are derived similarly, but with
the aim of minimizing delay. Petrify tries to increase
the concurrency of the newly inserted signals until they
are outside the critical path of the specification. In case
the original specification has no encoding conflicts
(Table III(b)), there is no difference between and .

• Columns labeled withTI report results for RT circuits.
Relative timing assumptions are derived automatically by
considering the environment to beslow. State signals are
inserted aiming at delay minimization.

For each experiment, area is estimated as the number of lit-
erals of thesetand resetnetworks of generalized C-elements.

126 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

Fig. 13. (a) FIFO controller, (b) specification, (c) specification with state encoding signal, (d) RT implementation with gC elements, and (e) timing constraints
sufficient for correctness.

Delay (response time) is estimated as the average number of
noninput events in the critical path between the firing of two
input events. Given that the estimated response time of the spec-
ification does not change when no new signals are inserted, it is
not reported in Table III(b).

Relative timing assumptions have a crucial impact on solving
state encoding, since petrify inserts new signals only to disam-
biguate conflicts in the timed domain. Reducing the number of
signals also contributes to improving the area and the perfor-
mance of the circuit.

Comparing the columns andTI , a reduction of about 40%
in area can be observed. The reduction in response time is less
than 5% if all events have a delay of one time unit. However, the
performance improvement is much more significant if it is eval-
uated with actual delays, given that the logic of the timed im-
plementation is much simpler. This analysis is reported in Sec-
tion VIII-B. The improvement obtained for specifications with
complete state coding is about 17% in area. This reduction also
contributes to improving the performance of the circuits. All the
obtained circuits and the corresponding timing constraints were
validated by simulation. Only in some cases, transistor sizing or
delay padding was required to meet some stringent constraints.

B. Example: A FIFO Controller

This section describes the development of a first-in/first-out
(FIFO) cell [specified in Fig. 13(a) and (b)], a simplified ab-
straction of a part of the RAPPID design. The goal of the speci-
fication is to keep the left and right handshakes as decoupled as
possible. The modules at the left and right sides of the controller
have a similar speed to the controller itself. In fact, these events
are generated by twin modules connected at each side. For this
reason, it is not wise to assume that the input events are slow.

Four FIFOs were simulated by using different implementa-
tions. The cycle time of the cell was measured. The results, nor-
malized to the delay of an inverter with fan-out of four in a given
technology, are shown in Table IV.

The first relative timing FIFO (first row) is an RT circuit de-
rived by petrify using only automatic timing assumptions. It is
depicted in Fig. 13(d). A proper transistor sizing is required for
correct operation of the circuit. No user-defined assumptions on

TABLE IV
CYCLE TIME CCOMPARISON OFFIFOS NORMALIZED TO THE DELAY OF

AN INVERTER WITH A FAN-OUT OF FOUR

the environment are used. The timing analysis explained in Sec-
tion VI has been applied to the specification, and state encoding
has been automatically solved as described in Section V-B. With
this strategy, only one additional state signal,, was required as
shown in Fig. 13(c).10 There are some interesting aspects of this
implementation.

• The state signal is concurrent with other activities in the
circuit. This is a result of the state encoding strategy of
petrify that attempts to increase the concurrency of new
state signals until they disappear from the critical paths.

• The response time of the circuit with regard to the envi-
ronment is only one event (two inverters), i.e., as soon as
an output event is enabled, it fires without requiring the
firing of any other internal event.

• Given that is never triggering any output signal, the gates
of and can be designed by having inputnearVss,
thus improving their performance.

Finally, the implementation of Fig. 13(d) requires some
timing constraints to be correct. Application of the method
proposed in Section VII derives five timing constraints between
pairs of concurrent events that aresufficientfor the circuit to be
correct. They are graphically represented in Fig. 13(e).

The constraints and are not indepen-
dent. Since the implementation ofis , it is always
guaranteed that one of them will hold, whereas the other must be
ensured. Since and are enabled simultaneously, these
constraints will always hold if the delay of two gates is longer

10This new specification is not strictly a Petri net, since the arcs froml +

andr + to theOR place indicate anor-causality relation:x� is triggered by
the first event to fire, whereas the token produced by the latest event is implicitly
consumed. An equivalent Petri net is a bit more cumbersome and is omitted for
simplicity.

