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Abstract

Interfaces, by nature, are often asynchronous since they
serve for connecting multiple distributed modules/agents
without common clock. However, the most recent develop-
ments in the theory of asynchronous design in the areas of
speci�cations, models, analysis, veri�cation, synthesis, tech-
nology mapping, timing optimization and performance anal-
ysis are not widely known and rarely accepted by industry.

The goal of this tutorial is to �ll this gap and to present an
overview of one popular systematic design methodology for
design of asynchronous interface controllers. This method-
ology is based on using Petri nets (PN) a formal model that,
from the engineering standpoint, is a formalization of timing
diagrams (waveforms) and from the system designer stand-
point is a concurrent state machine, in which local compo-
nents can perform independent or interdependent concurrent
actions, changing their local states asynchronously. We will
introduce this model informally based on a simple example:
a VME-bus controller serving reads from a device to a bus
and writes from the bus into the device.

1 Speci�cation with Petri Nets

1.1 From timing diagrams to Petri Nets

Figure 1 depicts the interface of a device with a VME bus.
The behavior of the controller is as follows: a request to read
from or write into the device is received by one of the signals
DSr or DSw respectively. In a read cycle, a request to read
is done through signal LDS. When the device has the data
ready (LDTACK), the controller must open the transceiver
to transfer data to the bus (signal D). In the write cycle,
data is �rst transferred to the device. Next, a request to
write is done (LDS). Once the device acknowledges the
reception of the data (LDTACK) the transceiver must be
closed to isolate the device from the bus. Each transaction
must be completed by a return-to-zero of all interface signals,
seeking for a maximum parallelism between the bus and the
device operations. Figure 2 shows a timing diagram of the
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Figure 2: Waveforms for the READ cycle

read cycle and Figure 3 the corresponding Petri Net. All
events in this Petri Net are interpreted as signal transitions:
rising and falling signal transitions are labeled with \+" and
\�" respectively. Petri Nets with such signal interpretations
are called Signal Transition Graphs (or STGs) [17].
A PN has two types of vertices: places (denoted by circles)

and transitions (denoted by boxes), and arcs from places to
transitions and from transitions to places. Places correspond
to local states of the system and are used for keeping infor-
mation about system resources and conditions for execution
of transitions. Places can keep tokens (denoted by black
dots). A token in a place indicates that a resource is avail-
able or a condition satis�ed. In general more than one token
can be kept in a place, but we will consider only the sim-
plest case: a place cannot contain more than one token. A
set of all places currently marked with a token corresponds
to a current global state of the net. Such global states are
called markings. The initial marking of the PN in Figure 3
is fp0; p1g.

1.2 Token game and concurrency

Transitions correspond to system events (signal transitions
in the example). A transition is enabled if all input places
contain a token. In the initial marking of the PN in Figure 3
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Figure 3: STG for the READ cycle

only one transition, DSr+, is enabled; another one, LDS+,
is not: only place p1 among two of its input places, p1 and p2,
contains a token. Every enabled transition can �re. Firing
removes one token from every input place of the transition
and puts one token to each of its output places. Firing of a
transition is an atomic instantaneous operation, while some
unspeci�ed time can pass between enabling and �ring of the
transition. After the �ring of transitionDSr+ the net moves
to a new marking fp1; p2g and then LDS+ becomes enabled.
This process of moving tokens around (a.k.a. token

game) in a few steps will �re transition D�. This
leads the net into the marking fp7; p8g. In this mark-
ing two transitions DTACK� and LDS� become en-
abled. Since their input places are di�erent they do
not con
ict for tokens and cannot disable each other.
This represents concurrency between DTACK� and
LDS�. In total, there are four pairs of concurrent tran-
sitions: (DTACK�; LDS�), (DTACK�; LDTACK�),
(DSr+; LDS�), and (DSr+; LDTACK�), where concur-
rency is a potential to �re at the same time.

