
Automating Synthesis of Asynchronous Communication Mechanisms

Jordi Cortadella, Kyller Gorgônio
Department of Software

Universitat Politècnica de Catalunya, Spain
http://www.lsi.upc.edu

Fei Xia, Alex Yakovlev
School of Electrical, Electronic and

Computer Engineering
Univ. of Newcastle upon Tyne, UK

http://www.ncl.ac.uk/eece

Abstract

Asynchronous data communication mechanisms (ACMs)
have been extensively studied as data connectors between
independently timed processes in digital systems. In pre-
vious work, systematic ACM synthesis methods have been
proposed. In this paper, we advance this work by develop-
ing algorithms and software tools which automate the major
part of the ACM synthesis process. Firstly, an interleaving
specification is constructed in the form of a state graph, and
secondly, a Petri net model of an “ACM-type” is derived
using the notion of an ACM-region. The method is applied
to a number of “standard” writing and reading policies of
ACMs with shared memory and unidirectional control vari-
ables.

1. Introduction

Interprocess Asynchrony is inevitable for computation
networks in the future. Firstly, this is because different
and diverse functional elements, especially those connect-
ing to analogue domains, tend to have different timing re-
quirements [4, 8]. Secondly, concurrent and distributed
system implementations lead to greater asynchrony be-
tween components as semiconductor technology advances
and the degree of integration increases (ITRS-03 “Design”
document emphasizes multiple clock domains and source-
synchronous signalling and predicts networks of self-timed
blocks [1]). The size of computation networks is becoming
larger, and the traffic between the processing elements is in-
creasing. Handling the data communications which make
up the traffic, therefore, may determine much of the perfor-
mance and characteristics of such systems.

One of the most important issues in designing commu-
nication schemes between asynchronous processes is that
such schemes should allow as much asynchrony as possible
after satisfying design requirements on data.

An asynchronous communication mechanism (ACM) is

Control
variables

memory
Shared

Writer Reader

data data

ACM

Figure 1. ACM with shared memory and pos-
sibly control variables

a scheme which manages the transfer of data between two
processes not necessarily synchronized for the purpose of
data transfer. The provider of data is called the “writer” of
the ACM, and the user of data is referred to as its “reader”.
The ACM is therefore a data connector linking the two pro-
cesses, the writer and the reader. The general scheme of
these kinds of data communication mechanisms is shown
in Figure 1. Most ACM implementations tend to include
shared memory, accessible to both writer and reader, for
the data being transferred, and control variables, each of
which is usually set by one side and read by the other. In
this work we assume that the data being transferred consists
of a stream of items of the same type, and the writer and
reader processes are single-thread loops, during each cycle
of which a single item of data is transferred to or from the
ACM.

Classical semaphores can be easily configured to protect
write and read operations. However, this can be done only
at the large granularity level of data accessing, which is not
satisfactory because we expect a minimum locking between
the reader and writer processes. This desire is exemplified
by the original work of Lamport on “atomic registers” [6]
and present in all subsequent research on ACMs (which in-
clude the Lamport atomic register) in the literature. One
way to achieve this is to design the ACM in a such way
that the atomic actions of each process only occurs at a very
small granularity level, when accessing control variables,
i.e. we need to move the atomicity of actions from data
accesses to few bits control variable accesses [8, 11]. Addi-

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05) 
1550-4808/05 $ 20.00 IEEE



tionally we also expect the ACMs, in certain cases, to avoid
busy waiting (by testing an empty/full flag and leaving), and
this leads us to multi-slot mechanisms. These are the prop-
erties of an ACM that should be reflected in its initial spec-
ification.

