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Robert Clarisó, Enric Rodrı́guez-Carbonell, and Jordi Cortadella
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Abstract. Abstract interpretation is a paradigm that has been successfully used
in the verification and optimization of programs. This paper presents a new ap-
proach for the analysis of Petri Nets based on abstract interpretation. The main
contribution is the capability of deriving non-structural invariants that can in-
crease the accuracy of structural methods in calculating approximations of the
reachability space. This new approach is illustrated with the verification of two
examples from the literature.

1 Introduction

The analysis of the state space of a Petri Net can be done by using different methods.
Traditionally, three types of methods have been proposed [24]:

– Enumeration techniques, which provide an exact characterization for bounded sys-
tems and partial approximations for unbounded systems. These techniques suffer
from the state explosion problem that often appears in highly concurrent systems.

– Transformation techniques, which alleviate the previous problem by reducing the
system into a smaller one that still preserves the properties under analysis.

– Structural techniques, which provide information of the system based on the un-
derlying graph structure of the net. Structural techniques typically compute upper
approximations of the state space that can be effectively used for the verification of
safety properties.

Structural techniques provide linear descriptions of the state space by exploiting the
information given by the state equation [19]. As an example, the following invariant
characterizes the markings that fulfill the state equation for the Petri Net in Fig. 1(a):

2p1 +p2 +p3 +p4 +p5 = 2. (1)

The reachability graph is depicted in Fig. 1(b), in which the shadowed states represent
spurious (unreachable) markings. The presence of spurious markings is the cost that
must be paid when using approximation techniques to calculate the state space.

This paper presents an attempt to explore a different analysis approach that lives
between the accuracy of the enumeration methods and the efficiency of structural tech-
niques. The goal is to reduce the set of spurious markings by generating more accurate
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Fig. 1. (a) Petri Net (from [24]), (b) reachability graph

Table 1. Non-structural invariants for the Petri Net in Fig. 1(a)

Linear inequalities Polynomial equalities

p2 + p4 ≤ p3 + p5 (2) p2
5 − p5 = 0 (5)

p3 + p4 ≤ p2 + p5 (3) p4p5 − p4 = 0 (6)
p5 ≤ p2 + p3 + p4 (4) 2p3p5 + p2 + p4 = p3 + p5 (7)

characterizations of the state space taking into account both the initial marking and the
structure of the net.

The approach is based on the paradigm of abstract interpretation [9], successfully
used in different areas for the verification and optimization of systems [7]. In this paper
we present two abstract domains that are able to derive non-structural invariants for
Petri Nets: linear inequalities and polynomial equalities.

As an example, abstract interpretation has been able to obtain the invariants in Ta-
ble 1 for the previous Petri net.1

Some observations on the new invariants:

– The invariants (1)-(4) represent the exact reachability graph.
– The invariants (1) and (5)-(7) also represent the exact reachability graph.

Even though in this case abstract interpretation can characterize the reachability
graph exactly, in general it provides an upper approximation, which may be more accu-
rate than the one defined by the structural invariants. Nevertheless, these conservative
invariants can be used to prove safety properties of the Petri Net, like boundedness and

1 The invariant (1) is also obtained in both abstract domains.
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of degree 2
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polyhedron of degree ≤ 2 of degree ≤ 3
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0 ≤ y ≤ 4 0 ≤ y − x ≤ 2 x − 2y ≥ 0 x · (x − 1) · (x − 2) = 0
3x − y ≤ 2

Fig. 2. Approximating a set of values (left) with several abstract domains

deadlock freedom (by studying whether the conjunction of the disabling conditions for
all the transitions and the invariants is feasible).

Some previous works have also studied the generation of linear inequality invariants.
Many of them have been based on the analysis of structural properties and objects [16],
including siphons and traps [5]. Another approach, presented in [23], uses Farkas’
lemma to generate inductive linear invariants. Finally, Presburger arithmetics [13] and
real arithmetics [2] can be used to represent the state space of Petri Nets, providing
again linear inequality invariants.

Abstract interpretation offers new chances for the analysis of concurrent systems
and, in particular, of Petri Nets. The possibility of deriving non-structural invariants can
open the door to a new family of strategies that can better explore the trade-off between
accuracy and efficiency in the modeling of concurrent systems. In this paper, the ap-
plicability of abstract interpretation is illustrated with the verification of an automated
manufacturing system and the alternating bit protocol.

2 Abstract Interpretation

2.1 Fundamentals

Abstract interpretation [9] is a generic approach for the static analysis of complex sys-
tems. The underlying notion in abstract interpretation is that of upper approximation: to
provide an abstraction of a complex behavior with less details. Upper approximations
are conservative in the sense that they can be used to prove safety properties, e.g. “no
errors in the abstraction” means “no errors in the system”. A property about a system
such as an invariant is in some way an abstraction: it represents all the states of the
system that satisfy the property.

Intuitively, abstract interpretation defines a procedure to compute an upper approx-
imation for a given behavior of a system. This definition guarantees (a) the termination
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of the procedure and (b) that the result is conservative. An important decision is the
choice of the kind of upper approximation to be used, which is called the abstract do-
main. For a given problem, there are typically several abstract domains available. Each
abstract domain provides a different trade-off between precision (proximity to the exact
result) and efficiency.

