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ABSTRACT
A recursive algorithm for solving Boolean relations is pre-
sented. It provides several features: wide exploration of solutions,
parametrizable cost function and efficiency. The experimental re-
sults show the applicability of the method and tangible improve-
ments with regard to previous heuristic approaches.

Categories and Subject Descriptors:B.6.3 [Hardware]: Logic
Design - Design Aids; J.6 [Computer Applications]: Computer-
aided engineering

Terms: Algorithms, Design.

Keywords: Boolean relations, decomposition, logic design.

1. INTRODUCTION
Flexibility in, logic synthesis can be expressed using different

abstract methods like don’t care conditions (DCs), Boolean Rela-
tions (BRs), Multiple Boolean Relations (MBRs), sets of pairs of
functions to be distinguished (SPFDs) [11,14].

Don’t cares form the basis for minimization of incompletely
specified functions (ISFs) and multi-level networks. Boolean Rela-
tions allows to capture more flexibility than ISFs. However, while
minimization of ISFs is a unate covering problem, solving BRs is
a binate covering problem and hence is significantly more diffi-
cult [11].

Fig. 1.(a) illustrates an example of a BR with two input and two
output variables. It is a subset ofB2×B2, whereB = {0,1}. The
input point 10 is related to two different points{00,11}, and 11
is related to another pair{10,11}. The expressed flexibility for
10 and 11 is different. The latter can be captured by introducing
a don’t care into the range of output variables ({10,11} ≡ {1−}).
The former,{00,11}, cannot be expressed with don’t cares.

To solve a BR one needs to find a compatible multi-output func-
tion with minimum cost. Figures 1.(b-c) depict two functions that
are compatible with the original BR.

Many problems in logic design can be reduced to BRs: Boolean
matching techniques for library binding [1], FSM encoding [10],
Boolean decomposition [6], etc. For example, given a cut in the
network, the flexibility of the nodes at the cut can be expressed by
a BR. E.g. if the cut contains two nodesy1,y2 that reconverge to
anANDgate, and for a given primary vector the output of theAND
gate must be 0, then the flexibility aty1,y2 is {00,01,10}. This
paper illustrates the use of BRs for using sequential elements with
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Figure 1: Example of Boolean relation (a) and two compatible
functions (b,c).

embedded logic functions (e.g. a mux-latch) - a typical practice
in high-performance design [8,13], and for multi-way Boolean de-
composition. The experimental results demonstrate that significant
delay and area improvements can be achieved.

Different exact [2, 9] and approximate methods [7, 10, 16] for
solving BRs have been reported. The exact methods can find a
minimum solution provided that the cost function is the number
of prime cubes. They are typically based on reducing the prob-
lem to the binate covering problem and solving it by Integer Lin-
ear Programming or by using reduction techniques and solving the
cyclic core of the problem by branch-and-bound. The approxi-
mate methods use either testing techniques [7] or extend the iter-
ative technique of ESPRESSO [16]. To the best of our knowledge,
gyocro [16] is the most efficient solver so far. Therefore, we use
gyocro as a reference for comparison in our experiments.

Our experience demonstrates that the number of cubes is not nec-
essarily a good metric for estimating the complexity of solutions.
Sometimes one needs to balance functions taking into account ar-
rival times (for the delay) or balance the support of the functions
(for reducing congestion in layout), etc. Our solver,BREL, is
based on a recursive paradigm in which the cost function is a pa-
rameter. This allows to guide the search towards the user-defined
goal. We also observed thatgyocro cannot often escape from local
minima determined by the initial solution, since the reduce-expand-
irredundant loop of ESPRESSO is not always capable of hill climb-
ing. In contrast,BREL uses a recursive paradigm implemented us-
ing branch-and-bound based on the following steps:

• Over-approximate the BR into a multi-output function
• Use standard methods for function minimization
• If the resulting ISF has no conflicts with the original relation,

then report the result.
• Otherwise, select one conflict minterm.
• Decompose the original BR into two subBRs by taking dif-

ferent output components of the conflict minterm.
• Recursively solve the sub-BRs.

The rest of the paper is organized as follows. Section 2 presents
basics of Boolean relations. Details of our solver are explained in
Section 3. The major heuristics used to implement the recursive al-
gorithm are presented in Section 4. Section 5 reports experimental
results.



