
Support-Reducing Functional Decomposition
for FPGA Technology Mapping

Lucas Machado and Jordi Cortadella
Department of Computer Science, Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract—The goals of decomposition and optimization meth-
ods in technology-independent logic synthesis have historically
been the reduction of cubes and literals, or nodes and levels of a
directed-acyclic graph. These cost functions have a high correla-
tion with mapped circuits composed of standard cells, in which
the simplest logic block has 2 inputs. However, this correlation
does not hold for look-up table based field-programmable gate
arrays (FPGAs), which are composed of logic blocks with k inputs
(typically 4 to 6). Also, local optimizations have limited power
due to the structural bias of circuit descriptions, as these are
generally targeted to standard cells.

This paper tries to reduce the structural biasing by iteratively
collapsing the subject network and decomposing the derived
functions using the support as cost function. The proposed
method improves the FPGA mapping results of a commercial
tool for the 20 largest MCNC benchmarks, with gains of 27% in
delay plus 10% in area when targeting delay; and a reduction
of 16% in area plus 12% in delay with area as cost function.
Moreover, 12 of the best known results for delay (and 3 for area)
of the EPFL benchmarks are updated.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) are integrated
circuits consisting of programmable logic blocks and recon-
figurable interconnections. FPGAs have inferior metrics for
area, performance and power, in comparison with application-
specific integrated circuits (ASIC), but also have an infinitely
smaller initial cost and production time. Moreover, FPGAs
can be reprogrammed multiple times, with its reconfiguration
made in seconds. For those reasons, FPGAs are largely used
for ASIC prototyping and low-volume applications. Recently,
FPGAs started to be employed in the optimization of specific
tasks in data centers, with technology leaders making great
efforts in hybrid solutions with ASICs and FPGAs [1], [2].

The FPGA implementation process inherited many tech-
niques from the ASIC design flow, with high-level synthe-
sis, logic synthesis and physical design. The use of well-
established methods enabled the fast growing and wide-usage
of FPGAs, but these algorithms generally have cost functions
customized for cell-based designs, in which the simplest logic
block has 2 inputs. Usual cost functions in logic synthesis are
cubes in sum-of-product forms, literals in Boolean function
expressions, or nodes and levels of and-inverter graphs (AIGs).
On the other hand, look-up table (LUT) based FPGAs are
composed of logic blocks with k inputs (typically 4 to 6), and
each LUT can implement any logic function of up to k inputs.
This difference leads to FPGA mappings with sub-optimal
results, as observed in [3]. A study on this miscorrelation is
presented in [4], showing that the reduction of nodes and levels

in AIGs not necessarily translates to a FPGA mapping with
fewer LUTs or less logic depth.

Several previous works on FPGA mapping are based on
cut-enumeration, performing a covering of the subject graph
with k-cuts [5]–[7]. FlowMap [5] was the first approach to
guarantee minimal depth for a given structure, and the algo-
rithms just improved ever since. These cut-based techniques
vary on the algorithms, parameters, and cost functions used
for the cut-enumeration and covering. Still, the quality of the
solution heavily depends on the structure of the subject graph.

A second group of previous works rely on Binary Decision
Diagrams (BDDs) as function representation to perform FPGA
mapping [8]–[11]. The use of BDDs usually provides per se
a good starting point for FPGA mapping, as the redundant
variables are removed and the structure size is reduced. Also,
BDDs enable the use of functional techniques, reducing the
structural bias. However, the complexity of BDDs increases
significantly with the number of variables, becoming com-
putationally unfeasible for large designs. Thus, BDD-based
methods often rely on partial collapsing of the subject graph,
limiting the collapsing process based on the BDD size.

This work proposes to gather these two FPGA mapping
strategies, with two main contributions:

• A functional decomposition which uses the support as the
main cost function, and it is based on simple and known
support-reducing techniques.

• An iterative collapsing-remapping approach, which ag-
gressively tries to reduce the structural bias of the circuit
and uses the FPGA mapping metrics as cost function.

On top of a fast and high-quality cut-based FPGA mapping
algorithm [7] and AIG minimization methods [12]–[14], we
propose an iterative collapsing strategy of the mapped FPGA
network, exploiting the structural don’t cares. A tree-based
support-reducing decomposition method is applied, and a
subject graph is generated, which has a structure more suitable
for LUT-based FPGA mapping. Finally, the circuit parts are
greedily selected based on the mapping result.

The paper is organized as follows. Some preliminary con-
cepts are introduced in Section II. Section III presents the
proposed support-reducing decomposition, and the iterative
collapsing-remapping is depicted in Section IV. Section V
provides the FPGA mapping results of the method proposed,
and comparisons with academic tools and a commercial tool.
Section VI concludes the paper.
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Fig. 1. Example of AIG with FPGA structural mapping (t481 benchmark).

II. PRELIMINARIES

A. Boolean Functions

An incompletely specified Boolean function (ISF) F (X) of
n Boolean variables is a mapping from an n-dimensional into
a 1-dimensional Boolean space: {0, 1}n → {0, 1,−}, where
‘−’ denotes a don’t care value. The sub-domains of F that
evaluate to ‘1’, ‘0’ and ‘−’ are the ON-set, OFF-set and DC-
set, respectively. F is a completely specified function if its DC-
set is empty. The set X = (x1, x2, . . . , xn) is denoted as the
support of F , and |F | denotes the size of X (n variables). The
complement of F is denoted as F . The logic operations AND,
OR and XOR are denoted as ‘ · ’, ‘+’, and ‘⊕’, respectively.

