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• Motivation for yet another model

• Requirements from circuit designers

• Intuition for Waveform Transition Graphs

• Conversion to Signal Transition Graphs for synthesis and verification

• Design automation in

• Examples and evaluation



Motivation: Application domain
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• “Little digital” control – an ideal

case for asynchronous design [1]

• Relatively small controllers

• Prompt reaction is paramount

• Interface analog world

• Modelling aspects

• Fine-grain control at the level

of individual signals

• Graph-based representation for

causality, concurrency, and conflicts
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[1] D. Sokolov et al. “Automating the design of async. logic control for AMS electronics” IEEE TCAD, 2019



Motivation: Limitations of existing models
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• Signal Transition Graphs (STGs)

Great expressive power and tool support

Underlying Petri nets are unfamiliar to engineers

Sophisticated modelling aspects (output persistency,

input properness, non-commutativity, UCS/CSC conflicts, etc.)

• Burst Mode (BM) and eXtended BM (XBM) automata

Engineers understand the underlying state machines

Insufficient expressive power due to limited concurrency

• Generalized / Extended / Symbolic STGs

Even more complex than STGs

No mature tool support



Specification flow (industry perspective)
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1. Sketch a waveform for intended circuit behaviour

2. Manually convert the waveform (or its fragment for one mode) to STG

3. Make sure that simulation of the STG resembles the sketch waveform

4. Repeat steps 2-3 for every distinctive mode of operation

5. Combine STGs for all modes in a state machine-like structure

6. Try hard to resolve all the STG implementability issues (inconsistency,

irreducible encoding conflicts, non-persistency, etc.)

• How to express destabilisation/stabilisation of input signals?

• How to select the mode of operation based on signal levels?

• Can this flow be simplified and automated?



Usability requirements for a new model
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• State machine to express high-level modes of operation

• Choice is restricted to state machine level
• Current state is represented by a single token

• Waveforms to capture partial order of signals in each mode

• Concurrency is contained within waveforms
• At most one waveform is active at a time

• Advanced features for input signals

• Unstable (don’t care) and undefined (stable but unknown) states

• Flexibility in modelling of choice

• Edge-sensitive and level-sensitive



Intuition for Waveform Transition Graphs
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• Burst Mode automaton: state machine + input/output bursts

• WTG: state machine whose arcs are waveforms

entry and exit
states of a waveform

enabled waveform
(may become active)

Enabled waveform activation:

• Consume a token from the entry
state

• Execute all its events
• Produce token at the exit state



Intuition for Waveform Transition Graphs
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• Burst Mode automaton: state machine + input/output bursts

• WTG: state machine whose arcs are waveforms



Advanced features for signals
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• Unstable inputs via destabilise/stabilise events

• Stabilise to low, high or unknown state
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Flexibility in modelling of choice
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• Edge-sensitive choice

• Level-sensitive choice



D flip-flop example
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• High-level state machine • Possible trace waveform

stay_low stay_high

switch_high switch_low



WTG to STG conversion: Simple waveform
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• WTG fragment

• STG fragment – one-to-one mapping



WTG to STG conversion: Simple waveform
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• WTG fragment

• STG fragment – redundant arcs removed



WTG to STG conversion: Simple waveform
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• WTG fragment

• STG fragment – rearranged layout



WTG to STG conversion: Stabilise at HIGH/LOW state
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• WTG fragment

• STG fragment



WTG to STG conversion: Stabilise at unknown state
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• WTG fragment

• STG fragment



WTG to STG conversion: Guards in level-sensitive choice

14 / 23

• WTG

• STG



Design automation in WORKCRAFT
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• Support for capturing and simulating WTGs

• Local structural checks to ensure implementability

• Consistency of signals between waveforms

• Output-persistency and output-determinacy at choice states

• See the paper for more details

• Automatic conversion to STGs as backend representation

• Reuse existing methods and tools

• Formal verification of specification (Punf + MPSat)
• Logic synthesis of circuit implementation (Petrify, MPSat, ATACS)

• Backtracking for communication of problems

Output-persistency: enabled output must not be disabled by another signal

Output-determinacy: if an output is enabled by a sequence of events then all executions

of this trace must enable the same output



Design automation in WORKCRAFT
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Instruction decoder example: Block diagram
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Instruction decoder example: High-level state machine
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Instruction Opcode

class op0,op1

Arithmetic 0,0

Branch 0,1

Load 1,0

Store 1,1



Instruction decoder example: High-level state machine
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Instruction decoder example: High-level state machine
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Instruction decoder example: Complete WTG
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Instruction decoder example: STG and SI circuit
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Productivity: WTG vs STG
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Benchmark
Size User Input actions Design time (s)

mode signal STG WTG Impr. STG WTG Impr.

C-element 1 3

A 104 73

32%

118 86

31%B 96 61 112 71

C 68 49 47 35

VME bus controller 2 5

A 262 199

35%

262 238

26%B 302 205 320 257

C 331 182 268 137

Buck controller 3 7

A 338 227

28%

295 260

25%B 320 279 462 320

C 382 243 280 194

Total 2,203 1,518 31% 2,164 1,598 26%



Productivity: WTG vs STG
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Average data for 3 users with different experience: >25% productivity improvement
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Conclusions
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• WTGs model

• Based on familiar modelling abstractions

• Explicit separation of choice and concurrency aspects

• Simpler than STGs and more expressive than XBM automata
• Support for unstable signals via destabilise/stabilise events
• Edge-sensitive and level-sensitive choice

• WTGs design automation

• Design flow supported in (https://workcraft.org/)

• 25% productivity improvement compared to STGs

• STG translation for reuse of synthesis and verification tools

https://workcraft.org/
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