There are many problems where abstract interpretation can be applied, several of
them oriented towards the compile-time detection of run-time errors in software [6].
For example, some analysis based on abstract interpretation can discover numeric in-
variants among the variables of a program. Several abstract domains can be used to
describe the invariants: intervals [8], octagons [17], convex polyhedra [10] or polyno-
mial equalities [22]. These abstract domains provide different ways to approximate sets
of values of numeric variables. For example, Figure 2 shows how these abstract domains
can represent the set of values of a pair of variables x and y.

2.2 Application to the Reachability Problem

The reachable markings of a Petri Net can be studied using abstract interpretation. We
will consider the classic model of Petri Nets, extended with inhibitor arcs and param-
eters in the initial marking. A reachable marking of a Petri Net N can be seen as an
assignment to k non-negative integer variables, where k is the number of places in
N . Therefore, a set of markings can be approximated using the abstract domains from
Figure 2. This approach has several benefits. First, the abstract domains can represent
large sets of markings compactly. Even infinite sets of markings can be represented ef-
ficiently. Moreover, the analysis can work with parametric markings where the number
of tokens in a place is defined by a parameter. Finally, the approximation leads to a
faster generation of the reachable state space. The result may contain some unreach-
able markings, but all reachable markings will be included in the solution. Thus, all
invariants discovered by abstract interpretation hold in all the reachable markings.

We will show the computation of the reachable markings using the convex polyhe-
dra abstract domain, even though other abstract domains could be used. The abstract
interpretation procedure applied to the reachability analysis is shown in Figure 3. Intu-
itively, the algorithm behaves as follows. Initially, only the initial marking is reachable.
There may be several enabled transitions, which will discover new reachable markings
when they are fired. The algorithm keeps on firing transitions until no more reachable
states can be found. The enabling condition can be expressed using linear inequalities,
while the effect of firing a transition can be expressed as linear assignments. Both op-
erations are available in the abstract domain of convex polyhedra. Notice that each step
deals with sets of reachable markings instead of individual markings.

The algorithm consists in computing the following sequence:

reachable0 = M0

reachablei+1 = reachablei ∪ next(reachablei, T ) .

In this recurrence, M0 is the initial marking of the Petri Net. The set next(M,T )
represents the markings reached by firing once any transition in t ∈ T from any marking
m ∈ M such that t is enabled in m. The union operator (∪) is not exact for convex
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Input: A Petri Net N = 〈P, T, F, M0〉 with a set of places P , a set of transitions T , a flow-
relation F and an initial marking M0.
Output: An upper approximation of the set of reachable markings of N , described in the abstract
domain used in this analysis (e.g. a set of linear inequalities or polynomial equalities).

reachable = { M0 } # Start from the initial marking
do {

old := reachable
for each transition t ∈ T {

enabling := enablingCondition( t, F ) # Enabling condition of t defined by F
enabled := reachable ∩ enabling # Reachable markings where t is enabled
if ( enabled = ∅ ) continue # Check if t is not enabled yet
next := fire( t, enabled, F ) # Fire t from the enabled markings
reachable := reachable ∇ ( reachable ∪ next ) # Accumulate the new markings

}
} while ( reachable 
= old );

Fig. 3. Abstract interpretation algorithm used to compute the set of reachable markings

polyhedra, so some degree of approximation is introduced in this way. However, solving
this recurrence has a problem: there is no guarantee that the algorithm will terminate.
If the Petri Net is unbounded, the algorithm might iterate an infinite number of times.
So instead of this recurrence, the algorithm solves another recurrence that relies on a
widening operator (∇). Widening extrapolates the effect of repeating a computation an
unbounded number of times. Its definition ensures the termination of the analysis after a
finite number of steps. Given A, the states before the computation, and B the states after
the computation, the widening is denoted as A∇B. A possible high-level definition of
widening can be “keep the constraints from A that also hold in B”, considering that any
property modified during the computation might be further modified in later iterations.
Using this operator, the recurrence can be rewritten as:

reachable0 = M0

reachablei+1 = reachablei ∇ ( reachablei ∪ next(reachablei, T ) ) .

Figure 4 illustrates the effect of the widening on the computation. On the top, we
show the computation of the reachable markings if the widening is not used. This com-
putation does not terminate. On the bottom, we see the same computation using widen-
ing. In this case, the computation terminates quickly. Notice that, between (p = 0) and
(0 ≤ p ≤ 1), the only common property is (p ≥ 0).

2.3 An Example

The example used to present the abstract interpretation algorithm is shown in Figure 5.
This Petri Net is modeling a producer-consumer system that communicates through a
lossy channel. The left subnet, the producer, generates tokens while the right subnet,
the consumer, removes these tokens. The place p4 models the communication channel
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↓ t

. . .
(p = 0)
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Fig. 4. Justification of the necessity of a widening operator. On the top, computation of the reach-
able markings without any widening. On the bottom, computation of the reachable markings
using widening
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Fig. 5. Petri Net model of a producer-consumer system

between the producer and the consumer, while places p3 and p5 count the number of
executions of the producer and the consumer respectively. The transition t5 models
the possible loss of data in the channel: some tokens generated by the producer will
disappear before reaching the consumer. Initially, we assume that there are already k
tokens in the channel, where k is a parameter of the system.