B. Cofactors and derivations

The positive (negative) cofactor operation of F (X) with
respect to the variable xi ∈ X consists of assigning xi to
one (zero) in F (X), which can be represented as Fxi (Fxi ).
A cube-cofactor consists of performing the cofactor operation
recursively, e.g. assigning the variables {xi, xj} ∈ X in F (X)
to xi = 0 and xj = 1, which can be denoted as Fxi,xj

.
Cofactors can be used to extract information of F with

respect to a variable in its support. Typical derivations are:
the Boolean difference (1), the existential abstraction (2), the
universal abstraction (3), the Shannon expansion (4) and the
positive and negative Davio expansion (5).

δF/δxi = Fxi
⊕ Fxi

(1)
∃xiF = Fxi

+ Fxi
(2)

∀xiF = Fxi ·Fxi
(3)

F = xi ·Fxi
+ x ·Fxi

(4)
F = xi · δF/δxi ⊕ Fxi

F = xi · δF/δxi ⊕ Fxi

(5)

C. Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a well-known repre-
sentation of Boolean functions [8], [9]. A BDD is a directed-
acyclic graph (DAG) with two terminal nodes 0 and 1, and
each nonterminal node represents a Boolean variable with two
outgoing edges: the 0-edge and the 1-edge. A reduced-ordered
BDD (ROBDD) is a minimized version of a BDD, in which
the nonterminal nodes are organized in a fixed variable order,
in such a way that the number of BDD nodes is reduced. In
this work, ROBDDs are referred as BDDs.

D. And-Inverter Graphs

An and-inverter graph (AIG) is a DAG in which each node
has either 0 incoming edges - the primary inputs (PI), or
2 incoming edges - the AND nodes, or 1 incoming edge -
the primary outputs (PO). Each edge can be negated or not.
Sequential elements are considered as PI/PO pairs. An AIG
example is depicted in Fig. 1: the dotted lines are negated
edges, the 25 circles are AND nodes, the 16 triangles at the
bottom are PIs, and the triangle at the top is a PO.

The AIG representation has a high correlation with its
derived circuit implementation, with the area correlated with
the amount of AND nodes, and the delay proportional to
the number of levels between PIs and POs. Balancing [15],
rewriting [12], refactoring [13] and resubstitution [14] are AIG
transformations used to reduce the nodes and levels of AIGs.
Some commonly used scripts in ABC [16] are dc2 and com-
press2rs [4], [17], which iterate these AIG transformations.

E. FPGA mapping

Technology mapping consists of transforming a technology-
independent subject graph into a network of gates from a
technology. In FPGAs, the technology consists of LUTs, which
are blocks that can be configured to implement any logic
function of up to k variables.

Structural hashing [13] is an operation which ensures that
the AIG has only one AND node with the same incoming
edges, considering permutation. In ABC [16], the subject
graph is an structurally hashed AIG, and a structural FPGA
mapping is performed on top of this structure [7]. Notice that
the FPGA mapping may vary significantly for functionally
equivalent but structurally different AIGs [18].

For example, the AIG depicted in Fig. 1 implements the
functionality of the benchmark t481. By reading the initial
description in ABC and applying AIG optimizations iteratively
(100 iterations of the dc2 script), the best result obtained has
66 LUTs. Instead of using the initial structure, the AIG of
Fig. 1 can be derived with functional transformations, such as
the decomposition method proposed in this paper. The FPGA
mapping (k=6) obtained from the AIG of Fig. 1 is represented
with the gray shapes (4 LUTs and 2 levels).

F. Collapsing

Collapsing [15] a circuit means to replace its logic by a
Boolean network, with one node for each output, and each
node implements the output function based solely on the pri-
mary inputs. Structural don’t cares are removed when collaps-
ing is performed, but also the logic sharing between outputs is
lost. Notice that removing the shared logic may increase area,
but also augments the possibilities of reducing delay. In order
to obtain an AIG from a collapsed network, and therefore a
subject graph for FPGA mapping, it is necessary to decompose
the function of each node. For example, the decomposition can
be performed via algebraic factorization [19] (strash command
in ABC), or using the BDD structure, replacing each BDD
node by a multiplexer (muxes command in ABC).



1: function SUPPORTREDUCEDECOMPOSITION(F , DC)
Input: An ISF, with the ON-set (F ) and the DC-set (DC)
Output: A Boolean network (tree) that implements the ISF

2: /* check for trivial cases (constants, variables) */
3: /* the support size of F is denoted as |F | */
4: if |F | ≤ 1 then return F
5: /* if DC-set is not empty, then minimize F */
6: if DC 6= ∅ then
7: Fmin = MINIMIZE(F , DC)
8: /* accept Fmin if support is reduced or the same */
9: if |Fmin| ≤ |F | then F = Fmin

10: /* perform decomposition */
11: op, < F1, ..., Fi, ..., Fn > = DECOMPOSEFUNCTION(F , DC)
12: /* op ∈ {AND, OR, XOR, MUX, AND-OR, AND-XOR} */
13: for each function Fi in < F1, ..., Fi, ..., Fn > do
14: /* calculate satisfiability don’t care as in [20] */
15: DCi = DC + CALCSDC(op, i, < F1, ..., Fi, ..., Fn >)
16: /* decompose Fi recursively */
17: network = SUPPORTREDUCEDECOMPOSITION(Fi, DCi)
18: op.connect(i, network) /* connect network to gate input i */
19: return op

Fig. 2. Pseudo-code of the proposed support-reducing decomposition.

