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ABSTRACT 
Power and performance benefits of scaling are lost to worst 

case margins as uncertainty of device characteristics is increasing. 
Adaptive techniques can dynamically adjust the margins required 
to tolerate variability and recover a significant part of the benefits 
lost due to worst-case conditions. Additionally, the stringent 
timing requirements for the synthesis of low-skew clock trees 
involve higher power consumption, and limit the adaptability to 
varying operating conditions. This paper introduces an elastic 
clocking scheme as an adaptive technique to confront variability 
and provide substantial power savings by dynamically adjusting to 
operating conditions. The synthesis and sign-off analysis of the 
elastic clocks is fully automated. Changes to the design flow and 
sign-off analysis of elastic clocks are addressed by automation of 
design flow support. 

Categories and Subject Descriptors 

B.8.2 Performance Analysis and Design Aids. 
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Design, Reliability, Economics. 
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1. INTRODUCTION 
Increasing process variability and decreasing operating voltage, 

as feature sizes scale down, reduce potential power-performance 
gains. Statistical design methods can reduce overdesign due to 
unrealistic worst-case assumptions [1], [6]. Large volume parts 
can be binned and sold at different price points to recover some 
portion of performance versus yield trade-off. However, binning 
is not applicable to ASICs due to commercial reasons, and 
statistical timing analysis does not address the margins needed for 
environmental variations such as temperature and voltage 
changes. 
 

Ad-hoc recovery of design margins is common place in today’s 
world. Off-the-shelf processor parts can be over-clocked well 
beyond their rated speeds by employing sophisticated cooling. By 
the same token, reducing the supply voltage to run a fast part at 
the specified frequency can save energy and power, which are 
becoming a primary concern for all electronic systems. Adaptive 
Voltage Scaling (AVS) provides this capability by sensing on-
chip conditions dynamically and reducing or increasing the supply 
voltage to run the part at the required speed [2]. The power gains 
in AVS, however, are limited by the ability of predicting data path 
delays across the variation space [3]. 

AVS addresses static (process) or slowly varying (temperature, 
and to some degree aging) variations. The response time of the 
voltage regulation loop is usually hundreds or thousands of clock 
cycles. Cycle-to-cycle variations, such as IR-drop due to dynamic 
loads, must be handled by increasing the margins, thus reducing 
the achievable power gains. 

Fine-grained application of AVS to individual cores or blocks 
in an SOC further improves power gains, based on load and 
performance requirements. However, the clock skew due to 
voltage domain crossing quickly becomes the limiting factor for 
performance, and increases the hold time fixing overhead. A 
solution to overcome this limitation is the adoption of 
asynchronous communication techniques between blocks [4]. The 
GALS (Globally Asynchronous Locally Synchronous) approach 
provides the flexibility to have each block driven by its own 
separate clock, and possibly supply voltage, while still enabling 
safe communication with other blocks. The main drawback of a 
GALS approach is the synchronization latency required to cross 
different clock domains, which may have a significant impact on 
the performance of the system. 

Elastic clocks, where the period is dynamically adjusted to data 
path delays at the current operating conditions, provide the ability 
to minimize AVS margins due to IR-drop and clock skew. They 
also reduce latency in inter-block communication due to the 
asynchronous nature of the local clock controller protocol. Elastic 
clocks are implemented in a synchronous design flow through the 
desynchronization process. 

2. DESYNCHRONIZATION 
The separation between functionality and performance has 

always been a cornerstone of digital circuit design, enabling the 
development of tools that support functional specification, using 
snthesizable Verilog or VHDL; logic synthesis; physical design; 
equivalence checking and static timing analysis. Even testing 
schemes based on coupling of full stuck-at functional testing with 
limited at-speed performance testing, benefit from this separation. 

2.2
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at all sign-off corners. The margins between the delay elements 
and the corresponding data path delays can be optimized using 
statistical methods [7]. 

 
Figure 2. Elastic clock connections 

During sign-off, explicit timing checks are done between the 
data path and the delay elements at all corners, to guarantee the 
correct clocking of the logic to meet the setup and hold 
conditions. In Figure 2, this corresponds to verifying that the data 
path delay between partitions A and B is always smaller than the 
delay between the associated controllers (“Delay”) at all design 
corners, including the clock-tree insertion delays in each partition 
and the setup times of the receiving registers. These checks are 
performed using standard industrial sign-off tools by means of 
automatically generated scripts. 

At the top level, each elastic block is connected to the 
desynchronized on-chip network asynchronously, by using the 
handshake signals. The handshake signals are used to “sense” the 
operating conditions and drive a voltage controller circuitry. This 
provides a unique opportunity to apply AVS where the sensing 
circuit is also an elastic clock generator, thus reducing the 
stringent clock skew requirements across multiple cores or blocks 
and reducing margins (e.g. due to cycle-to-cycle IR-drop). These 
signals are also used to control the voltage for a fine-grain AVS 
[8]. 

Figure 3 illustrates a connection scheme, where the clock 
controllers generate the elastic clocks for individual blocks and 
provide handshake signals (“HS”) to the voltage controller and the 
asynchronous on-chip interconnect. The voltage controller drives 
a voltage regulator module to dynamically adjust the voltage, 
according to the relative timing of the handshake signals between 
the interconnect network and the elastic block. A purely 
asynchronous communication between the elastic blocks and the 
on-chip interconnect significantly reduces the communication 
latency. 

5. CONCLUSION 
An AVS scheme using elastic clocks eliminates stringent clock 

skew requirements across multiple cores and blocks, and reduces 
margins due to cycle-to-cycle variations. The asynchronous nature 
of elastic clocks avoids the latency penalty introduced by GALS 
schemes, and makes fine grain voltage scaling a possibility 
without performance overhead. 
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