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Abstract—This paper presents a new transistor placement 

method applied to the ASTRAN EDA tool, an open-source 

solution for the automatic design of complex digital gates. 

Although it currently reaches an optimized solution through a 

Threshold Accepting approach, ASTRAN does not guarantee a 

minimum-width placement. In this paper, a method based on 

Boolean satisfiability is proposed, ensuring an optimal solution 

for the transistor placement task through modeling the problem 

into a set of Boolean variables and clauses aware of four design 

rule constraints. Experiments comparing the proposed method 

and the current ASTRAN placement technique have shown 

reductions in the layout area. Furthermore, our method achieved 

a significant improvement regarding runtime, an essential 

feature for designing digital circuits and systems on-demand.  

Keywords—transistor placement, transistor chaining, Boolean 

satisfiability, SAT, ASTRAN, EDA tool 

I. INTRODUCTION 

Optimizations in the logic and physical synthesis are 
crucial factors for improving VLSI circuits. Recently, several 
papers pointed out that the on-the-fly design of complex gates 
provides significant improvements in different aspects of the 
digital design [1-4]. In this scenario, the transistor placement 
procedure is an essential step of the on-demand gate design 
flow since it enables to achieve optimized layouts concerning 
several attributes such as area, power, and delay. 

The first placement method [5] proposed the width 
minimization of dual networks through a graph-based approach 
which aims to find a solution with the minimum number of 
diffusion breaks. It also presented the widely-used single-row-
height layout style, where the transistors are placed exclusively 
in one direction along two P/N diffusion rows.   

Following this, since logic gates should be designed to 
fulfill some requirements, transistor sizing and folding must be 
efficiently applied for the synthesis tools. In this scenario, [6] 
proposed a method to generate layouts without any structure 
constraints, producing cells with a different number of P and N 
transistors and non-uniform transistor widths (by applying 
transistor folding), for instance. Furthermore, still addressing 
the width minimization of dual circuits, [7] proposed a solution 
for this problem considering the case of non-series-parallel 
(NSP) planar circuits through a heuristic-based approach.  

Although most of these methodologies produces optimized 
results, they do not guarantee the minimum width placement of 
the transistors, i.e., the optimal solution in terms of area. 
Recently, [8-9] proposed a Boolean satisfiability (SAT) 

approach introducing an optimal placement method for both 
dual [8] and non-dual transistor networks [9]. The technique 
consists in to describe the placement problem into a set of 
Boolean expressions (clauses) and determines whether there is 
some variables assignment that satisfies all these clauses. 

Along with that, several solutions were proposed 
integrating placement methods with a complete cell design 
flow [10-12]. These electronic design automation (EDA) tools 
use different techniques for placement in order to produce 
optimized layouts for dual and non-dual logic networks. For 
instance, while Layout Synthesizer [10] heuristically pairs 
transistors to be placed, LiB [11] identifies strongly connected 
clusters and form pairs of each cluster, a more scalable 
approach. ASTRAN [12], an open-source EDA tool for 
complex gate design, applies a Threshold Accepting (TA)  
method [13] to determine the placement solution which 
maximizes the diffusion sharing and minimizes the 
interconnection length. This methodology is based on a local 
search algorithm that starts from a random feasible placement 
and then explores the solution space looking for a better layout. 
However, as expected for a TA approach, the placement 
solution eventually gets stuck in a local minimum, not reaching 
the optimal transistor ordering in terms of the layout area. 

The transistor placement methodology presented in this 
paper aims to avoid this problem in ASTRAN by using a 
Boolean satisfiability approach similar to the previously 
proposed in [8], but focusing on the single-row layout style 
without any topological constraints, i.e., including non-dual 
and non-planar arrangements. This way, our proposition is able 
to deal with CMOS networks with any structure, ensuring the 
minimum number of diffusion breaks and the optimal solution 
in terms of area in a feasible computational time. 

II. THE ASTRAN EDA TOOL 

ASTRAN is an open-source EDA tool that was developed 
to automate the physical synthesis of VLSI circuits [12]. This 
tool automatically implements digital gates at the layout level 
in 65nm and 45nm technology nodes. It supports cells with 
different characteristics, such as a wide range of transistor 
arrangements, unrestricted circuit structures (including non-
dual and non-planar topologies), conditional design rules, 
transistor folding, among others. 

The input file of ASTRAN is a transistor network 
description in SPICE file format. The output layout files of the 
tool can be written in CIF and GDSII formats. These files may 
be used in other tools to realize further physical synthesis steps 
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or to perform the cell characterization. It is important to notice 
that ASTRAN only generates single-row-height layouts.  

