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Abstract

Noise immunity is becoming one of the most important design
parameters for deep-sub-micron (DSM) technologies. Asyn-
chronous circuits seem to be a good candidate to alleviate the
problems originatedby simultaneousswitching noise. However,
they are also more sensitive than synchronous ones to spurious
signal transitions and delay variations produced by crosstalk
noise. This paper addresses the problem of analyzing and syn-
thesizing asynchronous circuits with noise immunity being the
main design parameter. The techniques presented in the pa-
per focus on cross talk noise and tackle the problem from the
behavioral point of view.

1 Introduction

The technology of interest for research on CAD for inte-
grated circuits aimed at a 10-15 year time frame should assume
feature sizes below 100 nm (deep sub-micron or DSM). Ac-
cording to the National Technology Roadmap for Semiconduc-
tors (NTRS’97) the prediction for the year 2009 is: technology
norm� 0:07�m, 520M transistors per chip, 2500 MHz on-chip
clock, area � 620mm2 and 8-9 wiring levels [5, 10]. It is now
common to point out that for DSM noise immunity is becoming
a metric comparable in terms of importance to area, timing and
power [5, 9, 25]. Among noise sources one usually considers
the following:
� cross coupling capacitances and charge sharing (crosstalk),
� power and ground noise, including simultaneous switching

noise,
� alpha particle radiation,
� substrate noise,
� electro-magnetic radiation from external sources.
Immunity against external noise sources (the last three items)

can be ensured for DSM by the same means as for VLSI (by
means of appropriate packaging and electro-magnetic isola-
tion). Contrary to that, the problem of internal noise immunity
becomes much more severe due to the following reasons:

� increasing capacitive coupling (closer packing, nonuniform
geometrical scaling, etc.),
� lower noise margins (due to scaling down power supply

and threshold voltage),
� higher speed of voltage changes.
Crosstalk and simultaneous switching noise are identified as

a major source of problems during DSM layout synthesis.
The absence of a common clock in asynchronous systems

somewhat helps to avoid the simultaneous switching noise. Re-
cent investigations [19] show that by a self-timed approach one
might reduce not only simultaneous switching noise, but also
the high frequency components of noise (400% reduction for
peak switching current [19]) and Electro-Magnetic Interference
by an order of magnitude with respect to a comparable syn-
chronous design.

However, for crosstalk noise an asynchronous approach gives
no immediate advantage in comparison to synchronous circuits.
A straightforward way to reduce noise would be to constrain
the layout synthesis step, by forbidding the adjacency of noisy
wires. The drawback of this approach is that the information
on which wires are subject to crosstalk will be available, with
current synthesis-based methodologies, only at a later stage
(namely after extraction and back-annotation). Crosstalk noise
reduction thus requires a potentially large number of iterations
between layout and analysis steps, without any guarantee of
convergence.

Thus researchers are beginning to advocate a new design
flow, in which design errors (in particular due to noise) are
identified as early as possible in the flow, and avoided by con-
straint propagation to subsequent steps. Hence one can speak
of “design for low noise” in the same way as design for low
power or design for testability.

An important step in this direction was made by Kirkpatrick
and Sangiovanni-Vincentelli in [11, 12]. They suggested to
extract information about the possible sources of noise at the
logic (gate netlist) level, and use it to guide the layout tools. The
goal of this paper is to extend that work to the asynchronous
sequential logic level, so as to raise the level of abstraction to
the asynchronous behavior level. The possible advantages are
twofold:



1. we can apply to the reduction of noise local transformations
that are only possible at the behavior level (e.g., reshuffling
of transitions),

2. we provide a uniform approach for noise analysis and
avoidance in both sequential and combinational circuits,
while the methods of [11, 12] were mainly targeted for
combinational circuits (the analysis of sequential parts was
complex and approximate).

These techniques can be combined together with traditional
methods for constrained layout synthesis. Behavior transforma-
tions make the layout problem much easier, because they partly
(and sometimes completely) remove the sources of crosstalk
noise.

The novelty of this work with respect to existing approaches
for noise avoidance is illustrated in Figure 1.

engine

Logic circuit

Simulation

Behavior
specification

Low noise
implementation

tool
Layout

constraints
on wire adjacency

constraints
on wire adjacency

Physical level

Analysis
engine

Synthesis
tool

Gate level

reshuffling, etc.
Analysis
engine

Timing
information

This

paper

Sangiovanni-
Kirkpatrick,

Vincentelli

Behavior level

Figure 1. Techniques for low noise design

In this paper we concentrate on noise avoidance within con-
trol circuits only, for the following two main reasons:

1. Datapaths are very regular, hence during layout the task
of noise avoidance within the datapath itself is easier to
solve. Moreover, datapath and control can be segregated
reasonably well, thus reducing the possibility of crosstalk
between these two.

2. In general it is possible to use a behavioral description in
which the datapath transitions are specified together with
control events, as symbolic events. This extension would
allow one to consider also the datapath within the suggested
framework.

The paper is organized as follows. Section 2 discusses the
source of crosstalk noise and its effects in terms of circuit faults.
Section 3 reviews some asynchronous behavior models: State

Graphs (SG) and Signal Transition Graphs (STG). Sections 4
and 5 present and extend the concept of digital sensitization to
asynchronous sequential circuits [11, 12], and apply it to the
analysis of crosstalk noise. Section 6 discusses under which
conditions one can use behavioral (SG and STG) models for
noise analysis, instead of detailed simulation or conditions de-
veloped for combinational logic in previous work. Section 7
sketches some of the algorithms for analysis (noise-isolated pair
extraction) and synthesis (aggressor concurrency reduction and
reduction of temporal adjacency) based on the previous discus-
sion. Section 8 describes preliminary experimental results that
show the promise of our approach. Section 9 concludes the
paper and discusses several topics for future research.

2 Crosstalk Noise and Circuit Faults

Two main types of faults can be caused by noise [20].

