
RTL-Aware Dataflow-Driven Macro Placement
Alex Vidal-Obiols1, Jordi Cortadella1, Jordi Petit1, Marc Galceran-Oms2, Ferran Martorell2

1Department of Computer Science, Universitat Politècnica de Catalunya, 2eSilicon EMEA, Barcelona, Spain

Abstract—When RTL designers define the hierarchy of a
system, they exploit their knowledge about the conceptual ab-
stractions devised during the design and the functional interac-
tions between the logical components. This valuable information
is often lost during physical synthesis. This paper proposes a
novel multi-level approach for the macro placement problem of
complex designs dominated by macro blocks, typically memories.
By taking advantage of the hierarchy tree, the netlist is divided
into blocks containing macros and standard cells, and their
dataflow affinity is inferred considering the latency and flow
width of their interaction. The layout is represented using slicing
structures and generated with a top-down algorithm capable of
handling blocks with both hard and soft components, aimed at
wirelength minimization. These techniques have been applied to
a set of large industrial circuits and compared against both a
commercial floorplanner and handcrafted floorplans by expert
back-end engineers. The proposed approach outperforms the
commercial tool and produces solutions with similar quality
to the best handcrafted floorplans. Therefore, the generated
floorplans provide an excellent starting point for the physical
design iterations and contribute to reduce turn-around time
significantly.

I. INTRODUCTION

Current industrial EDA floorplanning solutions are fast but
often do not produce good enough macro placements. Addi-
tional iterations by physical designers, which take significant
effort, are needed. For circuits with more than 200 macros,
it usually takes 2 to 4 weeks for the floorplan to reach the
desired quality of results. As decisions taken at the floorplan
stage have a critical impact on timing and power, considering
structural properties during macro placement helps reduce
design turn-around time.

Exploiting RTL-stage information, such as hierarchy and
arrays, becomes an inestimable ally to physical design. Many
algorithms devote high computational effort to infer structural
properties that were known in previous stages of the design and
have been destroyed or ignored. The hierarchical abstraction
used by humans provides a logic vision of the relations
between circuit components. Identifying array components
(registers, ports...) provides a better view of the flow of data in
the circuit, key to understanding the relations between macro
components (and the standard cells) and providing floorplans
that are more attuned to the structure of the system.

Previous work

Hierarchy exploitation has been used to do macro clustering
in floorplanning [5] and other mixed-size placement flows [9]

*This work has been partially supported by a grant from eSilicon Corpo-
ration and funds from the Spanish Ministry for Economy and Competitiveness
and the European Union (FEDER funds) under grant TIN2017-86727-C2-1-R
and FPI 2015, and the Generalitat de Catalunya (2017 SGR 786).

(a) (b) (c) (d)

Fig. 1: Evolution of the multi-level block floorplan of a 16-
macro design. Dark gray blocks contain macros, count inside.
Light blocks contain only standard cells.

[10]. It has also been combined with multi-level optimization
to reduce problem size in macro placement [8]. However, array
information for dataflow analysis has not been sufficiently
explored. Most mixed-size placers use the netlist to model
connectivity, whereas some previous work on macro floorplan
use pseudonets for macros that are hierarchically close [5].

Whereas some authors propose simultaneous flows for
macro and standard cell placement [11], our method advocates
for performing macro placement prior to cell placement. One
of the main challenges of such approaches is the modeling
of standard cell logic. Some consider cell area implicitly by
having macros close to circuit walls, e.g., initially in [5] and
also in the recent works based on circular contours [3], [6],
[7]. This is de facto the chosen approach for some industrial
floorplanning tools. There are proposals to extend the model
by considering macro and standard cell interaction [4]. Others
have preferred to model cells and have two kinds of blocks,
hard for macros with a fixed shape, and soft for standard cell
groups with a flexible shape, e.g., using sequence-pairs [2] or
slicing trees with shapes curves [14].

Our contribution

This paper introduces a multi-level floorplanner to find
placement and orientation of macros by exploiting RTL-stage
structure information. The hierarhical process is illustrated in
Fig. 1 by defining the location of the 16 macros of a design.
As shown in Fig. 1a, the first partition identifies three key
components, two containing 8 macros each, and a third with
cells connecting them. The process is repeated for the blocks
at left and right, and each is again partitioned into blocks with
macros and cells and blocks with only cells (Fig. 1b). After a
final recursive call (Fig. 1c), coordinates for each one of the
16 macros are fixed and space has been left for their related
standard cells (Fig. 1d).