2. BACKGROUND
Definition 1. Boolean function.A Boolean functionf is a func-

tion f : Bn → B. A Boolean function can also be interpreted as the
set of verticesx∈Bn such thatf (x) = 1. An incompletely specified
Boolean function (ISF) is a functionf : Bn → B∪{−}, where− is
called thedon’t carevalue of the function. An ISF can be speci-
fied by three Boolean functions:OFF( f ), ON( f ) andDC( f ) that
characterize the vertices inBn with image 0, 1 and−, respectively.
2

An implementation of an ISFf is a Boolean function̂f such that

ON( f )⊆ f̂ ⊆ON( f )∪DC( f )

Definition 2. Cofactor and existential abstraction. The
cofactors fxi and fxi of a Boolean function f (x1, . . . ,xn)
are defined as fxi = f (x1, . . . ,xi−1,1,xi+1, . . . ,xn) and
fxi = f (x1, . . . ,xi−1,0,xi+1, . . . ,xn). The existencial abstrac-
tion ∃xi f is defined as∃xi f = fxi + fxi . Cofactors and existential
abstraction can be extended to cubes. 2

Definition 3. Boolean relation.A Boolean relationR is a subset
of Bn×Bm, whereBn andBm are called the input set and output set
of R, respectively. It can be specified by a characteristic function
R : Bm×Bn → B, such that(x,y) ∈ R if and only if R(x,y) = 1.
The complement ofR⊆ Bn×Bm is R= (Bn×Bm)\R. A Boolean
relation iswell definedif for all x ∈ Bn, there existsy ∈ Bm such
that(x,y) ∈ R. 2

Hereafter, we will indistinctively talk about sets and their cor-
responding characteristic functions. The union, intersection and
complement of sets have dual operations with the disjunction,
conjunction and complement of functions, according to Stone’s
representation theorem [15]. We will useX = (x1, . . . ,xn) and
Y = (y1, . . . ,ym) to denote the set of inputs and outputs of a rela-
tion. We will also assume that Boolean relations arewell defined,
unless otherwise stated.

Definition 4. Multiple-output Boolean function.A well-defined
Boolean relationR⊆ Bn×Bm is a multiple-output function if

R(x,y1) ∧ R(x,y2) =⇒ y1 = y2

2

Definition 5. Compatible functions.Given a Boolean relationR,
the set of multiple-output functions compatible withR is defined as

F(R) = {F | F ⊆ R ∧ F is a multiple-output function}
Note thatF(R) = /0 if R is not well defined. 2

Example 1.This example shows a tabular representation and the
characteristic function of the Boolean relation that corresponds to
Fig. 1(a).

x1x2 y1y2
00 {00}
01 {01}
10 {00,11}
11 {10,11}

R(x1,x2,y1,y2) =
x1 x2 y1 y2 +x1x2y1y2 +
x1x2(y1 ⇔ y2)+x1x2y1

In this example, the function

f (x1,x2,y1,y2) = (y1 ⇔ x1) · (y2 ⇔ (x1 +x2))

is compatible with the relation. However the function

g(x1,x2,y1,y2) = (y1 ⇔ x1) · (y2 ⇔ x2)

is not compatible since it contains the vertexx1x2y1y2 that is not
included inR. 2

Definition 6. dc-extendable vertex.Given a Boolean relationR,
its input vertexx is calleddc-extendableif the output set corre-
sponding tox can be captured as a single cube with don’t cares.
2

In the above example input vertex 11 is dc-extendable, while 10 is
not. The following properties are important for theBREL solver.

Property 1. Semi-lattice of well-defined Boolean relations.The
set of well-defined Boolean relations with the relation⊆ is a semi-
lattice with one greatest element (Bn×Bm) and 2n+m least elements
that correspond toF(Bn×Bm). Let R andR′ be Boolean relations
andF be a function. Then,

R⊂ F =⇒ R is not well defined

F ⊂ R =⇒ R is not a function

R is well defined =⇒ (R= R′ ⇐⇒ F(R) = F(R′))

2

Definition 7. Projection of a Boolean relation.The projec-
tion of a relationR(X,Y) onto the outputyi is another relation
(R↓ yi)(X,yi) defined by the characteristic function

(R↓ yi)(X,yi) = ∃y1...yi−1yi+1...ymR(X,Y).