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 127

Fig. 14. Speed-independent specification and circuit.

than the delay of one gate. The most stringent remaining con-
straint is . In the worst case, both and will
be enabled simultaneously by . In this case, the delay of
is required to be shorter than the delay of (from the envi-
ronment). Since we assume that the environment is an identical
circuit, it corresponds to requiring that the delay of to be
shorter than that of , that is easy to satisfy. In case of a very
fast environment, this constraint can still be satisfied by tran-
sistor sizing or delay padding for gate.

The second FIFO (second row) is a speed-independent cir-
cuit derived by petrify withautomatic concurrency reduction
[45], and without constraining the concurrency of the input and
output signals of the cell in order to preserve the performance as
much as possible. The result is shown in Fig. 14, where CSC was
obtained through state variable insertion and concurrency reduc-
tion. In comparison with the RT circuit, notice the gC elements
with two p-transistors in series and the ordering between ro+ and
lo+. Because of concurrency reduction only one state signal is
required, like in the case of the automatic RT solution. However,
the state signal is on the critical cycle and the implementations
of and contain additional p-transistors, which make per-
formance of the speed-independent circuit approximately 18%
worse than the RT one. Note that, without concurrency reduc-
tion, three state signals would be required to solve all state en-
coding conflicts and a much larger and slower circuit would re-
sult.

TABLE V
COMPARISON FOR TWOGENERIC REPRESENTATIVEEXAMPLES (FIFO) AND

TWO CONTROL CIRCUITS FROM RAPPID (BYTE-CONTROL, TAG-UNIT).
RESPONSETIME IS MEASURED IN GATE DELAYS, AREA IN TRANSISTORS. M:

MANUAL , A: AUTOMATIC, S: SPEED-INDEPENDENT

The third and the fourth rows of Table IV report results for rel-
ative timing and speed-independent circuits, further optimized
for performance by applying De Morgan’s laws. It can be ob-
served again that the optimized RT circuit is approximately 25%
faster than the optimized speed-independent design.

C. RAPPID Control Circuits

This section compares manually optimized RT control
circuits used for RAPPID [22], [12] with those automatically
derived by petrify. For each example, Table V reports: manual
(obtained by applying relative timing manually), automatic
(obtained automatically by petrify and applying relative
timing), and speed-independent (obtained automatically by
petrify without concurrency reduction).

Results in the table show that automatic solutions are
quite comparable with manually optimized RT designs. The
improvement in response time by applying relative timing is
about a factor of 2, substantially better than for the examples
of Table III. This is because the designers of these circuits had
a stronger interaction with the tool and provided aggressive
timing assumptions on the environment that could not be
derived automatically. Moreover, the optimization goal for
these circuits wasperformance, and hence we claim that the
automated implementation wasnot worse than the manual
design in any case.

D. Impact of Early Enabling Assumptions

The same experiments presented in Table III have been run
by not using early enabling assumptions. The overall results in
circuit complexity (total number of literals) are the following:

• specifications without CSC (Table III(a)): 330 literals;
• specifications with CSC (Table III(b)): 248 literals.

Thus, early enabling assumptions still contribute to improve
the quality of the circuits in about 10% for those specifications
with CSC. This improvement also affects the speed of the cir-
cuit.

For those specifications without CSC, the impact is very
modest. This is mainly due to the fact that petrify does a good
job in inserting new state signals by trying to increase their
concurrency. This gives less margin to take advantage of the
potential concurrency of early enabling assumptions.

128 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

Fig. 15. Optimization of a completion detector using simultaneity
assumptions.