Several interesting invariants hold in this system. For example, the consumer cannot
process more elements than those created by the producer or initially in the channel, i.e.
(p5 ≤ p3 + k). It should also be noted that the places p3, p4 and p5 are not bounded, so
the set of reachable markings is infinite.

Let us discuss a part of the execution of the algorithm in this example. For the sake
of brevity, the constraints of the form (pi ≥ 0) and (k ≥ 0) will not be shown. The
initial markings, parametrized by the value of k, are the following:

(p1 = 1) ∧ (p2 = 0) ∧ (p3 = 0) ∧ (p4 = k) ∧ (p5 = 0) ∧ (p6 = 0) ∧ (p7 = 1).
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In these markings, there are three transitions enabled: t2, t3 and t5. When t2 is fired,
the following markings are reached:

(p1 = 0) ∧ (p2 = 1) ∧ (p3 = 1) ∧ (p4 = k + 1) ∧ (p5 = 0) ∧ (p6 = 0) ∧ (p7 = 1).

These new markings can be combined with the initial markings using union and widen-
ing, producing the invariant:

(p1 + p4 = k + 1) ∧ (p2 + k = p4) ∧ (p3 + k = p4) ∧ (p5 = 0) ∧
(p6 = 0) ∧ (p7 = 1) ∧ (p4 ≥ k) ∧ (p4 ≤ k + 1).

The algorithm does the same computation for the enabled transitions t3 and t5. After
this step, new transitions become enabled, which once they are fired, increase again the
set of reachable markings. The procedure is repeated until the set of markings does not
change. When the fixpoint is found in this example, the set of reachable markings is
defined by:

(p1 + p2 = 1) ∧ (p6 + p7 = 1) ∧ (p2 ≤ p3) ∧ (p5 ≥ p6) ∧ (p3 + k ≥ p4 + p5).

The most interesting invariant in this result is (p3 + k ≥ p4 + p5). This property is
stating that any element that is consumed (p5) or remains in the channel (p4) was ei-
ther produced (p3) or initially available (k). Note that this invariant implies the one
presented previously, (p5 ≤ p3 + k).

The following sections will present in detail two abstract domains that are suitable
for the discovery of Petri Net invariants. Convex polyhedra and polynomial equalities
can both represent a large class of interesting invariants. On one hand, convex polyhedra
describe the set of reachable markings as a system of linear inequalities, so properties
like (p = 1) or (p1 ≤ p2) are easy to represent. The weakness of convex polyhedra
is the loss of precision in the union, e.g. (p1 = 3) ∪ (p2 = 3) can only be approxi-
mated as (p1 + p2 ≥ 3). On the other hand, polynomial equalities are very precise in
terms of describing disjunctions, e.g. (p1 = 3) ∪ (p2 = 3) can be represented exactly
as ((p1 − 3) · (p2 − 3) = 0). However, the description of inequality properties is more
difficult: it is only possible when an upper bound is known, e.g. (p1 ≤ 2) can be rep-
resented exactly as (p1 · (p1 − 1) · (p1 − 2) = 0); but for instance, that is not possible
with (p1 ≤ p2).

3 Linear Inequality Invariants

3.1 Convex Polyhedra

Convex polyhedra can be described as the set of solutions of a conjunction of linear in-
equality constraints with rational (Q) coefficients. Let P be a polyhedron over Qn, then
it can be represented as the solution to the system of m inequalities P = {X|AX ≥ B}
where A ∈ Qm×n and B ∈ Qm. The set of variables X contains the counters of
the number of tokens in each place and the parameters of the initial marking. Convex
polyhedra can also be characterized in a polar representation by means of a system
of generators, i.e. as a linear combination of a set of vertices V (points) and a set



Derivation of Non-structural Invariants of Petri Nets Using Abstract Interpretation 195

y

x

(3, 2)

(3, 3)

(1, 0)

(1, 1)

P

System of generators

P ={λ1 · (3, 3) + λ2 · (3, 2) + µ1 · (1, 1) + µ2 · (1, 0)|
λ1 ≥ 0, λ2 ≥ 0, µ1 ≥ 0, µ2 ≥ 0, λ1 + λ2 = 1}

System of constraints

P = {(x, y) | (y ≥ 2) ∧ (x ≥ 3) ∧ (x − y ≥ 0)}

Fig. 6. An example of a convex polyhedron (shaded area) and its double description

of rays R (vectors). Formally, the convex polyhedron P can also be represented as
P = {∑vi∈V λi · vi +

∑
rj∈R µj · rj | λi ≥ 0, µj ≥ 0,

∑
i λi = 1}. Figure 6 shows an

example of a convex polyhedron and its double description.
The fact that there are two representations is important, because several of the oper-

ations for convex polyhedra are computed very efficiently when the proper representa-
tion is available. There are efficient algorithms [3, 10] that translate one representation
into the other. Also, the dual representations can be used to keep a minimal description,
removing redundant constraints and generators.

In the remaining of the paper, we will denote the number of tokens in a place
pi as xi.

3.2 Abstract Semantics

The abstract domain of convex polyhedra provides all the operations required in ab-
stract interpretation. This section will describe the implementation of the operations
used in our problem: guards, assignments, test for inclusion (⊆), union (∪) and widen-
ing (∇).