III. SUPPORT-REDUCING FUNCTIONAL DECOMPOSITION

This section presents the functional decomposition method
proposed, which is based on support-reducing techniques. In
this work, a decomposition of a function F is considered
support-reducing if the derived functions have a support
smaller than F . This definition differs from [21], which limits
the term support-reducing to disjoint-support decompositions.

Fig. 2 depicts a pseudo-code of the algorithm. The method
is technology-independent, i.e. it is agnostic to the FPGA
technology. The input is an incompletely specified function
(ISF), with its ON-set and DC-set in a functional representa-
tion, e.g. BDDs, truth tables. The result is a Boolean network
that implements the ISF, composed of gates obtained from the
decompositions tried: {AND, OR, XOR, MUX, AND-OR, AND-
XOR}. Other gates could be derived for different techniques.

The trivial cases are checked at line 4. If the DC-set is not
empty, then minimization is applied (line 7), updating F if
the minimized function has a support smaller than or equal to
F . The decomposition method described in Fig. 3 is called at
line 11, which receives an ISF as input and returns a solution
consisted of a decomposing gate op and a set of functions. If
the solution is not disjoint-support, then the satisfiability don’t
care (SDC) conditions are calculated with CALCSDC function
(line 15), which is implemented as in [20].

Each derived function is decomposed recursively, generating
a Boolean network (line 17). The network obtained is con-
nected to the related input in the decomposing gate (op) at
line 18. Notice that the resulting network is also a tree and no
efforts are made to share logic in this method, leaving this task
to AIG transformations in ABC (see details in Section IV).

Different support-reducing techniques are tried in the
method of Fig. 3: using essential literals with the method
described in Fig. 4 (lines 4-5), trying to remove one variable
from the support using the method in Fig. 5 (line 9), and
reduce two variables with the method shown in Fig. 6 (line 11).
The existence of essential literals is checked first, and preferred
to the other decomposition techniques. The remaining of the
section details the cost function used to define the best solution
in Fig. 3, as well as the support-reducing techniques applied.

1: function DECOMPOSEFUNCTION(F , DC)
Input: An ISF, with the ON-set (F ) and the DC-set (DC)
Output: A decomposing gate op, and
the input functions < F1, ..., Fi, ..., Fn >

2: Q = ∅ /* priority queue of potential solutions */
3: /* check for essential literals */
4: DECOMPOSEESSENTIALS(F , 1, Q)
5: DECOMPOSEESSENTIALS(F , 0, Q)
6: /* if essential literals found, return */
7: if Q 6= ∅ then return best solution ∈ Q
8: /* check one-variable decompositions */
9: DECOMPOSEONEVARIABLE(F , DC, Q)

10: /* check two-variable decompositions */
11: DECOMPOSETWOVARIABLES(F , DC, Q)
12: return best solution ∈ Q

Fig. 3. Pseudo-code for an step of the support-reducing decomposition.

1: procedure DECOMPOSEESSENTIALS(F , P , Q)
Input: Boolean function F , polarity P , priority queue Q
Post: solutions added to priority queue Q

2: E =< l1, l2, ..., li, ..., ln > /* set of n essential literals of F */
3: if E == ∅ then return
4: H = Fl1,l2,li,ln

/* cube-cofactor of F w.r.t. E */
5: if H 6= 1 then
6: G = (l1 · l2 · li · ln) /* AND of all essential literals */
7: if P 6= 0 then Q.add(G ·H)
8: else Q.add(G+H)

9: else
10: G1 = (l1 · l2) /* AND of essential literals 1 to n

2 */
11: G2 = (li · ln) /* AND of essential literals n

2 +1 to n */
12: if P 6= 0 then Q.add(G1 ·G2)
13: else Q.add(G1 +G2)

Fig. 4. Pseudo-code for decomposition using essential literals.

A. Cost function

The pseudo-code in Fig. 3 returns the best solution from
a priority queue (lines 7 and 12). In this work, the best
solution is the one that obtains the set of derived functions
with the smallest sum of support sizes. Moreover, a solution is
discarded if one of the derived functions has the same support
as F . Additionally, if there is more than one solution with
the smallest sum of support sizes, then the following costs are
considered, in this order:

1) The sum of the squares of the BDD sizes [22], targeting
a balanced solution, which favors delay reduction.

2) The gate implementation cost in CMOS transistors, e.g.
an AND gate costs less than a MUX or an XOR.

As BDDs are the function representation of choice, the costs
exploit its structure to guide the decomposition, but similar
costs could be derived for different representations.

B. Essential literals

Fig. 4 describes the decomposition method using essential
literals, i.e. literals that are common to all prime implicants.
For example, given F (X) and {a, b, c} ∈ X , if {a, b, c}
are essential literals of F (X), then F can be rewritten as
F (X) = (a · b · c) ·Fa,b,c. Similarly, given G(X) = F (X)
and {x, y, z} ∈ X , if {x, y, z} are essential literals of G(X),
then F can be decomposed as F (X) = (x · y · z) +Gx,y,z .

The decomposition with the essential literals of F is
checked at line 7, and the one for F at line 8. If the function
is solely composed of essential literals, i.e. the cube-cofactor
w.r.t. to the essential literals is the constant 1 (F is a cube),
then a balanced decomposition is performed (lines 12-13).



