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Abstract— De-synchronization appears as a new paradigm to automate and replace directly the global clock network with a set of local
the design of asynchronous circuits from synchronous neslts. This handshaking circuitsThe circuit is therimplemented with standard
paper stud_|es different protocols for de-synchrc_)mzanon and formally tools, using a flow originally developed for synchronousuits The
proves their correctness. A taxonomy of existing protocolsfor latch o h . .
controllers is provided. In particular, four-phase handshake protocols NIy modification is the clock tree generation algorithm.tiihis
devised for micro-pipelines are studied. A new controller vith maximum ~ approach we provide a design methodology that can be picked u
concurrency for de-synchronization is also proposed. Thegplicability of  almost instantaneously and without risk by an experieneadt
de-synchrqnization on an implementation of the DLX microprocessor is This work gets its inspiration from a number of contribugdnom
also described and discussed. S .

past work, each providing a key element to a unique novel oteth
|. INTRODUCTION ology. Many of the concepts that appear in this paper hava bee
around for a long time: handshake protocols, asynchronimadimpes,
LJIocal controllers, etc. The essential novelty of our cdmition is
that it provides a fully automated synthesis flow, based on a sound
theory that guarantees correctness, does not require aowlatge of
asynchronous design by the designer, and does not chandethea
c)sL}ructure of synchronous datapath and controller impletagon, but
orﬁy affects the synchronization netwotk particular, it starts from
~a standard synthesizable HDL specification or gate-levidibheyet it

« There are no good CAD tools that completely cover the deS'Qﬂovides several key advantages of asynchronicity, sudtvagMI,

flow. , , , ~ global idling, and modularity.

. Asynchropyl involves changmg most of the d.ESIQHEFS’ méwtal = \\a aso argue that de-synchronization helps with detenmitie

yvhen devising the synchronization among different comptse true speed of a circuit, by using standard functional tgstiquipment,
In a system. thus providing means to partially cope with process valiigbilt

This work explains how asynchrony can be incorporated withohandles variabilitypetween dieswhile variability within a die must
changing the “synchronous mentality” and using convertid®®AD  still be handled by using margins.
tools. This is the short-term goal. After that, it will hopéy be To show that the suggested methodology is sound, we provide
easier to show that asynchronous circuits can perform #t®  formal proofs of correctness based on the theory of Petrs. net
the synchronous ones in different aspects, and thus pavevalle e study different handshake protocols for latch contrslland
for a truly asynchronous design flow. This the longer-terralge  present a taxonomy determined by the degree of concurreficy o
introducede-synchronizatioms an intermediate step towards a widegach protocol. A controller that preserves the maximum eoeacy
acceptance of asynchronous circuits. for de-synchronization is also presented. Moreover, wiglatdd our

One could argue that the paradigm\atSI programmind?], [16]  approach by comparing synchronous and de-synchronizeignges
provides a robust framework for synthesis. However, theifipation  of the DLX microprocessor [11]. Both designs were implereent
model is based on the theory of communicating processes;hwhi;sing the same set of commercial EDA tools for synthesis;eptent
requires the aforementioned change of mentality, and tiagy and routing. To the best of our knowledge, this is the firstetiam
directed approach for synthesis concedes little suppotbfic-level  asynchronous design obtained through a conventional EDAdtmes

optimizations. not show any penalty (area, power, performance) with respeits
The notion of cycle lives in the subconscious of most circuitsynchronous counterpart.

designers. Finite state machines, pipelined microprecsssnulti-
cycle arithmetic operations, etc, are typically studiethvthe under-
lying idea of cycle, which is inherently assumed to be defihgda
clock. As an example, think about the traditional lecturecomputer Sutherland, in his Turing award lecture, proposed a schame t
architecture explaining the DLX pipeline. One immediatiehagines generate local clocks for a synchronous latch-based dhtapts
the students looking at the classical timing diagram shgwtime theory for asynchronous designs has been exploited stiltedsy
overlapped! F- | D- EX- MEM WB stages, synchronized at the leveboth manual designs [9] and CAD tools [1]-[3]. That methodglis

of cycle. If you try to persuade the lecturer to explain thmeadeas very efficient for dataflow type of applications but is les#ale to
without the notion of cycle, you may find yourself involved in emulate the behavior of synchronous system by firing of lotmiks
tortuous crusade against a skeptical listener. in a sort of “asynchronous simultaneity”.

If we accept that cycles are nice for reasoning and designing In a different research area, Linder and Harden started faom

but we still want an underlying asynchronous behavior, wiagor synchronous synthesized circuit, and replaced each logfie gith

up the concept ofle-synchronizationThe essential idea is to starta small sequential handshaking asynchronous circuit, evieaich
from a synchronous synthesized (or manually designed)uitirc signal was encoded together with synchronization infoimnatising

The goal of this work is modest in the short term, but ambgio
in the long term. For many years, our community of reseaschas
tried to persuade designers to use asynchrony in theiritsrcioday
we can say that this effort has had the impact of a few dropken t
ocean.

We believe that there are two major reasons why asynchron
circuits have not been widely accepted:

Il. PREVIOUSWORK



an LEDR delay-insensitive code [15]. That approach bearsyraem-
ilarities with ours, in particular because it generates smehronous
circuit from a synchronous specification, but in our opinicattempts
to go too far because it transforms each combinational g#te i
a sequential block which must locally keep track of the odelie

phases. Thus it may have an excessive overhead, even wietifouse

large-granularity gates such as in FPGAs. To alleviatedheshead,
a coarse-grain approach was used in [19], but no direct sjipte
apples comparison with a synchronous design was presdmdeel t

Similarly, Theseus Logic proposed a design flow [14] whichsus
traditional combinational logic synthesis to optimize tiegapath, and
uses direct translation and special registers to geneuadenatically
a delay-insensitive circuit from a synchronous specificatiThat
approach also has a high overhead, and requires designese ta
non-standard HDL specification style, different from thedyronous
synthesizable subset.