E. Impact of Simultaneity Assumptions

The same experiments have also been run by not using simul-
taneity assumptions. The results have shown that the impact of
these assumptions is negligible for the benchmarks in Table III.
This is mainly due to the fact that most benchmarks in the table
are of reactive nature, where inputs mostly trigger outputs, and
outputs mostly trigger inputs. Hence direct causal relations be-
tween outputs (a necessary condition for applying simultaneity
assumptions) are infrequent. In other words the considered con-
trol circuits are quite shallow, and this constrains the applica-
bility of optimization based on simultaneity. Nevertheless, we
do believe that the notion of simultaneity is important for op-
timization, as shown by the example in Fig. 5. A similar situ-
ation occurs with other benchmarks, such as hazard, when si-
multaneity assumptions are applied to input events.11 It allows
the designer to change the dependencies between causally un-
related events. This is a way to formally justify delay matching,
a technique that is often used for design of asynchronous data
paths, as shown in Fig. 15. The same result of optimization can
be obtained formally by applying simultaneity assumption to
all data bits with respect to the completion detector signal. Al-
though design of data paths is not the main topic of this paper,
such capability indicates potential power of the simultaneity as-
sumption for larger control circuits and especiallycontrol cir-
cuits with symmetries.

IX. CONCLUSION

Lazy transition systems have been proposed as a computa-
tional model for timed circuit synthesis, where the notions of en-
abling and firing are distinguished for a signal switching event.
In this design flow, necessary synthesis conditions, a synthesis
algorithm, and a method to derive a sufficient set of timing con-
straints for correctness have also been proposed.

The main results of this work can be summarized as follows.

• Two types of relative timing assumptions, difference (one-
sided) and simultaneity (two-sided), are used.

• Timing information is defined in terms of relations among
events rather than absolute delays of individual events. In
this way, reasoning about the observable behavior of the
system is much more efficient.

11Conservatively, petrify never assumes simultaneity for input events. These
assumptions must be provided by the designer when it is known that the envi-
ronment behaves according to the assumption.

• The don’t care space used for optimization is determined
either by unreachability, i.e., reduction of the state space,
or by laziness, i.e., expansion of the enabling region.

• The method allows the timing assumptions to be either
provided by the designer or derived automatically by syn-
thesis or analysis tools. The second feature is especially
interesting for its applicability to those events that are not
observable in the original specification, e.g., events of in-
ternal signals used for state encoding or logic decomposi-
tion.

• Satisfaction and verification of timing constraints (i.e.,
timing assumptions actually used by optimization) is left
to the designer’s responsibility. Some existing tools can
assist in solving such task [46], [20].

This approach helps bridging two critical gaps in the syn-
thesis of control circuits. The first gap is between the two main
approaches for automated asynchronous controller synthesis,
those based on fundamental mode (global timing constraints)
and those based on IO mode. It also allows asynchronous
circuits to exploit available timing information, rather than
always making worst case assumptions about the relative delays
of gates (e.g., assuming that one gate may be slower than a se-
quence of three gates may be excessive in several technologies).
Moreover, the exploitation of the idea of early enabling allows
the synthesis process to maximize performance by increasing
the effective amount of concurrency in the system.

ACKNOWLEDGMENT

The authors would like to thank S. Rotem for initiating this
research.

REFERENCES

[1] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vin-
centelli, “SIS: A system for sequential circuit synthesis,”, tech. Rep.
UCB/ERL M92/41, U.C. Berkeley, Ed., 1992.

[2] J. M. Chris, “Computer-Aided Synthesis and Verification of Gate-Level
Timed Circuits ,” Ph.D. dissertation, Dept. Elec. Eng., Stanford Univ.,
1995.

[3] M. N. Steven, “Automatic Synthesis of Burst-Mode Asynchronous Con-
trollers ,” Ph.D. dissertation, Stanford Univ., Department of Computer
Science, 1993.

[4] Y.-C. Chantal, L. Bill, and M.d. Hugo, “ASSASSIN: A synthesis system
for asynchronous control circuits,”, Tech. Rep., IMEC, 1994.

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, “Petrify: A tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,”IEICE Trans. Information
Syst., vol. E80-D, pp. 315–325, Mar. 1997.

[6] D. A. Huffman, “The synthesis of sequential switching circuits,”J.
Franklin Inst., vol. 257, pp. 161–190, Mar. 1954.

[7] S. H. Unger,Asynchronous Sequential Switching Circuits. New York:
Wiley, 1969.

