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SUMMARY Deep submicron technology calls for new design
techniques, in which wire and gate delays are accounted to have
equal or nearly equal effect on circuit behavior. Asynchronous
speed-independent (SI) circuits, whose behavior is only robust
to gate delay variations, may be too optimistic. On the other
hand, building circuits totally delay-insensitive (DI), for both
gates and wires, is impractical because of the lack of effective
synthesis methods. The paper presents a new approach for syn-
thesis of globally DI and locally SI circuits. The method, working
in two possible design scenarios, either starts from a behavioral
specification called Signal Transition Graph (STG) or from the
SI implementation of the STG specification. The method locally
modifies the initial model in such a way that the resultant behav-
ior of the system does not depend on delays in the input wires.
This guarantees delay-insensitivity of the system-environment in-
terface. The suggested approach was successfully tested on a set
of benchmarks. Experimental results show that DI interfacing is
realized with a relatively moderate cost in area and speed (costs
about 40% area penalty and 20% speed penalty).
key words: DI interface, signal transition graph, hazards, be-
havioral and gate-level transformations

1. Introduction

As the scale of integration increases, managing syn-
chronization and control of computation and commu-
nication on deep sub-micron (DSM) integrated circuits
using a global clock is becoming increasingly difficult.
Asynchronous systems, free from the clock, offer a
number of potential advantages, such as reduced risk
of synchronization failures, low power consumption,
improved noise and electro-magnetic compatibility to
name but a few.

Interpreted Petri Nets called Signal Transition
Graphs (STGs) [1] are widely used in specifying an
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asynchronous system behavior. It is known [1] that
from an STG one can derive an implementation that
behaves correctly under any distribution of gate delays,
i.e. it is speed-independent (SI). The main drawback of
SI circuits is in neglecting the influence of wire delays
on circuit behavior. For the DSM technology, where
wire and gate delays can become equally important, the
implementation should be targeted at delay-insensitive
(DI) circuits [2], which allow wire delays to be of ar-
bitrary value. In fact, a reasonable strategy for future
technologies would require one to partition the system
into blocks of relatively small size, for which the de-
signer can keep control of wire delays (SI blocks e.g.)
[3], [4], with a DI interface between blocks [5]. Such an
approach does not restrict the designer in choosing a
particular way of implementing blocks. It works equally
well under implementations that are not necessarily SI.
For example, it is consistent with the recent develop-
ment of the globally asynchronous locally synchronous
(GALS) design paradigm [6]. However because of the
well-developed CAD support for speed-independent cir-
cuits [7] this paper mainly targets SI implementations
with DI interface.

Two approaches for synthesis are explored. The
first one develops a set of behavioral transformations
for refining an STG to satisfy DI interfacing require-
ments (see Fig. 1(a)). A circuit with DI interface might
be obtained from the refined STG via the known synthe-
sis methods implemented in the tool Petrify [7]. This
framework appears to be efficient and shows overheads

(a) (b)

Fig. 1 Design flows for behavioral (a) and gate-level (b)
methods.
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Fig. 2 Simple asynchronous interface: (a) timing diagrams, (b) PN, (c) STG, (d) SG.

of about 40% in area and 20% in speed when ensuring
DI interfacing.

The drawback of the behavioral approach is how-
ever in its high computational complexity coming from
the necessity to explore the reachable state space of
the refined STG. Therefore, as an alternative, we also
investigate a gate-level approach to designing SI cir-
cuits with DI interface. It uses a speed-independent
implementation as a starting point and modifies the
implementation locally, only for those gates that might
“suffer” from changing the SI assumption about com-
munication delays to the DI assumption (see Fig. 1(b)).
The approach is based on heuristic constraining the
logic functions of such gates by reducing their ON-sets
with additional literals. Though this transformation
lacks the global view on the optimization process it of-
ten produces results that compare favorably with the
behavioral approach.

Pure behavioral and pure gate-level methods are
two extremes in tackling the DI interfacing problem.
The combination of those suggests a nice trade off be-
tween optimality and computational complexity and
improves the overall flexibility of the design flow.

This work focuses on the automatic introduction
of DI interfaces in the control part of the design. There
are several possible approaches to handling the data
part as well.