In this work, a state graph specification is obtained from
a functional specification, which can capture the above
mentioned properties of an ACM at the level of interleaving
semantics, and then its Petri net is synthesized. This contra-
dicts the usual way of synthesizing asynchronous circuits,
in which a Petri net specification is first obtained, and then
its state graph is constructed. We do it in that way because
the implementation we want to generate, especially in hard-
ware, is something where actions are distributed between
components and can be made truly concurrent. Considering
this, a Petri net model is closer to the implementation than
state graphs, and the generation of the implementation from
the models is more natural.

In previous work, we succeeded in devising a step-by-
step method, based on the theory of regions, of synthesiz-
ing ACM algorithms from interleaving state-space specifi-
cations [13, 10]. We also found that the automatic synthesis
tool Petrify in its shape does not help much in this task [13].
In this work, we have incorporated our regions-based tech-
niques into a new version of Petrify. The case studies in
this paper demonstrate that the modified Petrify does help
derive ACM algorithms from interleaving specifications in
a reasonably straightforward manner.

We have also developed an automatic method of gener-
ating interleaving state-space specifications from more gen-
eral functional specifications. Together with the modified
version of Petrify, this increases the scope of automation
in the process of ACM design and implementation. With
these two components, we almost have an entirely auto-
mated ACM synthesis apart from the final step of turning
state-machine like Petri net descriptions of ACM algorithms
(output of the modified Petrify) into software or HDL codes,
which will be the next stage of our work.

2. Motivation

2.1. Communication without process sharing

Interprocess data transmission can be implemented tra-
ditionally through synchronization for the purpose of data
transfer (e.g. Occam [5]). However, this kind of synchro-
nization, especially when including actions which may be
regarded as simultaneously belonging to both communicat-
ing processes (“process sharing”), is undesirable for ACM
solutions unless demanded by the functional specifications.
In previous work, much effort has been spent on making
ACMs as asynchronous as possible, given a particular spec-
ification. This work continues to aim for this goal.

Functional specifications of ACMs may demand syn-
chronization between the processes at some point. For ex-
ample, let us consider a simple ACM, called “rendezvous”
in [8]. This ACM has two processes with one private ac-
tion each, a and b, respectively. Every time Process 1 ex-
ecutes action a it must wait until Process 2 has executed
action b once, before repeating its action a, and vice versa,
as the system is symmetric. This informal functional spec-
ification can be represented by an interleaving state graph
model shown in Figure 2(a). The state graph contains a spe-
cial shared action τ , where the synchronization of the two
processes happens.

τ

b b

a

a

(a) Initial interleaving
model

αa

a α

bb b

β

(b) Refined model

Figure 2. A rendezvous ACM

This most basic form of synchronization via process
sharing involving two otherwise independent processes can
be modelled by the Petri net in Figure 3, which can be im-
plemented with a C-element in hardware. This involves
an action (the synchronization transition) which belongs to
both processes. When one process is ready to carry out this
action, it must wait for the other process to reach the same
point before both carry out the action together.

pr.1 pr.2

pr.2pr.1

pr.1 pr.2

a bτ
C

Figure 3. Implementing synchronization with
a C-element

Previous work on ACMs has shown that it is possible
to reduce the need for this kind of synchronization to the
most basic actions in digital systems, i.e. those that can
be regarded as atomic, regardless of the functional speci-
fication of the ACM [8]–[10]. Furthermore, it can be ar-
gued that even this type of apparent “hard” synchroniza-
tion can be implemented without the sharing of an action,
atomic or not, by the two processes. For instance, the state
graph Figure 2(a) can be refined into Figure 2(b), where the
two processes do not share an action (process sharing is re-
moved by replacing τ with actions α for Process 1 and β

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05) 
1550-4808/05 $ 20.00 IEEE



Process 1 Process 2

wait until y = 0; wait until x = 0;
x := 0; y := 1;
do a; do b;
wait until y = 1; wait until x = 1;
x := 1; y := 0;