Initial Marking. The initial marking defines the number of tokens in each place, and
therefore, the value of all token counter variables. Therefore, the convex polyhedron
that represents the initial marking has the following system of constraints: ∧i(xi = mi),
where mi is the initial number of tokens in place i.

Guards. There are two kinds of guards that arise in our analysis: guards testing the
presence of tokens in the input nodes, of the form (x1 ≥ 1); and guards describing
inhibitor arcs, of the form (x2 = 0). In any case, these guards are linear inequalities, so
the resulting convex polyhedron only adds these guards to its system of constraints.

Assignments. The assignments that appear in our analysis increase or decrease counter
variables by a constant value, e.g. (xi := xi ± c). These assignments can be applied to
a convex polyhedron by changing its system of generators: each vertex is modified by
increasing variable xi by the constant c.

Test for Inclusion. In order to decide whether a fixpoint has been reached, the con-
vex polyhedra approximating the reachability set must be compared with the one com-
puted in the previous iteration. This comparison is made using the test for inclusion
(P ⊆ Q), which requires both representations of polyhedra. A convex polyhedron P ,
whose system of generators is the set V of vertices and the set R of rays, is included in a



196 R. Clarisó, E. Rodrı́guez-Carbonell, and J. Cortadella

polyhedron Q, whose system of constraints is AX ≥ B, if and only if ∀v ∈ V,Av ≥ B
and ∀r ∈ R,Ar ≥ 0.

Union. The new markings discovered when a transition is fired must be added to the
previously known set of markings using the union operator. In the convex polyhe-
dra domain, the union of convex polyhedra is not necessarily a convex polyhedron.
Therefore, the union of two convex polyhedra is approximated by the convex hull,
the smallest convex polyhedron that includes both operands. The system of genera-
tors of the convex hull can be computed by joining the systems of generators of the
operands.

Widening. The extrapolation operator on convex polyhedra works on the system of
constraints. The widening P∇Q can be simply defined as the inequalities from P that
are also satisfied by Q. More complex definitions of widening may provide a better
precision in the analysis [1, 15].

The firing of a transition can be modeled as a sequence of these operations. First,
testing if the transition is enabled can be performed by guard operations that check the
number of tokens in the input places, e.g. (x1 ≥ 1)? or (x2 = 0)? for inhibitor arcs.
Then, the changes in the number of tokens in a place are modeled as linear assignments,
e.g. (x1 := x1 +1). The new reachable markings will be added to the current reachable
set using the union and widening operator, as it was described in Section 2.2. Figure 8
shows an example of this computation.

Figure 7 shows several examples of the operations described in this section. Notice
that the intersection and linear assignment are exact, while the union and the widening
operations are approximate.
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Fig. 7. Example of the operations on convex polyhedra: (a) intersection, (b) union, (c) widening
and (d) linear assignment
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x
(x1 = 1) ∧ (x2 = 0) � (x1 + x2 = 1) ∧ (0 ≤ x1 ≤ 1) ∧ (0 ≤ x2 ≤ 1)

(a)

(x1 = 1) ∧ (x2 = 0) � (x1 + x2 = 1) ∧ (x2(x2 − 1) = 0)

(b)

Fig. 8. Computation of the invariants when a transition is fired, in the case of (a) linear inequalities
and (b) polynomial equalities

4 Polynomial Equality Invariants

4.1 Ideals of Polynomials

In the abstract domain of convex polyhedra (Section 3), we have represented states
as solutions of a system of linear inequalities; now, in the domain of ideals of
polynomials, we will consider states as solutions of a system of polynomial equal-
ities.

Namely, we abstract as follows: given a set of states S, regarded as points in Qn,
the corresponding abstraction is a set of polynomials P with rational coefficients such
that P (σ) = 0 ∀σ ∈ S, i.e. all points in S are zeroes of P . This set of polynomials has
the algebraic structure of an ideal: by definition, an ideal I is a set of polynomials such
that it a) contains 0, b) is closed under addition, and c) for any polynomial P , if Q ∈ I
then P · Q ∈ I . Thus, we take ideals as our abstract values: an ideal I is an abstraction
of the common zeroes of its polynomials, {σ ∈ Qn| P (σ) = 0 ∀P ∈ I}, which we call
the variety of I and denote by V(I).

The set of polynomials with rational coefficients is denoted as Q[X]. Given a subset
S ⊆ Q[X], the ideal generated by S is

〈S〉 = {f ∈ Q[X] | ∃k ≥ 1 f =
k∑

j=1

PjQj with Pj ∈ Q[X], Qj ∈ S}.

For an ideal I , a set of polynomials S such that I = 〈S〉 is called a basis of I .
By Hilbert’s basis theorem, all ideals of polynomials admit a finite basis. Therefore
any ideal is associated to a finite system of polynomial equality constraints: the ideal
I = 〈P1(X), ..., Pk(X)〉 corresponds to the system {P1(X) = 0, ..., Pk(X) = 0}, or
equivalently to the formula

∧k
j=1 Pj(X) = 0.

