
Transistor Placement for Automatic Cell Synthesis

Through Boolean Satisfiability
Maicon Cardoso*, Andrei Bubolz*, Jordi Cortadella†, Leomar Rosa Jr.*, Felipe Marques*

*Graduate Program in Computing, Federal University of Pelotas, Pelotas, Brazil
†Department of Computer Science, Universitat Politècnica de Catalunya, Barcelona, Spain

{mscardoso, aaobubolz, leomarjr, felipem}@inf.ufpel.edu.br*, jordi.cortadella@upc.edu†

Abstract—This paper presents a new transistor placement

method applied to the ASTRAN EDA tool, an open-source

solution for the automatic design of complex digital gates.

Although it currently reaches an optimized solution through a

Threshold Accepting approach, ASTRAN does not guarantee a

minimum-width placement. In this paper, a method based on

Boolean satisfiability is proposed, ensuring an optimal solution

for the transistor placement task through modeling the problem

into a set of Boolean variables and clauses aware of four design

rule constraints. Experiments comparing the proposed method

and the current ASTRAN placement technique have shown

reductions in the layout area. Furthermore, our method achieved

a significant improvement regarding runtime, an essential

feature for designing digital circuits and systems on-demand.

Keywords—transistor placement, transistor chaining, Boolean

satisfiability, SAT, ASTRAN, EDA tool

I. INTRODUCTION

Optimizations in the logic and physical synthesis are
crucial factors for improving VLSI circuits. Recently, several
papers pointed out that the on-the-fly design of complex gates
provides significant improvements in different aspects of the
digital design [1-4]. In this scenario, the transistor placement
procedure is an essential step of the on-demand gate design
flow since it enables to achieve optimized layouts concerning
several attributes such as area, power, and delay.

The first placement method [5] proposed the width
minimization of dual networks through a graph-based approach
which aims to find a solution with the minimum number of
diffusion breaks. It also presented the widely-used single-row-
height layout style, where the transistors are placed exclusively
in one direction along two P/N diffusion rows.

Following this, since logic gates should be designed to
fulfill some requirements, transistor sizing and folding must be
efficiently applied for the synthesis tools. In this scenario, [6]
proposed a method to generate layouts without any structure
constraints, producing cells with a different number of P and N
transistors and non-uniform transistor widths (by applying
transistor folding), for instance. Furthermore, still addressing
the width minimization of dual circuits, [7] proposed a solution
for this problem considering the case of non-series-parallel
(NSP) planar circuits through a heuristic-based approach.

Although most of these methodologies produces optimized
results, they do not guarantee the minimum width placement of
the transistors, i.e., the optimal solution in terms of area.
Recently, [8-9] proposed a Boolean satisfiability (SAT)

approach introducing an optimal placement method for both
dual [8] and non-dual transistor networks [9]. The technique
consists in to describe the placement problem into a set of
Boolean expressions (clauses) and determines whether there is
some variables assignment that satisfies all these clauses.

Along with that, several solutions were proposed
integrating placement methods with a complete cell design
flow [10-12]. These electronic design automation (EDA) tools
use different techniques for placement in order to produce
optimized layouts for dual and non-dual logic networks. For
instance, while Layout Synthesizer [10] heuristically pairs
transistors to be placed, LiB [11] identifies strongly connected
clusters and form pairs of each cluster, a more scalable
approach. ASTRAN [12], an open-source EDA tool for
complex gate design, applies a Threshold Accepting (TA)
method [13] to determine the placement solution which
maximizes the diffusion sharing and minimizes the
interconnection length. This methodology is based on a local
search algorithm that starts from a random feasible placement
and then explores the solution space looking for a better layout.
However, as expected for a TA approach, the placement
solution eventually gets stuck in a local minimum, not reaching
the optimal transistor ordering in terms of the layout area.

The transistor placement methodology presented in this
paper aims to avoid this problem in ASTRAN by using a
Boolean satisfiability approach similar to the previously
proposed in [8], but focusing on the single-row layout style
without any topological constraints, i.e., including non-dual
and non-planar arrangements. This way, our proposition is able
to deal with CMOS networks with any structure, ensuring the
minimum number of diffusion breaks and the optimal solution
in terms of area in a feasible computational time.