1: procedure DECOMPOSEONEVARIABLE(F , DC, Q)
Input: The ON-set (F ), DC-set (DC), and priority queue Q
Post: solutions added to priority queue Q

2: for each variable xi ∈ support of F do
3: if δF/δxi == 1 then
4: Q.add(xi ⊕ Fxi

)
5: Q.add(xi ⊕ Fxi

)
6: else
7: if ∃xiF == Fxi

then
8: Q.add((xi · Fxi

) + Fxi
) /* AND-OR */

9: else if ∃xiF == Fxi
then

10: Q.add((xi · Fxi
) + Fxi

) /* AND-OR */
11: else /* full Davio and Shannon expansions */
12: Q.add((xi · δF/δxi)⊕ Fxi

) /* AND-XOR */
13: Q.add((xi · δF/δxi)⊕ Fxi

) /* AND-XOR */
14: Q.add(xi · Fxi

+ x · Fxi
) /* MUX */

15: /* one-variable abstraction-based decompositions */
16: if ∃xiF 6= 1 then G = ∃xiF
17: H = MINIMIZE(F , G+ DC)
18: Q.add(G ·H)

19: if ∀xiF 6= 0 then G = ∀xiF
20: H = MINIMIZE(F , G+ DC)
21: Q.add(G+H)

Fig. 5. Pseudo-code for one-variable decompositions.

C. One-variable decompositions

The basic one-variable support-reducing decompositions are
given by the Shannon expansion (4), and the Davio expansions
(5). These methods isolate one variable, therefore reducing
the support size of the derived functions in at least one.
Simplifications of these expansions can be obtained given
specific conditions, as shown in (6). Essential literals cover
the cases in which one of the cofactors is a constant.

F = xi ⊕ Fxi , if δF/δxi = 1

F = xi ⊕ Fxi , if δF/δxi = 1

F = xi ·Fxi + Fxi , if ∃xiF = Fxi

F = xi ·Fxi + Fxi , if ∃xiF = Fxi

(6)

The Davio and Shannon expansions are added to the queue in
the method described in Fig. 5 (lines 12-14). The simplifica-
tions listed in (6) are also checked (lines 4-5, 8 and 10) and
preferred to the full Davio and Shannon expansions.

D. Two-variable decompositions

In [23], it is proposed the use of simple cofactor tests in
order to perform disjoint-support decompositions (DSD). The
cofactor tests and decompositions for AND and XOR are
described in (7), given F (X) and {x, y} ∈ X . These tests
are performed in the method of Fig. 6 (lines 4-10, and 17).

F = x · y ·Fx + x · y ·Fx,y , if Fx = Fy

F = x · y ·Fx + x · y ·Fx,y , if Fx = Fy

F = x · y ·Fx + x · y ·Fx,y , if Fx = Fy

F = x · y ·Fx + x · y ·Fx,y , if Fx = Fy

F = ((x⊕ y) · δF/δx)⊕ Fx,y , if δF/δx = δF/δy

(7)

If one of the cube-cofactors in (7) is a constant, then
simplifications can be derived, which are checked in Fig. 6
(lines 14-15, and 19-21). If no simplification is possible, then
a MUX gate is defined for the AND decomposition (line 16),
and an AND-XOR gate for the XOR decomposition (line 22).

1: procedure DECOMPOSETWOVARIABLES(F , DC, Q)
Input: The ON-set (F ), DC-set (DC), and priority queue Q
Post: solutions added to priority queue Q

2: for each pair of variables xi, xj ∈ support of F do
3: C = true /* detects an AND DSD condition */
4: if Fxi

== Fxj
then

5: S = (xi · xj); G = Fxi,xj
; H = Fxi

6: else if Fxi
== Fxj

then
7: S = (xi · xj); G = Fxi,xj

; H = Fxi

8: else if Fxi
== Fxj

then
9: S = (xi · xj); G = Fxi,xj

; H = Fxi

10: else if Fxi
== Fxj

then
11: S = (xi · xj); G = Fxi,xj

; H = Fxi

12: else C = false
13: if C then
14: if G == 0 then Q.add(S ·H)
15: else if G == 1 then Q.add(S +H)
16: else Q.add(S ·H + S ·G) /* MUX */
17: else if δF/δxi == δF/δxj then
18: S = (xi ⊕ xj), G = Fx,y , H = δF/δxi

19: if G == 0 then Q.add(S ·H)
20: else if G == 1 then Q.add(S +H)
21: else if H == 1 then Q.add(S ⊕G)
22: else Q.add((S ·H)⊕G) /* AND-XOR */
23: else /* two-variable abstraction-based decompositions */
24: if ∃xixjF 6= 1 then G = ∃xixjF
25: H = MINIMIZE(F , G+ DC)
26: Q.add(G ·H)

27: if ∀xixjF 6= 0 then G = ∀xixjF
28: H = MINIMIZE(F , G+ DC)
29: Q.add(G+H)

Fig. 6. Pseudo-code for two-variable decompositions.

E. Abstraction-based decompositions

This work introduces two decompositions based on the
existential and universal abstractions. As explained in [24],

∀xiF ≤ F ≤ ∃xiF. (8)

Thus, the existential abstraction ∃xiF implies an AND bi-
decomposition, and the universal abstraction ∀xiF implies
an OR bi-decomposition. These decompositions guarantee the
support reduction for at least one of the derived functions.