1. The data-path can be designed using a DI-encoding
(e.g., dual rail, Sperner codes etc. [8]).

2. If a more area-efficient approach, such as bundled
data, is chosen for the data-path, like it was in Mi-
cropipelines [9], the ordering conditions between
data and a corresponding request signal are sim-
pler to satisfy than the ordering conditions be-
tween several control signals, possibly coming from
different parts of the overall design.

In the rest of the paper we briefly discuss the the-

ory of behavioral transformations to ensure DI interfac-
ing (Sect. 3) with experimental results (Sect. 4). Then
we explore a gate-level approach (Sect. 5) for DI in-
terfacing and provide an experimental comparison be-
tween these two (Sect. 6).

2. Theoretical Background

Figure 2(a) shows a simple interface between two mod-
ules in an asynchronous system, a master (e.g., a pro-
cessor) and a slave (e.g., memory). The interface in-
volves two signal handshakes, one for controlling the
transmission of an address (add and addack) and an-
other for data (data and dataack). The timing diagram
shown in Fig. 2(a) defines the synchronization protocol
between the handshakes for the case of writing data
into the slave.

Figure 2(b) shows the Petri Net (PN) correspond-
ing to the timing diagram of the controller. All events
in this PN are interpreted as signal transitions: rising
transitions of signal a are labeled with “a+” and falling
transitions with “a−.” We also use the notation a∗ if
we are not specific about the sign of the transition.
Petri Nets with such an interpretation are called Signal
Transition Graphs (or STGs) [1]. STGs are typically
represented in a “shorthand” form, where places with
one input and one output arc are implicit.

An STG transition is enabled if all its input places
contain a token. In the initial marking {p1, p2} of the
STG in Fig. 2(c) transition add+ is enabled. Every en-
abled transition can fire, removing one token from every
input place of the transition and adding one token to
every output place. After the firing of transition add+
the net moves to a new marking, {p3}, where data+
becomes enabled.

Transitions in STG could be involved in different
ordering relations. Transitions a∗ and b∗ are in direct
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(a) (b) (c)

Fig. 3 Consistency violations in STG.

conflict if there exists a reachable marking in which
both of them are enabled but firing of one of them
disables the other. If a∗ and b∗ are enabled in some
reachable marking but are not in direct conflict, they
are concurrent . Conflict relations can be generalized by
considering the transitive successors of directly conflict-
ing transitions. Transitions which are not concurrent
and are not in (transitive) conflict are ordered .

The set of all signals STG is partitioned into a set
of inputs , which come from the environment, and a set
of outputs and state signals that must be implemented.

State graphs. Playing the token game one can
generate a State Graph (SG) in which each node (a
marking) is labeled with a vector of signal values (sig-
nals that can change in the state are marked with an as-
terisk) and arcs between pairs of states are labeled with
the corresponding fired transition. A maximally con-
nected set of states in which a∗ is enabled is called an
excitation region (ER) for event a∗ (denoted by ER(a∗),
see e.g. the shadowed set of states in Fig. 2(d) corre-
sponding to ER(data−)). Excitation regions in SG cor-
responds to transitions in STG. b∗ is called a trigger
event wrt a∗ if in SG by firing b∗ from some state s
outside excitation region ER(a∗ one might reach state
s′ inside ER(a∗) (enter ER(a∗)). In STG triggering of
a∗ by b∗ implies the existence of direct causal relations
between a∗ and b∗, i.e either b∗ → a∗ or they are me-
diated by a place.

An SG is consistent if in every transition sequence
from the initial state, rising and falling transitions al-
ternate for each signal. Figure 2(d) shows the SG for
the STG in Fig. 2(c), which is consistent. There are two
sources of consistency violation in an STG:

1. Auto-concurrency, due to concurrency of transi-
tions of the same signal (see Figs. 3(a), (b)) and

2. Switchover incorrectness, due to ordered rising
(falling) transitions which have no falling (rising)
transition in between (see Fig. 3(c)).

Implementability conditions. In addition to
consistency, the following two properties are required
for an SG to be implementable as a hazard-free asyn-
chronous circuit. The first property is speed indepen-
dence which reduces to output-persistency of SG events.
An event a∗ is persistent in state s if it is enabled in s
and remains enabled in any other state reachable from
s by firing another event b∗. An SG is output-persistent
if all output signal events are persistent in all states

and input signals cannot be disabled by outputs.
The following important statement was proved in

[1]: an STG can be implemented by a speed-independent
circuit if it is consistent and output-persistent.