2

Example 2.From the relation presented in Example 1 the fol-
lowing projections can be derived:

R↓ y1 = x1y1 +x1 y1 +x1x2

R↓ y2 = x1 +x2y2 +x2 y2

2

The projection of a relation onto one output implicitly defines an
ISF for that output and represents the maximum allowable flexibil-
ity for that output still preserving the existence of a solution for the
relation. The calculation of the ISF obtained fromR↓ yi is denoted
by

(ON,OFF,DC) = ISF(R↓ yi)

Where theON, OFF andDC set of the ISF are the following:

ON(R↓ yi) = (R↓ yi)yi · (R↓ yi)yi

OFF(R↓ yi) = (R↓ yi)yi · (R↓ yi)yi

DC(R↓ yi) = (R↓ yi)yi · (R↓ yi)yi

Example 3.For the previous example, we have

R↓ y1 = x1x2︸︷︷︸
ON

y1 + x1︸︷︷︸
OFF

y1 +x1x2︸︷︷︸
DC

R↓ y2 = x1 x2︸︷︷︸
ON

y2 +x1 x2︸︷︷︸
OFF

y2 + x1︸︷︷︸
DC

where theON, OFF andDC sets are

ON(R↓ y1) = x1x2 ON(R↓ y2) = x1x2
OFF(R↓ y1) = x1 OFF(R↓ y2) = x1 x2
DC(R↓ y1) = x1x2 DC(R↓ y2) = x1

2

Given a set of single-output functionsF = { fi}, the characteristic
function of the corresponding multiple-output function is obtained
as follows:

F(X,Y) =
m̂

i=1

(yi ⇔ fi(X))



Definition 8. Compatibility of a function.Given a functionF
and a relationR, F is compatiblewith R if F ·R= 0. In general, we
define

Incomp(F,R) = F ·R

as the set of vertices ofF not compatible withR. 2

Example 4.For the functionF = (y1 ⇔ x1) · (y2 ⇔ x2) the in-
compatible vertices areIncomp(F,R) = x1x2y1y2. 2

Next, the basis of the divide-and-conquer approach presented in
this paper is introduced.

Definition 9. Splitting a Boolean relation.Let R⊆ Bn×Bm be
a well-defined relation,x ∈ Bn, andyi one of the outputs of the
relation. The following two relations can be defined:

R1 = R· (x+yi); R2 = R· (x+yi).

We denote the previous operation by

(R1,R2) = Split(R,x,yi).

2
Intuitively, given an input vertexx of the input set and one output
yi , the relation can be split into two relations such that one of them
takes the valueyi = 0 and the other takes the valueyi = 1 for the
vertexx. The two relations induce a partition over the functions
compatible withR.

Property 2. GivenR, R1 andR2 as defined above, the following
properties hold:

R= R1∪R2; F(R) = F(R1)∪F(R2); F(R1)∩F(R2) = /0.

2
Property 3. If R is well defined and(R↓ yi)x = 1, thenR1 and

R2 obtained fromSplit(R,x,yi) are well defined. 2

Note that(R↓ yi)x is a 1-variable function that can only beyi , yi or
1. In the first (second) case, it indicates that the Boolean relation
can only take the valueyi = 0 (yi = 1) for the input vertexx. In the
third case, it can take both values. It is easy to see that only in the
third case, bothR1 andR2 are well defined1.

Example 5.Let us take the input vertexx1x2 and the outputy1
from the relation in Example 1. Then,R1 andR2 are defined by the
following tables:

R1
x1x2 y1y2
00 {00}
01 {01}
10 {00}
11 {10,11}

R2
x1x2 y1y2
00 {00}
01 {01}
10 {11}
11 {10,11}

BothR1 andR2 implicitly define a function fory1 and an ISF for
y2. After minimizing each one, the functions

F1 = (y1 ⇔ x1x2) · (y2 ⇔ x2)
F2 = (y1 ⇔ x1) · (y2 ⇔ (x1 +x2))

are obtained, compatible withR1 andR2, respectively. Both solu-
tions are compatible withR.

Note that if the vertex to split would bex1 x2, thenR2 would not
be well defined, sincey1 cannot take the value 1 for that vertex.2

1Note that(R ↓ yi)x = 0 would indicate thatR is not defined for
vertexx and, therefore, is not well defined.