II. THE ASTRAN EDA TOOL

ASTRAN is an open-source EDA tool that was developed
to automate the physical synthesis of VLSI circuits [12]. This
tool automatically implements digital gates at the layout level
in 65nm and 45nm technology nodes. It supports cells with
different characteristics, such as a wide range of transistor
arrangements, unrestricted circuit structures (including non-
dual and non-planar topologies), conditional design rules,
transistor folding, among others.

The input file of ASTRAN is a transistor network
description in SPICE file format. The output layout files of the
tool can be written in CIF and GDSII formats. These files may
be used in other tools to realize further physical synthesis steps

The authors thank FAPERGS, CNPq, and CAPES (Finance Code 001)
Brazilian research support agencies that financed this investigation.

978-1-7281-3320-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 01,2020 at 13:42:10 UTC from IEEE Xplore. Restrictions apply.

or to perform the cell characterization. It is important to notice
that ASTRAN only generates single-row-height layouts.

Regarding the placement procedure currently working on
ASTRAN, a Threshold Accepting (TA) approach is
implemented where its cost function fC takes into account
parameters relative to the transistor chaining and the detailed
routing (to be performed after the placement of the transistors).
This cost function fC is presented in (1),

ldwlgcmdgmC WWWWWWf +)+2+3+4+4(100= (1)

where Wgm is the weight of the gate mismatch, Wmd is related to
the routing density, Wc refers to the cell width (in terms of the
number of elements placed in a matrix data structure), Wg is the
weight associated with the number of diffusion gaps, Wwl
represents the total length of the connections, and, finally, Wld
is the local routing density. Along with that, the perturbation
function incrementally modifies the initial placement (obtained
randomly) by moving a set of contiguous P/N transistors
through its diffusion rows. These moves can be done by
shifting the positioning of the transistors or flipping its
terminals. This way, the cost function measures the quality of
the new solutions, accepting or rejecting it accordingly with the
current threshold value. After some iterations, it is expected
that a good solution (considering its score relative to fC) has
been achieved.

III. PROPOSED METHODOLOGY

 This section will describe all the steps of the proposed
placement methodology. It is important to mention that our
method is similar to the one described in [8]. However, in our
approach we focused on obtaining an optimized SAT-based
solution (in terms of number of variables and clauses) for the
specific layouts generated by ASTRAN, i.e., without
topological constraints (including non-dual and non-planar
networks) – a necessary constraint when dealing with complex
logic gates generated on-demand [4] – and for the specific
single-row-height layout style. Our approach also avoids any
vertical gate mismatches for the reasons reported in [14].

A. Problem Description

The input of the proposed method is a transistor-level
description of the complex gate, i.e., a SPICE netlist containing
the arrangements of the pull-up (PU) and pull-down (PD)
transistors. As proposed originally in [5], in the single-row
layout style adopted (Fig. 1.a) the transistors are placed into
two rows containing the PU (upper row) and the PD (bottom
row) devices. In this scenario, each device is expressed by a set
of Boolean variables that represent all possible placement
configurations, as shown in Table I. The initial size of this set
depends on the number of transistors of the input netlist.

For modeling the transistor placement problem, we
generate the set of SAT clauses through five main steps. The

first one is a simplification procedure (discussed in section
III.C), while the remaining implement the placement
constraints (section III.D-III.G). Finally, the complete
algorithm for placement is presented in Algorithm 1 (section
III.H).

B. Transistor Gap (TG)

This component operates like a gap (break in the diffusion
row) in the proposed placement modeling. Diverging from the
conventional transistor, it might assume dynamic values in its
terminals, allowing it to be placed in any position of the cell,
i.e., the neighborhood of any other transistor. Moreover, the
flipped variables of these components are not created, avoiding
unnecessary and redundant clauses. There are two distinct
situations in which a transistor gap (TG) may be employed: (1)
in case of a different number of P and N-type transistors in the
input netlist, where the necessary number of TGs is added to
complete the equality; (2) after each iteration resulting in an
unsatisfiable placement, in which a TG is added in each row,
increasing the number of columns of the cell and consequently,
the width of the potential solution. After this, the algorithm
recreates variables and clauses in order to proceed with the
computation. Fig. 1.a shows an instance of a TG used for
balancing the number of transistors in each row.