Kessels et al. also suggested generating the local cloclsyrof
chronous datapath blocks using handshake circuits [12],ubad

FF

Fig. 1.

(a) Synchronous circuit, (b) de-synchronized dircu

Tangram as a specification language. This has some advantage

in that synchronous block activation can be controlled atne fi
granularity level as in clock gating, but does not use a stahd
synchronous RTL specification.

The generation of local clocks from handshaking circuitriyiles
ensuring the global “synchronicity” was first suggested 28][ That
work however focused purely on implementation of controlagng
the datapath part of a system.

at arcs) two events are enableB+ and D+. The sequence of
events(D+ D— C+ B+ B— A+ C—) is an example of a feasible
sequence of the marked graph.

Definition 3.2 (Liveness)A marked graph idive if for any M €
[Mo) and for any event € ¥, there is a sequence fireable fravh
that enables.

The closest approach to ours is a doubly-latched asynchsona iveness ensures that any event can be fired infinitely oftam fany

pipeline suggested in [13]. That is the first work suggesting
conversion of synchronous circuits into asynchronous dhesugh
replacement of flip-flops by master-slave latches with cpoading
controllers for local clocking. Our paper extends the ressinbom [13]
by using more general synchronization schemes and prosideso-
retical foundation for the de-synchronization approaghpioving a
behavioral and temporal equivalence between a synchrociouist
and its de-synchronized counterpart.

reachable marking.

Definition 3.3 (Safeness)A marked graph isafeif no reachable
marking from M, can assign more than one token to any arc.

Definition 3.4 (Event count in a sequencé&iven a firing se-
quences and an event € X, 5(e) denotes the number of times
that evente fires ino.

The following results were proven in [5] fastrongly connected
marked graphs.

We also extend with respect to our own previous work in [6], [7 Theorem 3.1 (Liveness)A marked graph is livéff M, assigns at

because we use a much more concurrent synchronization msecha
(which we believe ismaximally concurrenfor this job), show how
previously published handshake controllers can be deffrad this
maximally concurrent model bgoncurrency reductionand finally
prove its equivalence to the synchronous version.

I11. M ARKED GRAPHS

Marked GraphgMG) is the formalism used in this paper to model

de-synchronization. They are a subclass of Petri nets & ¢an
model decision-free concurrent systems.

Definition 3.1 (Marked graph)A marked graphis a triple
(X, —, My), whereX is a set of events;~C (X x X) is the set
of arcs (precedence relation) between events &fyd:—— N is
an initial marking that assigns a number of tokens to the aftke
marked graph.

An event isenabledwhen all its direct predecessor arcs have
token. An enabled event carccur (fire), thus removing one token

from each predecessor arc and adding one token to each sorcce

arc. A sequence of eventsis feasible if it can fire from\/, denoted
by Mo %. A marking M’ is reachable from/ if there existo such
that M % M’. The set of reachable markings froid, is denoted
by [Mo).

least one token on each directed circuit.

Theorem 3.2 (Invariance of tokens in circuitsjhe token count
in a directed circuit is invariant under any firing, i.e\/(C) =
My (C) for each directed circuiC' and for anyM in [My), where
M(C) denotes the total number of tokens 6nh

Theorem 3.3 (Safenessk marked graph is saféff every arc
belongs to a directed circult’ with M (C) = 1.

In the rest of the paper, we will only deal with strongly coateel
marked graphs.

IV. A ZERO-DELAY DE-SYNCHRONIZATION MODEL

The de-synchronization model presented in this sectiors ainthe
substitution of the global clock by a set of asynchronoustretiers
that guarantee amquivalentbehavior. The model assumes that the
circuit has combinational blocks (CL) and registers imptated with
flip-flops (FF), all of them working with the same clock edge
(e.g. rising in Figure 1(a)).

R. Steps in the de-synchronization method

The de-synchronization method proceeds in three steps:

1) Conversion of the flip-flop-based synchronous circuit into a
latch-based oneN/ and S latches in Figure 1(b))

An example of marked graph is shown in Figure 3(b), where the
events A+ and A— represent the rising and falling transitions of
signal A, respectively. In the initial marking (denoted by solid slot

D-flip-flops are conceptually composed of master-slavénksc
To perform de-synchronization, this internal structurexplic-
itly revealed (see Figure 1(b)) to:
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Fig. 2. A synchronous circuit with a single global clock. B+ C— }_ é+
a) decouple local clocks for master and slave latches (ina ay«— p- C++— D- A+<+— B-
D-flip-flop they are both derived from the same clock) (b) 0]
and
b) optionally improve performance through retiming, i.g. b At B+ C+ D+ A+ B+
moving latches across combinational logic. { >‘\\\’< ><\\&< >\:\\’< > f ><:: T
The conversion of a flip-flop-based circuit into a latch-lthse
one is not specific to the de-synchronization framework .only A= B- (©) C- D- A= (@ B-
It is known to give an improvement in performance for syn-
chronous systems [4] and, for this reason, it has a value by A+ B+ C+ D+ A+ B+
Pt X
2) Generation of matched delays for the combinational logic
(denoted by rounded rectangles in Figure 1(b)). A- B- @ C- D- A- ") B-

Each matched delay must be greater than or equal to the delay
of the critical path of the corresponding combinationalcklo

Fig. 3.
Each matched delay serves as a completion detector for the

De-synchronization model for a linear pipeline andng.

corresponding combinational block.
3) Implementation of the local controller§his is the main topic
of this section.

Figure 2 depicts a synchronous netlist after the conversgitm
latch-based design, possibly after applying retiming. $hadowed
boxes represent latches, whereas the white boxes rep@sabtna-
tional logic. Latches must alternate their phases. Thosk aviabel
0 (1) at the clock input represent tleven(odd) latches. All latches
are transparent when the control signal is high (CLK=0 fareand
CLK=1 for odd). Data transfers must always occur from eveagier)

For simplicity we will start by analyzing the behavior of adiar
pipeline (see Figure 3(a)). The generalization for anyteahy circuit
will be discussed later. Black dots represent data tokemgreas
white dots represent bubbles. In the model, we assume tHatcies
become transparent when the control signal is high. Thetevém
and A— represent rising and falling transitions of the controlnsig
A, respectively.