QuickSolver (R)
{Input: A well-defined relationR(X,Y)}
{Output: A multi-output function compatible withR}

S := R;
for each outputyi do

(ON,OFF,DC) := ISF(S↓ yi);
Fi := (yi ⇔Minimize(ON,OFF,DC));
S := S·Fi ;

return S;
end ;

Figure 2: A naive algorithm to solve a Boolean relation.
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Figure 3: Recursive paradigm for solving Boolean relations.

3. BOOLEAN RELATION SOLVER
We first present a naive approach for solving Boolean relations.

Next, the recursive algorithm is described.

3.1 Obtaining a quick solution
The algorithm from Fig. 2 was used in [16] to obtain an initial

solution before applying the reduce-expand-irredundant process it-
eratively. It minimizes each output using the maximum flexibility
provided by the relation. As long as outputs are calculated, the
constraints of the solution are propagated to the rest of the outputs.
The core of the algorithm is the functionMinimize that performs
the minimization of an ISF. Although this algorithm is efficient, it
has two drawbacks:

• The solution depends on the order the outputs are minimized.
• The first outputs tend to take advantage of the flexibility of

the relation, whereas the last outputs inherit little flexibitity.
This leads to unbalanced and sub-optimal solutions.

The goal of this paper is to propose a method that performs a bet-
ter exploration of the space of solutions, while having an affordable
computational complexity.

3.2 The recursive approach
The approach proposed in this paper is based on theSplit opera-

tion presented in Def. 9. The intuitive basis of this approach can be
informally described as follows:

Let us minimize each output using the maximum allow-
able flexibility provided by the relation. If the obtained
solution is not compatible, let us select a conflicting
vertex and an output, and generate two relations com-
patible with the original one. They will cover the same



BREL(R, BestF)
{Input: A well-defined relationR(X,Y) and the best

found compatible function (BestF)}
{Output: BestF returns the minimum-cost function

compatible withR}
{Check forR to be a function}
if R is a functionthen

if cost(R) < cost(BestF) then BestF :=R;
return ;

{R is not a function}
{Each output is minimized independently}
F := 1;
for each outputyi do

F := F · (yi ⇔Minimize(ISF(R↓ yi)));

if cost(F)≥ cost(BestF) then return;

{The solution is better, but it may not be compatible}
I := Incomp(F,R);
if I = 0 then BestF :=F ; return ;

{There are incompatibilities: split and call recursively}
(x,yi) := Pick (vertex, output signal) pair fromI

(x is not dc-extendable and(R↓ yi)x = 1);
(R1,R2) := Split(R,x,yi);
BREL(R1,BestF); BREL(R2,BestF);
return ;

end ;

Figure 4: A recursive algorithm to solve Boolean relations.

space of solutions, but will be more constrained (closer
to the functions in the semi-lattice of Boolean rela-
tions). This produces an exploration tree in which the
leaves correspond to the functions compatible with the
relation.

The split operation is graphically illustrated in Fig. 3. The recur-
sive algorithm is shown in Fig. 4. It is a branch-and-bound algo-
rithm that uses the cost of the best explored solution to prune the
search space.

It first detects whenR is a function (terminal case). In case it is
not, the minimization of functions with maximum flexibility is per-
formed. The solution is rejected in case the cost is greater than the
cost of the best obtained function so far. Note that the exploration
is stopped inR if the solution is incompatible, under the assump-
tion that constraining the relation to solve conflicts cannot improve
the cost of a solution obtained by using the maximum flexibility.
Finally, a vertex and an output are selected from the incompatible
points.

This approach offers two main features:

• The cost function can be customized by the user, whereas the
exact or heuristic solvers (e.g. [2,16]) aim at minimizing the
number of cubes of the solutions. Thus, thecost function
in Fig. 4 can be a parameter of the recursive algorithm.

• The user can find a trade-off between the quality of the so-
lution and the computational complexity spent in finding the
solution. As in any branch-and-bound algorithm, the search
can be aborted as soon as the resources (e.g. CPU time) have
been exhausted.

The following property of theBREL algorithm implies that incom-
patible vertex flexibility cannot be captured with don’t cares.