[8] E. M. David and W. S. Bartky, “A theory of asynchronous circuits,” in
Proc. Int. Symp. Theory of Switching. Cambridge, MA: Harvard Univ.
Press, 1959, pp. 204–243.

[9] B. Coates, A. Davis, and K. Stevens, “The post office experience: De-
signing a large asynchronous chip,”Integration, VLSI J., vol. 15, no. 3,
pp. 341–366, Oct. 1993.

[10] K. Y. Yun, “Synthesis of Asynchronous Controllers for Heterogeneous
Systems ,” Ph.D. dissertation, Stanford Univ., 1994.

[11] C. W. Moon, P. R. Stephan, and R. K. Brayton, “Synthesis of hazard-free
asynchronous circuits from graphical specifications,” inProc. Int. Conf.
Computer-Aided Design (ICCAD), Nov. 1991, pp. 322–325.

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 129

[12] K. S. Stevens, S. Rotem, R. Ginosar, P. Beerel, C. J. Myers, K. Y. Yun,
R. Kol, C. Dike, and M. Roncken, “An asynchronous instruction length
decoder,”IEEE J. Solid-State Circuits, vol. 36, pp. 217–228, Feb. 2001.

[13] T. Henzinger, Z. Manna, and A. Pnueli, “Timed transition systems,” in
Proc. REX Workshop Real-Time: Theory in Practice, vol. 600, LNCS.
New York, 1992, pp. 226–251.

[14] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous cir-
cuits,” IEEE Trans. VLSI Syst., vol. 1, pp. 106–119, June 1993.

[15] R. Alur, “Timed automata,” inNATO-ASI 1998 Summer School Verifi-
cation of Digital and Hybrid Syst., 1998.

[16] D. Sager, M. Hinton, M. Upton, T. Chappell, T. Fletcher, S. Samaan,
and R. Murray, “A 0.18�m CMOS IA32 microprocessor with a 4 GHz
integer execution unit,” inISSCC’2001: IEEE Press, 2001, pp. 324–325.

[17] H. Henrik and M. B. Steven, “Bounded delay timing analysis of a class
of CSP programs with choice,” inProc. Int. Symp. Advanced Research
in Asynchronous Circuits and Systems, Nov. 1994, pp. 2–11.

[18] M. Bozga, O. Maler, and S. Tripakis, “Efficient verification of timed
automata using dense and discrete time semantics,” inCHARME’99,
vol. 1703, Lecture Notes in Computer Science, L. Pierre and T. Kropf,
Eds., 1999, pp. 125–141.

[19] N. Radu and P. Ad, “Verification of speed-dependences in single-rail
handshake circuits,” inProc. Int. Symp. Advanced Research in Asyn-
chronous Circuits Syst., 1998, pp. 159–170.

[20] M. A. Peña, J. Cortadella, A. Kondratyev, and E. Pastor, “Formal ver-
ification of safety properties in timed circuits,” inProc. Int. Symp. Ad-
vanced Res. Asynchronous Circuits and Syst., Apr 2000.

[21] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Taubin,
and A. Yakovlev, “Lazy transition systems: Application to timing opti-
mization of asynchronous circuits,” inProc. Int. Conf. Computer-Aided
Design (ICCAD), Nov. 1998, pp. 324–331.

[22] S. Ken, G. Ran, and R. Shai, “Relative timing,” inProc. Int. Symp.
Advanced Research in Asynchronous Circuits Syst., Apr. 1999, pp.
208–218.

[23] W. Coates, J. Lexau, I. Jones, I. Sutherland, and S. Fairbanks, “Fleetzero:
An asynchronous switching experiment,” inProc. Int. Symp. Advanced
Research in Asynchronous Circuits Syst.. New York: IEEE Computer
Soc. Press, 2001.

[24] S. Ivan and F. Scott, “Gasp: A minimal fifo control,” inProc. Int. Symp.
Advanced Res. Asynchronous Circuits Syst., Mar. 2001.

[25] C. Jordi, K. Michael, M. B. Steven, and K. Stevens, “Synthesis of asyn-
chronous control circuits with automatically generated timing assump-
tions,” inProc. Int. Conf. Computer-Aided Design (ICCAD), Nov. 1999,
pp. 324–331.