1.3 State graphs

Playing the token game one can generate a Transition Sys-
tem (TS) { an abstract state graph in which each arc be-
tween a pair of states is labeled with the corresponding �red
transition. Figure 4 depicts a TS for the READ cycle. Each
state in the TS generated from a PN corresponds to a mark-
ing, which is shown at the left from the corresponding state.
A TS with states labeled with markings is called a reach-
ability graph of a PN. For Signal Transition Graphs each
state of the corresponding TS also can be associated with a
binary code of signal values, which are shown at the right
from the states1. A TS with states labeled with binary codes
of signals is called a state graph of an STG.

1.4 Choice and arbitration

The environment of the device has a choice to request the
read or the write operation. Similarly, if an arbitration
within the device is involved, then the device itself can inter-
nally make a non-deterministic choice between two requests.
Choice is expressed in PNs by choice places as shown in Fig-
ure 5. Here places p0 and p3 are choice places, places p1 and
p2 merge alternative branches of the behavior and all other
places are removed from the �gure, since they have only one
input and one output arc (they are called implicit places

1for the sake of readability we separate with dots left handshake
signals, right handshake signals, and data transceiver control signal;
enabled signals are marked with an asterisk.
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Figure 4: RG and SG for the READ cycle
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Figure 5: STG for READ and WRITE cycles

and are represented by arcs between two transitions). In the
initial marking fp0; p3g two input transitions are enabled,
DSw+ and DSr+, but as soon as one of them �res another
becomes disabled, since the token disappears from place p0.

2 Analysis and veri�cation

2.1 Properties

Analysis and veri�cation are used at di�erent stages of de-
sign.

� Property veri�cation. After specifying the design it is
required to check implementability properties to answer
the following question: \Can the speci�cation be imple-
mented with an asynchronous circuit?" [14, 16]. Other
properties of the speci�cation can be of interest as well,
e.g., absence of deadlocks, fairness in serving requests,



etc. General purpose veri�cation techniques can be em-
ployed for this analysis [19].

� Implementation veri�cation. After design is done fully
automatically or (especially) with some manual inter-
vention it is often desirable to check that the imple-
mentation is correct with respect to the given speci�-
cation [10, 24].

� Performance analysis and separation between events is
required (a) for determining latency and throughput
of the device and (b) for logic optimization based on
timing information [12, 22] (see also Section 5).

Properties required for implementability include:

� boundedness of the PN to guarantee that the speci�ed
state space is �nite;

� consistency of an STG to ensure that rising and falling
transitions alternate for each signal;

� completeness of state encoding to check that there are
no con
icts in de�nition of Boolean functions for each
non-input (i.e. output and internal) signals;

� persistency of the STG to verify that (a) no non-input
signal transition can be disabled by another signal tran-
sition and (b) no input signal transition can be disabled
by a non-input signal transition. The former ensures
that no short glitches, known as hazards, can appear
at the gate outputs, while the latter ensures that no
hazards can occur at inputs of the device.

If all the above properties are satis�ed, then the STG speci�-
cation can be implemented as a, so-called, speed-independent
circuit [20] 2. Speed-independence means no hazards under
any variations of gate delays if variations of some critical wire
delays after forks (so-called isochronic forks) stay within rea-
sonable bounds (e.g., within one gate delay).
Let us illustrate two of the above properties with an exam-

ple. Two states in the TS in Figure 4 are underlined. They
correspond to the di�erent markings, fp4g and fp2; p8g, but
their binary codes are equal, 10110. Moreover, enabling con-
ditions in these two states for output signals LDS, and D

are di�erent. Therefore, the implied value of the next state
Boolean function for signal LDS for vector 10110 should be
1 (for the �rst state) and 0 (for the second state). This
is a con
ict in the de�nition of the function. To resolve
this con
ict two methods can be employed: (a) inserting an
additional state signal whose value should distinguish two
con
ict states or (b) concurrency reduction. In the �rst case
one feasible solution is to insert rising transition of the ad-
ditional state signal right before LDS+ and its falling tran-
sition right before D�. So con
icting states will be asso-
ciated with di�erent values of the new state signal. In the
second case, a possible solution is to remove the con
ict-
ing state fp2; p8g from the speci�cation. The environment
should usually stay untouched for the compositional reasons,
therefore delaying input signals is not allowed. Hence, signal
transition DTACK� can be delayed until LDS� �res. The
automatic techniques for solving the state encoding problem
are presented, e.g., in [6, 27].
To illustrate the persistency property let us consider tran-