For example, the ideal 〈x(x2 + y2 − 16), y(x2 + y2 − 16)〉 is associated to the sys-
tem {x(x2 +y2−16) = 0 , y(x2 +y2−16) = 0}. Its solutions, which form the variety
V(〈x(x2 + y2 − 16) , y(x2 + y2 − 16)〉), are the union of a circle and a point, pic-
tured in Figure 9. Notice that this set, unlike convex polyhedra, is not convex or even
connected.
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x = y = 0
x

y

= 16+y 2x 2

Fig. 9. An example of variety of an ideal

4.2 Abstract Semantics

This section shows the operations required to perform the abstract interpretation of Petri
Nets using ideals of polynomials. For a more detailed description, see [22].2

Initial Marking. If we are given an initial marking (m1,m2, ...,mn) for the Petri Net
(where each mi may be a constant or a parameter), at first we know that (xi = mi) for
every place of the net, and so we take the ideal

〈x1 − m1, x2 − m2, ..., xn − mn〉
as initial ideal.

Guards: Inhibitor Arcs. A guard describing an inhibitor arc, i.e. checking that there
are no tokens in the inhibitor place pi, is of the form (xi = 0). Similarly as we did with
convex polyhedra, we have to add the guard to the system of constraints. In this case,
we just need to add the polynomial xi to the list of generators of the input ideal.

Guards: Presence of Tokens. Testing the presence of tokens is conservatively trans-
lated into polynomial disequality guards: checking that there are at least C tokens at
place pi is expressed as (xi �= 0 ∧ · · · ∧ xi �= C − 1). Given an input ideal I , for each
of these disequalities (xi �= c) we want to represent the points that belong to V(I) but
not to V(〈xi − c〉), in other words V(I)\V(〈xi − c〉). The polynomials in the quotient
ideal I : 〈xi − c〉 [12] evaluate to 0 at this difference of sets, and therefore abstract the
states we are interested in; so we take this quotient as output ideal.

Assignments. The assignments that appear in our analysis are of the form xi := xi±c,
as they express the change in the number of tokens at place pi after firing a transition.
Given an ideal I = 〈P1, ..., Pk〉, we want to compute the effect of applying the assign-
ment xi := xi + c on I (in case of a subtraction, we may take c as a negative value). In
terms of formulas, we need to express the following assertion using ideals:

∃x′
i(xi = x′

i + c ∧ (
k∧

j=1

Pj(xi ← x′
i) = 0)) ,

2 The abstract domain of ideals of polynomials and its semantics have been simplified in this
paper with respect to [22] for the sake of clearness and efficiency.
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where x′
i stands for the value of the assigned variable previous to the assignment, and

← denotes substitution of variables. In this case, the auxiliary variable x′
i can be easily

eliminated by substitution, as x′
i = xi − c. So we get the formula ∧k

j=1 Pj(xi ←
xi − c) = 0, which translated into ideals yields I(xi ← xi − c).

Test for Inclusion. In order to check whether a fixpoint has been reached, we need
to test if the newly computed reachable states, represented by the ideal I , are already
included in our previous approximation given by Iprev . So we need to see if V(I) ⊆
V(Iprev), which can be done by duality by checking that I ⊇ Iprev .

Union. Unlike with convex polyhedra, we can perform exact unions of states in the
domain of ideals of polynomials. Let I, J be ideals corresponding to the sets of states
V(I) and V(J) respectively, and assume that we want to represent V(I) ∪ V(J). In
this case the abstraction is given by the intersection ideal I ∩ J , which satisfies that
V(I ∩ J) = V(I) ∪ V(J).

Widening. In order to get termination if the initial marking has parameters or the Petri
Net is not bounded, we need to introduce a widening operator. Similarly as we did with
convex polyhedra, given the ideals I and J we have to perform an upper approximation
of V(I) ∪ V(J). By duality, we have to compute a lower approximation of I ∩ J ; i.e.,
we need to sieve the polynomials in the intersection so that the result is still sound and
also the analysis terminates in a finite number of steps without much loss of precision.

Given a degree bound d ∈ N and a graded term ordering �, our widening operator
I∇dJ is defined as the ideal generated by the polynomials of a Gröbner basis of I ∩ J
(with respect to �) of degree at most d; more formally,

I∇dJ = 〈{P ∈ GB(I ∩ J,�) | degree(P ) ≤ d}〉,
where GB(·,�) stands for a Gröbner basis of an ideal with respect to the term ordering
�. For definitions of Gröbner basis, graded term ordering and related concepts, we refer
the reader to [12].

Figure 10 shows several examples of the operations described in this section. Con-
trary to convex polyhedra, the union operator is exact. Widening can be seen as a
parametrized union, where any polynomial in the basis with a degree higher than the
bound is abstracted. Varying this bound achieves different levels of precision in the re-
sult. For instance, Figures 10(b) and (c) show two widenings with degree bounds 2 and
3 respectively; notice that the latter represents exactly the union of states.