C. Variables Reduction

 This step is executed only in the first iteration of the
placement algorithm (Algorithm 1), where at least one row is
free of gaps. The goal of this procedure is the reduction of the
number of variables and clauses in the modeling. This is done
through the analysis of each potential position where a
transistor can be placed. First, the source and drain identifiers
of all the transistors of are stored. Then, for the terminals that
appear only once, defined as unique terminals, two possible
scenarios are taken: (1) in case of none unique terminal, then
there is nothing to be simplified and the algorithm proceeds;
(2) in case of one or two unique terminals, then the transistors
which contain these unique terminals cannot be placed between
other devices, i.e., it should be placed at the boundaries of the
cell or beside TGs.

 To exemplify the impacts of this optimization in the
placement modeling, consider the NMOS transistor network
illustrated in Fig. 1.b, where we can see that two of its internal
nodes (p1 and p2) are shared by all the switches. On the other
hand, the external nodes (out and VSS) appear only once, i.e.,
they are unique terminals of this network. In this scenario,
through the procedure described above, the number of Boolean

TABLE I. SETS OF BOOLEAN VARIABLES OF THE PROPOSED MODELING

Name Condition that assigns the variable true Initial set size

),,(fciTP PMOS i placed in column c with orientation f P2 2

),,(fcjTN NMOS j placed in column c with orientation f N2 2

Columns Transistor

Gap (TG)

Vertical

neighborhoods

Horizontal

neighborhoods

P
-t

y
p

e

ro
w

N
-t

y
p

e

ro
w

a

b c d

e
VSS

p1

p2

out

 (a) (b)

Fig. 1. Instances of a single-row layout (a) and an NMOS arrangement (b).

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 01,2020 at 13:42:10 UTC from IEEE Xplore. Restrictions apply.

variables decreases from 100 to 72, while the number of
clauses reduces from 3797 to 2525, an optimization of 28.0%
and 33.5% in these parameters, respectively.

D. Transistor Allocation Constraint

Each transistor must be allocated exclusively in one cell
location. The clauses that implement this constraint for the PU
row are created through the formula (2) presented below,

 (2)

where P is the number of devices (including TGs) in the PU
network, C is the number of columns in the current iteration, and

 (3)

such that f and f denotes the two possible ordering – normal or
flipped, respectively – of the source and drain terminals of TP
accordingly with the input netlist. A similar formula also holds
for the PD transistor network.

E. Empty Column Constraint

Each position of the cell should contain at least one device
(transistor or TG). The clauses that implement this constraint
for the PU transistor arrangement are presented in (4),

 (4)

where a similar formula is also applied to the PD arrangement.

F. Diffusion Sharing Constraint

All transistors must have its lateral neighbors with
equivalent source and drain values, except for those placed in
the boundaries (which only need one of these). Moreover, it is
important to notice that the gaps, represented by TGs, may be
connected to any other device since it can assume dynamic
values for its drain and source terminals.

To implement the constraint that avoids neighbors sharing
divergent terminals, (5) is applied for each pair of transistors
TP.(i, c) and TP.(.j, c + 1) – not including TGs in this set.

,

(5)

 In formula (5), s(i) is the node connected to the source

terminal of the transistor TP.(i,.c) in its orientation f (normal or

flipped) accordingly with the input netlist and d(j) is the node

connected to the drain terminal of TP.(j, c + 1) also respectively

to its orientation f in the netlist. A similar formula is applied to

restrict the diffusion sharing of the PD transistor arrangement.

G. Gate Alignment Constraint

All P and N-type transistors placed in the same column (in

its respective rows) must share their gate signals. In other

words, if there is a transistor TP.(i, c) placed in the top row in

column c, then a transistor TN.(j, c) controlled by the same gate

input must also be placed in c in the bottom row. As before, the

gaps represented by TGs can be associated with any gate value.

The clauses that implement the constraint responsible for

avoiding gate mismatches are modeled through (6), in which

TGs are not included in the devices sets – as previously in (5).