Property 4. If (x,yi) is an incompatible vertex selected by the
BREL algorithm, thenx is not dc-extendable. 2

In other words, incompatibilities may occur in this algorithm only
at an input vertexx for which the output set cannot be precisely
captured with don’t cares. Consider example in Fig 1.BREL can
potentially find an incompatibility for the input vertex 10, since
its output set{00,11} cannot be captured with don’t cares, but it
would not consider 11 as an incompatibility conflict, since its out-
put set{10,11} can be described as 1−.

4. HEURISTICS AND IMPLEMENTATION
ASPECTS

The general branch-and-bound approach presented in Fig. 4 can
be relaxed and implemented in different ways. There are many
degrees of freedom in implementing the approach: data structure to
represent relations, strategy to explore the branch-and-bound tree,
cost function, minimization of ISFs, etc.

We now present several implementation details of our solver,
BREL, that lead to an efficient trade-off between the quality of the
solutions and the computational complexity of the search. Most of
the implementation decisions have been taken after experimenting
with different strategies and choosing the most convenient.

4.1 Representation of relations
Binary Decision Diagrams (BDDs) are used to represent and ma-

nipulate the characteristic functions of the relations. All the trans-
formations, evaluation of cost functions and minimizations of func-
tions are performed with BDD operations.

The fact that all the relations generated by the solver come from
a unique original relation tends to invoke many similar low-level
BDD operations that are captured in the operation cache and calcu-
lated only once. This has an important impact in the performance
of the solver.

4.2 Exploration of solutions
The branch-and-bound tree of solutions is explored by using a

partial breadth-first-search (BFS). This requires a slight modifica-
tion of the algorithm in Fig. 4. All the relations generated by split-
ting are stored in a list and visited in FIFO order.

The number of visited relations is also limited and is a parameter
of the solver. For this reason, not all relations reach the leaves of
the semi-lattice and become functions. To overcome this problem,
theQuickSolver (Fig. 2) is used to guarantee a solution for each
explored relation.

The BFS enables a wider diversity in the exploration of solu-
tions and avoids the solver to spend his resources (CPU time) in
only one corner of the tree seeking for a local optimum. Using
hybrid approaches by combining BFS with DFS is left for future
investigation.

4.3 Cost function
The cost function is a parameter of the solver. For efficiency

reasons, BDD-based cost functions are desirable. Even though the
size of BDDs is not always the best estimation of complexity for
a Boolean function, typically there is a correlation among both. In
the experimental results we have used different cost functions de-
pending on the goal of the minimization: sum of BDD sizes when
targetting at area minimization and sum of the square of BDD sizes
when targetting at delay. The latter biases the exploration towards
solutions in which the complexity of the functions is balanced, and
hence the delay is more evenly distributed along all pathes. The
former tends to minimized the overal size regardless of the relative
complexity of sub-functions.

The experimental results show that these cost functions are suit-
able for the pursued goals.



4.4 Selection of a vertex with conflicts
When conflicts appear after the independent minimization of

functions, an input vertexx and an outputyi must be selected for
splitting. The solver uses the following strategy. Given the char-
acteristic function of the conflicts,I , the outputs are existentially
abstracted (C = ∃YI ). Next, the shortest path (representing a large
cube) in the BDD representingC is extracted. This cube character-
izes a large region inBn with conflicts. By constraining the value
of the relation in one of the vertices of this region, many other adja-
cent vertices will tend to acquire the same value during minimiza-
tion, due to the flexibility of the relation. This strategy accelerates
the progress of the relation towards the bottom of the lattice (the
functions).

We have experimentally found that this strategy is much more
efficient than choosing the splitting vertex randomly.

4.5 Minimization of ISFs
This section refers to theMinimize operation in the solver. ISFs

are defined by a pair of functions that represent the interval of flex-
ibility [Min,Max] (or [On,On∪Dc]). There are different methods
to reduce the complexity of a function representation under the ex-
istence of flexibility. Some types of generalized cofactors, such as
constrainandrestrict [4,5], have been often used to reduce the size
of BDDs. A BDD operation to find irredundant SOPs is also pos-
sible by using Minato-Morreale’s algorithm [12], even though the
obtained solutions may be far from the optimum.

Another way to reduce the complexity is to reduce the support
by eliminating non-essential variables. A variablez is not essential
if the interval[∃zMin,∀zMax] is not empty (see [3], pp. 107–112).