Figure 3(b) depicts a fragment of the unfolded marked graph
representing the behavior of the latches. There are thneestpf

to odd (slave) latches and vice-versa. Usually, this lamsed scheme arcs in this model (we only refer to those in the first stagehef t

is implemented with two non-overlapping phases generatad the
same clock.

Initially, only the latches corresponding to one of the @sastore
valid data. Without loss of generality, we will assume thia¢se
are the even latches. The odd latches starbbles in the argot of
asynchronous circuits.

B. The zero-delay model

This section presents a formal model for de-synchronimatithe
aim is to produce a set of distributed controllers that comicate
locally with their neighbors and generate the control digiiar the
latches in such a way that the behavior of the system is preder
For simplicity, we assume that all combinational blocks &atdhes

pipeline):

« A+ — A— — A+, that simply denote that the rising and
falling transitions of each signal must alternate.

« B— — A+, that denotes the fact that for latehto read a new
data token,B must have completed the reading of the previous
token coming fromA. If this arc is not present, data overwriting
can occur, or in other terntsold constraints can be violated

« A+ — B—, that denotes the fact that for latdh to complete
the reading of a data token coming framit must first wait for
the data token to be stored i4. If this arc is not presentB
can “read a bubble” and a data token can be lost, or in other
termssetup constraints can be violated

The marking in Figure 3(b) represents a state in which athlat

have zero delay. Thus, the only important thing about the ghodcontrol signals are low and the eversst and D+ are enabled, i.e.
is the sequence of events of the latch control signals. Theadéin the latchesB and D are ready to read the data tokens fratrand
of the data-path delays on the model will be discussed dutieg C, respectively.

implementation of the model (Section VI).

Figure 3(c) shows the marked graph that derives from theldedo
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Fig. 4. Timing diagram of the linear pipeline in Figure 3(g-d C- D-
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Fig. 5. Synchronization between latchet:— B.
@ (b)

graph in Figure 3(b). A simplified notation is used in Figu(e)3to Fig. 7. Synchronization of a ring: (a) live model, (b) novelimodel.

represent the same graph, substituting each eycfey by a double

arc x «—e>y, Where the token is located close to the enabled event

in the cycle { in this example). The remaining of this section is devoted to prove these two
It is interesting to notice that the previous model is morgragsive statements.

than the classical one generating non-overlapping phasekatth-

based designs. As an example, the following sequence camele fi
in the model of Fig 3(a-d): For the proof of liveness, the reader must bear in mind theninga

of the double arcs: «e- y, that represent *~y.

D. Liveness

D+ D— C+ B+ B— A+ C— -

After the events(D+ D— C'+ B-+), a state in whichB = C = 1 Theorem 4.1:Any circuit marked graph is live.

and A = D =0 is reached, where the data token storedinis Proof: By Theorem 3.1 it is enough to prove that there is no
rippling through the latche® andC. A timing diagram illustrating directed circuit in the CMG without any token. Rather thawirgi
this sequence is shown in Figure 4. a formal proof, we merely give hints that can easily lead geder

But can this model be generalized beyond linear pipelinesi? | to a complete proof. It is easy to see that there is no way thl bui
valid for any arbitrary netlist? Which properties does ivé2 We an unmarked path longer than 3 arcs. As an example, let ustry t
now show that this model can be extended to any arbitraryshetl find the longest unmarked path frof+- in the CMG of Figure 3(c).
while preserving a property that makes the circuits obsemally  After building the pathD+ — D— — C+ — C'—, it is not possible
equivalent to their synchronous versioffisw-equivalencd10]. to extend it unless a marked arc is included, eitber - C'+ or
C— -« B+. A case by case study leads to a complete proof.m
o ) o Liveness guarantees something crucial for the model: abseh

The general_de?synchronlzatlon model is shown in Figureds. Fdeadlocks. This property does not hold automatically fargvrea-
each communication between an even latch and an odd lateh, nable” model. Figure 7 depicts two different de-synchration
synchronization depicted in Figure 5(a) must be defined.né t ,qqes for a ring, that can be obtained by connecting theubudf
communication is between odd and even, the one in Figuremls}  |5¢ch p with the input of latchA in Figure 3(a). Figure 7(a) depicts a
be defined. Note that the only difference is the initialieatiThe odd non-overlapping model between adjacent latches, wheigaseF7(b)
latches are always enabled in the initial state to read tke tdaens | oq 5 four-phase handshake with the sequen¢e B + A — B—
from the even latches. for each pair of adjacent latches.

By abutting the previous synchronization models, it is fl6S0  \yhen pyilding the protocol for a ring, the second model islivet
build the model for any arbitrary netlist, as shown in Fig6reThe due to the unmarked cycle:

marked graphs obtained by properly abutting the models guargi 5
are calledcircuit marked graphgCMG). A-—-B-—(C-—D-—A—.
We will now show that a de-synchronized circuit mimics th

C. General de-synchronization model

behavior of its synchronous counterpart. For that, it mespioved One can easily understand that after firing evedts and .C+’ the
that: §y§tem enters g dead]ock state. It is also easy to provehibanbdel
is live for acyclic netlists.
« a de-synchronized circuit never halts/¢nes$, and The acid test of liveness for a handshake protocol consikts o
o all computations performed by a de-synchronized circuitconnecting two controllers back-to-back for a two-stageg r{see
are the same as the ones performed by the synchronousigure 3(e)). Figure 3(f) depicts the unfolded behavioemiftcluding
counterpart flow-equivalence all causality constraints for the communicatidn— B and B — A.



The folded behavior is shown in Figure 3(g), that can alsolteined ck L

by combining the synchronization models of Figure 5(a) afta).5
Several arcs become redundant, thus deriving the simplifiedel
shown in Figure 5(h).