The condition to define H in the AND bi-decomposition
F = G ·H is F ≤ H ≤ F +G, given F and G. Considering
G = ∃xiF , then F ≤ H ≤ F+∃xiF . Similarly, the condition
to define H in the OR bi-decomposition F = G + H is
F ·G ≤ H ≤ F , given F and G. Considering G = ∀xiF ,
then F · ∀xiF ≤ H ≤ F . These conditions are used to define
H via don’t care minimization. Additionally, the minimization
can take advantage of the satisfiability don’t cares generated by
previous decompositions. The minimization can be performed
by any method that accepts an ISF, such as Espresso [25], or
BDD minimization [26], [27]. In this work, the abstraction-
based decompositions are applied to one variable (lines 16-21
in Fig. 5) and two variables (lines 24-29 in Fig. 6).

IV. ITERATIVE COLLAPSING AND REMAPPING

This section presents an alternative and aggressive partial
collapsing approach. The idea is to iteratively collapse the
subject network, selecting the best FPGA mapping for each
circuit part. A pseudo-code detailing the proposed approach is
shown in Fig. 8, and an overview of the method is depicted
in Fig. 7. The method input is an FPGA mapping (R0), the
number of LUT inputs k, and a cost function COST, e.g. area
or delay. The result is an optimized implementation of R0.



FPGA
mapping

R0

O1 Oi Om... ...

I1 Ii In

... ...

Structural hashing
+ AIG optimization 
+ FPGA map

FPGA
mapping

R1

O1 Oi Om... ...

I1 Ii In

... ...

Merge +
Structural hashing +
AIG optimization + 

FPGA map

FPGA
mapping

R2

O1 Oi Om... ...

I1 Ii In

... ...

Extract logic for
each output 
individually, and
get FPGA mapping 

O1

I1 Ii In

... ...

Oi

I1 Ii In

... ...

Om

I1 Ii In

... ...

... ...

F1 Fi Fk... ...

I1 Ii In

... ...

FPGA
mapping
fragmentObtain FPGA mapping

for fragment recursively

Merge +
Structural hashing +
AIG optimization +

FPGA map

FPGA
mapping

R3

O1 Oi Om... ...

I1 Ii In

... ...

Extract logic for each output
individually, using the outputs
of the extracted fragment as
inputs, and get FPGA mapping

On top of the best 
FPGA mapping from
{R0, R1, R2}, extract 
fragment with the nodes 
with fanout > 1 as outputs

Return the 
best FPGA
mapping from
{R0,R1,R2,R3}

... ...
O1

I1 Ii In

... ...
F1 Fi Fn

... ...

Oi

I1 Ii In

... ...
F1 Fi Fn

... ...

Om

I1 Ii In

... ...
F1 Fi Fn

... ...

C
om

pa
re

Fig. 7. The iterative collapsing-remapping approach.

The first step is a remapping of R0 using the function
FPGAMAP (line 5). This function performs structural hashing,
10 iterations of AIG optimizations scripts, and an FPGA map-
ping with structural choices [28] for each structure generated,
returning the best mapping for the cost function COST. The
number of iterations can be incremented to try to get better
results, or it can be reduced for a lower runtime.

The second step is the collapsing of each output, which is
performed in function COLLAPSEFPGAMAP (lines 16 and 31).
Collapsing is a computationally complex process that may
be unfeasible for complex networks, so a time-out is set to
avoid indefinite execution. If collapsing is successful, then the
method presented in Section III is applied, generating a new
structure. If collapsing is not successful, then the single output
network extracted is the only structure considered. On top
of each of these structures, structural hashing is performed,
followed by a single execution of AIG optimization scripts,
with an FPGA mapping with structural choices performed for
each different structure, returning the best mapping result for
each output. FPGA mapping R2 is generated by merging the
output networks obtained (line 19) using structural hashing,
followed by the function FPGAMAP (line 21).

The third step consists of extracting a fragment network
from the best FPGA mapping produced so far, in which its out-
puts are the nodes with multiple fanout identified in topologi-
cal order. These nodes are transformed to primary inputs from
the outputs perspective, and the collapsing-remapping process
is repeated for each output. The implementation for the shared
fragment network is obtained recursively, until the number of
levels is 1 (line 8), returning the best FPGA mapping for each
recursive call. FPGA mapping R3 is generated by merging
the output networks and the fragment result (line 40) using
structural hashing, followed by FPGAMAP (line 42).

V. EXPERIMENTAL RESULTS

The support-reducing functional decomposition and the it-
erative collapsing-remapping are implemented in C++. BDDs
are the functional representation of choice for the functional
decomposition, and the CUDD BDD package [27] is used. All
results passed formal verification with ABC command cec.