The second implementability property, Complete
State Coding (CSC), is necessary and sufficient for the
existence of a logic circuit implementation. A consis-
tent SG satisfies the CSC property if for every pair of
states with the same binary codes the set of output
events enabled in both states is the same. Pairs of
states s, s′ that violate the CSC condition are said to be
in state encoding conflict or CSC conflict (binary codes
100*0 and 10*00 in Fig. 2(d)). In order to resolve CSC
conflicts new state signals must be introduced in the
specification [7], [10].

If these conditions are satisfied one can produce an
SI circuit out of an STG in which each signal a will be
implemented in a = S + R ∗ a form, where R and S
are set and reset gate functions respectively. This way
of implementation is known as generalized C-element
implementation (or gC-implementation simply).

3. Behavioral Approach for Delay-Insensitive
Interfacing

Our approach has two distinctive features:

• It is focused not on total delay-insensitivity but on
delay-insensitive interfacing only. The basic as-
sumption is that within a module the designer or
a physical design tool can keep wire delays under
control and hence there is no point to ensure delay-
insensitivity at the level of events internal to the
module.

• Contrary to conventional approaches to DI syn-
thesis, the tasks of designing a module and its
environment are considered separately. This re-
sults in asymmetric DI interfacing requirements:
only inputs are required to be accepted in a delay-
insensitive fashion by the circuit, because delay-
insensitivity with respect to outputs matters only
when the implementation for the environment is
synthesized.

The above conditions lead to a more relaxed ax-
iomatic definition of delay-insensitive interfacing with
respect to the classical definition of delay insensitiv-
ity given in [2]. A specification satisfies the delay-
insensitive interfacing requirement if it meets the fol-
lowing conditions:

1. No auto-concurrency.
2. Alternating inputs (input events cannot be ordered

with other input events).
3. No cross-disabling (inputs and outputs cannot dis-

able each other).

Implication of these conditions in restricting the
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Fig. 4 Order relaxation.

“types” of STG with DI interfacing is given by Propo-
sition 3.1. It was proved in [11].

Proposition 3.1: A consistent and output persistent
STG satisfies DI interfacing conditions if and only if no
input transition triggers another input transition.

The proof is trivial: non-auto-concurrency is a nec-
essary condition of STG consistency, absence of cross-
disabling is guaranteed by output persistency and al-
ternation of inputs directly comes from the definition
of DI interfacing.

Proposition 3.1 gives an idea about the places
where DI interfacing might be violated in an STG: these
are STG fragments in which input transitions are di-
rectly causally related. The addition of arbitrary delays
to every input wire may unpredictably alter the order
of originally ordered inputs to a module. This means
that from the module point of view such inputs become
concurrent. Hence the transformation of an STG for
DI interfacing removes direct causal dependencies be-
tween inputs and makes them concurrent. This trans-
formation can be performed by iterative application of
a simple operation that is called order relaxation and
is illustrated in Fig. 4. Informally an order relaxation
between events a and b, such that event a is connected
with b by a causal arc (a → b), results in removing the
arc between a and b (a and b becomes concurrent) and
keeping the ordering between all other events in STG.

The following two properties of order relaxation
help to clarify the transformation towards DI interfac-
ing. Their proofs can be found in [13].

Property 3.1: Order relaxation between events a
and b preserves pairwise ordering relations between all
events except for a and b.

From Property 3.1 follows that the order of apply-
ing order relaxation between different events is irrele-
vant for the resulting STG, i.e., these behavioral trans-
formations are commutative [13].

Property 3.2: Order relaxation between two events
preserves output persistency in an STG.

If in the original STG two inputs are directly
causally related, then DI interfacing can only be ob-
tained by relaxing the ordering between them. Such
a relaxation, by Property 3.2, does not cause any new

Fig. 5 Algorithm for ensuring DI interfacing.

cross-disabling to occur. Unfortunately not all the re-
quirements of DI interfacing are safely preserved during
order relaxation. Indeed, if events a and b correspond
to transitions of the same signal their order relaxation
immediately produces auto-concurrency. If non-auto-
concurrency is preserved, the above transformation is
strictly delay-insensitivity increasing. Its iterative ap-
plication will eventually (if non-auto-concurrency is
preserved) produce the new specification that will sat-
isfy the requirements of DI interfacing.