After examining the circuit hierarchy, our tool creates a
partition into blocks (modeling macros and standard cells)
and analyses its array information to estimate dataflow affinity.
The layout of blocks is decided using slicing structures and

simulated annealing, with a novel top-down layout generation
algorithm designed to handle hybrid blocks with both hard
and soft properties, not only hard as in [13].

The described algorithms have been implemented in our
HiDaP tool (for Hierarchical Dataflow Placement). It has been
tested on a suite of large industrial designs and compared
against an state-of-the-art industrial floorplanner and hand-
crafted macro placements. HiDaP improves on the industrial
floorplan tool, and the obtained results are close to handcrafted
designs with a fraction of the effort involved, providing a more
promising start for the physical design iteration process. Our
key contributions include:

1) Multi-level macro placement based on recursive block
floorplanning with hierarchy-aware declustering.

2) Multiple graph-based data structures to model the circuit
and estimate dataflow affinity between blocks, consider-
ing latency and array widths.

3) Block area modeling considering macros and standard
cells, with a top-down area-budgeting strategy for hybrid
shape blocks aimed at wirelength minimization.

II. PRELIMINARIES

A. Problem Definition and Overview

The input of macro placement is a netlist N with hierarchy
and array information derived from the RTL stage. The output
is the coordinates and orientation of each macro targeting
wirelength minimization. HiDaP uses hierarchical information
to enable a multi-level approach, and array information to
model the dataflow of the circuit. This dataflow is obtained by
dividing the circuit in blocks, which consist of hybrid groups
of macros and standard cells, and analyzing their connections.

B. Dataflow Affinity

For every pair of blocks A and B, the dataflow affinity
metric captures the “information closeness” between them.
This concept is combined with physical distances to provide
a layout quality metric. Dataflow affinity follows the relation

Dataflow Affinity(A,B) ∝
Information Flow(A,B)

Latency(A,B)
.

Blocks with a high information flow should be close in the
floorplan, but a large latency reduces such need. Information
flow is represented by array bitwidth, whereas latency is
represented by the sequential element count in the shortest
paths between blocks.

Two kinds of dataflow between blocks are proposed to
better model current complex designs. Block flow considers the
dataflow affinity between blocks and macro flow considers the
dataflow affinity between macros inside blocks. Whereas the
first models more accurately the physical connections present
in the netlist, the second provides a more global insight of the
data flow between blocks.

Consider a system with 4 blocks with macros (A to D)
communicating through a standard cell block X. A block flow
analysis of the netlist would reveal a connection pattern such
as Fig. 2a, whereas inferring macro flow as in Fig. 2b would
generate an alternative view on the circuit.

(a) (b)
Fig. 2: Block connection graphs for a small system.

(a) (b) (c)
Fig. 3: Possible layouts for the system in Fig. 2.

Three layouts for this system, with their communications
marked in red, are shown in Fig. 3. With only block flow
analysis, blocks A to D are close to X (as seen in Fig. 3a)
without considering their relative positions. Fig. 3b shows a
layout where only macro flow analysis is used. Its blocks
are placed following the macro dataflow, but since X has no
macros, it can end up anywhere in the circuit (Fig. 3b). Using
a combination of both flows generates Fig. 3c.

C. Circuit Abstractions

Three graphs and a tree are used to model circuit con-
nectivity (Table I). HT and Gnet are derived from the input
hierarchical netlist N, Gseq and Gdf are derived from Gnet.

In HT = (Vht,Eht), every node represents a level in the hier-
archy, and edges represent subhierarchy relations. A hierarchy
cut HC with regard to a node n ∈Vht is defined as a set of
nodes in its subtree such that each path between n and the
leaves of its subtree crosses exactly one node in HC.

The graph Gnet = (Vnet,Enet) represents the original netlist,
with Vnet = M∪P∪F ∪C, respectively being macros, ports,
sequential cells (flops) and combinational cells.

The sequential graph Gseq = (Vseq,Eseq) is a directed graph
with weighted nodes. Its edges capture communication latency
and array width between sequential components and ports. Vseq
represents macros, multi-bit registers and ports.