Definition 2.1 (Noise-Generated Faults)

1. Transient fault: a signal temporarily changes its logical
value due to noise.

2. Delay fault: the delay of a wire or wire segment (e.g., a
segment of wire after a fanout fork) exceeds the specified
worst case.1

The source of crosstalk noise lies in the interaction between
adjacent wires, due to the coupling capacitance between them
(hence it is also called coupling noise). Of course, working at
the logic level means that we must talk about the future possi-
bility of such interaction, if layout tools do not take appropriate
precautions (e.g., shielding, segregation, and so on).

For an arbitrary pair of wires (a, v) we will call a the ag-
gressor and v the victim, if a transition on a might produce a
noise-generated fault on (any segment of) v. Clearly, the same
pair of wires can play opposite roles in different phases of the
operation of the circuit, and even at the same time.

Noise analysis at the layout level can be confined to im-
mediate adjacent lines, since they act as shields and protect a
“victim” from other “aggressors” [30]. The total crosstalk noise
voltage on a wire can be computed as the sum of the individual
noise contributions of each of adjacent aggressors.

Transient and delay faults generated by noise are of a differ-
ent nature and can happen in two different scenarios.

1. In order for a transient fault to occur on a victim line that
should normally keep a stable value, a short pulse must
be generated on the victim due to transitions on adjacent
aggressor lines. Fortunately, the voltage swing of a victim
line in response to a transition on a single adjacent line is
small enough [9, 8] and can be successfully filtered by the
rest of the circuit. However, the cumulative effect of two

1This case is dangerous even for asynchronous circuits, because it can
violate some timing assumptions (e.g., Fundamental Mode or Isochronic Fork)
that ensure correct operations of an asynchronous circuit.
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lines switching in the same direction might produce a pulse
sufficient to be sensed by gates connected to the victim
line. Therefore for transition faults we will consider only
the situations when two or more aggressors are switching
the same direction.

Figure 2 from [9] illustrates this case. The coupling voltage
noise on the center wire (�Vcoup) can be expressed as:
�Vcoup = �Vsw � 2Cc=(Csub + 2Cc), where Cc is the
coupling capacitance between two adjacent wires, Csub is
the capacitance between the center wire and the substrate,
and �Vsw is the switched voltage [9].
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Figure 2. Simplified cross section of wires

With the help of this simple model, one can check that
even for 0:5�m CMOS technology (with single minimal
spacing) the crosstalk voltage can be larger than the total
noise margin (�Vcoup = 0:59 � �Vsw). The explanation
of this phenomenon lies in nonuniform scaling: lateral
dimensions are aggressively scaled, while vertical dimen-
sions are practically unchanged from one generation to the
next. This results in the increase of the horizontal coupling
component, and a larger swing of the crosstalk voltage.

A known design solution is to space the tracks further apart
than the minimum. However, this does not extend to DSM.
Even with a line spacing that is twice the minimum,for a 70
nm technology the coupling noise due to two aggressors
switching in the same direction, with the victim wire in
between, will exceed 30% of Vdd [5].

Therefore, solving the problem of crosstalk noise in DSM
requires a design methodology that does not tackle it at the
layout level only, but at the logic and behavioral levels as
well.

2. When considering delay faults due to noise, one should
consider a different scenario. A delay fault happens be-
cause of an interaction between wires having simultaneous
transitions in opposite directions [11, 12]. The coupling
between them might induce an additional delay by inject-
ing charge on the more weakly driven wire, which will
slow down its switching2.

Faults generated by noise are dangerous only if they can
influence the rest of the circuit. In this sense we can consider
noise generation and noise propagation conditions. In order to

2The opposite case, making some transition faster when neighboring signals
switch in the same direction [8, 32], might also be a problem. For example, it
could violate timing assumptions such as isochronic forks. However, it does
not need special consideration, since the effects of speeding up some transitions
in asynchronous circuits can be modeled as slowing down other transitions.

increase noise immunity, one can either reduce noise generation
or reduce noise propagation. These issues are considered in
more detail in Section 4.

3 Basic notions

3.1 Basic definitions about Boolean Functions

An incompletely specified (scalar) Boolean function is a
functional mapping F : Bn ! f0; 1;�g, where B = f0; 1g
and ’�’ is a don’t care value. The subsets of the domain Bn in
which F has a 0, 1 and don’t care value are respectively called
the OFF-set, ON-set and DC-set ofF . F is completely specified
if its DC-set is empty. A point (i.e., binary vector of values) in
the domain Bn of a function F (not necessarily in its ON-set)
is called a minterm.

Let F (x1; x2; : : : ; xn) be a Boolean function of n Boolean
variables. The set X = fx1; x2; : : : ; xng is called the support
of the function F . In this paper we shall mostly be using the
notion of true support, that is defined as follows. A variable
x 2 X is essential for function F (or F is dependent on x)
if there exist at least two minterms v1; v2 different only in the
value of x, such that F (v1) 6= F (v2). The set of essential
variables for a Boolean functionF is called the true support of
F .

Let F (X) be a Boolean function with support X =
fx1; x2; : : : ; xng. The cofactor of F (X) with respect to
xi (xi) is defined as Fxi = F (x1; x2; : : : ; xi = 1; : : : ; xn)
(Fxi = F (x1; x2; : : : ; xi = 0; : : : ; xn), respectively). The
well-known Shannon expansion of a Boolean functionF (X) is
based on its cofactors: F (X) = xiFxi + xiFxi .

The existential abstraction of a function F (X) with respect
toxi is defined as9xiF = Fxi+Fx̄i . The existential abstraction
can be naturally extended to a set of variables. The Boolean
difference, or Boolean derivative, of F (X) with respect to xi is
defined as �F=�xi = Fxi � Fxi .

A controlling set for a boolean functionF with a true support
fx1; : : : ; xng is a a set C of values of variables fx1; : : : ; xig
such thatF (C; xi+1; : : : ; xn) has the same value, for any values
of the other variables xi+1; : : : ; xn. Otherwise a set of values
at fx1; : : : ; xig is called non-controlling.