1: function ITERATIVECOLLAPSE(R0, k, COST)
Input: FPGA mapping R0, LUT size k, cost function COST
Output: An optimized FPGA mapping guided by COST

2: BestR = R0 /* initialize the best result to be returned */
3: /* obtain R1 by remapping input R0 */
4: /* run structural hashing, AIG optimizations, FPGA mapping */
5: R1 = FPGAMAP(R0, k, COST)
6: if COST(R1) < COST(BestR) then BestR = R1

7: /* if the number of levels is 1, return */
8: if number of levels of BestR == 1 then return BestR
9: /* obtain R2 by remapping outputs individually */

10: outputNetworks = ∅ /* best implementation for each output */
11: /* implement each output individually */
12: for each output i in BestR do
13: /* extract single output network */
14: Ntk Oi = EXTRACTOUTPUTTOINPUTS(BestR, i)
15: /* collapse, decompose, optimize, FPGA mapping */
16: Oi = COLLAPSEFPGAMAP(Ntk Oi, k, COST)
17: outputNetworks.insert(Oi, i)
18: /* merge output networks using structural hashing */
19: Ntk R2 = MERGENETWORKS(outputNetworks)
20: /* run AIG optimizations, FPGA mapping */
21: R2 = FPGAMAP(Ntk R2, k, COST)
22: if COST(R2) < COST(BestR) then BestR = R2

23: /* obtain R3 by remapping outputs with a shared fragment */
24: tempNtk = MULTIPLEFANOUTTOPI(BestR)
25: sharedNodes = ∅ /* set of shared nodes used */
26: /* implement each output individually */
27: for each output i in tempNtk do
28: /* extract single output network */
29: Ntk Oi = EXTRACTOUTPUTTOINPUTS(tempNtk, i)
30: /* collapse, decompose, optimize, FPGA mapping */
31: Oi = COLLAPSEFPGAMAP(Ntk Oi, k, COST)
32: if COST(Oi) < COST(outputNetworks[i]) then
33: outputNetworks.insert(Oi, i)
34: sharedNodes.insert(inputs of Oi)
35: if sharedNodes 6= ∅ then
36: /* get shared fragment with sharedNodes as outputs */
37: fragment = GETSHAREDFRAGMENT(BestR, sharedNodes)
38: Rf = ITERATIVECOLLAPSE(fragment, k, COST)
39: /* merge output networks and fragment using structural hashing */
40: Ntk R3 = MERGENETWORKS(outputNetworks, Rf )
41: /* run AIG optimizations, FPGA mapping */
42: R3 = FPGAMAP(Ntk R3, k, COST)
43: if COST(R3) < COST(BestR) then BestR = R3

44: return BestR

Fig. 8. Pseudo-code of the iterative collapsing-remapping approach.

The FPGA mapping based in priority cuts [7] and
choices [28] implemented in ABC [16] is the one used in
the iterative collapsing-remapping approach. Delay-oriented
FPGA mapping with ABC is obtained by the command
‘if -C 12 -K k’, which targets primarily delay, with a config-
uration of at most 12 priority cuts per node [17].



TABLE I
FPGA MAPPING COMPARISON WITH BDD-BASED APPROACHES (k = 5).

Circuit
BoolMap [8]

(delay)
BDS-pga [9]

(delay) ABC (delay) SR-map (delay)
+ ABC (delay)

LUTs Lev. LUTs Lev. LUTs Lev. LUTs Lev. Time(s)
5xp1 13 2 15 2 21 3 14 2 3
9sym 7 3 7 3 60 4 8 3 2
9symml 7 3 7 3 58 4 8 3 2
alu2 43 4 41 4 117 7 35 4 13
alu4 268 7 190 7 219 9 102 4 26
apex6 188 4 186 4 171 4 169 3 26
apex7 78 3 71 3 61 3 54 3 8
b9 41 3 40 3 33 3 38 2 3
C1355 98 5 65 4 66 4 66 4 157
C1908 137 7 119 7 95 6 86 6 217
C499 102 4 64 4 66 4 66 4 162
C5315 672 9 447 7 365 7 374 6 217
C880 134 8 108 8 87 7 92 6 55
clip 15 2 30 4 71 4 19 3 8
count 42 2 26 5 36 3 33 3 5
des 594 3 909 4 623 4 568 4 328
duke2 192 5 169 7 141 4 120 4 26
misex1 15 2 14 2 15 2 11 2 2
rd84 10 2 13 3 109 5 13 3 11
rot 228 6 218 9 203 6 215 5 43
t481 5 3 5 2 148 6 5 2 2
vg2 30 4 12 3 27 3 21 3 6
z4ml 5 2 5 2 5 2 5 2 1
Geomean 49.63 3.60 44.95 3.91 74.81 4.20 40.59 3.31 57.52
Ratio 1.00 1.00 0.91 1.09 1.51 1.17 0.82 0.92 -

Alternatively, area-oriented FPGA mapping is applied
by setting the parameter ‘-a’, with the command
‘if -a -C 12 -K k’. The number of LUT inputs varies
for the different sets of benchmarks. Also, structural bias is
further reduced by identifying structural choices [28], which
is performed by running two FPGA mappings, with the
commands ‘&synch2’ and ‘&dch’ before each mapping, and
selecting the best result between the two.

The proposed approach, named as Support-Reducing
Remapping tool (SR-map), attempts to optimize a given
FPGA mapping. In the experiments presented in this section,
the input FPGA mapping (R0) is either the one obtained with
ABC, or the best known result for the EPFL benchmarks [29].

The FPGA mappings obtained are greedily selected based
on the cost function. In this work, two cost functions are
analyzed: logic levels and LUT count. If the objective is
reducing delay, then SR-map greedily selects the circuit parts
with fewer logic levels, using LUT count as a tie breaker.
Alternatively, if the goal is to minimize area, LUT count is
the main cost function and logic levels is the tie breaker.