Table 1. Rendezvous algorithm

for Process 2) without losing the functional aspect of the
synchronization required. After further refinement by addi-
tional synchronization actions, this can be implemented by
the Petri net model in Figure 4. Here, the two processes,
by sharing places with read or “listening” arcs (i.e. arcs
with dual arrows), avoid the sharing of transitions and yet
achieve the same functionality of the synchronization point
in Figure 3. Algorithm 1 can be derived (for possible soft-
ware implementation) from the Petri net model in Figure 4,
where the two pairs of complementary places can be en-
coded with variables x in Process 1 and y in Process 2. It is
not on the scope of this paper to discuss about a systematic
way to derive such algorithm, but we expect to report it in
the future.

pr.2

pr.1x=0

y=0

x=1

y=1

a

b

Figure 4. Implementing synchronization with
unidirectional control variables

This simple example also illustrates the steps of our
ACM synthesis process included in this paper. An appro-
priate interleaving state graph model is derived from a func-
tional specification, and an algorithm-like Petri net model is
then derived from the interleaving state graph model.

2.2. Unidirectional control variables

Furthermore, previous work has also demonstrated that
Figure 4 effectively specifies “unidirectional control vari-
ables”. The value of such a shared variable may be modi-
fied (written) by only one of the communicating processes,
but can be referenced (read) by both. The binary variables
x and y in Figure 4 are such variables.

By using unidirectional control variables, any need of
synchronization (either demanded by the functional specifi-
cation or out of implementation necessity) can be removed

from non-atomic actions (such as the reading and writing of
multi-bit data) to finest grain actions that can be regarded as
atomic or as close to atomic as possible (such as the reading
and writing of single-bit control variables). As shown by
Figure 4, all non-atomic actions (assembled into transitions
a and b) are fully asynchronous between the two processes.
This provides for maximum practical asynchrony for any
functional specification, and the safest solution. Specifi-
cally, if the setting, resetting and referencing of control vari-
ables can be regarded as atomic events, the correctness of
ACMs becomes easy to prove.

The only possible hazard in a unidirectional control vari-
able of small size (i.e. binary or ternary) is associated
with metastability. This may happen when a control vari-
able is modified and referenced at about the same time by
two asynchronous processes. A metastable binary vari-
able may stay at an analogue value approximately mid-
way between logic 1 and logic 0 for an indefinite period
of time, and it will eventually “resolve” to either 0 or 1 non-
deterministically. This is shown in Figure 5.

Metastable

time
resolving to 0

resolving to 1

Figure 5. Sketch of metastability in a variable

In practice, the effects of such metastability, which in
modern semiconductor technologies (e.g. CMOS) does not
include any oscillatory behavior, can be minimized. ACM
algorithms truthfully implementing appropriate interleaving
specifications operate correctly if their control variables are
resolved before use. The non-determinism in resolving to
either 0 or 1 does not affect the correctness of the ACMs
because of the commutative diamonds in the specification.
In fundamental mode operations, such techniques as copy-
ing a control variable value through software instructions
drastically reduce the probability of a metastable state per-
sisting until its use. In self-timed solutions, “metastability
filters” may be used so that a process may wait until any
metastability has been resolved.

In this work, we will restrict any synchronization be-
tween the reader and writer processes to such unidirectional
control variables.

3. Interleaving specification

We use an example to illustrate the type of interleaving
specification we need and our method of deriving it. This
is a rereading bounded buffer ACM (called RRBB in [10])
with three data cells in the buffer and one slot per cell. The

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05) 
1550-4808/05 $ 20.00 IEEE



basic interleaving state graph of this ACM is shown in Fig-
ure 6. This state graph includes only the data reading and
writing actions.