The characteristic function of a set S of n-dimensional
boolean vectors is a boolean function F : Bn ! B such that
s 2 S , F (s) = 1.

3.2 Behavioral models and Logic Implementability

In this subsection we assume the reader to be familiar with
Petri nets, a formalism used to specify concurrent systems. We
refer to [23] for a general tutorial on Petri nets and to [15] for a
review of applications of Petri nets to asynchronous design.

3.2.1 State Graphs

A State Graph (SG) is a labeled directed graph whose nodes
are called states. Each arc of an SG is labeled with an event,
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that is a rising (a+) or falling (a�) transition of a signal a in
the specified circuit. We also allow the notationa� if we are not
specific about the direction of the signal transition. The set of
signals of an SG is called X = I [ O, where I and O denote
the sets of input and output signals respectively. The behavior
of the input signals is determined by the environment, whereas
the behavior of the output signals must be implemented by the
circuit3. We write s

a
! (s

a
! s0) if there is an arc from state s

(to state s0) labeled with a.
A labeling function v : S ! f0; 1gn assigns a vector of

signal values to each state (n = jXj). We will call va(s) the
value of signal a in state s. An SG is consistent if:

s
a+
�! s0 =) va(s) = 0 ^ va(s

0) = 1

s
a�
�! s0 =) va(s) = 1 ^ va(s

0) = 0

s
b�
�! s0 ^ a 6= b =) va(s) = va(s

0)

3.2.2 Signal Transition Graph

A Signal Transition Graph (STG) is a Petri net in which tran-
sitions are labeled with the same type of events that we defined
for SGs, i.e. rising and falling signal transitions [4].

An STG has an associated SG in which each reachable
marking corresponds to a state and each transition between a
pair of markings corresponds to an arc labeled with the same
event as that labeling the transition.

Although STGs with bounded reachability space and SGs
have the same descriptive power, STGs can usually express the
same behavior more succinctly.

Figure 3.a depicts an STG with three signals. For simplicity,
places with only one input and output transitions are omitted.
Figure 3.b shows the corresponding SG, with states labeled with
the binary vectors of the signal values. The SG is consistent.

In addition to consistency, speed independence and Complete
State Coding (CSC) are two properties required for an SG to
be implementable as a hazard-free asynchronous circuit [13].

3.3 Excitation and quiescent regions. Next-state
function.

The excitation region (ER) of event a� is the set of states

such that 8s 2 ER(a�) : s
a�

!. The quiescent region (QR)
of event a� with excitation region ER(a�), is a set of states in
which a is stable and keeps the same value, i.e. for ER(a+)
(ER(a�) ), a is equal to 1(0) in QR(a+) (QR(a�)).

In Figure 3.b, ER(x�) = f101; 111g and QR(x�) =
f001; 011; 010g. The symbol 0� (1�) indicates that a rising
(falling) transition of the corresponding signal is enabled in that
state.

The implementation of an SG as a logic circuit is done
through the definition of the next-state function for each output

3In general this may require the creation of new internal signals. In this
paper we only consider SGs that are already implementable in a given standard
cell library. See [6] for techniques to ensure gate-level implementability.

signal and binary vector. It is defined as follows:

fa(z) =

8<
:

1 if 9s 2 ER(a+) [QR(a+) s.t. v(s) = z
0 if 9s 2 ER(a�) [QR(a�) s.t. v(s) = z
� otherwise

The next-state function fa is correctly defined when the SG
has the CSC property, i.e., when there is no pair of states
(s; s0) such that v(s) = v(s0) and s 2 ER(a+) [ QR(a+)
and s0 2 ER(a�) [QR(a�). Note that fa is an incompletely
defined function with a don’t care (DC) set corresponding to
those binary vectors without any associated state in the SG.

In the SG of Figure 3.b, the DC set is empty since all binary
vectors have a corresponding state in the SG. As an example,
f(101) = 011 since signals x and y are enabled in that state.
The Karnaugh maps for the next-state functions are depicted in
Figure 3.c.

From the next-state functions, a logic circuit can be derived
by implementing the boolean equation of each output signal as
an atomic complex gate, as shown in Figure 3.d. This is called
a complex gate implementation. If the original SG is consistent
and speed-independent then the corresponding complex gate
implementation will be speed-independent as well [22].

4 Digital Sensitivity and Noise Avoidance

The digital sensitivity approach [11, 12] suggests a
constraint-driven design methodology in which the information
extracted from logical or timing correlations between signals are
provided to a layout synthesis tool (a constraint-based channel
router). In the simplest case this information indicates which
sets of wires should not be routed adjacent to each other, be-
cause of the logical possibility of noise. The latter gives a set
of (usually conservative) constraints for a layout tool, that if
satisfied guarantee that a circuit does not have noise-generated
faults.

From the discussion of Section 2 on the sources of the faults,
it follows that noise generation always happens due to several
signals switching at the same time. Therefore, conditions for
noise generation can be checked by analyzing the concurrency
relations between signal transitions. The information on con-
currency is explicitly represented in the behavior models that
we consider. In particular, two transitions a� and b� are con-
current (a* jjb�) if they are enabled in the same state of an SG,
and firing of one of them cannot disable the other. Formally, in
the case when a� = a+ and b� = b+ e.g. a+ concurrent to b+
means that there exists state s in an SG such that:

1) s
a+
! s1 ^ s1

b+
! and 2) s

b+
! s2 ^ s2

a+
!.

The following SG-based algorithm identifies sets of wires
that might potentially be sources of noise faults. This algorithm
formalizes the conditions of occurrence of noise faults which
were presented in Section 2.

Example 4.1 Let us apply the algorithm in Figure 4 to the
example in Figure 3. In the corresponding SG there are only
two states from which signals might fire concurrently: 11*0*
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Figure 3. (a) STG, (b) SG, (c) next-state functions, (d) complex-gate implementation.