A. BDD-based FPGA mapping tools

This section compares SR-map results with the FPGA
mappings reported by the BDD-based tools BoolMap [8] and
BDS-pga [9], and the ones obtained with ABC. The FPGA
mappings of BoolMap and BDS-pga refer to the best results
for delay reported in [8] and [9], which are presented in
Table I, with FPGA mapping to LUTs with k=5. The bold
numbers in Table I highlight the best results for delay. BDS-
pga achieves an area reduction of 9% in comparison with
BoolMap, at the expense of increasing delay in 9%.

The ABC results are obtained using the same input structure
as the BDD-based tools, applying structural hashing, 10 iter-
ations of AIG optimizations (compress2rs and dc2 scripts),
and mapping for FPGA with the command ‘if -C 12 -K 5’,
identifying structural choices with commands ‘&synch2’ and
‘&dch’. For this set of benchmarks and configuration, ABC
produces worse results than the BDD-based tools, with map-
pings 51% larger in area and 17% larger in delay, compared
to BoolMap. The difference in LUTs is larger than 90% for
benchmarks rd84 and t481, and the reason for this behavior
lies on the nature of each approach. BoolMap and BDS-pga
perform functional transformations using BDDs, whereas ABC
performs an structural mapping on top of an AIG, in which
its nodes and levels are iteratively minimized.

SR-map is able to boost ABC structural bias reduction,
delivering a result that outperforms BoolMap [8], even using
the networks generated by ABC as starting point. This work
improves BoolMap results in 18% for area and 8% for delay,
with the best delay result for 12 of the 22 benchmarks.

B. 20 largest MCNC benchmarks

The BDD-based methods deliver reasonably good results,
but are not scalable for large designs. As this work relies
only partially on BDDs, it is possible to apply it to larger
circuits. This section presents results for the 20 largest MCNC
benchmarks, comparing the methods proposed in this work
with a commercial tool and ABC.

Table II presents the results with FPGA mappings to LUTs
with k=6. The synthesis in the commercial tool is configured to
avoid the use of multiplexers and merging of LUTs, delivering
results comparable to the other tools. The reported runtime
considers only the logic synthesis and optimization steps. In
Table II, the bold numbers in ‘Levels’ highlight best delay
results, whereas the bold numbers in ‘LUTs’ underline the
best results considering area.

1) FPGA mapping for delay: The ABC results for delay are
obtained using the input structure, applying structural hashing
and iterative AIG optimizations, and mapping for FPGA with
the command ‘if -C 12 -K 6’, using commands ‘&synch2’ and
‘&dch’ to identify structural choices. This process produces a
result 99% larger in area and 5% larger in delay than the
commercial tool.

Using ABC delay-oriented mapping and delay as cost
function for the selection of the circuit parts, SR-map produces
a result with 27% fewer logic levels and 10% fewer LUTs than
the commercial tool. Also, an area reduction of 16% with a
delay reduction of 12% is achieved when area minimization
is defined as the cost function.

2) FPGA mapping for area: The ABC results for area are
obtained using the command ‘if -a -C 12 -K 6’, also identifying
structural choices. Notice that there is an area recovery post-
process in ABC delay-oriented mapping, but area-oriented
mapping does not try to improve delay. This setup produces
results with fewer LUTs, still 83% larger in area than the
commercial tool, but increases significantly the delay results,
almost doubling logic levels.



TABLE II
FPGA MAPPING COMPARISON FOR THE 20 LARGEST MCNC BENCHMARKS (k = 6).

Iterative collapsing and remapping
Factor (delay) + Factor (area) + SR-map (delay) SR-map (area) SR-map (area)

Circuit Commercial tool ABC (delay) ABC (area) ABC (delay) ABC (delay) + ABC (delay) + ABC (delay) + ABC (area)
LUTs Lev. Time(s) LUTs Lev. LUTs Lev. LUTs Lev. LUTs Lev. LUTs Lev. Time(s) LUTs Lev. Time(s) LUTs Lev.

alu4 320 5 230 456 5 415 10 183 5 186 5 63 3 24 58 4 21 56 5
apex2 302 13 276 507 6 408 11 40 4 40 4 35 3 17 34 4 14 30 7
apex4 192 3 290 558 5 529 10 390 4 390 4 155 3 203 155 3 212 153 3
bigkey 569 3 313 577 3 577 3 577 3 577 3 685 2 257 491 3 191 577 3
clma 180 5 438 2614 8 2221 18 200 4 203 4 203 4 75 190 4 84 186 8
des 436 4 345 447 4 457 7 447 4 446 4 513 3 194 445 4 222 449 5
diffeq 472 8 348 559 7 510 13 559 7 532 8 533 7 241 527 8 262 502 14
dsip 690 3 338 871 3 871 3 869 2 869 2 869 2 190 869 2 224 869 2
elliptic 115 5 313 315 6 297 11 315 6 315 6 316 5 36 311 6 51 291 11
ex1010 210 3 335 572 5 550 10 453 4 432 5 208 3 107 207 4 180 207 4
ex5p 100 2 252 326 4 301 9 91 2 85 3 86 2 12 82 2 16 82 5
frisc 1694 13 292 1725 12 1698 26 1886 10 1692 13 1857 10 654 1689 13 853 1637 25
i10 557 9 285 535 8 500 22 627 7 522 9 537 7 329 505 9 317 481 24
misex3 197 5 240 284 5 234 9 205 4 193 4 117 4 37 102 4 35 94 5
pdc 155 4 286 1385 6 1143 14 154 4 148 4 157 3 70 142 4 67 144 6
s38417 1458 7 437 2557 6 2443 11 2460 6 2458 7 2450 6 1304 2396 7 1035 2369 12
s38584 1946 8 432 2287 6 2255 12 2463 5 2212 6 2224 5 1246 2229 5 729 2198 12
seq 531 7 247 583 5 520 10 560 4 486 5 527 4 307 459 5 114 420 10
spla 157 4 269 1350 6 1128 15 145 4 137 4 156 3 138 135 4 62 121 6
tseng 656 8 269 651 6 631 13 647 6 635 8 634 6 385 636 8 265 629 12
Geomean 374.30 5.24 306.1 744.07 5.51 685.86 10.56 400.08 4.43 383.36 4.92 335.79 3.84 141.1 312.67 4.61 128.9 304.62 7.21
Ratio 1.00 1.00 - 1.99 1.05 1.83 2.01 1.07 0.84 1.02 0.94 0.90 0.73 - 0.84 0.88 - 0.81 1.38