[26] T. Murata, “Petri Nets: Properties, analysis and applications,”Proc.
IEEE, pp. 541–580, Apr. 1989.

[27] A. Arnold, Finite Transition Systems. Englewood Cliffs, NJ: Prentice
Hall, 1994.

[28] T.-A Chu, C. K. C. Leung, and T. S. Wanuga, “A design methodology for
concurrent VLSI systems,” inProc. Int. Conf. Computer Design (ICCD),
1985, pp. 407–410.

[29] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: from self-timed to
timed ones,” inProc. Int. Workshop Timed Petri Nets, Torino, Italy, July
1985, pp. 199–207.

[30] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky,
Concurrent Hardware: The Theory and Practice of Self-Timed De-
sign. London, U.K.: Wiley, 1993.

[31] S. M. Burns, “General condition for the decomposition of state holding
elements,” inProc. Int. Symp. Advanced Research in Asynchronous Cir-
cuits Syst., Mar 1996.

[32] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, E. Pastor,
and A. Yakovlev, “Decomposition and technology mapping of speed-
independent circuits using Boolean relations,”IEEE Trans. Computer-
Aided Design, vol. 18, Sept. 1999.

[33] T. Nanya, A. Takamura, M. Kuwako, M. Imai, M. Ozawa, M. Ozcan,
R. Morizawa, and H. Nakamura, “Scalable-delay-insensitive design: A
high-performance approach to dependable asynchronous systems,” in
Proc. Int. Symp. Future Intellectual Integrated Electron., Mar. 1999.

[34] P. Vanbekbergen, G. Goossens, and B. Lin, “Modeling and synthesis
of timed asynchronous circuits,” inProc. European Design Automation
Conf. (EURO-DAC), Sept. 1994, pp. 460–465.

[35] K. McMillan, “Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits,” inProc. Int. Workshop Com-
puter Aided Verification, vol. 663 of Lecture Notes in Computer Science,
G. v. Bochman and D. K. Probst, Eds., 1992, pp. 164–177.

[36] S. M. Burns, “Performance Analysis and Optimization of Asynchronous
Circuits,” Ph.D. dissertation, California Inst. Technol., 1991.

[37] K. McMillan and D. Dill, “Algorithms for interface timing verification,”
in Proc. Int. Conf. Computer Design (ICCD), Oct. 1992.

[38] L. Luciano and S.-V. Alberto,Algorithms for Synthesis and Testing of
Asynchronous Circuits: Kluwer, 1993.

[39] K. Michael and S. Jørgen, “Characterizing speed-independence of high-
level designs,” inProc. Int. Symp. Advanced Res. Asynchronous Circuits
Syst., Nov. 1994, pp. 44–53.

[40] A. Kondratyev, J. Cortadella, M. Kishinevsky, E. Pastor, O. Roig, and A.
Yakovlev, “Checking signal transition graph implementability by sym-
bolic BDD traversal,” inProc. European Design and Test Conf., Paris,
France, Mar. 1995, pp. 325–332.

[41] C. Jordi, K. Michael, K. Alex, L. Luciano, and Y. Alexandre, “A region-
baded theory for state assignment in speed-independent circuits,”IEEE
Trans. Computer-Aided Design, vol. 16, pp. 793–812, Aug. 1997.

[42] P. A. Beerel, C. J. Myers, and T. H.-Y Meng, “Covering conditions and
algorithms for the synthesis of speed-independent circuits,”IEEE Trans.
Computer-Aided Design, Mar. 1998.

[43] K. Alex, K. Michael, and Y. Alex, “Hazard-free implementation of
speed-independent circuits,”IEEE Trans. Computer-Aided Design, vol.
17, pp. 749–771, Sept. 1998.

[44] L. Bill, Y.-C. Chantal, and V. Peter, “A general state graph transforma-
tion framework for asynchronous synthesis,” inProc. European Design
Automation Conf. (EURO-DAC) ., Sept. 1994, pp. 448–453.