5 Examples

The techniques presented in the previous sections have been implemented and applied
to several Petri Net examples from the literature. The linear inequality analysis has been
implemented as a C program using the New Polka convex polyhedra library [21]. On
the other hand, the polynomial equality analysis is performed by means of the algebraic
geometry tool Macaulay 2 [14]. When it is not computationally feasible to work with
polynomials over the rationals, we heuristically employ coefficients in a finite field in-
stead. As the invariants obtained in the finite field might not necessarily be invariants in
Q, the polynomials thus generated are finally checked to be truly invariants of the system.
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Fig. 10. Example of the operations on ideals of polynomials: (a) intersection, (b) widening with
degree bound 2, (c) widening with degree bound 3 (union) and (d) linear assignment

5.1 Comparison with Structural Invariants

Structural invariants [20] are properties of the Petri Net structure, so they are indepen-
dent of the initial marking. For instance, a Petri net may be bounded for a given initial
marking, i.e. the number of tokens in each place is bounded in all reachable markings.
Moreover, a net may be bounded for any initial marking, i.e. structurally bounded. Any
structurally bounded net is also bounded, but the reverse does not necessarily hold.
The approaches presented in this paper can be used to detect structural properties of
a Petri Net: a parameter defines the initial marking of each place, hence the invariants
obtained describe properties that are independent on the initial marking. For example,
Figure 11(a) shows a Petri Net whose initial marking is defined by the parameters p, q
and r: x1 = p, x2 = q, x3 = r. In this Petri Net, the linear inequality invariants that
can be computed with our approach appear in Figure 11(b). Notice that these invariants
are structural as they are satisfied by any initial marking; for instance, (r + p ≥ x3)
meansthat place x3 is structurally bounded. Invariant polynomial equalities can be sim-
ilarly obtained using the same concept.

If a net is bounded, the analysis with polynomial invariants discovers the exact state
space, for a sufficiently large degree. Thus, if a net is bounded but not structurally
bounded, the analysis with polynomial invariants obtains a description of the state space
which is more precise than structural invariants.

Regarding the analysis with convex polyhedra, or Petri nets with an infinite state space,
using a widening adds some approximation. This approximation may make us fail to dis-
cover some structural invariants. In practice, in all the examples that we have studied, the
state space computed by abstract interpretation satisfies all the structural invariants.

Furthermore, invariants describing properties which depend on the initial marking
can also be computed with our approach. For example, Figure 12 shows a Petri Net
where a place p is bounded for the initial marking depicted in the figure, while it is not
structurally bounded. Abstract interpretation analysis discovers this property, encoded
as the linear inequalities (0 ≤ p ≤ 1) or the polynomial equality p · (p − 1) = 0.

Another example of a non-structural property discovered by these invariants appears
in Figure 13. This Petri Net can have a deadlock depending on the initial marking. For
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Fig. 11. (a) Petri Net with a parametric initial marking and (b) the computed linear inequality
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Fig. 12. Petri Net with a bounded place p which is not structurally bounded

instance, for the initial marking p1p8 there is no deadlock, while for the initial marking
p1 the deadlocks p3p8 and p5p8 are reachable. The invariants produced by both linear
inequalities and polynomial equalities are sufficient to prove the absence of deadlocks
for the former initial marking, as the conjunction of these invariants with the disabling
conditions of all the transitions is unfeasible.

5.2 Automated Manufacturing System

Figure 14 shows a Petri Net model of an automated manufacturing system [25]. This
manufacturing system consists of several elements: four machines (M1 − M4), two
robots (R1 − R2), two buffers with capacity 3 (B1 − B2) and an assembly cell. The
place x1 models the entry point for raw material, while the place x10 (x15) represents
the availability of the buffer B1 (B2). The place x12 (x13) models the availability of the
robot R1 (R2), whereas the place x25 represents the delivery point for the final product.
Finally, the places x4, x7, x16 and x19 model the availability of the machines M1 to M4.

The initial marking of this Petri Net is as follows. The entry point x1 has an unde-
termined number of tokens p, as we want to study the behavior of the system depending
on the quantity of available raw materials. The capacities of the buffers, x10 and x15,
have 3 tokens as the buffers have size 3. Finally, places x2, x4, x7, x12, x13, x16, x19

and x24 have one token, and the rest of places have no tokens in the initial marking.
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Fig. 13. Petri Net with a non-structural deadlock: (a) no deadlock, (b) potential deadlock
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Fig. 14. Petri Net model of an automated manufacturing system

Some relevant properties in this system are boundedness and liveness, i.e. deadlock
freedom. In previous work, these properties have been studied in detail. In [25], it was
proven that the system is bounded, and that it is live only for some values of p, namely
2 ≤ p ≤ 4. A different approach based on integer programming [4] managed to prove
liveness for a wider interval of values, 1 ≤ p ≤ 8. Also, a sequence of firings leading
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to a deadlock when p > 8 was shown. Later work has revisited these results using other
techniques such as Presburger arithmetics [13], real arithmetics [2] and inductive linear
inequalities based on Farkas’ lemma [23].