sitionsDSw+ andDSr+ in Figure 5 assuming for a moment
that they are output signals to be implemented. Both are
simultaneously enabled and disable each other after �ring.
Such behavior cannot be implemented without hazards un-
less special mutual exclusion elements (arbiters) are used.

2.2 Techniques

There are several techniques for �ghting with the \state ex-
plosion problem" in analysis of Petri Net-like speci�cations.

2Also called quasi-delay-insensitive in the literature [18, 2]

� Symbolic Binary Decision Diagram-based (BDD) [3]
traversal of a reachability graph allows its implicit rep-
resentation which is generally much more compact than
an explicit enumeration of states [24].

� Partial order reductions ( [11], stubborn sets [26], iden-
ti�cation method [14]) ignores many (or even most) of
the states for analysis of certain properties.

� Structural properties of PNs (e.g., place invariants) can
provide fast upper approximation of the reachability
space [21, 9] and also can be used for dense variable
encoding of states in the reachability graph. Structural
reductions are useful as a preprocessing step in order
to simplify the structure of the net before traversal or
analysis, keeping all important properties.

� Unfoldings [19, 16] are �nite acyclic pre�xes of the PN
behavior, representing all reachable markings. They
are often more compact than the reachability graph and
due to the acyclic property are well-suited for extract-
ing ordering relations between places and transitions
(concurrency, con
ict and preceding). Di�erent types
of unfoldings are also used for performance analysis [12].

More details on the applicability of these techniques can
be found in [13].

3 Logic Synthesis

The goal of logic synthesis is to derive a gate netlist that
implements the behavior de�ned by the speci�cation. For
simplicity, we will illustrate this step by synthesizing a speed-
independent circuit for the read cycle of the VME bus (see
Figure 3).
The main steps in logic synthesis are the following:

� Encode the SG in such a way that the complete state
coding property holds. This may require the addition
of internal signals.

� Derive the next-state functions for each output and in-
ternal signal of the circuit.

� Map the functions onto a netlist of gates.

3.1 Complete State Coding

As mentioned in Section 2.1, the SG of Figure 4 has state
con
icts. A possible method to solve this problem is to insert
new state signals that disambiguate the encoding con
icts.
Figure 6 depicts a new SG in which a new signal, csc0, has
been inserted. Now, the next-state functions for signalsLDS
and D can be uniquely de�ned. The insertion of new signals
must be done in such a way that the resulting SG preserves
the properties for implementability.

3.2 Next-State Functions

When an SG ful�lls all the implementability properties, a
next-state function can be derived for each non-input signal.
Given a signal z, we can classify the states of the SG into

four sets: positive and negative excitation regions (ER(z+)
and ER(z�)) and quiescent regions (QR(z+) and QR(z�)).
A state belongs to ER(z+) if z = 0 and z+ is enabled

in that state. In this situation, the value of the signal is
denoted by 0� in the SG. A state belongs to QR(z+) if s in
stable 1 state. These de�nitions are analogous for ER(z�)
and QR(z�).
The next-state function for a signal z is de�ned as follows:

fz(s) =

(
1 if s 2 ER(z+)[ QR(z+)
0 if s 2 ER(z�)[ QR(z�)
� otherwise
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Figure 6: SG for the READ cycle with complete state coding.

where s denotes the binary code of a state. The fact that
fz(s) = � indicates that there is no state with such code
in the SG and, thus, s can be considered as a don't care
condition for boolean minimization.
Once the next-state function has been derived, boolean

minimization can be performed to obtain a logic equation
that implements the behavior of the signal. In this step it is
crucial to make an e�cient use of the don't care conditions
derived from those binary codes not corresponding to any
state of the SG. For the example of Figure 6, the following
equations can be obtained:

D = LDTACK � csc0; LDS = D + csc0

DTACK = D; csc0 = DSr � (csc0 + LDTACK)

A well known result in the theory of asynchronous circuits
is that any circuit implementing the next-state function of
each signal with only one atomic complex gate is speed in-
dependent. By atomic gate we mean a gate without internal
hazardous behavior [14, 17]. Two possible hazard-free gate
mappings for the next-state function of the READ cycle ex-
ample are shown in Figure 7,a and b.
However, there could be two obstacles in the actual im-

plementation of the next state functions: (a) a logic function
can be too complex to be mapped into one gate available in
the library; (b) the solution requires the use of gates which
are not typically present in standard synchronous libraries.
The second is the case with solution Figure 7,a. A gate
pictured as a circle with "C" is a so-called C-element [20]:
a popular asynchronous latch with the next state function
c = ab + c(a+ b). Its output, c, goes high (low) if both in-
puts, a and b, go high (low); otherwise, it keeps the previous
value.

3.3 Hazards

A crucial problem which makes solution of logic decomposi-
tion problem for asynchronous design di�cult is a problem
of hazards [25, 23]. Recent development in [23] shows that
if the so-called Fundamental mode is acceptable (input can-
not change until all internal circuit activity stabilizes), then
most of the known methods of logic minimization can be
gracefully extended to asynchronous hazard-free minimiza-
tion. These results can further be extended to FSMs [29].
Unfortunately, the Fundamental mode is often too restric-

tive and in particular is not satis�ed for logic implementing
signal functions in synthesis using STGs.
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3.4 Decomposition and Technology Map-
ping

One of the partial solutions to the logic decomposition for
non-fundamental mode, called the monotonous cover re-
quirement [1, 15], allows one to decompose any function
into two-level combinational logic and a latch. This does
not solve however a problem of breaking gates if the fan-in
or fan-out is too large. The latest results [4, 5] allow one
to obtain a hazard-free decomposition (and then map the
decomposed solution into the available library) without [4]
or with [5] gate sharing into gates with restricted fan-in.

Applying method from [5] two other correct solutions can
be found for mapping the control for READ cycle into two
inputs gate library: solution in Figure 7,b uses a standard
reset dominant RS-latch instead of the C-element; solution
in Figure 8,a uses only combinational gates. This solution
seems to be a standard synchronous decomposition for the

function of signal csc0 = DSr � (csc0 + LDTACK):

map0 = csc0 + LDTACK; csc0 = DSr �map0

Note, however, that signal map0 is also fed to gate D =
LDS � map0. It is only because of this multiple acknowl-
edgment of map0 by two di�erent gates, that this solution
for the READ cycle control is hazard-free: every rising tran-
sition at map0 is acknowledged by signal D, while every
falling transition { by signal csc0. Another synchronous de-
composition for csc0 presented in Figure 8,b is hazardous
and cannot be accepted.

The technique for decomposition and technology mapping
from [5] is based on using candidates for decomposition ex-
tracted by algebraic factorization and boolean relations and
inserting hazard-free signals with multiple acknowledgment.
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4 Back annotation

State regions [8] are sets of states such that they correspond
to a place (regions) or a transition of the PN (excitation re-
gions). Entry and exit arcs for a region correspond to input
and output transitions of a place. Apart from being useful
for state exploration regions provide another important fea-
ture: at any step of the design process a PN corresponding
to the current TS can be extracted and back-annotated to
the designer. This is useful both for interactions with the
design process and for the performance and timing analysis
of the circuit. An example of a PN extraction is shown in
Figure 9,a.

5 Timing Optimization

The power of optimization based on timing information is
two-fold.

� Timing constraints always reduce the set of reachable
states and hence increase the number of don't care
states [22]. Moreover this concurrency reduction does
not introduce new dependencies between signals since
it is fully based on timing not on logic ordering.