[45] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno, and A.
Yakovlev, “Automatic synthesis and optimization of partially specified
asynchronous systems,” inProc. ACM/IEEE Design Automation Conf.,
June 1999, pp. 110–115.

[46] S. Chakraborty, D. L. Dill, and K. Y. Yun, “Min-max timing analysis
and an application to asynchronous circuits,”Proc. IEEE, vol. 87, pp.
332–346, Feb. 1999.

Jordi Cortadella (M’88) received the M.S. and Ph.D. degrees in computer sci-
ence from the Universitat Politècnica de Catalunya, Barcelona, Spain, in 1985
and 1987, respectively.

He is a Professor in the Department of Software of the same university. In
1988, he was a Visiting Scholar at the University of California, Berkeley. His
research interests include computer-aided design of VLSI systems with special
emphasis on synthesis and verification of asynchronous circuits, concurrent sys-
tems and co-design. He has coauthored over 100 research papers in technical
journals and conferences.

Dr. Cortadella has served on the technical committees of several international
conferences in the field of Design Automation and Concurrent Systems. He
organized the 5th International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems as a Symposium Co-Chair.

Michael Kishinevsky (M’95–SM’96) received the M.Sc. and Ph.D. degrees in
computer science from the Electrotechnical University, St. Petersburg, Russia.

He was a Research Fellow at the St. Petersburg Mathematical Economics
Institute Computer Department, Russian Academy of Science, 1979–1982 and
1987–1989. From 1982 to 1987, he was with a software company. From 1988
to 1992, he was a Senior Researcher at the R&D Coop TRASSA. From 1992 to
1994, he was a visiting Associate Professor at the Department of Computer Sci-
ence, Technical University of Denmark. From 1994 to 1998, he was a Professor
at the University of Aizu, Japan. Since 1998 he has been with the Strategic CAD
Labs, Intel Corporation, Hillsboro, OR. His research interests include high-level
and asynchronous design, reactive systems, and theory of concurrency. He coau-
thored two books in asynchronous design and has published over 60 journal and
conference papers.

Dr. Kishinevsky has served on the technical program committee at several
conferences and workshops.

130 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

Steven M. Burnsreceived a B.A. degree in mathematics from Pomona College,
in 1984, and M.S. and Ph.D. degrees in computer science from the California
Institute of Technology in 1987 and 1991, respectively.

He is a Principal Engineer at Intel Corporation’s Strategic CAD Labs. Prior
to joining Intel in 1996, he was an Assistant Professor of the Department of
Computer Science and Engineering at the University of Washington, joining the
faculty in 1991. His research and development interests include timing analysis
and optimization of high-performance digital circuits.

In 1992, Dr. Burns received an NSF Young Investigator Award. He received a
best paper award at the 1993 IEEE International Conference on Computer De-
sign and at the 1996 Internation Symposium on Advanced Research in Asyn-
chronous Circuits and Systems. He has served on the technical program com-
mittee at several conferences and workshops.

Alex Kondratyev (M’94–SM’97) received the M.S and Ph.D. degrees in com-
puter science from the Electrotechnical University of St. Petersburg, Russia, in
1983 and 1987, respectively.

In 1988, he joined the R&D Coop TRASSA, St. Petersburg, Russia, where
he was a Senior Researcher. From 1993 to 1999, he was an Associate professor
of the Hardware Department at the University of Aizu. In 2000, he joined The-
seus Logic as a Senior Scientist. Currently he is a Research Scientist at Cadence
Berkeley Laboratories. He has coauthored a book on formal methods for asyn-
chronous design and has published over 50 journal and conference papers. His
research interests include formal methods in system design, synthesis of asyn-
chronous circuits, computer-aided design methodology and theory of concur-
rency.

Dr. Kondratyev was a co-chair of Async’96 Symposium, co-chair of CSD’98
Conference, and has served as a member of the program committee for several
conferences.

Luciano Lavagno(M’93) graduated magna cum laude in electrical engineering
from Politecnico di Torino, Italy, in 1983. In 1992, he received the Ph.D. degree
in electrical engineering and computer science from the University of California,
Berkeley.