We have analyzed the manufacturing system using both linear inequality invariants
and polynomial equality invariants. Using linear inequalities, the computation takes 2.2
seconds and 68 Mb of memory. The resulting invariants are the following (we show the
equalities and the inequalities separatedly):

x18 + x19 = 1 x2 + x3 = 1
x8 + x12 + x20 = 1 x4 + x5 = 1
x22 + x23 + x24 + x25 = 1 x6 + x7 = 1
x9 + x13 + x21 + x23 + x25 = 1 x10 + x11 = 3
x19 + x17 + x15 + x13 + x11 + x7 + x5 + x2 − x24 − x12 = 5 x14 + x15 = 3
x19 + x17 + x15 + x13 + x11 + x7 + x5 − x24 − x12 − x3 = 4 x16 + x17 = 1
x19 + x15 + x13 + x12 + x7 + p − x17 − x11 − x5 − x1 = 7

x25 + x24 + x23 ≤ 1 x7 ≤ 1
x25 + x23 + x21 + x13 ≤ 1 x15 ≤ 3
x19 + x15 + x13 + x7 − x24 − x1 ≤ 5 x19 ≤ 1
x19 + x17 + x15 + x13 + x11 + x7 + x5 − x24 − x12 ≥ 4 x20 + x12 ≤ 1

This set of constraints suffices to prove that the manufacturing system is bounded.
On the other hand, we have applied our analysis with ideals so as to discover poly-

nomial equality invariants of degree at most 2. In order to speed up the computation,
we have employed a finite field Zp instead of Q, with p a relatively big prime number
(in particular, we have taken p = 32749, the largest prime allowed in Macaulay 2); the
generation of the candidate invariants takes 16 minutes and 304 Mb of memory. After
checking that the polynomials obtained are invariant, which requires 6 minutes and 490
Mb, we get (we separate the linear invariants from the quadratic ones):

x8 + x12 + x20 = 1 x2 + x3 = 1
x9 + x13 + x21 + x23 + x25 = 1 x4 + x5 = 1
x24 + 2x16 + 2x12 + 2x10 + 2x4 − x2 − x1 + p = 12 x6 + x7 = 1
x16 − x18 − x14 + x13 + x12 + x10 − x6 + x4 − x1 + p = 7 x10 + x11 = 3
x19 + x16 − x14 + x13 + x12 + x10 − x6 + x4 − x1 + p = 8 x14 + x15 = 3
x21 − x22 + 2x16 + x13 + 2x12 + 2x10 + x9 + 2x4 − x2 − x1 + p = 12 x16 + x17 = 1

x2
2 = x2 x8x12 = 0

x2
4 = x4 x9x13 = 0

x2
6 = x6 x13x21 = 0

x2
8 = x8 x9x21 = 0

x2
9 = x9 x9x23 = 0

x2
12 = x12 x21x23 = 0

x2
13 = x13 x13x23 = 0

x2
16 = x16 x2

23 = x23

x2
21 = x21

and four other more complex polynomial constraints.
Unlike with linear inequalities, these invariants are not enough to prove that all

places in the net are bounded; the reason is that polynomial equalities cannot express
relations such as x1 ≤ p, where the bounds are parametric. However, some of the
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places can be shown to be bounded: for instance, x2 = x2
2 means that either x2 = 0

or x2 = 1. Notice that each family of constraints uses a different approach to represent
boundedness: linear inequalities give an upper bound on the number of tokens (for
example, the linear invariant x20 + x12 ≤ 1 implies x12 ≤ 1), whereas polynomial
equalities encode an exact disjunction of the possible values.

Further, by means of these quadratic constraints, together with the implicit invari-
ant that all variables are non-negative, it is also possible to prove that the system is
deadlock-free for 1 ≤ p ≤ 8; in order to do that, we show that the conjunction of the
invariants and the disabling conditions of all the transitions is not satisfiable. Moreover,
as in [23], for p = 9 we are able to isolate four potential deadlocks, one of which is the
deadlock corresponding to the sequence of firings in [4] mentioned above.

5.3 Alternating Bit Protocol

The Petri Net in Figure 15 models the alternating bit protocol for retransmitting lost or
corrupted messages. The correctness of the protocol has already been shown in previous
work: while in [11] all the proofs were done by hand, in [13] Fribourg and Olsén em-
ployed Presburguer arithmetics to automatically characterize the reachable states and
thus prove that the system behaves properly.

The initial marking is x1 = 1, x13 = 1 and xi = 0 for 1 ≤ i ≤ 16, i �= 1, 13.
Notice that the net has eight inhibitor arcs, linked to the places xj , j = 5..12, which
can be proved to be unbounded; these inhibitor arcs are pictured as circle-headed arrows
on the figure. Thus, this example cannot be handled by other techniques for generating
invariants that do not deal with equality guards, such as [18].

For this Petri Net, by means of convex polyhedra the following linear constraints:

x4 + x3 + x2 + x1 = 1 x16 + x15 + x14 + x13 = 1

x 15

x 13

x 5
x9

x 10

x 12

x 11

x 3

x 14x 2

x 7

1x

x 8

x 6

x 16x 4

Fig. 15. Petri Net model of the alternating bit protocol
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are obtained as invariants in 1.1 seconds using 65 Mb of memory. In this case, these lin-
ear invariants are not enough to show correctness, due to the fact that convex polyhedra
cannot represent disjunctions in general.