Our solver first reduces the support of the ISF by greedily elimi-
nating non-essential variables from top to bottom in the BDD. After
that, an irredundant SOP is calculated by using Minato-Morreale’s
approach. We found this combined approach more efficient, in
performance and quality of the solutions, than only using Minato-
Morreale’s minimization.

5. EXPERIMENTAL RESULTS
Table 1 presents comparative results withgyocro. In [16], a sim-

ilar analysis is done for the exact minimizer [2] andHerb [7]. The
number of cubes and SOP literals obtained by each solver are re-
ported. Moreover, the size of the network after extracting common
divisors (algebraic script in SIS) and technology mapping are also
shown. The cost function used byBREL was the sum of BDD sizes
for each output, aiming at minimizing area. The tree of solutions
has been limited to the partial exploration of 10 Boolean relations in
a breadth-first manner. Exploring more solutions did not contribute
to improve results significantly.

The area results obtained byBREL are always better thangy-
ocro (except forshe1). Even thoughgyocro aims at minimizing
the number of cubes, there are cases in which the solution obtained
by BREL is significantly better (b9 andvtx). We attribute this phe-
nomenon to the fact thatgyocro may be trapped in a local mini-
mum after generating the initial solution, from which it cannot eas-
ily escape by simply reducing and expanding cubes. On the other
hand, the BFS strategy byBREL allows to explore a greater vari-
ety of solutions. The CPU time is usually better forBREL, with
a tangible speed-up for two examples (b9 andvtx). However, the
CPU times highly depend on the flexibility of the relation and on
the number of reduce/expand/irredundant iterations performed by
gyocro. A summary of the results is provided by the normalized
sum shown at the last row.

Table 2 reports the results of an experiment designed to illus-
trate the applicability ofBREL and the customization of its cost

ORIGINAL Decomp. mux-latch
PI PO LT Area Delay Area Delay CPU

daio 2 3 4 18096 3.47 11136 3.14 0.2
s27 4 1 3 15312 4.47 18096 4.01 0.2
ex2 3 3 19 347536 9.15 64496 6.39 0.3
ex3 3 3 10 169824 7.30 53824 5.50 0.1
ex5 3 3 9 144304 6.85 23664 5.02 0.1
ex7 3 3 10 178640 7.82 45008 5.35 0.1
s208 10 1 8 88160 7.58 98832 6.45 0.8
s298 3 6 14 134096 6.77 80736 4.48 1.7
s349 9 11 15 232000 9.45 284896 9.81 5.3
s382 3 6 21 225504 9.63 152192 6.07 3.1
s386 7 7 6 179104 7.84 152192 6.15 2.3
s420 18 1 16 207408 9.67 241280 9.73 24.6
s444 3 6 21 214832 8.64 169360 5.98 3.3
s510 19 7 6 300208 8.42 315520 8.05 203.6
s526 3 6 21 224576 8.75 169824 5.87 3.8
s641 35 23 19 522464 12.16 445904 9.28 7.4
s832 18 19 5 334080 10.53 375376 7.77 31.0
s953 17 24 29 507152 9.82 554480 8.11 35.0
s1196 14 14 18 1067664 11.87 1220784 12.62 5.9
s1488 8 19 6 741472 9.98 790192 9.57 10.2
s1494 8 19 6 729872 10.14 786016 9.59 10.2
sbc 40 56 28 920112 8.88 979504 8.73 20.3
Normalized sum 1.00 1.00 0.92 0.84

Table 2: Logic decomposition for mux-latches (LT: number of
latches)

function. We consider the existence of a latch with an embedded
mux in the library, and the next-state equationQ = A·C+B·C.
This three-input latch enables to implement the next-state func-
tion F(X) as the composition of three functions:A(X), B(X)
and C(X). The Boolean relation specifying this flexibility is
F(X)⇔ (A·C+B·C) whereA, B andC are the output variables.
The cost function has been defined as the sum of the squares of the
BDD sizes for the three functions. The squaring favours a tendency
to balance the complexity of the function and, therefore, reduce the
delay of the circuit. In this case, 200 BRs in the BFS have been
explored for each next-state function.