Input: Initial SG A

Output: Set Noise of potentially noisy wires
foreach s 2 A do

/* Check delay faults */
foreach pair a; b s.t.
va(s) = 1* ^ vb(s) = 0* ^ a-jjb+ do

Del faults = Del faults [ fa; bg;
/* Check transient faults */
foreach triple a; b; c s.t.
va(s) = 1* ^ vb(s) = 1* ^ vc(s) = 1 ^ a-jjb- do

Trans faults = Trans faults [ fa; c; bg;
foreach triple a; b; c s.t.
va(s) = 0* ^ vb(s) = 0* ^ vc(s) = 0 ^ a+jjb+ do

Trans faults = Trans faults [ fa; c; bg
enddo
Noise = Trans faults [Del faults

Figure 4. Analysis for noise fault

and 1*1*1. The former implies the possibility of delay faults
for the pair of wires (y; z), while the latter might be the source
of a transient fault for the triple (x; z; y), where z is the victim
and x; y are the aggressors (for a triple, the order of signals is
important; the victim is always placed between the aggressors).
Hence in this example Noise = f(y; z); (x; z; y)g.

For those signals that successfully pass the check about noise
faults (i.e. for those that are not included in the Noise set) we
will talk about logic separation. Hence, so far the notion of
logic separation of signals is based completely on the analysis
of the ordering/concurrency relations between transitions in the
behavioral (STG) specification. However, two transitions that
are concurrent in the specification do not necessarily happen
(“fire”) concurrently in the circuit. This is because delays of
circuit gates and wires may actually cause two signals that are
specified as concurrent (e.g., pairs of gates triggered by the
same transition) to actually always occur in a specific order.
For this reason, the concurrency relation in the specification is
a conservative approximation of reality.

Refinement of concurrency is thus possible, either by con-
sidering the implementation (when delay estimation becomes
possible) or by making some “reasonable” timing assumptions,
which must then be satisfied (e.g., by transistor sizing or con-
strained routing) by the implementation. If signals are not

logically separated, but according to these timing informations
we can conclude that, for example, they cannot switch at the
same time, we will talk about temporal separation.

Temporal separation can be checked in a way similar to the
algorithm of Figure 4. In [29, 14] it was shown that timing
constraints can be captured at the STG level, by introducing
timing arcs that reduce the potential concurrency of signals.
From such STG with timing arcs one can generate the SG and
apply the same algorithm to it. The resulting Noise set will
contain tuples of signals that do not have logical nor temporal
separation.

A further refinement of these sets of potentially noisy sig-
nals could be obtained by considering the noise propagation
conditions. If some signals are not separated (logically or tem-
porally) and could generate a crosstalk noise, we would still
have no problems if the generated noise faults could not propa-
gate through the circuit. Suppose, for example, that a transient
fault on wire a happens at a time when for all fanout gates of
a some input different from a has a controlling value. Then
the behavior of the fanout of a does not actually depend on the
value a, and any transient fault affecting a could not propagate
within the circuit (the formal conditions of noise propagation
are considered in Section 5).

If for a set of signals the conditions for noise generation
or propagation are not satisfied, then the set is said to be iso-
lated from crosstalk noise. The level of digital isolation from
crosstalk noise is the percentage of signal pairs for which the cir-
cuit is isolated from crosstalk noise (isolatedpairs), considering
each signal as a victim candidate.

According to [12], about 50% of digital isolation is needed
to have a reasonable impact on the reduction of circuit area after
layout, due to a smaller set of layout constraints.

The main improvement introduced by this work with respect
to the contribution of [11, 12] is the consideration of behavioral
sequential models in the digital sensitivity approach. The STG-
and SG-based methods that we suggest can be useful both for
efficient derivation of isolated pairs and for increasing the digital
isolation through specification transformations.

In Section 8 it will be shown that the combination of behavior
transformations together with reasonable timing assumptions
allows us to reach about 80% of digital isolation in average.

The methodology for low-noise asynchronous circuit design
includes the following steps:

1. Analysis of noise-critical sets of signals. This reduces
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to checking logical and temporal separation on a behav-
ior specification, and providing the layout tools with con-
straints on adjacency of critical wires.

2. Improving logical and temporal separations of signals.
This might be achieved by optimizations of behavioral
specifications aimed at noise avoidance. These optimiza-
tions include

a) signal reshuffling and concurrency reduction [7] (logical
separation) and

b) timing assumptions [14] (temporal separation).

3. Logic optimization for low noise. Logic functions for
gates might be chosen according to a cost function eval-
uating noise. This requires different approaches to min-
imization (e.g., introducing redundancy in the circuit in
order to avoid noise propagation). Similar ideas were ex-
ploited in an alternative wiring scheme from [18].

4. Clustering for reduction of crosstalk noise. Intercon-
nections could be divided into local and global levels.

� The global level (top layers of interconnect struc-
ture [2]) should include all (or most of) the long
wires that could be dangerous from the point of view
of crosstalk just because of the long cross couplings.

� The local level (lower layers of interconnect) should
be used only for short distance interconnects, but
could still suffer from crosstalk noise because of high
density (local lines are usually restricted to lengths
less than 3mm, however starting at technologies be-
yond 0.18 �m they become vulnerable to crosstalk as
well [25]).

We could potentially exploit this fact and divide large cir-
cuits into relatively small “islands”, connected with each
other by global and vertical interconnects. Crosstalk noise
analysis and synthesis could be done separately for each
“island”, that could be small enough to apply our behavior
specification techniques

The techniques presented in the paper mainly concern items 1,
2 and 3 from the list above. Item 4 gives a more systematic
approach for the avoidance of noise, but it is still an open area
for research.

5 Digital sensitivity analysis

The analysis of logical or temporal separation4 requires one
to consider each signal as a potential victim, and identify sets
of states in which the signals might be a subject to noise faults.

Definition 5.1 (Fault Sets)

4As mentioned in Section 4, temporal separation can be reduced to logic
separation by considering the SG obtained from an STG with added timing
constraints.

1. The transient fault set with respect to signal b (denoted by
Str(b)) is the set of SG states such that 8s 2 Str(b) there
are two enabled signalsa and c, which have the same value
as b.