Regarding the placement procedure currently working on 
ASTRAN, a Threshold Accepting (TA) approach is 
implemented where its cost function fC takes into account 
parameters relative to the transistor chaining and the detailed 
routing (to be performed after the placement of the transistors). 
This cost function fC is presented in (1), 

ldwlgcmdgmC WWWWWWf +)+2+3+4+4(100=  (1) 

where Wgm is the weight of the gate mismatch, Wmd is related to 
the routing density, Wc refers to the cell width (in terms of the 
number of elements placed in a matrix data structure), Wg is the 
weight associated with the number of diffusion gaps, Wwl 
represents the total length of the connections, and, finally, Wld 
is the local routing density. Along with that, the perturbation 
function incrementally modifies the initial placement (obtained 
randomly) by moving a set of contiguous P/N transistors 
through its diffusion rows. These moves can be done by 
shifting the positioning of the transistors or flipping its 
terminals. This way, the cost function measures the quality of 
the new solutions, accepting or rejecting it accordingly with the 
current threshold value. After some iterations, it is expected 
that a good solution (considering its score relative to fC) has 
been achieved. 

III. PROPOSED METHODOLOGY 

 This section will describe all the steps of the proposed 
placement methodology. It is important to mention that our 
method is similar to the one described in [8]. However, in our 
approach we focused on obtaining an optimized SAT-based 
solution (in terms of number of variables and clauses) for the 
specific layouts generated by ASTRAN, i.e., without 
topological constraints (including non-dual and non-planar 
networks) – a necessary constraint when dealing with complex 
logic gates generated on-demand [4] – and for the specific 
single-row-height layout style. Our approach also avoids any 
vertical gate mismatches for the reasons reported in [14]. 

A. Problem Description 

The input of the proposed method is a transistor-level 
description of the complex gate, i.e., a SPICE netlist containing 
the arrangements of the pull-up (PU) and pull-down (PD) 
transistors. As proposed originally in [5], in the single-row 
layout style adopted (Fig. 1.a) the transistors are placed into 
two rows containing the PU (upper row) and the PD (bottom 
row) devices. In this scenario, each device is expressed by a set 
of Boolean variables that represent all possible placement 
configurations, as shown in Table I. The initial size of this set 
depends on the number of transistors of the input netlist. 

For modeling the transistor placement problem, we 
generate the set of SAT clauses through five main steps. The 

first one is a simplification procedure (discussed in section 
III.C), while the remaining implement the placement 
constraints (section III.D-III.G). Finally, the complete 
algorithm for placement is presented in Algorithm 1 (section 
III.H). 

B. Transistor Gap (TG) 

This component operates like a gap (break in the diffusion 
row) in the proposed placement modeling. Diverging from the 
conventional transistor, it might assume dynamic values in its 
terminals, allowing it to be placed in any position of the cell, 
i.e., the neighborhood of any other transistor. Moreover, the 
flipped variables of these components are not created, avoiding 
unnecessary and redundant clauses. There are two distinct 
situations in which a transistor gap (TG) may be employed: (1) 
in case of a different number of P and N-type transistors in the 
input netlist, where the necessary number of TGs is added to 
complete the equality; (2) after each iteration resulting in an 
unsatisfiable placement, in which a TG is added in each row, 
increasing the number of columns of the cell and consequently, 
the width of the potential solution. After this, the algorithm 
recreates variables and clauses in order to proceed with the 
computation. Fig. 1.a shows an instance of a TG used for 
balancing the number of transistors in each row. 

C. Variables Reduction 

 This step is executed only in the first iteration of the 
placement algorithm (Algorithm 1), where at least one row is 
free of gaps. The goal of this procedure is the reduction of the 
number of variables and clauses in the modeling. This is done 
through the analysis of each potential position where a 
transistor can be placed. First, the source and drain identifiers 
of all the transistors of are stored. Then, for the terminals that 
appear only once, defined as unique terminals, two possible 
scenarios are taken: (1) in case of none unique terminal, then 
there is nothing to be simplified and the algorithm proceeds; 
(2) in case of one or two unique terminals, then the transistors 
which contain these unique terminals cannot be placed between 
other devices, i.e., it should be placed at the boundaries of the 
cell or beside TGs. 

 To exemplify the impacts of this optimization in the 
placement modeling, consider the NMOS transistor network 
illustrated in Fig. 1.b, where we can see that two of its internal 
nodes (p1 and p2) are shared by all the switches. On the other 
hand, the external nodes (out and VSS) appear only once, i.e., 
they are unique terminals of this network. In this scenario, 
through the procedure described above, the number of Boolean 

TABLE I.  SETS OF BOOLEAN VARIABLES OF THE PROPOSED MODELING 

Name Condition that assigns the variable true Initial set size 

),,( fciTP  PMOS i placed in column c with orientation f P2 2  

),,( fcjTN  NMOS j placed in column c with orientation f N2 2  
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Fig. 1. Instances of a single-row layout (a) and an NMOS arrangement (b). 
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variables decreases from 100 to 72, while the number of 
clauses reduces from 3797 to 2525, an optimization of 28.0% 
and 33.5% in these parameters, respectively.  