As regards the analysis with polynomials, in 74.7 seconds and using 21 Mb of mem-
ory we get the following linear and quadratic constraints:

x4 + x3 + x2 + x1 = 1 x16 + x15 + x14 + x13 = 1

x1x2 = 0 x2x3 = 0 x2
1 = x1

x1x3 = 0 x1x6 = 0 x2
2 = x2

x2x8 = 0 x3x8 = 0 x2
3 = x3

x5x7 = 0 x6x8 = 0 x2
13 = x13

x9x11 = 0 x10x12 = 0 x2
14 = x14

x9x15 = 0 x11x13 = 0 x2
15 = x15

x11x14 = 0 x13x14 = 0 x6x3 + x6x2 = x6

x13x15 = 0 x14x15 = 0 x14x9 + x13x9 = x9

Note that, out of the 26 computed constraints, just the first two are linear and coin-
cide with the linear equalities obtained above using convex polyhedra; the rest of the
polynomial constraints are implicitly defining disjunctions. This explains why the linear
inequality analysis does not yield enough information to verify the system.

Unfortunately, the quadratic invariants do not suffice to prove the correctness of the
Petri Net either. This leads us to generate cubic invariant polynomials, i.e. of degree 3;
the computation takes 102.9 seconds and 34 Mb of memory and gives

x2x7x9 = 0 x7x9x10 = 0 x2x12x13 = x2x12

x2x7x12 = 0 x7x10x13 = 0 x5x8x13 = x5x8

x2x7x13 = 0 x8x9x10 = 0 x5x12x13 = x5x12

x2x11x12 = 0 x2x5x6 = x5x6 x6x12x13 = x6x12

x5x8x10 = 0 x2x5x10 = x5x10 x7x9x13 = x7x9

x5x8x11 = 0 x2x5x11 = x5x11 x7x9x13 = x7x9

x5x11x12 = 0 x2x6x9 = x6x9 x8x9x13 = x8x9

x6x7x9 = 0 x2x6x12 = x6x12 x9x12x13 = x9x12

x6x7x12 = 0 x2x6x13 = x6x13 x2x5x13 + x5 = x5x13 + x2x5

x6x7x13 = 0 x2x9x10 = x9x10 x2x9x13 + x9 = x9x13 + x2x9

x6x11x12 = 0 x2x10x13 = x10x13

in addition to the quadratic constraints above. Unlike with the quadratic case, the cubic
invariants allow us to prove that
⎧
⎪⎪⎨

⎪⎪⎩

x1 = 1 =⇒ (x2 = x3 = x4 = x6 = x7 =x10 = x11 =x14 = x15 =x16 = 0) ∧ (x13 = 1)
x3 = 1 =⇒ (x1 = x2 = x4 = x5 = x8 = x9 = x12 = x13 =x14 =x16 = 0) ∧ (x15 = 1)

x14 = 1 =⇒ (x1 = x3 = x4 = x7 = x8 = x11 =x12 =x13 = x15 =x16 = 0) ∧ (x2 = 1)
x16 = 1 =⇒ (x1 = x2 = x3 = x5 = x6 = x9 = x10 =x13 =x14 =x15 = 0) ∧ (x4 = 1)

which implies that the system is correct (see [11]).

6 Conclusions

The applicability of abstract interpretation can be extended to the analysis of Petri Nets.
This paper has presented an approach that can generate a rich set of invariants using
this paradigm.
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Abstract interpretation is a general approach that accepts different algorithmic tech-
niques to calculate approximations. We believe that different strategies can be studied to
explore the trade-off between efficiency and accuracy in analyzing concurrent systems.
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17. A. Miné. The octagon abstract domain. In Analysis, Slicing and Tranformation (in Working
Conference on Reverse Engineering), IEEE, pages 310–319. IEEE CS Press, Oct. 2001.

18. M. Müller-Olm and H. Seidl. Computing Polynomial Program Invariants. Information Pro-
cessing Letters (IPL), 91(5):233–244, 2004.

19. T. Murata. State equation, controllability, and maximal matchings of petri nets. IEEE Trans.
Autom. Contr., 22(3):412–416, June 1977.

20. T. Murata. Petri nets: Properties, analysis and applications. Proc. of the IEEE, 77(4), 1989.
21. New Polka: Convex Polyhedra Library. http://www.irisa.fr/prive/bjeannet/newpolka.html.
22. E. Rodrı́guez-Carbonell and D. Kapur. An Abstract Interpretation Approach for Automatic

Generation of Polynomial Invariants. In Int. Symp. on Static Analysis (SAS 2004), volume
3148 of Lecture Notes in Computer Science, pages 280–295. Springer-Verlag, 2004.

23. S. Sankaranarayanan, H. Sipma, and Z. Manna. Petri net analysis using invariant generation.
In Verification: Theory and Practice, pages 682–701. Springer-Verlag, 2003.

24. M. Silva, E. Teruel, and J. M. Colom. Linear algebraic and linear programming techniques
for the analysis of place/transition net systems. Lecture Notes in Computer Science: Lectures
on Petri Nets I: Basic Models, 1491:309–373, 1998.

25. M. Zhou, F. DiCesare, and A. Desrochers. A hybrid methodology for synthesis of Petri
net models for manufacturing systems. IEEE Transactions on Robotics and Automation,
8(3):350–361, June 1992.


	Introduction
	Abstract Interpretation
	Fundamentals
	Application to the Reachability Problem
	An Example

	Linear Inequality Invariants
	Convex Polyhedra
	Abstract Semantics

	Polynomial Equality Invariants
	Ideals of Polynomials
	Abstract Semantics

	Examples
	Comparison with Structural Invariants
	Automated Manufacturing System
	Alternating Bit Protocol

	Conclusions