2. The delay fault set with respect to signal b (denoted by
Sdel(b)) is the set of SG states such that 8s 2 Sdel(b), b
is enabled and there exists another signal a enabled in s,
with the opposite logical value to b.

3. The noise fault set with respect to signal b (denoted by
Sn(b)) is the union of the transient and delay fault sets.

Note that these three sets are subsets of those (of aggres-
sor/victim signal tuples) computed by the Algorithm in Fig-
ure 4. The conditions under which a noise tuple is not actually
dangerous differ for transient and delay faults:

� A transient fault appears as a short pulse (hazard) on a
wire when it should keep its value stable. Therefore cir-
cuit malfunction is avoided if each one of these pulses is
either eliminated (by changing the behavioral specification
or the logic), or identified as not dangerous (because the
involved signals actually do not switch concurrently due
to some known timing properties of the circuit), or filtered
by the circuit (if its fanout gates are not sensitive to its
changes, or due to the inertial nature of gates). In this
work, we will use sensitivity analysis to identify poten-
tially dangerous transient faults, and logic (concurrency
reduction) as well as timing methods to eliminate those
that have been identified as dangerous.

� A delay fault happens when a signal is changing accord-
ing to the specification, but the delay of its transition is
affected by noise. In this case, it is impossible to filter
the propagation of the transition, because it is part of the
functional specification. Therefore, the fault can be either
eliminated or identified as not dangerous (in the same way
as in the case of transient faults).

The latter can be done by a timing analysis of the fault condi-
tions, and is discussed in Section 6. In the rest of this section
we will concentrate on logic methods for checking and avoiding
noise. They can be naturally illustrated by the consideration of
transient faults. The extension of the technique to delay faults
is discussed later in Section 6.

Transient fault propagation. The formal conditions of tran-
sient fault propagation can be formulated in terms of sensitiza-
tion [21].

Sensitization of a gate g with respect to signal b captures the
conditions under which the value at a gate output depends on
the value of b. Formally, when g implements Boolean function
F , its sensitization with respect to b is: SensF (b) = dF

db
.

The inverse of gate sensitization (observability don’t care,
ODC) gives conditions under which the value on a wire cannot
affect a gate output. In particular, if a transient fault on wire b
occurs in a circuit state in which gate g is not sensitized to b,
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then the fault cannot propagate through the gate. The idea of
using gate sensitization for checking noise fault propagation in
a circuit was first suggested in [12].

Definition 5.2 (Digital sensitivity) Digital sensitivity of a gate
g to noise faults in a wire b (DSg (b)) is the conjunction of the
characteristic function of the Noise fault set with the gate b
sensitization DS(b) = Sn(b) ^ Sensg (b)5. Digital sensitivity
of a circuit to noise faults on a wire b (DS(b)) is obtained by
the union of the digital sensitivity conditions of all the gates in
the fanout of b.

If DS(b) is empty, then the circuit is insensitive to faults oc-
curring on a victim wire b. Hence all the aggressor-victim
tuples that could generate these faults are actually isolated from
crosstalk noise.

Example 5.1 For the example in Figure3.b, the sets of wires
that may be the sources of crosstalk noise are: Noise =
f(y; z); (x; z; y)g. The only state in which a transient fault
may occur is Str(z)= f1*1*1g. Let us check, by only using the
sensitivity conditions for wire z, whether the transient fault can
propagate through the circuit.

The functions of the individual gates in this example are:

x = z + xy = z(x+ y) y = x+ z = x̄z̄ z = x+ yz

From them we can calculate the corresponding sensitivity func-
tions:

Sensx(z) = xz � xz = 0� (x+ y) = x+ y
Sensy (z) = yz � yz = 0� x = x
Sensz (z) = zz � zz = (x + y) � x = xy
Sens(z) = Sensx(z) + Sensy(z) + Sensz(z) = 1

The circuit is sensitive to a fault on wire z in every SG
state. Hence the considered transient fault may indeed propa-
gate through the circuit.

The results of propagation analysis hence in this case cannot
reduce theNoise set. We have to assume that both tuples (y; z)
and (x; z; y) might be a source of noise faults.

There are two possibilities for solving the remaining noise
faults after sensitivity (and timing) analysis:

1. to use legal behavior transformations, such as concurrency
reduction, to avoid noise sources, as discussed in the rest
of this paper, and

2. to use a constraint-driven layout tool, avoiding to put wires
z and y adjacent to each other.

6 Noise Analysis using STG and SG

6.1 Transient faults

When discussing digital sensitivity (Section 5), we made
several simplifications that need to be justified.

5If the meaning is clear from the context, we will liberally identify the
characteristic function of a set and the set itself.

Simplification1. The suggested method treats transient faults
one at a time, assuming that faultsare not influencing each other.

We neglect the effects of fault interference, because the prob-
ability of two glitches arriving at the same time to the inputs of a
gate seems to be rather small. This is similar to the assumptions
that are traditionally made in testing, when considering single
fault models versus multiple fault models [1].

Simplification 2. Sensitivity analysis in general assumes that
sensitivity conditionsare calculated when an input set is applied
to the circuit, and then the circuit has enough time to stabilize.
This is like the standard fundamental mode assumption. How-
ever, circuits synthesized from an STG operate in I/O mode,
which means that inputs might change while part of the circuit
is still reacting to a previous input set.

Therefore, we need to discuss the assumptions under which
this “static” view is applicable to a circuit operating in I/O mode.