Interestingly, the resulting protocol derived from the gagssive” e rreJrere gy e

Synchronous behavior

concurrent model is “naturally” transformed into one thatnon- A 1 3 707,27 1;5/3, 1 6,0
overlapping, live and safeNote that a two-stage ring is typically N e e S s U S o N s o Y e
derived from the implementation of a finite-state machimewhich B'/5.1, 2, 3, 1, 4 , 2.4, 3., 1

the current state stored in a register is fed back to the segister De-synchronized behavior

after going through the combinational logic that calcidatiee next

state. As an example, the handshake protocol between saftlaad Fig. 8. Flow equivalence.

D in Figure 2 (see Figure 6 also) becomes non-overlapping.

E. Flow-equivalence 1) If E transfers data t@ then
In this section we will prove that a de-synchronized cireniics . - .
its synchronous counterpart. We will show that, for eackhathe a(E+) <7(0-) <T(E+) +1
value stored at théth pulse of the control signal is the same as the 2) |f O transfers data td, then
value stored at thé-th cycle of the synchronous circuit.
We first present some definitions that are relevant for symzus G(E-) <o(0+) <7(E-)+1
circuits. Proof: Both inequalities hold by the existence of the double arcs
Definition 4.1 (Synchronous behaviorBiven a blockA (combi- £+ < O— or O+ — E— that guarantee the alternation between
national logic and latch), we calis the logic function calculated by POoth events. The initial marking is the one that makes thierdifice
the combinational logic. We call, the value stored inl’s latch after Petween the even-to-odd and odd-to-even connections. u
the i-th clock cycle. Let us callE" ... EP the (even) predecessor This lemma states that adjacent latches alternate thesesul
latches of an odd latclD, and O'...O the (odd) predecessor Correctly, which is crucial to preserve flow equivalehce

latches of an even latck. Then, We now present the notion dfow-equivalence[10], which is
« O; = Fo(E! E” ), and related to that ofsynchronous behaviom [15], in terms of the
. El _ FE(OZ_fl’ a 5;_))“1 ' projection of traces onto the latches of the circuit.

where all even blocks store a known initial value at cycle 0.

For the sake of simplicity here we modettmsedcircuit, i.e. one ~ Definition 4.2 (Flow equivalence)Two  circuits are  flow-

without primary inputs from the environment. The enviromnean  eduivalent if

be considered explicitly either by slightly changing theqds, or by 1) They have the same set of latches and

modeling it as anon-deterministic functianThe latter mechanism 2) For each latchd, the projections of the traces ontb are
also allows us to show how a de-synchronized circuit can ber-in the same in both circuits.

faced with a synchronous one (the environment), namely byndr | hwitively, two circuits are flow-equivalent if their beviar cannot

its input handshake signals with the global clock and igrrits e gistinguished by observing the sequence of values sairedch
output handshake signals. The latter must be shown to folf@v |atch. This observation is done individually for each latetd, thus,
correct protocol by means of appropriate timing assumption the relative order with which values are stored in differkatthes
The behavior of a synchronous circuit can be defined as thefset.5, change, as illustrated in Figure 8. The top diagram tepie
traces observable at the latches. If we @]“-_- -E" andO" .. O™ pehavior of a synchronous system by showing the valuesdsiare
the set of even and odd latches, respectively, the beha¥idheo two latches, A and B, at each clock cycle. The diagram at the
circuit can be modeled by an infinite trace in which each eténoé . itom shows a possible de-synchronization. From the aiagsne

the alphabet is afn + m)-tuple of values: can deduce that latchesand B cannot be adjacent (see Lemma 4.1),
[ cycle [ clk | trace | since the synchronic distance of their pulses is sometinmeatey
initial 0 R o ... o than 1 (e.g.B has received 5 pulses after having stored the values
1 1 | B .. Ey ol ... om (5,1,2,3,1), while A has only received two pulses storifg, 3)).
0 | Ef ... ET o ... Opm The following theorem is the main theoretical result of thaper.
2 1 | B} E7 ol o
: Theorem 4.2:The de-synchronization model preserves flow-
i 1 [E,.. Er, Ol .. o} equivalence.
1 n 1 m . .
B ... B O, ... O Proof: By induction on the length of the trace.
i+1 | 1 | Bl ... E" Ol ... On,
If we project the trace onto one of the latches, sgywe obtain a ][ndltjﬁt'c;,n TypotlhessFor any IathhA’ flgw-e?IU|valen|((:§ |s.preserk\]/eg
trace AgA:1 ... A; ..., i.e. the sequence of values stored in latth or the first: — 1 occurrences oF— and until a marking IS reache

with the i-th occurrence ofA— enabled (see Figure 9). The marking

at each cycle. & & k k k k., o
We now present a lemma that guarantees a good alterna’[ion_oz)fthe ares B+ — BF— — B4 or 0"+ » 0"~ —~ 0"+ Is

pulses between adjacent latches. irrelevant for the hypothesis.

Lemma 4'1_ (Synchronic dlstancd)gt (E’H’MO) l?eaCMG'E 1A similar result was derived in [15] also based on Marked @rap
and O two adjacent blocks such that is even andD is odd, ands  Theory, using however a very different circuit structure amplementation
a sequence fireable frod,. philosophy.
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Fig. 9. lllustration of Theorem 4.2.

Basis: The induction hypothesis immediately holds for odd latches
in the initial state (Figure 9(a)). For even latches (seaifeé® (b)), it
holds after having fired' +. .. O+ once from the initial state. This
single firing preserves flow-equivalence since each l@tEheceives
the value

OF = For(ES, ... EY)

obtained from the initial value af", . . .
latches ofO*.

, E™, the (even) predecessor

Induction step (cas@ odd). Since the-th firing of O— is enabled we
know that each" + transition has fired — 1 times (see Lemma 4.1)
and, by the induction hypothesis, stores the valife . Therefore,

the next firing ofO— will store the value

Oi = Fo(E{_y,...,E )

which preserves flow-equivalence. Moreover, ik firing of E*+
will occur afterO has been closed, since the &e — E*+ forces
that ordering. This guarantees that no data overwriting @@¢ur on
latch O.