In Figure 6, rdi, i = 0, 1, 2, indicate reading access of
cell i, and wrj , j = 0, 1, 2, indicate writing access of cell
j. The two s0 nodes denote the same state. This is also true
for the s1 nodes. The entire graph is therefore cyclic. It
can be seen that the reader is never forced to wait, rereading
when necessary, while the writer will wait when the reader
is accessing the cell it is scheduled to access.

wr2 wr0 wr1

wr0 wr1 wr2

wr1 wr2

wr2 wr0

rd0 rd0

rd2 rd2rd2

rd1 rd1

rd1

rd2

rd0

rd0

rd1

(wr wait)

(wr wait)

(wr wait)

s0 s1

s1s0

Figure 6. Basic state graph of 3-cell RRBB

This state graph assumes that rereading accesses the
newest data item in the ACM.

This type of simple state graph is not suitable for syn-
thesizing ACM algorithms [13, 10]. Both the writer and
the reader need to make decisions about whether to wait or
whether to re-access the last cell accessed. Such decision
making implies “hidden actions” (similar to α and β in Fig-
ure 2) not shown in a state graph of the type in Figure 6.

Extending the state graph in Figure 6 to include the nec-
essary hidden actions produced the refined specification in
Figure 7. In this figure, λij indicates the hidden writer ac-
tion which advances the writer from cell i to cell j, and µkl

indicates the hidden reader action which either advances the
reader from cell k to cell l when k �= l or prepares for the
rereading of cell k when k = l.

All data access actions (wr and rd) always form (com-
mutative) diamonds with actions of the other side. This
means that these actions are fully concurrent with actions
of the other side, maximizing interprocess asynchrony. The
hidden actions, however, do not have this property. There-
fore all the critical synchronization points in the communi-
cation are concentrated on these actions. In order for the
resulting ACM to be as asynchronous as possible, it is im-
portant that they should take very small amounts of time
and be atomic ideally. We assume here that this is accom-
plished by making these actions the setting and reading of
unidirectional control variables of the smallest size.

Previous work has show that when these actions are re-
garded as non-atomic, not all ACM implementations work
according to specifications. However, some ultra-safe solu-
tions have been found that work correctly even when atom-

s0 s1

s0 s1

wr1

rd
0

rd
0

rd
0

µ0
0

rd
0

µ2
0

µ2
0

µ2
2

µ2
2

rd
2

rd
2

rd
2

rd
2

λ12 wr2

µ0
0

wr1 λ12 wr2

µ1
2λ20wr2

µ1
2

µ1
1

rd
1

µ1
1

rd
1

rd
1

wr0

rd
1

wr0

µ0
1

µ0
1

wr0 λ01

wr1

wr0

wr2 λ20

λ01 wr1

Figure 7. State graph of 3-cell RRBB ACM in-
cluding hidden actions

icity is assumed at a lower level, such as the beginning and
end of a control variable set or read [9]. As a first effort, we
choose to regard control variable actions as atomic.

Figure 7 indicates that the silent actions of the writer and
reader depend on each other. For instance, whether the next
reader silent action is µ11 or µ12 depends on if λ20 has com-
pleted, and whether λ20 may start (or the writer must wait)
depends on if µ01 has completed. This means that, if us-
ing unidirectional control variables, these silent actions set
control variables for the other side’s silent actions to read.

Allowing overwriting brings further problems, and we
will illustrate this with a different example here. In the
context of ACM, there is usually no assumption about the
relative speeds of the writer and the reader and any syn-
chronization between them outside the ACM, and pointing
the writer towards the cell to which the reader will next be
pointed runs the risk of creating data coherence problems.
This problem can be solved through the use of multiple data
slots for the data memory of a single cell.

The simplest multi-slot cell consists of two data slots.
Figure 8 shows part of the state graph, including the silent
actions, of a 2-cell OWRRBB ACM using two data slots per
cell. The entire graph is too big to include here and has 80
states and 160 arcs.

Arcs µijij indicate the reader preparing to reread when
the ACM does not contain any newer item, and the cycles
w00 → λ0011 → w11 → λ1100 mean the writer looping
without the reader moving. Depending on where the writer
is, the reader may advance to the next cell or continue ad-
vancing until it reaches the correct cell. µ0111 and µ0100

branch off to different parts of the state graph, and although
µ0100 appears to be the reader staying in the same cell, it
is actually the reader advancing to the next cell, finding the
writing accessing it, and then advancing back to cell 0 again.