� Using timing requirements it is possible to extend the
set of states in which signal is enabled without changing
the set of reachable states: signal transition enabling
does not cause signal �ring if other enabling signals are
known to be (or can be made) faster.

Let us illustrate how timing information can increase the

exibility in logic optimization by example of the READ
cycle. Assume �rst that, as a part of the initial speci�-
cation, it is given that the reset at the right side hand-
shake is always faster than the next read request at
the left side handshake, formally: maximal separation[12]
between transitions LDTACK� and DSr+ is negative,
Sep(LDTACK�;DSr+) < 0. Then there is no need in the
additional state encoding signal and the circuit is simpli�ed
to Figure 10,a.
Assume next that the physical design level tools achieve

control over the delay information using gate and transistor
sizing, placement and routing, and constraining intercon-
nect delays. Then the logic-level synthesis tools can perform
logic optimization at the same time generating separation
constraints that must be implemented by the physical level
tools. For example, it is possible to start enabling of LDS�
right after DSr� instead of D� given that the requirement
Sep(D�; LDS�) < 0 will be satis�ed. This requirement
is satis�ed if the maximal delay of D� is smaller than the
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Figure 10: Circuits for the READ cycle after timing opti-
mization

minimal possible delay of LDS� that can be implemented,
e.g., by transistor sizing or delay padding. The resulting cir-
cuit corresponding to both timing requirements is shown in
Figure 10,b. Back-annotation to an extended PN with re-
lational timing constraints (so-called lazy PNs) can be done
for the circuits optimized based on timing information (see
Figure 9,b).

6 Other Design Techniques

This paper has presented a design methodology based on
Petri net speci�cations of the behavior of a circuit. However,
other models have been proposed in the literature. Among
them, we can point up the methods based of burst-mode
machines [29] and on syntax-directed [2] or transformation-
based [18] translation from process algebras.
Burst-mode machines work under the so-called fundamen-

tal mode assumption, i.e. after each burst of inputs events
accepted by the system, the environment allows the circuit
to stabilize before reacting to the output events. This as-
sumption is realistic for many applications and enables the
utilization of combinational logic minimization methods for
synchronous circuits with ad-hoc extensions to prevent haz-
ardous behavior [23].
Translation from process algebras has been proposed for

formalisms derived from CSP. Syntax-directed translation
derives a netlist of components that implement the behavior
of each of the constructs of the language (parallel/sequential
composition, choice, communication, synchronization, etc.).
The size of the resulting circuit is linearly dependent on the
size of the input description. This fact enables designers and
tools to predict the circuit's performance and complexity
parameters at the earliest steps of the design process.
Other e�orts have been devoted to map asynchronous

speci�cations into standard HDLs aiming at the simulation
and validation with commercial tools [28].

7 Summary

In the last few years, the techniques for asynchronous de-
signed have matured. Among the applications for asyn-
chronous design we can point up asynchronous interfaces,
high-performance computing, low-power and low-emission
design, etc. There are also applications at the system level,
e.g. hardware-software co-design.
Recently there has been an increasing interest of few but

large-scale industries (e.g. Intel, Philips, Sharp, ARM, Co-
gency, SUN, HP) in asynchronous design targeting at di�er-
ent goals: low power, high performance, etc.



Asynchrony introduces a new paradigm in logic design.
Asynchronous circuits are much more di�cult to design and,
for this reason, it is crucial to provide CAD tools to handle
the most di�cult tasks automatically. Most of the steps of
the design process presented in this tutorial are supported
by the tool petrify available at DAC paper home URL:
http://www.lsi.upc.es/~jordic/petrify.
For a more complete tutorial in PN-based design of

asynchronous control circuits we refer to [7]. For fur-
ther information on asynchronous design, the reader
can look at the Asynchronous Logic Home Page
(http://www.cs.man.ac.uk/amulet/async/index.html)
and the proceedings of the ASYNC Symposiums.
An extended version of this paper can be found in [13].
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