The dataflow graph Gdf = (Vdf,Edf) is a directed graph with
weighted nodes and edges which used to derive dataflow
affinity. The node set is Vdf = B∪Pmb. Every node in B
represents a block and is formed by a subset of nodes in Vseq.
The edges in Edf hold information on the width and latency
of the paths between these subsets of nodes in Vseq.

TABLE I: Data structures for different circuit abstractions.

Graph Size Type of vertices Description

HT – Hierarchical blocks. Circuit hierarchy
representation.

Gnet ∼ 107 Macros, ports, sequential Bit-level complete
and combinational cells. netlist connectivity.

Gseq ∼ 105 Macros, multi-bit ports Multi-bit sequential
and registers. connectivity.

Gdf ∼ 102 Blocks and multi-bit ports. Dataflow affinity among
blocks and ports.

(a) Minimum and target areas. (b) Shape curve (Γ).
Fig. 4: Area model for a block.

D. Block Representation

Each block represents the cells and macros under a node
of the hierarchy tree, and has properties of both kinds of
components. It is characterized by the triple 〈Γ,am,at〉. Γ

is a shape curve that contains a set of pairs (width, height)
representing the smallest bounding boxes that can hold a
placement of the macros in the block (standard cells are
ignored for Γ). am (minimum area) is the sum of the area
of all macros and standard cells under the hierarchy level. at
is the target area for the block, i.e., am plus some extra area
associated to the block (see Sect. IV-C).

Fig. 4 provides a visual reference of the block represen-
tation. Fig. 4a shows an abstraction of a block. The darker
boxes represent macros. The blue rectangle (am) represents
the minimum area of the block, whereas the red rectangle
(at) represents the target area. Fig. 4b shows its shape curve,
defined by a set of Pareto points (in red). The blue area
represents all bounding boxes that could hold a placement of
the eight macros of the block.

III. ALGORITHMIC OVERVIEW

HiDaP follows a ∧-style multi-level flow by considering the
hierarchy as a clustering of the design and using a decluster-
and-floorplan scheme. Algorithm 1 provides a high-level view
of the top flow of the tool. The input is the hierarchical
netlist N and the dimensions of the circuit. The first step
is the generation of the hierarchical tree from the netlist.
shape curve generation constructs the set SΓ, used to ensure
that a block layout fixed at a given hierarchical level can
accommodate its macros under slicing constraints. It contains,
for each nh ∈Vht, a shape curve with the minimal sizes such
that its macros can be placed. The next steps are finding macro
position by calling recursive block floorplan and the orienta-
tion with memory flipping, where a flipping post-process for
wirelength reduction using macro side dataflow.

Algorithm 1 Top tool flow
1: Input: hierarchical netlist (N), width (w), height (h)
2: Output: location and orientation of the macro cells
3: HT ← obtain hierarchy tree(N)
4: SΓ← shape curves generation(HT) {Sect. IV-A}
5: macro loc ← recursive block floorplan(N, w, h, root(HT), SΓ)
6: macro orient ← macro flipping(N, macro loc)

The recursive floorplanning function (Algorithm 2) takes
as an input the netlist N, a hierarchical node nh ∈Vht, whose
subtree must be placed in a given space (w, h), and the shape
curves for all hierarchical levels in SΓ. The aim is to place

Algorithm 2 Recursive block floorplan
1: Input: hier. netlist (N), width (w), height (h), nh ∈Vht, SΓ

2: Output: location of the macros below nh
3: BΓ,am ← hierarchical declustering(nh, SΓ) {Sect. IV-B}
4: BΓ,am,at ← target area assignment(BΓ,am , N) {Sect. IV-C}
5: Maff← dataflow inference(BΓ,am,at , N) {Sect. IV-D}
6: coords ← layout generation(w, h, BΓ,am,at , Maff) {Sect. IV-E}
7: for all b ∈ BΓ,am,at do
8: if macro count(b) > 1 then
9: wb, hb ← block size(coords, b)

10: recursive block floorplan(N, wb, hb, b, SΓ) {Recursion}
11: else fix position(b, wb, hb)

Fig. 5: Hierarchical declustering to find HCB and HCG.

the macros under nh considering dataflow between themselves,
standard cell logic under nh, macros outside nh and ports.