D.  Transistor Allocation Constraint 

Each transistor must be allocated exclusively in one cell 
location. The clauses that implement this constraint for the PU 
row are created through the formula (2) presented below, 

   (2) 

where P is the number of devices (including TGs) in the PU 
network, C is the number of columns in the current iteration, and 

     (3) 

such that f and f denotes the two possible ordering – normal or 
flipped, respectively – of the source and drain terminals of TP 
accordingly with the input netlist. A similar formula also holds 
for the PD transistor network. 

E. Empty Column Constraint 

Each position of the cell should contain at least one device 
(transistor or TG). The clauses that implement this constraint 
for the PU transistor arrangement are presented in (4), 

     (4) 

where a similar formula is also applied to the PD arrangement. 

F. Diffusion Sharing Constraint 

All transistors must have its lateral neighbors with 
equivalent source and drain values, except for those placed in 
the boundaries (which only need one of these). Moreover, it is 
important to notice that the gaps, represented by TGs, may be 
connected to any other device since it can assume dynamic 
values for its drain and source terminals. 

To implement the constraint that avoids neighbors sharing 
divergent terminals, (5) is applied for each pair of transistors 
TP.(i, c) and TP.(.j, c + 1) – not including TGs in this set.  

,

 
(5) 

 In formula (5), s(i) is the node connected to the source 

terminal of the transistor TP.(i,.c) in its orientation f (normal or 

flipped) accordingly with the input netlist and d(j) is the node 

connected to the drain terminal of TP.(j, c + 1) also respectively 

to its orientation f in the netlist. A similar formula is applied to 

restrict the diffusion sharing of the PD transistor arrangement. 

G. Gate Alignment Constraint 

All P and N-type transistors placed in the same column (in 

its respective rows) must share their gate signals. In other 

words, if there is a transistor TP.(i, c) placed in the top row in 

column c, then a transistor TN.(j, c) controlled by the same gate 

input must also be placed in c in the bottom row. As before, the 

gaps represented by TGs can be associated with any gate value. 

The clauses that implement the constraint responsible for 

avoiding gate mismatches are modeled through (6), in which 

TGs are not included in the devices sets – as previously in (5). 

  
,

 (6) 

 In (6), g(i) and g(j) are the gate signals responsible for 

controlling the transistors TP.(i, c) and TN.(j, c), respectively.  

H. Placement Algorithm 

 The optimal SAT-based placement method proposed is 
presented in Algorithm 1 and it was implemented in ASTRAN.  

 

Algorithm 1 Pseudocode of the SAT-based Placement Method 
 

1:    placeTransistors ( netlist N ) 

2:       minCols ← getColumnsLowerBound ( N ) 

3:       trList ← createTransistorsList ( minCols, N ) ∪ createVariableTransistors ( N ) 

4:       isSAT ← false 

        5:       while not isSAT do 

        6:           V ← createBooleanVariables ( trList ) 

        7:           C ← createClauses ( V )   

        8:           if isSatisfiable ( V, C ) then 

        9:               validAssignment ← SAT ( V, C ) 

      10:               isSAT ← true 

      11:           else then 

      12:               trList ← addVariableTransistors ( trList )   

      13:           end if 

      14:       end while 

      15:       return decodeSolution ( trList, validAssignment ) 

      16:    end 
  
 The algorithm receives as its input the netlist N in SPICE 
format (line 1) and computes the minimal number of columns 
(lower bound) as described in [15] (line 2). After, the trList is 
created through the variable reduction step described 
previously (section III.C) with the addition of the transistor 
gaps generated to make the number of devices of each plan 
even (line 3). Following this, the Boolean variables V and the 
clauses C are created (lines 6 and 7, respectively), where C is 
the conjunction of the formulas (2) and (4-6) in conjunctive 
normal form (CNF). In case of satisfiability, the satisfiable 
assignment of the Boolean variables is computed (line 9). On 
the other hand, if the formula is not satisfiable, then one 
transistor gap is added on each logic plan (line 12) – this 
process is equivalent to increasing the number of columns by 
one on the search space, an approach that ensures the minimum 
area. Finally, after finding a SAT solution, a decoding function 
is executed in order to transform the variables assignment that 
evaluates the clauses to true for the placement format to be 
computed by ASTRAN (line 15). 

IV. RESULTS 

This section presents a comparison of the layouts produced 
by the proposed method and the ASTRAN placement approach. 