Induction step (casé” even) Since E— has firedi — 1 times, then
O*+ has firedi times, according to Lemma 4.1. Since hé latches
are odd, they store the valué¥, by the induction hypothesis and
the previous induction step for odd latches. The proof nomedkiced
to case ofO being even, in which:

O; = Fo(E},...,EP)

o [ s R e B R %
Ai < Ao

Ax

Ri+———> Rx+——&—— Ro+

|
At +—A- Axt«—B- Ao+ At—e>B+t— > Ct
T T sl
Ri-——@—— Rx- Ro- Ac— > B esC-
|
Ai-+— A+ Ax~“+— B+ Ao~

(a) Simple four—phase control (Furber & Day)

R|+—> A— — Rx+—* B- > Ro+

A'* ><A°+ A+ —e—+B+—» C+
AN
HA*’*’ RX_ A-—>B-—e— C-

(b) Semi— decoupled four—phase control (Furber & Day)

Ri+—> A- — Rx+—> B- > Ro+

[R A++>Rx§ ><J :\;\t_

Ai
(c) Fully decoupled four-phase control (Furber & Day)

Ri+—> A- Rx+— B- Ro

+
Ait ><AX+ \><A°+ A+ —e—>B+—— C+
<

4 NN
Ri-—> A+ > Rx- B+—* Ro- A B- c-
Ai- Ax— Ao

(d) Fall-decoupled control (GasP, IPCMOS)

Ri+—> A- <— Rx+— B- «<— Ro+

RRIUERN

-—

A+ Rx- B+ Ro

Lo

Ai- Ax—

Cc-

(e) De-synchronization control (this paper)

Fig. 10. Handshake protocols.

signals Ri, Ai, Ro, A and the latch control signaH(), thus abstract-
This concludes the proof, since induction guarantees fiquivalence ing away the behavior of the internal state sighalEhe projection

for any latchA and for any number firings afl—.

has been performed by preserving observational equivelenc

u Figures 10(a-c) show the projections of the controllersnfri@].
The leftmost part of the figure depicts the connection betwae
even and an odd controller generating the latch controlassgA
and B respectively. The rightmost part depicts only the profacti

Section IV presented a model for de-synchronization théinde on the latch control signals when three controllers are eotad in
the causality relations among the latch control signalsaf@orrect a row.

flow of data in the data-path. Now it is time to design the caltérs The controllers from [8] show less concurrency than the de-

that implement that behavior. synchronization model. For this reason, we also proposeva ne

Several handshake protocols have been proposed in thatuiter controller implementing the protocol with maximum coneuncy

for such purpose. The question is: are they suitable for B fulproposed in this paper (Figure 10(e)). For completenesanddnake

automatic de-synchronization approach? Is there any atetthat decoupling the falling events of the control signaflall{decoupledl

manifests the concurrency of the de-synchronization mpagdosed
in this paper?

V. HANDSHAKE PROTOCOLS FOR DESYNCHRONIZATION

2|n fact, A is the signal preceding the buffer that feeds the latch obntr

. . . L signal. The polarity of the signal has been changed to make ldatch
We now review the classical four-phase micropipeline |ahtrol trgnsparent V\E)hem é high. 9 g

circuits presented in [8]. For that, the specification offeaontroller  3pqr those users familiar witpet ri fy, the projection can be obtained
(figures 5, 7 and 11 in [8]) has been projected onto the hakdshay hiding signals with the option hi de.
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Fig. 11. Different degrees of concurrency in handshakeopods for de-
synchronization.

is also described in Figure 10(d).

In all cases, it is crucial to properly define the initial staif
each controller, which turns out to be different for the eas odd
controllers. This is an important detail often missed in ynpapers
describing asynchronous controllers.

The question now is: which ones of these controllers arelslait
for de-synchronization? Instead of studying them one by, ove
present a general study of four-phase protocols, illustran Fig-
ure 11. The figure describes a partial order defined by thecdeofr
concurrency of different protocols. Each protocol has beemtated
with the number of states of the corresponding state grapie
marked graphs in the figure do not contain redundant arcs.

An arc in the partial order indicates that one protocol can l}g

obtained from the other by a local transformation (i.e. byvimg
the target of one of the arcs of the model). The afes — A—

and B+ < B— cannot be removed for obvious reasons (they cagl

only become redundant). For example, the semi-decoupletqni
(5 states) can be obtained from the rise-decoupled protécsiates)
by changing the afcA+ —e» B— to the arcA+ —e+ B+, thus
reducing concurrency.

The model with 8 states, labeled as “de-synchronizationetipd

corresponds to the most concurrent model presented earligis
paper, for which liveness and flow-equivalence have beewegrin
Section IV. The other models are obtained by successivectieds
or increases of concurrency.

The nomenclatureise- and fall-decoupledhas been introduced

to designate the protocols in which the rising or falling eslgf the

4Note that this arc is not explicitly drawn in the picture besa it is
redundant.

pulses have been decoupled, respectively. The rise-diestbpptocol
corresponds to the fully decoupled one proposed in [8].

We will now show that all models in Fig 11, except those that
are shadowed, are suitable for de-synchronization. Far we will
analyze the properties dienessand flow-equivalence

A. Liveness

We will focus on the liveness of the two sequential protocols
simple and non-overlapping. The proofs of liveness arelairto that
of Theorem 4.1, and are left to the reader. Instead, we \ulstitate
intuitively the liveness proofs of these protocols by tg/to pass the
acid test mentioned above: building a two-stage ring (sgerEi3(e)).

It is clear that the non-overlapping protocol is live, giveat this is
the protocol to which the most concurrent model reduces vitven
controllers are connected back-to-back. However, the Isinfqur-
phase protocol does not pass this test:

A+ —-B+ —-A— —B— — -

Any trace will eventually visit a state in which = B = 1 which will
produce data overwriting in the ring. To avoid data overwgtand
deadlock, at least three latches in a ring are required, et one
data token circulating [17]. That would require substitgteach flip-
flop with three latches, which would in turn introduce a poiely
substantial penalty in terms of both area and performance.