The first step is hierarchical declustering, which identifies
the blocks to be considered for floorplanning and partially
characterizes them in the set BΓ,am , with the minimum area am
and shape curve Γ of each block. In target area assignment,
the target area at of the blocks is stored in BΓ,am,at , a set
containing the full characterization 〈Γ,am,at〉 of each block.

In dataflow inference, the dataflow affinity between each
pair of blocks is derived and stored in the affinity matrix
Maff. During layout generation, slicing structures are used to
model the floorplan and, given the affinity metric and the mean
distance between blocks in the layout, an optimization process
is used to minimize their product to obtain the best possible
layout. After the coordinates of each block are fixed in coords,
the process is recursively called if the block has more than a
single macro. Otherwise, its macro position is fixed in the
corner of the available area that minimizes wirelength.

IV. ALGORITHMIC DETAILS

A. Shape Curves Generation

The input of this step is the hierarchical tree HT , and
the output is a set of shapes curves SΓ where each Γ is
associated to a node in Vht describing possible sizes for the
floorplan of the macros under its subtree. These curves are
used during layout generation to make sure that proposed sizes
for blocks have at least one slicing macro layout that fits into
the alloted area. The subtree shape curves are calculated in
a bottom-up fashion up to the root of the hierarchical tree,
only once at the beginning of the flow. At the leaf nodes
of HT , the associated Γ contains the possible shapes of its
macro. At each intermediate node of the hierarchy, it is not
possible to compose the shapes of their children (the tree is
not slicing). Area-optimization floorplanning using simulated
annealing generates a set of shape combinations with small
area which are valid for the node.

Fig. 6: Assigning HCG area to HCB blocks.

B. Hierarchical declustering
The purpose of hierarchical declustering is to find the set

of blocks to be considered during the floorplan of a given
hierarchy level nh, and to characterize their shape curve Γ

and minimum area am. The idea is represented in Fig. 5,
which shows the hierarchy tree under a node n. A possible
hierarchical cut HC with respect to that node (defined in
Sec. II-C), marked by a red line, generates block candidates for
floorplanning. The nodes are divided in two sets, depending
on the number of macros and area in their subtrees, and those
with big area or with macros are selected (grey).

Formally, consider functions area(n) and macro count(n),
returning the sum of the area and macro count of the subtree
rooted at n ∈ Vht. Given a parameter defining a minimum area,
the nodes in any hierarchy tree cut HC can be divided in two
sets, HCB and HCG:

HCB = {n ∈ HC|area(n)> min area∨macro count(n)> 0}
HCG = HC \HCB (small nodes with glue logic)

Nodes in HCB represent hierarchy levels with relatively big
area or containing macros, whereas all others (HCG) are small
nodes with glue logic. Each node in HCB is modeled as a block
during layout generation. Area of nodes in HCG is integrated
with nodes in HCB during later steps, as it represents small
unstructured components.

Algorithm 3 Hierarchical declustering
1: Input: nh ∈Vht, open area, min area ∈ IR
2: Output: HCB, HCG
3: HCB ← /0; HCG ← /0

4: queue.insert(nh)
5: while not queue.empty() do
6: m ← queue.pop front()
7: if area(m) > open area and macro count(m) = 0 then
8: for each child c ∈ m.children() do
9: queue.insert(c)

10: else if area(m) > min area or macro count(m) > 0 then
11: HCB ← HCB ∪ {m}
12: else
13: HCG ← HCG ∪ {m}

The strategy used to find sets HCB and HCG for a given node
n is shown in Algorithm 3. The parameter open area is an area
amount that controls how deep the tree will be explored. Both
min area and open area are a fraction of area(nh), 40% and
1% in the experiments.

C. Target Area Assignment
Since blocks in HCG are not directly considered for floor-

planning, the goal of target area assignment is to incorporate

(a) Gseq graph (b) Gdf graph
Fig. 7: Dataflow inference example.

their area to the target area at of blocks in HCB. In Gnet, a
multi-source breadth-first search [12] finds the shortest paths
from all nodes in HCB to any cell in HCG. Fig. 6 shows
three blocks in HCB with fully painted nodes, connected by
glue logic components (elements in HCG blocks) which are
incorporated to their closest blocks as they are reached during
the search. After this process, the sum of the area of HCB
blocks represents the whole area of the floorplanning instance
and the triplet 〈Γ,am,at〉 for each block is characterized.