Evidently, as the size of the ACM increases, or more
complex policies are required, it becomes more complicated

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05) 
1550-4808/05 $ 20.00 IEEE



w00

µ1
00

1

µ1
00

1

r0
1 r0

1

λ1100

λ1100

λ0011

λ1100 λ0011

µ0
11

1

µ0
11

1

λ1101

λ1101
λ0010

λ0010

r0
1

w00

r0
1

λ1100

µ0
10

0

µ0
10

0

µ0
10

1

µ0
10

1

µ1
11

1

µ1
11

1

r0
1

r0
1

r1
1

r1
1

r0
0

µ0
00

0

µ0
00

0

r0
0

w11

w11

w00

w00w11

w11

w11

w11

Figure 8. Partial state graph of 2x2-cell OWR-
RBB ACM including hidden actions

for a human to manage the complexity of specifying the be-
havior of the processes through a state graph.

4. Deriving the state graph specification

One of the purposes of our work is to provide the de-
signer of asynchronous systems with an automatic proce-
dure to generate the state graph specification, that satis-
fies the interleaving properties presented in Section 3, of an
ACM given the function that should be implemented by the
ACM and its size. The designer should not need to manage
the complexity of specifying how blocking of data access
(read or write) is avoided and how data coherence is guar-
anteed during the execution of the system.

4.1. Supported ACM function types

The generated state graph specification should preserve
some properties that are inherent to the function imple-
mented by an ACM. At the moment we are able to generate
three different types of ACM functions:

1. RRBB: rereading is allowed but not overwriting.

2. OWBB: overwriting is allowed but not rereading

3. OWRRBB: overwriting and rereading are allowed

We classified the ACMs according to whether overwrit-
ing and rereading are permitted [14]. For rereading, it is
much more natural to reread the item read in the previous
cycle rather than reread an item read several cycles before.
On the other hand, overwriting might happen anywhere in
the buffer. However, the strongest practical cases have been
proposed for overwriting either the newest or the oldest item
in the buffer [8, 12, 3]. Overwriting the newest item in the
buffer, which is is a relatively straightforward task to ap-
proximate [12], attempts to provide the reader with the best

continuity of data items for its next read, data item conti-
nuity being one of the primary reasons for having a buffer
of significant size. Overwriting the oldest item is based on
the assumption that newer data is always more relevant than
older, which is true for many types of applications. Here
we attempt to tackle the much more interesting problem of
overwriting the oldest item in the buffer, to which the reader
will naturally be pointed next.

Therefore, as stated in Section 3, allowing overwriting
necessitates two slots per cell, whilst not allowing it needs
only one slot per cell.

4.2. The synthesis procedure

The important part in the synthesis procedure is how to
calculate the successors of a given state. Depending on the
function implemented by the ACM, a different number of
variables is necessary to distinguish between the states of
the generated graph. For example, in the RRBB type there
is no need to know the slot number that a process will access
since there is only one slot per cell. On the other hand,
in types that allow overwriting it is necessary to have this
information. Here we will explain in detail how to calculate
a new state for the RRBB type. The same scheme is used in
the OWBB and OWRRBB policies, but with extra variables.

Here is a formal definition of an ACM state graph speci-
fication.

Definition 1 (ACM State Graph Specification) A state
graph specification for an ACM is a transition system
(S, T, s0) such that:

1. S is the set of states of the ACM;

2. T ⊆ (S × S) is the transition relation. We will use
s −→ s′ to denote that (s, s′) ∈ T .;

3. s0 is the initial state.