From 1984 to 1988, he was with CSELT Laboratories, Torino, Italy. In 1988,
he joined the Department of Electrical Engineering and Computer Science of
the University of California at Berkeley, where he worked on logic synthesis
and testing of synchronous and asynchronous circuits. He is the author of a book
on asynchronous circuit design, the co-author of a book on hardware/software
co-design of embedded systems, and has published over 60 journal and confer-
ence papers. Between 1993 and 1998 he was an Assistant Professor with the
Department of Electronics of Politecnico di Torino. Since 1993, he has been the
architect of the POLIS project, developing a complete hardare/software co-de-
sign environment for control-dominated embedded systems. He is currently an
Assistant Professor at the University of Udine, Italy and a Research Scientist
at Cadence Berkeley Laboratories. He has also been a consultant for various
EDA companies, such as Synopsys and Cadence. His research interests include
the synthesis of asynchronous and low-power circuits, the concurrent design of
mixed hardware and software systems, and the formal verification of digital sys-
tems.

In 1991, Dr. Lavagno received the Best Paper award at the 28th Design Au-
tomation Conference in San Francisco, CA. He has served on the technical com-
mittees of several international conferences in his field (namely the Design Au-
tomation Conference, the International Conference on Computer Aided Design,
and the European Design Automation Conference).

Kenneth S. Stevens(SM’99) received the B.A. degree in biology in 1982 and
the B.S. and M.S. degrees in computer science, in 1982 and 1984, from the
University of Utah. He received the Ph.D. degree in computer science from the
University of Calgary, AB, Canada, in 1994.

From 1984 through 1991, he held research positions at the Fairchild/Schlum-
berger Laboratory for AI Research, the Schlumberger Palo Alto Research Lab-
oratory, and Hewlett Packard Laboratories, in Palo Alto, CA. He became an
Assistant Professor at the Air Force Institute of Technology in Dayton, OH in
1994, and since 1996 he has been an Adjunct Professor. Since 1996 he has been
employed at Intel Corporation’s Strategic CAD Labs in Hillsboro, OR, where
he is currently a Principal CAD Engineer. His research interests include asyn-
chronous circuits, VLSI, architecture, hardware synthesis and verification, and
timing analysis. He holds seven patents and has been the principal author for
three papers which received the best paper award.

Dr. Stevens has been on the Technical Program Committee for the Async
conference series since 1998.

Alexander Taubin (M’94–SM’96) received the M.Sc. and Ph.D. degrees in
computer science and engineering from Electrotechnical University of St.Pe-
tersburg, Russia.

He was a Research Fellow at the Computer Department of St. Petersburg
Mathematical Economics Institute, USSR Academy of Science, from 1979
to 1989. From 1988 to 1993, he was a Senior Researcher at the R&D Coop.
TRASSA. From 1993 to 1999, he was with the Department of Computer
Hardware at the University of Aizu Japan, as a Professor. In 1999, he joined
Theseus Logic, Inc. Sunnyvale, CA as Senior Scientist. His current research
interests include design of asynchronous systems (analysis, synthesis, testing,
formal verification and architectural design for asynchronous microprocessors
and DSP) and models for concurrent behavior. He coauthored two books in
asynchronous design and has published more then 40 journal and conference
papers.

Dr. Taubin has served on the technical committees of several international
conferences in his field.

Alexandre Yakovlev (S’94–M’97) received the M.Sc. and Ph.D. degrees in
computing science from Electrotechnical University of St. Petersburg, Russia,
in 1979 and 1982, respectively.

He has worked at Electrotechnical University of St. Petersburg in the area
of asynchronous and concurrent systems since 1980, and in the period between
1982 and 1990 held positions of Assistant and Associate Professor in the Com-
puting Science Department. Since 1991, he has been a Lecturer, Reader, and
since 2000 Professor in Computer Systems Design at the Newcastle University
Department of Computing Science, where he is heading the VLSI Design re-
search group. His current interests and publications are in the field of modeling
and design of asynchronous, concurrent, real-time and dependable systems. He
has coauthored over 100 research papers in technical journals and conferences.

Dr. Yakovlev has organized and served on the technical committees of several
international conferences in the field of asynchronous systems, concurrency and
Petri nets.