The first experiment consists of measuring the number of 
columns in the pseudo-layouts (as the 5-column one illustrated 
in Fig. 1.a) produced through each approach. In this scenario, 

,
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the benchmarks used in this experiment are the following: the 
53 NSP handmade networks (53NSP) [16] and a subset of the 
4-input P-class (P4) [17]. While the former is composed by 53 
handcrafted non-series-parallel gates containing from 10 to 14 
transistors, the latter is a subset of 150 cells generated through 
the Kernel Finder algorithm [18]. To choose the networks to be 
part of the assessed subset, we divided the catalog into 10 
classes accordingly to the number of transistors in each 
complex gate arrangement (ranging fromddd 6 to 24 
transistors). For each one of these classes, we randomly 
selected 15 cells to be implemented by both approaches. This 
way, we guaranteed a homogeneous distribution regarding the 
size of the netlists. 

The results of this first assessment are presented in Table II, 
which consists in a frequency table of the differences in the 
number of columns of the layouts where the reference is the 
ASTRAN original solution (based on TA). Notice that, for the 
53NSP catalog, 73.6% of the cells presented the same number 
of columns, while 26.4% of the pseudo-layouts reported 
optimizations in this aspect. Regarding the P4 benchmark, 
77.3% of the solutions presented the same number of columns, 
while 22.7% reported reductions on this attribute. It is 
important to notice that the SAT solution does not present any 
overhead relative to the TA approach since it guarantees an 
optimal layout in terms of the number of columns. 

The second experiment was conducted under the 53NSP 
catalog by generating the layouts through the complete flow 
provided by the ASTRAN tool. In this scenario, we employ the 
original routing and compaction procedures of ASTRAN for 
both versions of the layouts generated. Moreover, the 
STMicroelectronics 65nm node was adopted for the synthesis 
with all the ASTRAN’s options in default. As SAT solver, we 
used the CryptoMiniSat [19] also on its default configuration. 

The following parameters were extracted from the layouts: 
area, routing wirelength (considering polysilicon and metal 1), 
and number of contacts. Besides that, the execution times of 
the placement procedures were also collected. Fig. 2 shows the 
comparison, where we take as reference the original TA 
approach. For the layout area, an optimization of 2.0% was 
obtained; regarding wirelength, an overhead of 0.1% was 
observed; related to the number of contacts, the SAT-based 
solution presented 5.9% less contacts; finally, the proposed 

approach took 0.49s on average to compute the placement, 
while the original ASTRAN procedure spent 11.42s on average 
for the same scenarios, thus corresponding to a 23.3x speedup. 
Finally, the standard deviations of the optimizations in area, 
wirelength, number of contacts, and runtime are 3.8%, 8.3%, 
6.1%, and 4.5%, respectively. Through the analysis of Fig. 2 
along with the corresponding standard deviation of each 
parameter, we can notice a small dispersion of the data, i.e, the 
results are uniform for most of the cases.  

Finally, we can notice that, even with the minimal 
placement provided by the SAT approach (as shown in Table 
II), the layout area of two cells (F16 and F20) presented an 
overhead compared to the original ASTRAN version. This is 
due to the routing step, which uses extra columns to perform 
the internal connections of the gate.  

V. CONCLUSIONS 

This paper presented a new Boolean satisfiability-based 
placement method applied to the ASTRAN EDA tool, an open-
source solution to design circuits and systems on-demand that 
currently implements a Threshold Accepting algorithm as its 
transistor placement procedure. The main difference between 
our technique and the original one is that we guarantee an 
optimal cell regarding the number of layout columns. 

As reported in the results section of this paper, the proposed 
placement solution was capable to deliver optimized cells 
concerning the number of columns used for placement, total 
area, and number of contacts, while presenting a small 
overhead in wirelength. Besides that, in terms of runtime, our 
algorithm was considerably faster compared to the currently 
implemented in ASTRAN, an important feature considering 
the on-demand design – the main propose of the tool.  

TABLE II.  FREQUENCY TABLE OF THE DIFFERENCE ON THE NUMBER OF 

COLUMNS OF THE LAYOUT CONSIDERING THE TA APPROACH AS REFERENCE 

Difference        

(# columns) 

Benchmarks 

53 NSP handmade      

networks [16] 

Subset of the 4-input                 

P-class [17] 

0 39 (73.6%) 116 (77.3%) 

-1 13 (24.5%) 25 (16.7%) 

-2 1 (1.9%) 7 (4.7%) 

-3 0 (0.0%) 2 (1.3%) 
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Fig. 2. Optimizations and overheads of the layouts produced for the catalog of 53 NSP handmade networks [16] obtained through the proposed Boolean satisfiability-

based placement approach. The reference is the original ASTRAN placement method based on Threshold Accepting.   
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