We say that a state sn is reachable from s0 if
sn = s0 or there exists a sequence of actions
(s0, s1)(s1, s2) · · · (sn−1, sn) such that for all 0 < m ≤
n, (sm−1, sm) ∈ T and n > 0, i.e. there exists a sequence
of actions that drives from s0 to sn.

For an ACM that permits only rereading, each state of
the ACM is defined in terms of the values of the variables
that controls which cell each process will access, or is ac-
cessing, data. Since we are taking into account that a pro-
cess may be ready to access or accessing data in a cell i it is
necessary to distinguish between these two internal states of
the process. So, a state in the ACM will be determined by
four variables, two that denote the cell that the processes are
pointing to and two that specify if a process is accessing the
buffer or ready to access it. Definition 2 formally presents
this concept.

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05) 
1550-4808/05 $ 20.00 IEEE



Definition 2 (State) A state s of a RRBB ACM is a vector
[i, j, k, l], with i, j ∈ N and k, l = 0, 1, where:

1. i determines the cell number the writer is pointing to;

2. j determines the cell number the reader is pointing to;

3. k determines if the writer is ready to access (k = 1)
data in the buffer or is accessing (k = 0) the buffer;

4. l determines if the reader is ready to access (l = 1)
data in the buffer or is accessing (l = 0) the buffer.

sijkl will be used as a label to state s when we desire to
show the status of the variables of s explicitly. For exam-
ple, if a state has the label s0110 it means that the writer
process is ready to access cell number 0, and next action of
the writer is to write data in the cell. And the reader is ac-
cessing data in cell 1 and will next carry out a hidden action.

The transition relation is determined by a set of rules
that, when correctly applied, will “control” the behavior
of the ACM in a way that the resulting behavior will corre-
sponds to some specific function type. Definition 3 captures
the formal concepts of the transition rules for RRBB ACMs.
We use a ⊕ 1 do denote (a + 1) mod n.

Definition 3 (Transition rules for RRBB ACMs) A tran-
sition t is a valid RRBB ACM transition if one of the fol-
lowing applies:

1. If sijkl −→ si′jk′l then:

(a) k = 1 ⇒ i′ = i ∧ k′ = 0

(b) k = 0 ∧ j �= i ⊕ 1 ⇒ i′ = i ⊕ 1 ∧ k′ = 1

(c) k = 0 ∧ j = i ⊕ 1, then the transition cannot
be executed, and the writer waits until the reader
advances to another cell.

2. If sijkl −→ sij′kl′ then:

(a) l = 1 ⇒ j′ = j ∧ l′ = 0

(b) l = 0 ∧ i �= j ⊕ 1 ⇒ j′ = j ⊕ 1 ∧ l′ = 1

(c) l = 0 ∧ i = j ⊕ 1 ⇒ j′ = j ∧ l′ = 1

where n is the number of cells in the ACM.

Condition 1(a) tells us that if the writer process is ready
to access (k = 1) the memory cell i, then the next action
will be to write data in the cell. On the other hand, condi-
tion 1(b) says that if the next action of the writer is a hidden
action λ (i.e. the process is writing data in the buffer, or has
finished doing it) and the reader is not pointing to the next
cell, then the writer will point to the next cell with λ. If
none of these conditions is valid, then the writer could not
execute and it will block until the reader executes.

In a similar way, condition 2(a) tells that if the reader
is ready to perform data access (l = 1) on cell j, then the
next action is a read from the cell. Condition 2(b) tells that
if the reader is going to carry out its hidden action µ and
the writer is not pointing to the next memory cell, then the
reader will point to such a cell with µ. And finally, condi-
tion 2(c) says that if the reader is going to update its control
variable and the writer is pointing to the next memory cell,
then the reader will prepare to reread the data in cell j.

For function types that allow overwriting it is necessary
to have four extra variables to identify the states. Two to
identify the data slot to be accessed by a process, and two
to specify the index (cell,slot) of the last slot in the pair
accessed by the writer. The rules are more complicated, but
the principles behind them are the same.