B. Flow-equivalence

For the models with less than 8 states, obtained by conayrren
reduction, the property of flow-equivalence holds autooadity, since
the traces produced by any of these models are always trdces o
the most concurrent model for de-synchronization, for Wwhiow-
equivalence has already been proved in Theorem 4.2.

On the other hand, the two models at the bottom, with 10 states
each, have been obtained by increasing concurrency. Theslmod
on the left is obtained by changing the al:— — A+ to the arc
B— — A—. By observing Figure 3(b), this would correspond to
shifting the arrowA+ <« B— one step forward and converting it into
A— « B-—. The reader can easily deduce that this transformation can
produce data overwriting on latdB, since the value ofi can change
without having stored the previous valueih Therefore, this model
does not preserve flow-equivalence.

The model on the right is obtained by changing the 4re — B—

Tto the arcA+ — B+. It can be easily shown that this model does

not preserve flow-equivalence either.

This figure illustrates our belief (for which we do not have a
rmal proof) that the “de-synchronization model” is the ximaally
concurrent controller among those which preserve flow edgince.
Both models at the bottom of Figure 11 are unsafe, since e ar
etween events of the control signals fdrand B can hold two
tokens in some reachable markings.

The conclusion is that all handshake protocols in Figure 11,
excepting the simple four-phase protocol presented iniié] the
two models at the bottom, are suitable for de-synchrorurati

Only the specific implementation characteristics of each @mnea,
power, performance) determine the best choice.

C. Hybrid de-synchronization approaches

An important aspect to notice is that de-synchronization ba
performed by using different types of controllers, e.g. ywpasing
the most concurrent one for critical cycles within the lateHatch
graph, and less concurrent ones for non-critical cycless Would



reserve the most complex controllers only for those postiofithe L
circuit where they are vital to improve the performance, ase _>$ COMBINATIONAL LOGIC
cheaper ones where they do not affect the global performance S

Property 5.1: Any hybrid approach using any of the valid con- E
trollers shown in Figure 11 is valid for de-synchronization

The proof of this property is simple and is briefly sketchea.noet
us assume that we have a de-synchronized circuit with diftelypes
of controllers among all the latches. Liveness and flow sence
can be proved as follows:

o Liveness. Let us start from the sequential non-overlapping ri
model for each controller. The obtained circuit is live, as
proved in Theorem 4.1. By substituting each controller wtfith
corresponding one in the hybrid approach, a new circuit with
more concurrency is obtained. Therefore, the hybrid dirui
also live.

« Flow-equivalence.In this case we start from the most concur-
rent model for each controller. By substituting each cdtgro il s
with the corresponding one in the hybrid approach, a newuitirc Initial state: E=A0=1, Ri=Ai=R0=0 Initial state: Ai=1, O=Ri=Ro=A0=0
that is less concurrent is obtained. All the operationsquaréd
by this circuit are “flow-equivalent” to the ones of the mosfig. 12. Implementation of semi-decoupled controllersefeen () and odd
concurrent model. () latches.

Therefore, the flexibility of using any of the controllersr fany
latch in a de-synchronized circuit offers an avenue of filises
to explore different trade-offs with respect to area, panfance and
power consumption.

A Ao

{_delay RO
Ri

Ri--@+ O+—*Ro-

« The semi-decoupled protocol is a good trade-off between sim
plicity and performance.
« The pulse width of the latch control signals will be simil&gil
D. GasP, IPCMOS and MOUSETRAP controllers are similar. Moreover, the depth of the datdfzgic
We briefly review some other existing protocols without gaadg ssrally T]as afl dEIa{] that can be overla%ped with the ((j:ont‘mlle
the particular details of each implementation. delay. Therefore, the arcd+ — B+ and A— — B do not
The behavior of the GasP [22] and IPCMOS protocols [20] impose performance constraints in most cases.
corresponds to the fall-decoupled model. The a¢ — B+ is In case of time-critical applications, other controlleede used,
guaranteed by the logic of the controllers whereas théarc— A+  including hybrid approaches combining protocols différtom the
is guaranteed by the timing assumptions used in the impleatien ©ONnes shown in Figure 11.
(pulses are short). If the generated pulses at differegiesthave a ~ Figure 12 depicts an implementation of a pair of controllessen
similar width, then these protocols can be observably edent to and odd) for a fragment of data-path. The figure also shows the
the semi-decoupled or non-overlapping models. marked graphs modeling the behavior of each controller. ditig
MOUSETRAP [21] is also another protocol for asynchronoudifference is the initial marking, that determines the tésgic (signal
pipelines. It is extremely simple and efficient for acyclipedines, RST).
including fork and join structures. However, the causalijations Resetting the controllers is crucial for a correct behaviorthis
of the abstract model are complex and cannot be represeptedCBse. the even latches are transparent and the odd latchgseom
a marked graph. The model has causality arcs that go beydﬁé initial state. With this strategy, only the odd latcheasstrbe reset
neighboring stages. These extra arcs preclude the model tséd N the data-path. The implementation also assumes a relathing
for cyclic structures. As an example, it is impossible toldd 2- constraint (arcRo— — Ri+) that can be easily met with the actual
stage MOUSETRAP ring that implements a live and flow-eqeial designi.

protocol. The states in which the two latch control signats faoth ~ The controllers also include delay that must match the delay
low or high are deadlock states. of the combinational logic and the pulse width of the latcimtool

signal.
VI. | MPLEMENTATION OF DE-SYNCHRONIZATION CONTROLLERS Each latch control signali{ andO) is produced by a buffer (tree)
The protocols described in Section V can be implemented that drives all the latches. If all the buffer delays are Emihey can
different ways using different design styles. In this satithe logic be neglected during timing analysis. Otherwise, they caimtleded
design of some controllers is presented. in the matched delays, with a similar but slightly more coempl
analysis.