The algorithm for STG transformation to ensure
DI interfacing is presented in Fig. 5. The result of the
algorithm is either a new STG, in which DI interfac-
ing requirements are satisfied, or a failure, when input
order relaxation leads to auto-concurrency. The latter
implies that the original STG cannot be implemented
with DI interface.

Example. Figure 6 illustrates the transformation lead-
ing to a DI interface for the chu133 benchmark example.
(DI violations are depicted by shading). DI interfacing
is achieved by iterative application of order relaxation
between input events.

The order relaxation between Lr− and Zr+ re-
quires deleting arc (Lr−, Zr+), adding direct prede-
cessors of Lr− to Zr+ (i.e. Dr+ → Zr+) and adding
direct successors of Zr+ to Lr− (i.e. Lr− → Za+).
Similarly, the order between Zr− and Dr− is relaxed
and the overall result is shown in Fig. 6(b). The new
specification is non-autoconcurrent and has less DI vi-
olations than the original one.

Finally, the ordering between Dr+ and Lr− is
relaxed. This also preserves non-autoconcurrency
and gives the desired specification with DI interface
(Fig. 6(c)).
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Fig. 6 Example of order relaxation.

(a) (b) (c)

Fig. 7 The experimental flow for DI decomposition.

4. Experimental Results—Behavioral Appr-
oach

The experiment (illustrated in Fig. 7) started from a
well-known asynchronous benchmark set with its en-
vironment. The set of signals was partitioned into
two groups, yielding two separate modules as shown
in Fig. 7(b). Each module plays the role of the envi-
ronment for its counterpart, and the interface between
them is made delay-insensitive by applying order re-
laxation between events which are input for each mod-
ule. Note that this process does not always converge
to a correct implementation because auto-concurrency
may be created from order relaxation (this means that
decomposition for DI interfacing could be used as a
guidance criterion for asynchronous system partition-
ing even though there are several candidates to select
a signal set, e.g., chu133(1) and chu133(2)). For all
cases where DI interfacing could be obtained for some
wire partition, we compared the DI implementation
(Fig. 7(c)) against the SI one (Fig. 7(a)) in terms of area
and performance. The results are shown in Table 1 (for
area) and Table 2 (for performance) in the columns la-
beled SI and DIstg. Area numbers are obtained by tech-
nology mapping into a virtual library using the Petrify
tool. Performance is measured by using a Verilog sim-
ulator. On average the area penalty is about 36% and
the performance degradation is about 20%.

The suggested approach was also applied for im-
plementing a DI interface in a large scalable control
circuit, whose STG specification had a regular struc-
ture. It originated from a practical case study of an
asynchronous SI controller for an analog-to-digital con-
verter (ADC) [14]. The results are in good correspon-
dence with the penalty ranges obtained in the previous

experiment—(38% for area and 7% for performance).

5. Gate-Level Approach for Delay-Insensitive
Interfacing

The behavioral approach gives a global view on impli-
cations of the DI interface assumption for a circuit as
a whole. It requires reconstructing its reachable state
space, which grows due to the increased concurrency.
The latter might pose computational difficulties in do-
ing synthesis on the enlarged reachability space and
systems that could be handled before might become
unmanageable after the DI assumption has been made.
It is very much likely that the order relaxation between
a pair of inputs will impact only a small part of a cir-
cuit in a local vicinity of these inputs. This observation
motivates our gate-level approach for ensuring DI inter-
facing [12]. It takes a SI circuit and locally transforms
gates at the input boundaries (by adding literals) to
satisfy DI interfacing.

Localizing DI violations. Suppose that a circuit
C is a speed-independent implementation of STG A.
Let us localize the gates of C that might be affected
by replacing the SI assumption for input events a∗ and
b∗, a∗ → b∗ with the DI one.