,

 (6)

 In (6), g(i) and g(j) are the gate signals responsible for

controlling the transistors TP.(i, c) and TN.(j, c), respectively.

H. Placement Algorithm

 The optimal SAT-based placement method proposed is
presented in Algorithm 1 and it was implemented in ASTRAN.

Algorithm 1 Pseudocode of the SAT-based Placement Method

1: placeTransistors (netlist N)

2: minCols ← getColumnsLowerBound (N)

3: trList ← createTransistorsList (minCols, N) ∪ createVariableTransistors (N)

4: isSAT ← false

 5: while not isSAT do

 6: V ← createBooleanVariables (trList)

 7: C ← createClauses (V)

 8: if isSatisfiable (V, C) then

 9: validAssignment ← SAT (V, C)

 10: isSAT ← true

 11: else then

 12: trList ← addVariableTransistors (trList)

 13: end if

 14: end while

 15: return decodeSolution (trList, validAssignment)

 16: end

 The algorithm receives as its input the netlist N in SPICE
format (line 1) and computes the minimal number of columns
(lower bound) as described in [15] (line 2). After, the trList is
created through the variable reduction step described
previously (section III.C) with the addition of the transistor
gaps generated to make the number of devices of each plan
even (line 3). Following this, the Boolean variables V and the
clauses C are created (lines 6 and 7, respectively), where C is
the conjunction of the formulas (2) and (4-6) in conjunctive
normal form (CNF). In case of satisfiability, the satisfiable
assignment of the Boolean variables is computed (line 9). On
the other hand, if the formula is not satisfiable, then one
transistor gap is added on each logic plan (line 12) – this
process is equivalent to increasing the number of columns by
one on the search space, an approach that ensures the minimum
area. Finally, after finding a SAT solution, a decoding function
is executed in order to transform the variables assignment that
evaluates the clauses to true for the placement format to be
computed by ASTRAN (line 15).

IV. RESULTS

This section presents a comparison of the layouts produced
by the proposed method and the ASTRAN placement approach.

The first experiment consists of measuring the number of
columns in the pseudo-layouts (as the 5-column one illustrated
in Fig. 1.a) produced through each approach. In this scenario,

,

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 01,2020 at 13:42:10 UTC from IEEE Xplore. Restrictions apply.

the benchmarks used in this experiment are the following: the
53 NSP handmade networks (53NSP) [16] and a subset of the
4-input P-class (P4) [17]. While the former is composed by 53
handcrafted non-series-parallel gates containing from 10 to 14
transistors, the latter is a subset of 150 cells generated through
the Kernel Finder algorithm [18]. To choose the networks to be
part of the assessed subset, we divided the catalog into 10
classes accordingly to the number of transistors in each
complex gate arrangement (ranging fromddd 6 to 24
transistors). For each one of these classes, we randomly
selected 15 cells to be implemented by both approaches. This
way, we guaranteed a homogeneous distribution regarding the
size of the netlists.

The results of this first assessment are presented in Table II,
which consists in a frequency table of the differences in the
number of columns of the layouts where the reference is the
ASTRAN original solution (based on TA). Notice that, for the
53NSP catalog, 73.6% of the cells presented the same number
of columns, while 26.4% of the pseudo-layouts reported
optimizations in this aspect. Regarding the P4 benchmark,
77.3% of the solutions presented the same number of columns,
while 22.7% reported reductions on this attribute. It is
important to notice that the SAT solution does not present any
overhead relative to the TA approach since it guarantees an
optimal layout in terms of the number of columns.

The second experiment was conducted under the 53NSP
catalog by generating the layouts through the complete flow
provided by the ASTRAN tool. In this scenario, we employ the
original routing and compaction procedures of ASTRAN for
both versions of the layouts generated. Moreover, the
STMicroelectronics 65nm node was adopted for the synthesis
with all the ASTRAN’s options in default. As SAT solver, we
used the CryptoMiniSat [19] also on its default configuration.