A. Semi-decoupled controller In particular, the delay of the sequence of events

We have chosen the semi-decoupled four-phase handshakegiro
proposed by Furber and Day [8]. We present an implementatitin E+ — Ro/Ri— — — O+
static CMOS gates, while the original one was designed asistor
level. The reasons for the selection of this protocol with garticular
design style are several:

» We pursue an approach suitable for semi-custom design usingrhis assumption also allows us to simplify the implementagproposed
automatic physical layout tools. in [8]: the equation forA+ becomesR;,, instead ofR;, A = Rout.

is the one that must be matched with the delay of the comlinaiti
logic plus the delay of a latch. The eveRb/Ri— corresponds to
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the falling transition of the signaRo/Ri between theE- and O-
controllers. On the other hand, the delay of the sequence

O+ — Ai/Ao— — Ro/Ri+ — |pulse delay — O—

is the one that must be matched with the minimum pulse widtis. |
interesting to note that both delays appear between tramsiof the
control signals ofR: and O, and can be implemented with just on
asymmetric delay.

The control can be generalized for multiple-input/mubialutput
blocks. In that case the reg/ack signals of the protocolst rhas
implemented as a conjunction of those coming from the preskar
and successor controllers, by using C-elements. As an dgaiffig-
ure 13 shows the de-synchronization control for the cirdejicted
in Figure 2.

B. Fall-decoupled and maximum concurrency controllers

For completeness, we present the design of the fall-deeduguin-
troller and the controller with maximum concurrency, cepending
to the de-synchronization protocol presented in this paper

Possible implementations are presented in Figures 14 andhks
latch control signal isA (transparent whenl = 1), wherease and
y are internal signals required to properly encode the stdees

The Boolean equations that model the behavior are showneat
right of the marked graph. Two types of equations are prakitfeose
for an implementation based on asymmetric C-elements ;-
and A;—), and those for a complex-gate implementation (elg).

One can observe that the equations are simple and can bg eas

implemented with static CMOS gates. For brevity, no details

provided on where the matched delays must be inserted andwn h]_

to initialize the circuit for odd and even latches.

VII.

We present results on the application of de-synchronigatio a
DLX processor [11], using the semi-decoupled controllegicted in

D E-SYNCHRONIZATION OF THEDLX MICROPROCESSOR

€

IF Latch Control ID Latch Conlrol'Zl EX Latch ControI:}\A
.ZI IZI

Fig. 16. De-synchronized DLX.

Fig. 12. The de-synchronized DLX consists of five architedtDLX
pipeline stages, four of which actually correspond to étrblocks
(at the circuit level WB is merged with ID). Each block is cailed
by its own latch controller. The arrows of the latch conedll
correspond to theirP and S signals, and illustrate the datapath
dependencies. Stages ID, EX and MEM form a ring. ID is thethear
of the processor containing the Register File and all hadatdction
logic and synchronizes stages IF and MEM. Thus, instrustieaving
MEM (for WB) will synchronize with instructions coming frori.
Data hazard detection takes place by ID comparing the ouggigter
of instructions in other pipeline stages and their opcoded,deciding
on inserting the correct number of NOPs

After the initial synthesis of each circuit block using la¢s
(without retiming), the whole design is optimized increnadly to
meet all timing requirements. Max-delay constraints betwkatches
are used to ensure cycle time in the datapaths but the cditrciks
are untouched inside the synthesis tool. Then the gaté¢-tmtést
and matching timing constraints are placed and routed. W& $he
results of two flows, both of which use industrial-strengibl$. The
former uses the classical synthesis, placement and rosg¢iqgence.
The latter adds one stage of placement-aware synthesigofrher is
“safer”, area-oriented and aimed equally at flip-flop-baaed latch-

sed designs. The latter is more aggressive, timingtedeand
aimed at flip-flop-based designs. In all cases, post-rouiengation
is iterated until all timing violations are fixed. All layajtexcept for
de-synchronized flow 2, are flat.
II'I'able | contrasts the characteristics of the synchronopléip and
latch-based designs, and of the de-synchronized lataabdssign.
he data are post-layout results based on gate-level dionga
with back-annotation of extracted parasitics. Both cloekiqgd and

6This simple architecture does not include forwarding, butakes manual
insertion of the latch controllers easier. With the autoamebf the flow, we
will be able to handle much more complex RTL and gate levelgtss



Sync. | Sync. | De-Sync. REFERENCES
FF | Latch Latch o
= [1] A. Bardsley and D. Edwards. Compiling the language Batsaelay-
Cycle Time (ns) 8.00 6.60 5.06 insensitive hardware. In C. D. Kloos and E. Cerny, editbtardware
Flow 1 | Dyn. Pow.(mW) || 44.75]| 53.88 48.94 Description Languages and their Applications (CHDIpages 89-91,
Area (mm?) 2.66 2.22 2.43 Apr. 1997.
Cycle Time (ns) 3.60 2.10 3.86 [2] K. v. Berkel. Han_dshake Circuits: an A_synchronpus Architecture
Flow 2 | Dyn. Pow. (m) 9323 92.34 10591 for VLSI Programmllngvolunje 5‘ of International Series on Parallel
- Computation Cambridge University Press, 1993.
Area (mm?) 2.66 2.22 4.64 [3] I. Blunno and L. Lavagno. Automated synthesis of micipetines from
behavioral Verilog HDL. InProc. International Symposium on Advanced
TABLE | Research in Asynchronous Circuits and Systepages 84-92. IEEE
SYNCHRONOUS VS DE-SYNCHRONIZEDDLX. Computer Society Press, Apr. 2000.