TABLE III
BEST KNOWN RESULTS FOR EPFL BENCHMARKS 2017 (k = 6).

Circuit Best EPFL (delay) SR-map (delay) + ABC (delay)
LUTs Levels LUTs Levels Time(s)

arbiter 2884 5 2243 5 729
cavlc 115 4 75 3 25
dec 270 2 264 2 11
int2float 41 3 31 3 5
i2c 244 3 242 3 30
mem ctrl 2490 7 2484 6 792
max 882 10 857 10 313
multiplier 8215 28 6543 28 26012
priority 157 4 152 4 15
router 57 4 54 4 5
sin 1801 30 3546 28 12779
voter 1469 12 1450 12 4601

Circuit Best EPFL (area) SR-map (area) + ABC (area)
LUTs Levels LUTs Levels Time(s)

cavlc 101 6 72 4 25
dec 270 2 264 2 11
int2float 28 6 27 6 5

Using ABC area-oriented mapping and area as cost function,
SR-map obtains a result with 19% fewer LUTs than the com-
mercial tool, but with 38% more logic levels. The results are
3% smaller in area than using ABC delay-oriented mapping,
but with much worse delay results, as this is disregarded in
the area-oriented mapping.

3) Support-reducing decomposition: The remapping ap-
proach proposed in Section IV can be applied regardless of
the support-reducing decomposition presented in Section III.
For example, the collapsed functions can be decomposed
using algebraic factorization [19], instead of the decomposition
method proposed. The results for the iterative collapsing-
remapping using factorization (obtained with the ABC com-
mand strash) instead of the support-reducing decomposition
are also presented in Table II, denoted as ‘Factor’.

For some benchmarks, e.g. apex2, clma, ex5p, the iterative
collapsing-remapping produces similar results both for the
factorization and the decomposition. However, considering the
full set of benchmarks, the results obtained using the support-
reducing decomposition are considerably better than the ones
using factorization, both for area and delay. Regarding the
methods analyzed, SR-map obtains the best delay result for
19 of the 20, and the best area for 13 of the 20 benchmarks.

C. EPFL benchmarks

The EPFL benchmarks [29] are a set of 20 designs, 10
arithmetic and 10 random/control circuits. Since 2015, the
best known FPGA mapping results (with k=6) for delay and
for area are recorded. Consequently, these benchmarks have
highly optimized results, which are very difficult to improve.
For example, the commercial tool used in this work is not
able to improve any of the EPFL results, as it provides FPGA
mappings with more balanced results in area and delay.

The proposed method is able to update 12 of the best known
results for delay (and 3 for area), as depicted in Table III. The
most remarkable results are: cavlc, with a reduction of 25%
in delay plus 35% in area; int2float, reducing LUT count in
25%; and the multiplier, with an area reduction of 20%. Note
that the area of the sin benchmark is increased significantly
for a reduction of 2 logic levels. This behavior is expected,
as the delay is the cost function in this case. Therefore,
SR-map greedily selects the circuit parts with lowest logic
levels, considering LUT count only as a tie breaker.

D. Runtime analysis

Collapsing the network is a bottleneck for the method, as
failed collapsing processes represent most of the execution
time. Also, as a logic fragment is extracted considering all
outputs, the number of levels in the FPGA mapping is also



a limiting factor regarding performance. The ABC runtime is
a fraction of the proposed approach, as it is repeatedly used.
Still, the average execution time is comparable with the one
for the commercial tool.

VI. CONCLUSIONS

This paper proposes a support-reducing functional decom-
position method to produce a subject graph with a structure
more suitable to LUT-based FPGA technology mapping. An
iterative collapsing-remapping approach is also proposed, try-
ing to reduce the structural bias of the circuit, while using the
actual FPGA mapping result as cost function.

The experiments show promising results. The proposed
method improves the results of a commercial tool for MCNC
benchmarks, with gains of 27% in delay plus 10% in area
when targeting delay, and 16% in area plus 12% in delay with
area as cost function. Moreover, 12 of the best known results
for delay (and 3 for area) of the EPFL benchmarks are updated.

A. Future work

As future work, some directions can be explored. Addi-
tional support-reducing techniques could be incorporated, such
as [30] and [31], which propose scalable bi-decomposition
methods. Regarding the remapping method, the propagation of
the don’t care conditions could potentially improve the results
obtained. Also, keeping track of the critical paths may allow
area reduction while obtaining similar delay results.
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