D. Dataflow Inference

Dataflow inference generates an affinity matrix Maff estimat-
ing the affinity between each pair of blocks, ports and other
macros in the circuit. Maff is derived from the adjacency matrix
of the dataflow graph Gdf, which is obtained from Gseq and
Gnet. First Gnet is transformed into Gseq in the following steps:

1) C nodes representing combinational cells are removed by
connecting their predecessors to their successors

2) Nodes in P and F are clustered using component names
to find array structures (name[n], name_n).

3) Edges between sequential components are inferred by
analyzing their transitive fanin/fanout in Gnet and discov-
ering their paths.

4) To reduce graph size but keep relatively big components,
elements with fewer bits than a threshold are discarded.

The next step is constructing the dataflow graph Gdf from
Gseq. Each node in Vdf represents a block, which is associated
to a set of nodes from Vseq. Each edge summarizes two auxiliar
edges, one which represents block flow Eb

df and one which
represents macro flow Em

df . A graph Gseq is shown in Fig 7a,
where round nodes represent multi-bit registers with their
bitwidth. Painted edges represent some paths that generate
edges in Gdf, shown in Fig 7b: blue represents block flow
Eb

df edges, and red represents macro flow Em
df edges.

Connectivity information of edge ei, j in Eb
df or Em

df takes the
form of a histogram, where bins represent latency and their
height represents number of bits. In the case of block flow
edges Eb

df, a breadth-first search at Gseq starts simultaneously
from all components of block i traversing only outgoing edges
through glue logic. When a component of block j is reached,
the bitwidth of its predecessor in the path is added to the bin
corresponding to the path length (blue paths in Fig 7a). To
obtain macro flow edges in Em

df , a similar process finds paths
between macros in blocks, allowing the search to cross all
nodes in Vseq (except macros) instead of only glue logic (red
paths in Fig 7a).

Fig. 8: Recursive layout generation.

In order to condense the dataflow information of an his-
togram, the weight of an edge is computed using score(h, k)
for an integer k according to the following formula, where i
indexes bins in the histogram:

∑
i

#bitsi / latencyk
i

The formula is based in the relation presented in Sec. II-B.
Parameter k controls the exponential decay impact of latency.

Given the edge sets Eb
df and Em

df and scoring their histograms,
the score of dataflow affinity edges in Edf is obtained using
a parametric formula defined as λ× score(eb

i, j) + (1− λ)×
score(em

i, j). The value of λ balances block and macro flow
and allows the generation of layouts with different emphasis
on macro connectivity.

E. Layout Generation

The goal of layout generation is to find the coordinates for
a set of blocks in a given area. Aiming to optimize wirelength,
the function to minimize is:

penalty ·

(
Vdf

∑
ni,n j

distance(ni,n j) ·M[i][j]

)
Minimizing the sum of the products of dataflow affinity and
distance ensures that blocks that have large array connections
and relatively small latency are close in the layout, thus
reducing wirelength. The position of ports and macros outside
the subtree are considered a fixed point. The penalty multiplier
forbids layouts with macro overlaps and adds solution flexibil-
ity by slightly punishing violations in the am and at of blocks,
allowing them if the benefit in the cost function outweighs
the cost of the penalty. It also allows the exploration to pass
through illegal solutions.

Layout Representation and Search

The layout is represented as a slicing tree with a node per
block. This structure allows to work with shape curve com-
positions and naturally use a top-down algorithm for layout
generation. The solution space is explored using simulated
annealing. The structure is perturbed with equal probability
with one of three operations: operand swap, operator inversion
or operand-operator swap (similar to [13]).

Since the shapes of the components are not fixed a priori
as in other bottom-up layout generation approaches, the layout
dimensions are not considered a constraint, but a budget: the
layout always takes exactly the area it has been assigned.
At the beginning, the entire area is available and the root of
the slicing tree must be processed. At each node, the area is

TABLE II: Average WL, WNS and effort for the three flows.
WL WNS Effort

IndEDA 1.143 -39.1% 10-30 mins (CPU)
HiDaP 1.013 -24.6% 0.5-2 hours (CPU)

handFP 1.000 -17.9% 2-4 weeks (engineers + CPU)

partitioned vertically or horizontally (depending on the node
operator), according to the target area at sum of its subtrees.
The process continues until the leaves are reached, when the
block is assigned a rectangle in the layout. Fig. 8 shows a
slicing tree where each leaf has target area at , and its layout
considering a budget of 3x3 area units.