[4

[l

D. Chinnery and K. Keutzer. Reducing the timing overhebdClosing
the Gap between ASIC and Custom: Tools and Techniques fdr- Hig
Performance ASIC desigrchapter 3. Kluwer Academic Publishers,
. 2002.

waveform (in the synchronous cases) and controller matdedailys [5] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Markededted

(in the asynchronous case) were tuned in order to achieve the graphs.Journal of Computer and System Sciencg§11-523, 1971.
minimum cycle in each case. The reported cycle time of the de6] J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and Sotiriou.
synchronized design using flow 2 is actually the average detw from EI)_/nchronous to asynchronous: an automatic approadimigited

. . or publication.
two alternating CyCIQ tm_]es generated by the controllefs4.42 . [7] J. Cortadella, A. Kondratyeyv, L. Lavagno, and C. Sotiri\ concurrent
and 3.60ns. If the circuit must be operated synchronously at its"  model for de-synchronization. IfProceedings of the International
interfaces, then the worst-case value (419 must be used. The Workshop on Logic Synthesisages 294-301, 2003. o
area of this design isnuch larger than the others because we hadl8] S. B. Furber and P. Day. Four-phase micropipeline latmfitrol circuits.
to implement it using hierarchical placement and routingorder to IEEE Transactions on VLS| Systendg2).247-253, June 1996.

. S } [9] S. B. Furber, J. D. Garside, and D. A. Gilbert. AMULETS3: Agh-
properly constrain the clock trees. This is just a temposarytion, performance self-timed ARM microprocessor. Broc. International

and the results will certainly be improved when we will magdg Conf. Computer Design (ICCDYct. 1998.
implement it as a flat layout, as in all the other cases. It elggains [10] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann. Polyctydor system
the higher power consumption in this case. design.Journal of Circuits, Systems and Computegr. 2003.

o that all desi h imatelv th [1% J. L. Hennessy and D. Pattersadomputer Architecture: a Quantitative
ne can see that all designs have approximately the same are Approach Morgan Kaufmann Publisher Inc., 1990.

speed and power consumption. Differences between them ean[1®] J. Kessels, A. Peeters, P. Wielage, and S.-J. Kim. Céyeichronization

attributed more to the different abilities of the two flowsdptimize through handshake signalling. Microprocessors and Microsystems
for different objectives (area vs. performance, latch vip-ffops), 13 g(?:ﬁMTBRO'(gCt' 2003A doublvlatched A e, |

. . . Kol an . Inosar. ouply-latched asyncnronousejne. In
rather t,har! to the sy,nChronous or asynChror,]OUS 'mplemmmt Proc. International Conf. Computer Design (ICCD)ages 706-711,
each circuit. Other differences can be explained with tre fhat Oct. 1996.
the various implementation flows take slightly differentnstraints [14] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondyat. Asyn-
as input during the physical design phase (e.g., the dehsynized chronpus design uging commercial HDL synthgsis tooIs.PlI«n_c. I_n-
circuit has smaller clock trees than the synchronous ormeshance ternational Symposium on Advanced Research in Asynchso@oauits

. . . . and Systemages 114-125. IEEE Computer Society Press, Apr. 2000.
deliver slightly different results. No general conclusiaran be drawn ES] D. H. &ndgfngl C. Harden. Phased IOZic: Supporﬂi{e!;;slynchrorr)‘lous
from a single example (even though we made our best efforeto design paradigm with delay-insensitive circuithfEEE Transactions on
fair and optimize every single implementation), other thha fact Computers 45(9):1031-1044, Sept. 1996.
that de-synchronization is on a par with synchronous implegation [16] A.J. Martin. Compiling communicating processes in@ay-insensitive

. VLSI circuits. Distributed Computing1(4):226-234, 1986.
in terms of area, performance and power. [17] D. E. Muller. Asynchronous logics and application tdfoirmation
VIIl. CONCLUSIONS

processing. InSymposium on the Application of Switching Theory to

This paper presented a de-synchronization model that carséud Space Technologyages 289-297. Stanford University Press, 1962.
to automatically substitute the clock network of a synchrgncircuit 18] T- Murata. Petri Nets: Properties, analysis and apfibos. Proceedings
of the IEEE pages 541-580, Apr. 1989.
by a set of asynchronous Contm”er?' . . [19] R.B.Reese and M. A. T. C. Traver. A coarse-grain phasgitICPU. In
To the best of our knowledge, this is the first successfulngite Proc. International Symposium on Advanced Research inoksynous
of delivering an automated design flow for asynchronousuiisc Circuits and Systemgages 2-13. [EEE Computer Society Press, May
that does not introduce significant penalties with respectthie 2003. . .

- ; - . . [20] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediateg K. Jenk-
Correspopdlng synchronous .deSIgns. This opens wide appoes ins. Asynchronous Interlocked Pipelined CMOS Circuits @peg at
of exploring the implementation space (both synchronou asyn- 3.3 — 4.5GHz. InInternational Solid State Circuits Conferenqeages
chronous) within the very same set of industrial tools. Thig 292-293, Feb. 2000.
believe, is a valuable feature for a designer. [21] M. Singh and S. M. Nowick. ~ MOUSETRAP: Ultra-high-speed

; ; transition-signaling asynchronous pipelinesPlioc. International Conf.
The suggested methodology can result in EMI improvements, Computer Design (ICCD)pages 9-17, Nov. 2001.

shorter design cycles, and partitioning of the clock trédsteover, 551 | sytherland and S. Fairbanks. GasP: A minimal FIFOtmsn In

it provides the foundation for achieving power savings atiteo Proc. International Symposium on Advanced Research inoksynous
advantages of true asynchronous implementation througie ffimce- Circuits and Systempages 46-53. IEEE Computer Society Press, Mar.
grained de-synchronization. We believe that our flow, whilat 2001.

[23] V. Varshavsky, V. Marakhovsky, and T.-A. Chu. Logicahing (global

pro.\lld!r?g all the advantages thaF asynchronous CIrCUIMn!Be,_ 1S synchronization of asynchronous arrays). The First International
a significant step towards spreading the use of asynchrariousts Symposium on Parallel Algorithm/Architecture Synthegiages 130—
among mainstream designers. 138, Aizu-Wakamatsu, Japan, Mar. 1995.

Acknowledgement.This work has been partially supported by a Distinc-
tion for the Research by the Generalitat de Catalunya



