
Inference of Numerical Relations from Digital
Circuits

Enric Rodŕıguez-Carbonell, Jordi Cortadella

Universitat Politècnica de Catalunya
Jordi Girona, 1-3 08034 Barcelona (Spain)
www.lsi.upc.edu/{~erodri,~jordicf}

Abstract. We propose an approach for reverse-engineering arithmetic
circuits, namely for discovering numerical relations from digital circuits.
Boolean values and logical functions are abstracted up to a numerical
domain with integer values and polynomials. This approach can be used
as a pre-processing step to alleviate the computational complexity of
formal verification of digital circuits. The method is illustrated with a
simple example: binary adders.

1 Introduction

Errors in arithmetic hardware, e.g. the Pentium division bug [1], may cause
huge economical disasters, and even the loss of many human lives. However, the
verification of arithmetic circuits is still one the most challenging problems in
the verification community. In particular, current methods such as equivalence
checking do not perform well when applied to integer multipliers at industrial
scale. This calls out for new techniques designed to exploit the properties of in-
teger arithmetics, which may be combined with existing logic-oriented methods.

We propose an approach for reverse-engineering arithmetic circuits: given a
circuit, our goal is to decide if there exists a numerical relation between some
of the input signals and output signals, and if so, to find it. This could be used
when verifying circuits with smaller arithmetic parts, e.g. an ALU (Arithmetic
Logic Unit), to alleviate the state explosion problem of other techniques.

2 Example: Looking for Addition Relations

We illustrate the approach when looking for addition relations. Let us con-
sider the simplest example of an adder, a full-adder. Fig. 1 shows an implemen-
tation of the circuit. It has input signals x, y and cin and output signals s and
cout, which are related by the following linear addition equation:

s + 2cout = x + y + cin (1)

The logical expressions of the output signals in terms of the input signals are
s = x XOR y XOR cin, cout = (x AND y) OR (x AND cin) OR (y AND cin).
Our idea is to abstract the logical operators by polynomials, interpreting the
boolean values true and false as the integer values 1 and 0 respectively. Namely,

x AND y = xy x XOR y = x + y − 2xy
x OR y = x + y − xy NOT x = 1− x



s
x
y

c in
outc

Fig. 1. Full adder

In this example, the output signals can be expressed as follows:

s = x + y − 2xy + cin − 2cinx − 2ciny + 4cinxy
cout = xy + cinx + ciny − c2

inxy − x2ycin − xy2cin + x2y2c2
in

Since the values of the signals we are interested in are 0 and 1, we can simplify
the expressions above by using that for any signal z, z2 = z. This allows us to
have just monomials of degree 1 in each of the variables. In this case:

s = x + y − 2xy + cin − 2cinx − 2ciny + 4cinxy (2)

cout = xy + cinx + ciny − 2cinxy (3)

As we are interested in getting linear expressions, we can eliminate from these
equations the non-linear terms by Gaussian elimination. Formally, considering
the set of polynomials as a vector space, we project the linear subspace gener-
ated by the output equations on the linear monomials. In this case, in order to
eliminate the quadratic term xy we can add twice Eq. 3 plus Eq. 2; it turns out
that all other non-linear terms also vanish, and finally we get Eq. 1, which is
the equation of the full adder. In general, there may be more non-linear terms
to eliminate than equations. So it may be the case that some non-linear terms
cannot be eliminated, and then we do not obtain any addition relation.

Still, for some circuits the addition equation may not be linear. For instance,
for a carry-lookahead adder of n bits with input signals I = {x0, ..., xn−1,
y0, ..., yn−1, cin} and output signals O = {s0, ..., sn−1, G, P} (where G is the
carry-generate signal, and P is the carry-propagate signal), the equation is

cin +

n−1∑
i=0

2i(xi + yi) = 2n · (G + Pcin) +

n−1∑
i=0

2isi ,

which is no longer linear. In this case we can proceed as above expressing the
output variables as polynomials in the input variables; the difference is that,
when applying Gaussian elimination, the criterium to decide which monomials
have to be eliminated has to be different. In the example of the full adder our
goal was to keep only linear terms; now we have to keep linear terms and also
quadratic terms involving the product of an input variable and an output vari-
able. An area of ongoing work is the study of adequate heuristic(s) for selecting
the monomials to be eliminated.

Further, for carry-lookahead adders the output equations are not enough to
get the addition equation. The reason is that not all logical consequences of the
output equations can be expressed as linear combinations of them. Formally,



the vector subspace generated by the output equations misses the algebraic re-
lationships between the different monomials; the ideal I [2] generated by the
output equations should be considered instead. However, the complexity of the
algorithms on ideals would make the approach unfeasible. Thus, it is necessary
to work with approximations of I, which may be obtained by multiplying the
output equations by monomials. In the example, we need to multiply the equa-
tion defining P by the input variable cin. So heuristics have to be employed again
to compute the final set of equations from the initial output equations.

Though the complexity of Gaussian elimination is polynomial, the need of
adding new equations makes the approach unfeasible for a big number of vari-
ables. A solution is to decompose the circuit into black-boxes inductively: once
the behaviour of a part of the circuit has been described by addition equations,
a bigger part containing the previous one is considered; local signals, i.e. those
which are not input or output signals, are eliminated by Gaussian elimination.

The following example illustrates the idea. Consider the carry-ripple adder of
4 bits in Fig. 2, with input signals xi, yi, c0 and output signals si, c4 (i = 0, 1, 2, 3).

0 0 c c c x

c

c x

c

0 x y

0s
c

1s 2s 3s

3c21 4

1 x1 y1 2 2 y2 3 3y3

Fig. 2. Carry-ripple adder

Applying the approach proposed above to each of the four modules, we get
the equations ci+xi+yi = 2ci+1+si (i = 0, 1, 2, 3), which describe the behaviour
of the modules as black boxes. By elimination of c1, c2 and c3 we finally obtain:

cin +

3∑
i=0

2i(xi + yi) = 24 · cout +

3∑
i=0

2isi .

The proposed method is automatable. We believe it can be extended to more
complex arithmetic units and integrated into a verification system. An imple-
mentation of the method is in progress.

References

1. M. Blum and H. Wasserman. Reflections on the Pentium Division Bug. IEEE
Transactions on Computers, 45(4):385–393, 1996.

2. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer, 1998.