This technique guarantees all block at demands are met, but
since it allows blocks to take any possible aspect ratio, some
layouts are illegal when considering macros. It would be the
case if node a contained a macro with w = 2 and h = 1, since
such macro would not fit in the alloted space in the example.
Let Γn, an

m and an
t for a given slicing tree node n characterize

its subtree as a block, computed at the beginning of the layout
generation from the blocks at the leaves by composing shape
curves and adding areas up to the root. This characterization
is used to solve illegalities by moving area from one child to
the other and increase the cost function penalty depending on
the kind of area that was yielded (at , am or macro area, from
least to most severe).

V. EXPERIMENTAL EVALUATION

Array information for dataflow analysis is essential for the
quality of results in our method. Unfortunately, this informa-
tion is not available in open benchmarks available to academia
such as the ICCAD’12 benchmarks [1]. For this reason, a set of
8 real industrial examples of challenging circuits were used to
validate our approach. The final handcrafted layouts obtained
by expert backend engineers were available for comparison.
The following three floorplan flows are compared:
Industrial EDA (IndEDA) Floorplan obtained with a state-

of-the-art industrial tool using high effort settings.
Hierarchical Dataflow Placement (HiDaP) Floorplan by

HiDaP, best WL of three (λ = 0.2,0.5,0.8).
Handcrafted floorplan (handFP) Floorplan manually ob-

tained by expert backend engineers at the company.
Metrics are taken after placement of standard cells using the

same tool as IndEDA. Wirelength averages are shown using
the geometric mean to reduce sensitivity to extreme values.

Table II shows summarized flow results, with average WL
relative to handFP, WNS in clock cycle percentage and the
effort to create the solutions. While IndEDA execution takes
from 10 to 30 minutes, our approach HiDaP takes from 30
minutes to 2 hours and obtains results approaching those of the
handFP flow, where floorplans have taken weeks of iterations
by the physical design engineers.

Table III shows the detailed metrics. Rows represent a
circuit and floorplan flow, and columns give information
on wirelength (in meters, and normalized with respect to
handFP), congestion (global routing overflow percentage) and
timing information (worst negative slack, in percentage of the
clock period, and total negative slack).

TABLE III: Metrics after placement using the three flows.
Wirelength Cong. Timing

Flow WL norm. GRC% WNS% TNS
c1 IndEDA 13.19 1.029 6.51 0.0 0

520k cells HiDaP 13.40 1.046 7.83 0.3 0
32 macros handFP 12.81 1.000 7.36 -0.2 0

c2 IndEDA 46.01 1.180 12.99 -44.5 -931
3.95M cells HiDaP 40.72 1.045 13.00 -19.0 -329
100 macros handFP 38.97 1.000 9.33 -11.2 -213

c3 IndEDA 44.83 1.175 10.09 -75.5 -553
3.78M cells HiDaP 35.02 0.918 8.29 -17.5 -260
94 macros handFP 38.16 1.000 9.15 -17.8 -317

c4 IndEDA 45.03 1.174 7.24 -54.4 -2167
4.81M cells HiDaP 40.43 1.054 4.94 -31.2 -2686
122 macros handFP 38.35 1.000 3.33 -22.8 -1736

c5 IndEDA 44.25 1.162 2.02 -30.8 -1940
1.39M cells HiDaP 39.51 1.038 4.72 -25.1 -1149
133 macros handFP 38.06 1.000 3.42 -39.8 -1017

c6 IndEDA 96.42 1.288 9.95 -70.0 -15341
2.87M cells HiDaP 79.20 1.058 2.22 -37.0 -5051
90 macros handFP 74.87 1.000 1.63 -27.3 -3688

c7 IndEDA 41.44 1.174 38.56 -34.9 -1060
1.67M cells HiDaP 35.52 1.007 6.47 -29.9 -1059
108 macros handFP 35.29 1.000 4.61 -20.4 -774

c8 IndEDA 24.85 0.987 1.02 -3.4 -44
2.20M cells HiDaP 23.75 0.944 1.37 0.0 0
37 macros handFP 25.17 1.000 0.93 -3.9 -24

When comparing the HiDaP and IndEDA flows, wirelength
is smaller using HiDaP in all but one case. Congestion is
similar, with two cases with noticeably less (c6, c7). Our flow
always obtains lower WNS, and also lower TNS in most cases.