Let us start from an example, and consider the STG in Fig-
ure 5.a. One can derive the implementation of its signals k and
e shown in Figure 5.c.
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Figure 5. A transient fault and its propagation

In the corresponding SG (Figure 5.b) the only state which
might be the cause of a transient fault is 1*1*100. This fault
produces a pulse on victim wire c and the propagation of this
pulse could be checked by a sensitivity analysis of the NOR
gate k with respect to c: Sensk(c) = a ) DSk(c) =
Str(c) � Sensk(c) = abcke � a = 0

From DSk(c) = 0 one can conclude that the transient
fault on wire c is not propagating through gate k because it
is blocked by the controlling value 1 on wire a. However, in
its own turn signal a is switching in state 1*1*100. There-
fore, the propagation of a transient fault may depend on the
relative propagation speed of the fault and some other tran-
sition (in this case a� propagating to the inputs of gate k).
If we denote by wire delay(a; k) and wire delay(c; k) the
delays of the wires between gates a and k and c and k respec-
tively, then the blocking of a transient fault on wire c requires
wire delay(a; k) > wire delay(c; k)6. This condition may be
difficult to check, because of a number of reasons. It requires
precise control over/analysis of wire delays, the inequalities
could be inconsistent for different transient faults, etc. There-
fore, our current sensitivity analysis might be too optimistic by
not considering propagation delays.

6In fact, instead of delay wire delay(c; k) we should consider the delay
from the source of noise in wire c to the input of gate k. However, since that
point is not known until after layout, we conservatively use wire delay(c; k).
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The example in Figure 5 shows that signals which are enabled
in a state that causes a transient fault are poor candidates for
blocking the fault propagation. This leads to the notion of static
sensitivity with respect to a state (the word “static” indicates
that sensitivity conditions are stable at least for the considered
state and its immediate successors).

Definition 6.1 (Static sensitivity) Let an SG state s be the
source of a noise fault in wire b and let En(s) denote the
set of signals enabled in s. The static sensitivity of gate g to
the noise fault in state s (SSg (b; s)) is given by the product
of the characteristic function for s and the existential abstrac-
tion of the sensitivity function with respect to signals in En(s):
SSg(b; s) = s � 9a2En(s)Sensg (b).

Static sensitivity assumes that checking for transient fault
propagation is performed for each state separately. When state
s 1) is the source of a transient fault in a victim wire b due
to aggressors a and c and 2) SSg (b; s) 6= ; the corresponding
noise triple (a; b; c) is considered to be dangerous.

Example 6.1 Consider the SG in Figure 5.b. In state 1*1*100
the set of enabled signals is fa; bg. Sensk(c) = a )
9x2fa;bgSensk(c) = 1. Moreover, SSk(c; 1*1*100) = abcke �
1 6= ;, the transient fault on c may propagate through gate k,
and hence noise triple fa; c; bg should be considered as dan-
gerous.

The idea behind the application of static sensitivity analy-
sis instead of digital sensitivity (Definition 5.2) is to extend its
applicability to asynchronous sequential circuits, by avoiding
unrealistic (or difficult to implementation) timing assumptions
about wire delays at the fanins of a gate. Let us consider Fig-
ure 6 and derive the timingassumptions behind static sensitivity.
Suppose that in state s a transient fault is generated at input c
of gate Y , and that the fault does not propagate through Y
according to the static sensitivity conditions.

...

..

...

.

...

...

Y

X

Z

c

B

A
*

*

Figure 6. Static sensitivity analysis

The latter means that some the inputs of gate Y (fanin(Y ))
have logical values that block propagation of a pulse on c to the
output of Y . Moreover, due to Definition 6.1, these blocking
signals are stable in state s. The blocking signals may, however,
change their values when the gates in fanin(Y ) will make
transitions (e.g., gates X;Z; : : :). These transitions in their
own turn should be caused by changes of signals in fanin(X),
fanin(Z); : : : (e.g., A;B).

Let us estimate the earliest time when blocking signals can
change their values after the circuit starts from state s. In the
worst case scenario (from the timing point of view) the signals
causing transitions in X;Z; : : : are enabled in s (otherwise, the
blocking signals at fanin(Y ) will change even later). Then
their propagation paths are shown in bold in Figure 6. If we de-
note by min wire(fanin(V )) the minimum delay among the
wires in fanin(V ) and bymin gate(fanin(V )) the minimum
delay of gates in fanin(V ), then the minimum delay of these
paths would be: minV 2fanin(Y )(min wire(fanin(V ))) +
min gate(fanin(Y )) +min wire(fanin(Y )).

From here we can derive the worst case timing assumption
that limits the applicability of static sensitivity:
minV 2fanin(Y )(min wire(fanin(V ))) +
min gate(fanin(Y )) + min wire(fanin(Y )) >
wire delay(c; Y ) (T1)

This means that a transient fault in wire c will not propagate
through gate Y if the wire delay of (c; Y ) is less than the time
needed to change the value of the static sensitivity function.

Notice that:

1. Timing assumption (T1) can always be satisfied in an im-
plementation by delay padding of the gates in fanin(Y ).
Delay padding of a gate cannot affect the validity of other
timing assumptions (due to consideration of states differ-
ent from s), because the right hand side (T1) contains only
a wire delay, not a gate delay. This gives simple proof of
convergence of the delay padding procedure. The require-
ment (T1) is very similar to the conditions of hazard free
implementation from [17], where various delay padding
algorithms are considered in detail.

2. However, (T1) is very difficult to satisfy by gate insertion or
transistor sizing if wire delays dominate over gate delays.
In this case, only relatively expensive constrained routing,
with the goal of minimizing wire delay skew [27], can be
used. Hence it becomes desirable to refine (T1) and make
it less conservative, if possible.

This refinement of timing assumptions can be performed using
the following procedure Refine assumptions:

1. Start from state s that is the cause of a transient fault on
wire c and such that SSg(c; s) = 0.

2. Traverse the SG up to the states s0 2 S1 in which
SSg (c; s

0) 6= 0.

3. For each s0 2 S1 estimate the path delay for reaching s0

from s (del path(s; s0)) as the sum of wire and gate delays
(for non-concurrent transitions).

4. Choose the minimal path delay: del path min =
mins02S1(del path(s; s

0))

5. For each gate y in the fanout of c add a timing constraint
del path min < wire delay(c; y)
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Figure 7. Example of static sensitivity analysis

Example 6.2 Let us perform the static sensitivity analysis for
state 1*1*1000 in the SG in Figure 7.b, which causes a transient
fault on wire c. Consider the propagation of this fault through
gate k.