The table reports the area and delay of the combinational part
of the circuit2. The results have been obtained by collapsing the
next-state functions, running thealgebraic script3, speed up and
technology mapping in SIS. For the mux-latch, the decomposition
is done before running thealgebraic script. In general, the results
manifest several features of the approach: (1) the delay is usually
reduced (sometimes significantly: e.g. ex2, s382, s641, s832), (2)
in many cases area is also reduced due to the power of Boolean
decomposition (e.g. ex2-7, s382, mult16b), (3) in some cases the
delay is reduced at the expense of increasing area due to the bal-
ancing tendency of the cost function (e.g. s208, s510, s382, s953)
and (4) the CPU time is affordable (only the CPU time ofBREL
is reported). In three cases (s349, s420 and s1196), both area and
delay became worse with the mux-based decomposition.

The last row of the table summarizes the results and shows
the global improvement obtained by the mux-based decomposition
with Boolean relations.

6. CONCLUSIONS
A recursive paradigm for Boolean relations has been proposed.

The results indicate that this approach is able to explore a greater
diversity of solutions than previous heuristic approaches. The flex-
ibility and efficiency of the algorithm makes it suitable for different

2For a more accurate apple-to-apple comparison, the set-up times
and area of the simple and mux-latches should also be considered.
3Thealgebraic script is more convenient for delay optimization.



gyocro BREL
PI PO CB LIT ALG AREA CPU CB LIT ALG AREA CPU

int1 4 3 5 8 8 9280 0.03 7 12 9 8352 0.01
int5 4 3 7 14 11 11136 0.02 7 14 11 11136 0.00
int10 6 4 25 88 32 44544 0.08 29 102 34 41296 0.02
c17b 5 3 7 12 12 10208 0.03 7 12 12 10208 0.00
c17i 5 3 15 37 34 34336 0.04 13 32 30 32016 0.01
she1 5 3 6 20 16 16240 0.04 9 26 15 17632 0.00
she2 5 5 10 33 31 30624 0.09 12 30 24 26448 0.01
she3 6 4 9 26 23 24592 0.08 9 27 21 21344 0.01
she4 5 6 20 91 56 62176 0.14 27 120 40 46864 0.03
gr 14 11 54 455 318 346608 3.43 86 590 313 322016 6.79
b9 16 5 270 2833 321 382336 4.68 137 1174 256 306240 0.19
int15 22 14 131 1083 506 525248 21.94 166 1062 459 472352 19.14
vtx 22 6 424 4460 117 151728 30.10 244 1809 101 94656 0.58
Normalized sum 1.00 1.00 1.00 1.00 1.00 0.77 0.55 0.89 0.86 0.44

CB: cubes, LIT: SOP literals, ALG: literals (after algebraic script), AREA: after tech. mapping (lib2.genlib)

Table 1: Comparison with gyocro [16].

applications. In the future, we foresee to explore different strategies
of multi-way decomposition by using Boolean relations.
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APPENDIX

A. EXAMPLE OF DECOMPOSITION
WITH A MULTIPLEXOR

We provide an example to illustrate a function decomposition us-
ing a multiplexor. Let us assume that the following Boolean func-
tion is given:

f (x1,x2,x3) = x1(x2 +x3)+x1x2x3

The goal is to decompose this function using a multiplexor
and, therefore, to absorb part of the original functionf within
the multiplexer (Figure 5). The function for a multiplexor is
Q(A,B,C) = A·C+B·C. Hence, the characteristic function of the
Boolean relation that captures flexibility of the implementation is

R(x1,x2,x3,A,B,C) = f (x1,x2,x3)⇔Q(A,B,C) =
(x1(x2 +x3)+x1x2x3)(AC+BC)

+(x1x2x3 +x1(x2 +x3))(AC+BC)

Our algorithm finds the following decomposition:
A(x1,x2,x3) = x1; B(x1,x2,x3) = x1; C(x1,x2,x3) = x2 +x3

A tabular representation for the Boolean relation and the decom-
position helps to illustrate the compatibility of the solution.

x1x2x3 ABC
000 {−00,0−1}
001 {−00,0−1}
010 {−00,0−1}
011 {1−1,−10}
100 {1−1,−10}
101 {1−1,−10}
110 {1−1,−10}
111 {−00,0−1}

x1x2x3 ABC
000 011
001 011
010 011
011 010
100 101
101 101
110 101
111 100

X 3

X 2

X 1

X 1

X 3

X 2 X 1

X 3X 2

A

B
C

f

(a)

f

(b)

Figure 5: (a) Original function. (b) Function decomposed using
a multiplexor.