The mean wirelength in IndEDA is 14.3% higher than
handFP while obtaining generally worse congestion and tim-
ing. When comparing HiDaP and handFP, the mean WL
increase is only 1.3%, and the manual flow obtains generally
better results in all metrics with 2 exceptions. In c3, our flow
obtains 8.2% less wirelength with reduced congestion and
timing, and in c8, HiDaP beats the other flows in wirelength
and closes timing while maintaining similar congestion.

Density maps for the placed circuit c3 using the three flows
can be seen in Fig. 9. Whereas IndEDA and handFP placed
macros on the block walls, HiDaP found more distributed
locations given it considers standard cell distribution during
macro placement. Our approach shows the smallest peak cell
density near the macros in circuit walls.

Additionally, an interactive graphic tool has been developed
to model and visualize the dataflow of complex designs.
Fig. 9d shows a block floorplan of the topmost hierarchical
level for circuit c3 (corresponding to the stage of Fig. 1a
in our initial example). Each colored box corresponds to a
node in Gdf, and the arrows are the edges representing their
main dataflow relations: brighter colors mean more affinity.
These diagrams generate additional feedback for the backend
engineers to rapidly converge into better solutions.

VI. CONCLUSIONS

This paper proposes to exploit RTL information for macro
floorplanning using a hierarchical multi-level flow. The effec-
tiveness of the approach has been tested with an industrial
suite of benchmarks. The results are generally better than using

(a) IndEDA: WL = 44.83m (b) handFP: WL = 38.16m

(c) HiDaP: WL = 35.02m (d) Initial floorplan of Gdf

Fig. 9: Density maps of standard cells for the placement of c3
using the three flows, and top block floorplan from HiDaP.

previously existing methods, with quality close to handcrafted
floorplans, providing a better starting point for engineers to
find a final layout in reduced turnaround time.

REFERENCES

[1] ICCAD 2012 Hierarchy-Aware Placement Contest.
[2] S. N. Adya and I. L. Markov. Combinatorial Techniques for Mixed-size

Placement. ACM Trans. Des. Auto. Electr. Syst., 10(1):58–90, 2005.
[3] C. H. Chang, Y. W. Chang, and T. C. Chen. A novel damped-wave

framework for macro placement. In ICCAD, pages 504–511, 2017.
[4] S. T. Chen, Y. W. Chang, and T. C. Chen. An integrated-spreading-based

macro-refining algorithm for large-scale mixed-size circuit designs. In
ICCAD, pages 496–503, 2017.

[5] T. C. Chen et al. MP-Trees: A Packing-Based Macro Placement
Algorithm for Modern Mixed-Size Designs. IEEE Trans. on CAD,
27(9):1621–1634, 2008.

[6] Y. F. Chen et al. Routability-driven blockage-aware macro placement.
In 51st ACM/EDAC/IEEE DAC, pages 1–6, 2014.

[7] C. H. Chiou et al. Circular-contour-based obstacle-aware macro place-
ment. In 21st ASP-DAC, pages 172–177, 2016.

[8] W. Choi and K. Bazargan. Hierarchical global floorplacement using
simulated annealing and network flow area migration. In DATE, pages
1104–1105. IEEE, 2003.

[9] Y. L. Chuang et al. Design-hierarchy aware mixed-size placement for
routability optimization. In ICCAD, pages 663–668, 2010.

[10] M. K. Hsu et al. Routability-driven placement for hierarchical mixed-
size circuit designs. In DAC, pages 1–6, 2013.

[11] I. L. Markov, J. Hu, and M.-C. Kim. Progress and Challenges in VLSI
Placement Research. Procs. of the IEEE, 103(11):1985–2003, 2015.

[12] M. Then et al. The more the merrier: efficient multi-source graph
traversal. Procs. of the VLDB Endowment, 8(4):449–460, 2014.

[13] D. F. Wong and C. L. Liu. A New Algorithm for Floorplan Design. In
DAC, pages 101–107, 1986.

[14] J. Z. Yan, N. Viswanathan, and C. Chu. Handling complexities in modern
large-scale mixed-size placement. In DAC, pages 436–441, 2009.