Sensk(c) = d. Signal d is not enabled in 1*1*1000, there-
fore SSk(c; 1*1*1000) = d � abcdek = 0.

A conservative estimation, according to T1, of the timing as-
sumptions under which the static sensitivity analysis is valid is:
min wire(fanin(d))+ gate delay(d)+wire delay(d; k) >
wire delay(c; k)

Let us apply procedure Refine assumptions to get less con-
servative timing constraints. In the procedure, traversal of the
SG from state 1*1*1000 will stop by reaching states 011*100
and 001*110, in which SSk(c; 011*100) and SSk(c; 001*110)
have a non-zero value. These states are reached from 1*1*1000
by sequences of transitions �1 = a– e+ d+ and �2 = b– a–
e+ d+ respectively. By leaving in �1; �2 only non-concurrent
transitions, we may conclude that the static sensitivity will
become non-zero only after the sequential firing of a�; e+
and d+. This sequence corresponds to the bold path in the
circuit in Figure 7.c. By considering the delay of this path
we thus arrive to a less conservative timing assumption, that
is: wire delay(a; e) + gate delay(e) + wire delay(e; d) +
gate delay(d) + wire delay(d; k) > wire delay(c; k).

The traversal in procedure Refine assumptions can be pruned
by additional timing assumptions. For example, in some appli-
cations we could assume that the circuit environment is rela-
tively slow. If the environment reaction is slower than the skew
among wire delays, then we can stop our traversal earlier, by
forbidding the firing of inputs.

6.2 Delay faults

In the previous section we discussed the conditions under
which transient faults are filtered by the circuit. They are based
on static sensitivity analysis together with timing assumptions
which justify the analysis. This technique can also be extended
for the analysis of delay faults. We briefly sketch how to apply
it.

Delay faults produce changes in the temporal behavior of
some events. These changes may be dangerous if some timing
constraints are assumed for the correct behavior of the circuit.
Unfortunately, any circuit not in the class of delay-insensitive
circuits is vulnerable to delay faults.

Given that speed-independent circuits are correct under any
gate delay, delay faults may only affect wires with isochronic

forks [28]. If a wire v has a symmetric isochronic fork, a delay
fault with v� as a victim is always dangerous, no matter which
branch of the fork it affects. In case of asymmetric isochronic
forks, delay faults are only dangerous if they affect the fast
branch to become slower (or vice versa – the slow branch to
become faster).

A detailed analysis of different cases for delay faults is pro-
vided in [26]. Here we will give only a summary of it.

1. There are exceptional cases when delay faults can be ne-
glected

(E1) Delay fault happens at a wire which has no fork

(E2) If a transition v� in STG triggers only transitions of
input signals then under a hypothesis of “slow environ-
ment” any delay fault on the wires originating at gate v
and feeding back to a circuit are safe. (The latter corre-
sponds to an asymmetric isochronic fork by wire v, where
its fast branch is a branch which goes to environment)

2. For checking the propagation of delay faults through
branches of isochronic forks one can apply an analysis
based on sensitization. (This analysis is similar to the case
of transient faults with the only difference that in it we
should consider a digital sensitization instead of the more
complicated static sensitization.)

3. An analysis of delay faults propagation shows that un-
der a conservative timing assumptions (similar to (T1))
no delay fault propagates through a circuit. Better (than
(T1)) timing assumptions might be obtained via Procedure
Refine assumptions.

Based on analysis of noise faults generation and propagation
we can suggest two extreme approaches for checking a noise
isolation.

� Optimistic approach

We assume that any timing constraint which is derived from
a sensitization analysis for noise faults might be satisfied
in an implementation. Hence transient faults which are not
sensitized and all delay faults are neglected. The remaining
faults are reported to layout tool as dangerous ones.

� Conservative approach

No timing assumptions are used for separating faults on
observable and not. Under this conservative view all tran-
sient faults and all delay faults (excluding exceptional cases
(E1) and (E2)) are assumed to be dangerous.

In Section 8 we show the results of noise isolation only for
optimistic and conservative approaches. However in practice
it might be reasonable to use an intermediate solution which
lies between these two extreme cases. For example we could
assume the existence of a small set of timing constraints (either
given a priori or produced by timing analysis) and only part of
faults is filtered due to these constraints.
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7 Implementation issues

The methods proposed in this paper have been implemented
in the tool petrify. For preliminary experiments, the methods
have been applied only to the synthesis of speed-independent
circuits.

Two different aspects have been considered in the implemen-
tation: analysis and synthesis.

Analysis

Analysis has been reduced to the calculation of those wires
subject to noise faults, according to the algorithm presented in
Figure 4. The analysis has been enhanced by [26]:

� calculating the static sensitization of wires to report only
those transient faults that may be propagated (see defini-
tion 6.1) and

� by doing a conservative estimation of the wire forks of the
circuit, according to the case study presented in section 6.2.
The estimation is conservative in the sense that no timing
assumptions are done on the delay of the gates.

Synthesis

A method for synthesis aiming at the reduction of noise faults
has also been implemented. The method is based on behavioral
transformations of the specification to reduce the concurrency
events that may act as aggressors. The algorithm consists of the
following steps:

1. Derive a complex-gate implementation of the circuit

2. Analyze the circuit, as explained above, and derive the set
of noise faults.

3. Create a list of “noisy” pairs of events with one pair (a�; b�)
for each noise fault produced by a� k b�.

4. Transform the specification aiming at reducing the concur-
rency of the noisy pairs of events.

5. Synthesize the circuit.

The algorithm has been integrated in the phase of concurrency
reduction of petrify [7]. The cost function has been biased
towards reducing the concurrency of those pairs of events that
are “noisy”.

8 Experimental results

We made experiments with a known set of asynchronous
benchmarks. The results are presented in table 1.

The experiment was organized as follows.

� We implemented all the circuits by atomic complex gates,
since the library is not crucial for the problem of noise
avoidance.

� We used the crosstalk analysis algorithm to discover dan-
gerous (noisy) concurrent states, isolated pairs and noisy
wire configurations for both conservative and optimistic
assumptions.