The most conservative approximation is given by
a set of gates that are in the immediate fanout of both
signals a and b. Indeed, under the unbounded gate
delay model, none of the gates g for which either a
or b is not input can be sensitive to the ordering of
events on a and b because propagation delays of these
transitions to g are arbitrary. For finer approximation
let us distinguish the following cases:

• Set of gates Gtr that are triggered by event b∗
• Set of gates Ghaz in the fanout of both a and b that

are not triggered by the firing of b∗ in the original
STG A but their outputs might have hazards when
a∗ and b∗ are reordered

Property 5.1: Let C be a circuit obtained as a SI
implementation from STG A in which a∗ triggers b∗
(a∗ → b∗) and A′ be an STG obtained from A by delet-
ing the causal arc (a, b) and ordering b with all the
predecessors of a. If in the closed system created by
circuit C and environment A′
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1. gates Gtr switch only after the occurrence of a∗
and

2. logic functions for gates Ghaz do not change their
values under any firing order of a∗ and b∗

then C satisfies DI interfacing for a∗ and b∗.
The proof of Property 5.1 is straightforward: Con-

dition 1 tells that the gates from Gtr must propagate
the impact of firing event b∗ in the same way as before
the order relaxation between a∗ and b∗ (no premature
firings) while Condition 2 guarantees that there will be
no additional activity in the circuit because of reorder-
ing a∗ and b∗ (no hazards either due to unexpected
firings or lost excitations).

Information about the gates that are capable of
premature firing can be easily obtained from the orig-
inal STG A and circuit C: a gate g belongs to Gtr if
b∗ → g∗ in A.

To estimate the set Ghaz let us assume that the set
of additionally reachable states (coming from the order
relaxation between a∗ and b∗) is known and defined by
characteristic function cadd. A gate might experience a
hazardous behavior only if it is sensitized by b within
cadd (otherwise the reordering of a∗ and b∗ does not
influence it). For a gC-implementation (g = S + Rg)
one can derive a necessary condition for a gate to be
hazardous:

cadd ∗ (g ∗ δS/δb + g ∗ δR/δb) �= 0 (1)

Indeed, the term g ∗ δS/δb (where δS/δb denotes
the boolean difference of S with respect to b) gives the
set of states where the value of the logic function for
g changes from 0 to 1 due to the firing of b∗ while the
term g ∗ δR/δ characterizes its changes from 1 to 0.
Finally we arrive to the following procedure of deriving
the set of gates Ghaz:

1. Choose a set of gates G in the immediate fanout
of both a and b.

2. Exclude from G gates from Gtr (Ghaz must not be
triggered by b∗ in STG A).

3. Exclude from G the gates not satisfying Condition
(1) (they cannot have hazards due to reordering a∗
and b∗).
Constraining premature firings and hazards.

Property 5.1 suggests a uniform way in treating gates
from Gtr and Ghaz when ensuring DI interfacing. Their
logic functions must be kept constant in all addition-
ally reachable states coming from reordering a∗ and b∗
(cadd). Let us first assume that the characteristic func-
tion cadd is known.

Then the following refinement procedure might be
applied for each gate from Gtr and Ghaz.

1. Calculate the set of DI conflicting states for rising
transitions of g as Conflict(g+) = cadd ∗ g ∗ δS/δb
(gate g might have either unspecified rising tran-
sitions or loss of the excitation for function S in

these states).
2. Find the set of DI conflicting cubes for set func-

tion S of gate g as the ones that intersect with
Conflict/b, where Conflict/b is obtained from
Conflict by dropping literals of signals b.

3. For each DI conflicting cube cconf find its cover
refinement, if no refinement exists then return with
a failure.
a) When cconf and Conflict have the same value
of signal b, gate g could have an unexpected firing
in cadd. The set function must be restricted from
hitting states in cadd (by choosing a signal that has
opposite values in the states covered by cconf and
Conflict e.g.).
b) When cconf and Conflict have different values
of signal b, the firing of b∗ before a∗ results in ex-
iting ER(g+) and entering states in cadd without
the firing of gate g. This way of loosing excitation
by g is improper. Restrict cconf (if possible) by
choosing a signal that has opposite values in the
states covered by cconf and Conflict/b.

4. Repeat the procedure for the set of states
Conflict(g−) = cadd ∗ g ∗ δR/δb and reset func-
tion R of the gate g.

If the above procedure terminates without failure
then the modified set and reset functions of gate g do
not intersect DI conflicting states and premature firings
and hazards of g are blocked. In that way gates are
modified to satisfy Conditions 1 and 2 of Property 5.1.

When a procedure fails (due to the lack of refine-
ment or appearance of CSC conflicts in the reachability
space after the order relaxation) the new signals should
be added in STG in a very same way as in the framework
of [7] (this topic is beyond the paper scope however).