The following parameters were extracted from the layouts:
area, routing wirelength (considering polysilicon and metal 1),
and number of contacts. Besides that, the execution times of
the placement procedures were also collected. Fig. 2 shows the
comparison, where we take as reference the original TA
approach. For the layout area, an optimization of 2.0% was
obtained; regarding wirelength, an overhead of 0.1% was
observed; related to the number of contacts, the SAT-based
solution presented 5.9% less contacts; finally, the proposed

approach took 0.49s on average to compute the placement,
while the original ASTRAN procedure spent 11.42s on average
for the same scenarios, thus corresponding to a 23.3x speedup.
Finally, the standard deviations of the optimizations in area,
wirelength, number of contacts, and runtime are 3.8%, 8.3%,
6.1%, and 4.5%, respectively. Through the analysis of Fig. 2
along with the corresponding standard deviation of each
parameter, we can notice a small dispersion of the data, i.e, the
results are uniform for most of the cases.

Finally, we can notice that, even with the minimal
placement provided by the SAT approach (as shown in Table
II), the layout area of two cells (F16 and F20) presented an
overhead compared to the original ASTRAN version. This is
due to the routing step, which uses extra columns to perform
the internal connections of the gate.

V. CONCLUSIONS

This paper presented a new Boolean satisfiability-based
placement method applied to the ASTRAN EDA tool, an open-
source solution to design circuits and systems on-demand that
currently implements a Threshold Accepting algorithm as its
transistor placement procedure. The main difference between
our technique and the original one is that we guarantee an
optimal cell regarding the number of layout columns.

As reported in the results section of this paper, the proposed
placement solution was capable to deliver optimized cells
concerning the number of columns used for placement, total
area, and number of contacts, while presenting a small
overhead in wirelength. Besides that, in terms of runtime, our
algorithm was considerably faster compared to the currently
implemented in ASTRAN, an important feature considering
the on-demand design – the main propose of the tool.

TABLE II. FREQUENCY TABLE OF THE DIFFERENCE ON THE NUMBER OF

COLUMNS OF THE LAYOUT CONSIDERING THE TA APPROACH AS REFERENCE

Difference

(# columns)

Benchmarks

53 NSP handmade

networks [16]

Subset of the 4-input

P-class [17]

0 39 (73.6%) 116 (77.3%)

-1 13 (24.5%) 25 (16.7%)

-2 1 (1.9%) 7 (4.7%)

-3 0 (0.0%) 2 (1.3%)

-10
-5
0
5

10
15 Area reduction (%)

-24

-12

0

12 Wirelength reduction (%)

-24
-12

0
12
24 Contacts reduction (%)

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
1

0

F
1

1

F
1

2

F
1

3

F
1

4

F
1

5

F
1

6

F
1

7

F
1

8

F
1

9

F
2

0

F
2

1

F
2

2

F
2

3

F
2

4

F
2

5

F
2

6

F
2

7

F
2

8

F
2

9

F
3

0

F
3

1

F
3

2

F
3

3

F
3

4

F
3

5

F
3

6

F
3

7

F
3

8

F
3

9

F
4

0

F
4

1

F
4

2

F
4

3

F
4

4

F
4

5

F
4

6

F
4

7

F
4

8

F
4

9

F
5

0

F
5

1

F
5

2

F
5

3

A
v
g

 F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
1

0

F
1

1

F
1

2

F
1

3

F
1

4

F
1

5

F
1

6

F
1

7

F
1

8

F
1

9

F
2

0

F
2

1

F
2

2

F
2

3

F
2

4

F
2

5

F
2

6

F
2

7

F
2

8

F
2

9

F
3

0

F
3

1

F
3

2

F
3

3

F
3

4

F
3

5

F
3

6

F
3

7

F
3

8

F
3

9

F
4

0

F
4

1

F
4

2

F
4

3

F
4

4

F
4

5

F
4

6

F
4

7

F
4

8

F
4

9

F
5

0

F
5

1

F
5

2

F
5

3

A
v
g

Fig. 2. Optimizations and overheads of the layouts produced for the catalog of 53 NSP handmade networks [16] obtained through the proposed Boolean satisfiability-

based placement approach. The reference is the original ASTRAN placement method based on Threshold Accepting.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 01,2020 at 13:42:10 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Reis, “Design automation of transistor networks, a new challenge,” in
IEEE International Symposium of Circuits and Systems (ISCAS), Rio de
Janeiro, Brazil, 2011, pp. 2485–2488.