� We performed concurrency reduction for all dangerous
concurrent states and used the crosstalk analysis algorithm
(for almost all examples one reduction was enough).

The results of the first synthesis run (the circuitCIRini) are
presented in columns 2-4 by showing the number of states ns in
SG (G), the circuit area Ar (literals in factored form), and the
percentage of concurrent states pc (pc =

jSconj
ns

, where Scon is a
set of concurrent states and jSET j denotes the cardinality of set
SET ). The percentage of concurrent states is taken as a relative
measure of performance, since concurrency is an important
source of performance gains for asynchronous circuits7.

The results of the application of the crosstalk analysis al-
gorithm to this circuit are presented in column 5 - the digital
isolation percentage - isol.

The results of the application of the concurrency reduction
algorithm under conservative delay assumption are presented in
columns 6-8 (“without sensitivity analysis”). The results of the
application of the concurrency reduction algorithm under op-
timistic assumption (“with timing assumption”) are presented
in columns 9-12. From these preliminary experiments we can
conclude that crosstalk noise avoidance using behavioral speci-
fications is a very promising technique for asynchronous control
circuits, because:

� it can effectively extract all isolated and noisy wire config-
urations from the behavioral specification, and thus supply
a set of constraints that can completely avoid crosstalk
noise to the layout tools.

� it simplifies the task of constrained layout generation by
using noise avoidance techniques at behavioral and logic
level.

These experiments showed that about 80% of noise isola-
tion can be reached in average by behavioral transformations.
Previous work [7] has confirmed that restricted behavioral trans-
formations (concurrency reduction e.g.) allow the designer to
save up to 20% of area under a small degradation of performance
(below 5%). This gives a ground that, in the suggested method-
ology targeted for “low noise”, the quality of implementation is
not significantly degraded. In fact, the area of the circuits after
noise avoidance has decreased in all our benchmarks.

9 Conclusion

7This is rather coarse measure of performance to get a qualitative picture
only. The better way for performance estimation under the concurrency reduc-
tion was given in [7]
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name noisy synthesis without sensitivity analysis with timing assumptions
ns Ar pc isol ns Ar pc isol ns Ar pc isol

% % % % % %
chu133 24 13 42 24 14 12 0 100 19 13 26 100
chu150 26 11 46 47 16 9 12 93 18 11 22 100
master-read 2844 41 99 0 52 22 46 30 96 32 71 31
mmu 370 32 94 2 24 19 8 96 44 19 50 100
mp-forward-pkt 22 15 27 75 20 15 20 75 22 15 27 86
mr1 336 35 92 3 26 25 0 100 33 28 21 100
nak-pa 58 18 66 38 20 12 0 100 20 12 0 100
nowick 20 13 20 20 19 12 16 40 19 12 16 47
ram-read-sbuf 39 22 44 33 24 16 8 96 29 17 24 100
sbuf-ram-write 64 21 62 9 33 21 27 53 33 20 27 53
sbuf-send-ctl 18 15 11 57 16 12 0 100 16 12 0 100
trimos-send 336 30 95 0 30 17 40 36 37 23 51 36
vbe5b 24 11 50 40 12 3 0 100 14 6 14 100
vbe6a 192 34 90 0 20 18 0 100 22 24 9 100
vbe10b 256 39 91 0 22 19 0 100 27 30 19 100
wrdtab 216 35 89 0 39 18 38 7 60 22 60 7
sbuf-read-ctl 19 15 16 89 17 13 6 96 19 15 16 100
mr0 584 54 96 0 28 23 0 100 44 33 36 100
pe-send-ifc 111 42 52 9 59 42 8 53 63 48 14 53
converta 18 16 22 50 14 12 0 100 16 15 12 100
ebergen 18 12 22 40 14 12 0 100 14 12 0 100
half 14 9 43 17 8 2 0 100 12 6 33 100
hazard 12 8 17 50 12 8 17 50 12 8 17 67
seq4 28 25 29 49 20 14 0 100 23 21 13 100
muller5 64 21 81 0 16 8 25 73 20 9 40 100
muller10 2048 46 99 0 31 13 29 84 40 14 45 100
par4 1307 32 98 5 28 25 0 100 30 27 7 100
vme-read 147 21 83 2 31 16 19 56 34 19 26 62
vme-write 265 23 90 2 38 16 29 48 47 17 43 52
total 9273 709 61 23 703 454 12 79 883 540 25 83

Table 1. Experimental results of crosstalk noise avoidance using behavioral specifications

This paper has only begun the investigation of noise avoid-
ance techniques in asynchronous control circuit design. In par-
ticular, we consider the following topics to be very promising
areas for future research.

� Incorporate the noise avoidance technique into the syn-
thesis process from the very beginning. For example, one
could use better the don’t care information for the fanout of
the victim wire to increase its isolation. Also, concurrency
reduction could be integrated with timing constraints.

� Noise avoidance using behavioral specifications could be
better incorporated into a complete design flow. At higher
levels of abstraction, it could be very useful to integrate it
with clustering in hierarchical synthesis ([24, 2]). At lower
levels, direct interaction with some constrained layout tools
like [3, 11] or [31] could help both the layout tool and
the logic synthesis tool by exchanging information on the
relative ease of solvingsome noise cases by layout or logic.

� Most steps of our algorithms (except for the current version
of logic synthesis) could be implemented using only STG-
based methods (STG unfolding analysis [16, 15]), that are
often faster than SG-based methods and cope better with
the state explosion problem. These techniques, together

with the hierarchical approaches mentioned above, would
allow us to tackle realistic design problems.

[30] pointed out that the digital sensitivity approach has also
some problems:

� In case the victim wire v is coupled to many aggressors,
a capacity charge sharing model must be used to find the
amplitude of the noise pulse. The corresponding physical
effect can only be conservatively broken down into pairs
of potential noise contributions.

� The problem of wire ordering to minimize total noise is
NP-complete.

Our approach, that considers also sequential information
helps solving both problems, by reducing the number of
pairs that must be considered,
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