Evaluation of the set of additionally reach-
able states. The minimal set of states coming from
possible reordering between a∗ and b∗ is obtained when
none of the successors of b∗ fires before a∗. The latter
corresponds to the order relaxation between a∗ and b∗
based on minimal concurrency (like in Sect. 3). Assume
for simplicity that b∗ = b+. Then the set of addi-
tionally reachable states could be evaluated by a cube
cadd = b ∗ cmin, where cmin is obtained by 1) taking
any minterm from ER(b+) and deleting in it literals of
signals corresponding to events in Conc(b+) (a set of
events concurrent to b+) and 2) inverting the value of
a if none of signal a events are in Conc(b+) (due to the
reordering b+ fires before a∗ in cadd). In that way all
the signals whose events are in Conc(b+) are assumed
to have arbitrary values during b+ firing and hence the
cube cadd covers all additionally reachable states.

Example. Let us illustrate the suggested approach by
constructing a DI interface for the chu150 benchmark
STG (see Fig. 8(a)). The SI implementation based on
generalized C-elements is shown in Fig. 8(b). There are
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(a) (b)

(c) (d)

Fig. 8 Reduction to DI interfacing for chu150 example.

two cases of DI interface violations in the STG due to
direct precedence of input events: 1) L–/1 → Ai− and
2) L–/2 → Ai+. Firstly we consider case 1) L–/1 →
Ai−.

Case 1. Estimation of additionally reachable states
due to reordering of L–/1 and Ai−. Ai− is concurrent
to Ro− and Ao−. Therefore values of signals Ro and
Ao are considered to be arbitrary in the cover cube
cadd. The rest of signals keep their values in ER(Ai−)
(L = 0, Ri = 0, D = 0). For the minimal concurrency
in the order relaxation of L–/1 and Ai− the cover cube
cadd is approximated as cadd = L ∗ Ai ∗ Ri ∗ D.

Case 2. Constraining premature firings. Ai− trig-
gers a single event Ri+. Hence Ri is the only gate that
belong to Gtr. For gate Ri = Ai, implemented as an
inverter, S and R functions are Ai and Ai respectively.
Only S intersects with cadd and needs to be restricted.
To delay the firing of Ri+ until L–/1 occurs, the func-
tion S is modified to S = Ai ∗ L. This results in a
modification of gate Ri to Ri = Ai ∗ L + Ri ∗ Ai (see
Fig. 8(c)).

Case 3. Constraining hazards. The only gate in
the fanout of L and Ai that is not triggered by Ai−
is D = Ai ∗ L + D ∗ L ∗ Ai. The intersection of the
set function for D (S = Ai ∗ L) with the cube cadd

is non-empty and S is sensitized by Ai. Due to this,
D might have an unexpected positive transition when
Ai− and L–/1 arrive in reverse order. To restrict the set
function of D from intersecting with cadd one can choose

any variable that has opposite values in the states of
ER(D+) (covered by set function S = Ai∗L) and cadd.
The only possible candidate is Ri (S = Ai ∗ L ∗ Ri,
cadd = L∗Ai∗Ri∗D and S∪cadd = ∅). The refinement
of S is shown by bold wire in Fig. 8(c).

After modifications the implementation (Fig. 8(c))
behaves properly under any order of occurrence for Ai−
and L–/1.

Similar consideration for the DI violation of Case
2 results in the following transformations:

1. The reset function of gate Ri (Ri ∈ Gtr for
Ai+) is modified from R = Ai to R = Ai ∗ L (to delay
firing Ri until L–/2 has occurred).

2. The reset function of gate D (D ∈ Ghaz) is
modified from R = L ∗ Ai to R = L ∗ Ai ∗ Ri (to avoid
intersection with a cover cube cadd = L∗Ai∗Ri∗D for
additional states and keep gate D stable during Ai+
and L–/2 transitions).

The final implementation is shown in Fig. 8(d).

6. Experimental Results—Gate-Level Ap-
proach

In order to estimate a quality of the suggested gate-level
approach for DI transformations we made a compar-
ison of its results with the implementations obtained
through behavioral transformations. The comparison
was done for both area and performance [12].