[2] M. Cardoso, G. Smaniotto, R. Zanandrea, R. Souza, L. Rosa, and F.
Marques, “Physical design of supergate cells aiming geometrical
optimizations,” in IEEE International Midwest Symposium on Circuits
and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 2016, pp.
1–4.

[3] C. Conceição and R. Reis, “Transistor count reduction by gate merging,”
IEEE Transanctions on Circuits and Systems I: Regular Papers, vol. 66,
no. 6, pp. 2175–2187, 2019.

[4] M. Cardoso, G. Smaniotto, A. Bubolz, M. Moreira, L. Rosa, and F.
Marques, “Libra: an automatic design methodology for CMOS complex
gates,” EEE Transanctions on Circuits and Systems II: Express Briefs,
vol. 65, no. 10, pp. 1345–1349, 2018.

[5] T. Uehara and W. VanCleemput, “Optimal layout of CMOS functional
arrays,” IEEE Transactions on Computers, vol. C–30, no. 5, pp. 305–
312, 1981.

[6] A. Gupta, S. The, and J. Hayes, “XPRESS: A cell layout generator with
integrated transistor folding,” in European Design and Test Conference
(ED&TC), Paris, France, 1996, pp. 393–400.

[7] B. Carlson, “Transistor chaining and transistor reordering in the design
of CMOS complex gates,” Ph.D dissertation, Syracuse University, 1992.

[8] T. Iizuka, M. Ikeda, and K. Asada, “High speed layout synthesis for
minimum-width CMOS logic cells via Boolean satisfiability,” in Asia
and South Pacific Design Automation Conference (ASP-DAC),
Yohohama, Japan, 2004, vol. E87-A, no. 12, pp. 3293–3300.

[9] T. Iizuka, M. Ikeda, and K. Asada, “Exact minimum-width multi-row
transistor placement,” in International Symposium on Circuits and
Systems (ISCAS), Island of Kos, Greece, 2006, pp. 5431–5434.

[10] D. Hill, “Sc2: a hybrid automatic layout system,” in IEEE International
Conference on Computer-Aided Design (ICCAD), 1985, pp. 172–174.

[11] Y. Hsich, C. Hwang, Y. Lin, and Y. Hsu, “LiB: a CMOS cell compiler,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 10, no. 8, pp. 994–1005, 1991.

[12] A. Ziesemer and R. Reis, “Physical design automation of transistor
networks,” Microelectronic Engineering, vol. 148, pp. 122–128, 2015.

[13] G. Dueck and T. Scheuer, “Threshold accepting: A general purpose
optimization algorithm appearing superior to simulated annealing,”
Journal of Computational Physics, vol. 90, no. 1, pp. 161–175, 1990.

[14] M. Cardoso, G. Smaniotto, J. Machado, M. Moreira, L. Rosa, and F.
Marques, “Transistor placement strategies for non-series-parallel cells,”
in Midwest Symposium on Circuits and Systems (MWSCAS), Boston,
USA, 2017, pp. 523–526.

[15] J. Cortadella, “Area-Optimal Transistor Folding for 1-D Gridded Cell
Design,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 11, pp. 1708–1721, 2013.

[16] Logics Lab, Catalog of 53 handmade optimum switch networks, Federal
University of Rio Grande do Sul, 2012. Acessed on: Oct. 2019. [Online].
Available: http://www.inf.ufrgs.br/logics/docman/53_NSP_Catalog.pdf.

[17] V. Correia and A. Reis, “Classifying n-input Boolean functions,” in
Workshop IBERCHIP, 2001, pp. 58–66.

[18] V. Possani, V. Callegaro, A. Reis, R. Ribas, F. Marques, and L. Rosa,
“Graph-based transistor network generation method for supergate
design,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 24, no. 2, pp. 692–705, 2015.

[19] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers to
cryptographic problems,” in Theory and Applications of Satisfiability
Testing (SAT), Swansea, UK, 2009, pp. 244–257.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 01,2020 at 13:42:10 UTC from IEEE Xplore. Restrictions apply.