Table 1 gives the comparison of area cost for the
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Table 1 Area comparison (# of literals).

name SI DIstg DIgate ratio1 ratio2
(I) (II) (III) (II)/(I) (III)/(I)

chu133(1) 19 25 23 1.32 1.21
chu133(2) 19 23 21 1.21 1.11
chu150 28 30 28 1.07 1.00
mmu(1) 40 64 55 1.6 1.37
mmu(2) 40 54 47 1.35 1.18

mr 42 54 48 1.29 1.14
mr0 66 69 68 1.05 1.03
mr1 46 55 49 1.20 1.07

trimos 27 51 42 1.89 1.56
vbe10b 37 49 39 1.32 1.05
wrdatab 26 42 42 1.62 1.62

total 390 516 462 1.32 1.18

Table 2 Performance comparison (ns).

name SI DIstg DIgate ratio1 ratio2
(I) (II) (III) (II)/(I) (III)/(I)

chu133(1) 5147 6730 6936 1.30 1.35
chu133(2) 5147 6636 6829 1.29 1.33
chu150 8860 9469 8860 1.07 1.00
mmu(1) 6118 8193 9495 1.34 1.55
mmu(2) 6118 7915 8840 1.29 1.44

mr 7328 7188 80956 0.98 1.10
mr0 11117 12574 12746 1.13 1.15
mr1 9182 11308 9476 1.23 1.03

trimos 1844 7856 3477 4.26 1.89
vbe10b 9757 12187 10515 1.25 1.08
wrdatab 8003 9989 11219 1.25 1.40

total 78621 100045 96488 1.27 1.23

two DI interfacing approaches. Column SI shows the
number of literals in the gC-implementation for the
original SI circuit, while DIstg and DIgate show the lit-
eral count for the circuits with DI interfacing obtained
via behavioral and gate-level transformations respec-
tively.

Table 2 provides similar data for a performance
metric.

The results of Table 1 show that the gate-level ap-
proach often outperforms the behavioral approach in
providing less area overhead for ensuring DI interfac-
ing. The reasons behind that are as follows:

• The gate level approach is based on relatively
cheap modifications of gate functions, usually a
modification simply adds a literal (wire) to a gate.
The modifications are also of local nature be-
cause they involve only the gates in the immediate
fanouts of reordered signals.

• Behavioral transformations give a global view on
the DI interfacing problem. However, because of
the huge solution space involved heuristics have to
be applied to prune it out. The amount of con-
currency in transformations is one of such heuris-
tics. If one could explore all concurrency possibil-
ities, then the results of behavioral method would
of course be optimal. Unfortunately, the way of ex-
ploring concurrency is far from perfect, which may
affect the quality of implementation in comparison

to other heuristic approaches.

Data on performance comparison are less consis-
tent and show that both approaches give similar per-
formance penalties for DI interfacing.

Although Table 1 illustrates that application of the
gate-level approach to ensure DI interfacing might be
encouraging it is worth to mention several difficulties
met on that way:

• The approach works well only for simple cases,
when going from SI to DI assumptions does not
produce CSC conflicts in the expanded reachabil-
ity space.

• For the moment the approach gives a clear path
only for circuits implemented by generalized C-
elements.

• The “level of service” delivered in gate-level meth-
ods is lower because they are not fully automated
(contrary to the behavioral approach).

Summarizing these observations, the following de-
sign scenario might be suggested. At first behavioral
transformations are applied to derive implementations
with DI interfacing. If they fail (due to high compu-
tational complexity) the simpler gate-level transforma-
tions might be applied. Note that currently the ap-
plication of both transformations is restricted to the
gC-based implementations.

7. Conclusions

Wire delays draw special attention in moving to deep
submicron technologies. Design styles which neglect
wire delays seem to be overly optimistic even with the
current technology, and will most likely become less and
less applicable when moving to deep sub-micron imple-
mentations. The extreme case when wire delays are as-
sumed to have arbitrary values leads to the well known
delay-insensitive approach for circuit design. However
delay-insensitive circuits are often unusable because of
their excessive area and performance overheads.

This paper suggests a design methodology which
can tolerate skew in interface signals. In this methodol-
ogy a designer identifies a set of “dangerous” wires that
are implemented in a delay-insensitive fashion, while
for the rest of a circuit other (more conventional) de-
sign styles are applied. In particular, we used speed-
independent implementation for the parts of a system in
which wire delays could be controlled by a designer or a
routing tool, and then applied the delay-insensitive hy-
pothesis only to the wires running between such speed-
independent “islands.”

Two different ways to ensure DI interfacing are de-
veloped. Their combination gives powerful means for
exploring the optimization space of implementations
with DI interface.
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