In Figure 9 we show part of the state graph generated for
a 3-cell RRBB ACM using our new algorithmic method.
The entire state graph is isomorphic to the one in Figure 7.
The initial state is labelled with 2010 (writer ready to access
the data slot, reader ready to perform a silent action).

µ0
1

µ0
1

µ1
1

µ1
1

wr2

wr2

wr2

rd
1

rd
1

λ20

λ20

rd
1

wr0

rd
1

wr0

µ1
2

µ1
2

µ2
2

wr0

rd
2

rd
2

µ2
2

wr0 λ01

λ01

2010 2000

2111

2110 2100

2101 0111

0110

0211

0210

0101

0100

0200

0201

Figure 9. Generated state graph of 3-cell
RRBB

The generation of the successors of the initial state is
done by applying the rules 1(a) (state 2000) and 2(b) (state
2111). The next step is to generate the successors of such
states. Since, in state 2000, the execution of the writer sat-
isfies neither 1(a) or 1(b) the writer cannot be executed, and
the execution of the reader reaches state 2101 by applying
rule 2(b). The application of rules 1(a) and 2(a) in state
2111 leads to states 2101 and 2110. The execution of the
steps above for all states will generate the entire state graph
of the ACM.

Using the guidelines above we implemented a tool,
called Jabuti, that can generate a state graph specification
for RRBB, OWBB and OWRRBB ACMs that satisfies the
interleaving specification defined in Section 3.

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05) 
1550-4808/05 $ 20.00 IEEE



5. Petri nets synthesis methodology

We approach here the problem of synthesis of asyn-
chronous communication algorithms as a problem of syn-
thesizing a Petri net of a certain class. This class represents
the nets that are built as a composition of process nets com-
municating via specially designated places, called commu-
nication places, according to the requirements of unidirec-
tional control variables outlined in Section 2. Our method
for the synthesis of communications in Petri nets is based on
a more general procedure of synthesizing Petri nets, which
uses the theory of regions [7].

The objective of Petri net synthesis is to obtain a Petri net
in which transitions are named by the labels of the arcs in
the state graph specification, and whose reachability graph
is equivalent to the state graph (different forms of equiv-
alence, such as isomorphism and bisimilarity, have been
studied, e.g., in [2]).

Informally, such synthesis is a decomposition, or distri-
bution, of global states of the state graph into local states of
the system that can be associated with places in the Petri net.
More formally, synthesis is based on the concept of regions
in transition systems, originating from [7], and regions have
one-to-one correspondence to places in the synthesized net.

5.1. Regions

A region is a subset of states in which all arcs labelled
with the same event e have exactly the same exit/entry rela-
tionship. We say that a subset of states r is entered by event
e if for every arc labelled with e the source state does not
belong to r while the destination state is in r.

Similarly, r is exited by e if for every e-labelled arc the
source state is in r but the destination state is outside. In
the remaining cases, e is said to be non-crossing, by being
either external or internal event for r. Thus to become a
region a subset r must satisfy exactly one of three cases for
every event:

(1) enter; (2) exit; (3) non-cross. In relation to a partic-
ular event e a region r is called a pre-region (post-region,
co-region) of e if r is exited by (entered by, internal for) e.

For example, the set of states r = {s1, s2} in Fig-
ure 10(a) is a region, with event a entering r, c exiting
r and {b, d, e} not crossing r. However, the set of states
r′ = {s0, s1} is not a region, since events b and c have arcs
exiting the region and arcs not crossing the region.

It is known from [2] that, in order to generate a 1-safe
Petri net (a net in which places never get more than one to-
ken in every reachable marking) whose reachability graph
is isomorphic to a given state graph, the state graph must
satisfy the important properties of state and state-event sep-
aration.

p0

p13

p24

p12

p34

s1

s2 s3

s4

s0

(a) (b)

a

db c

e

a

b

b

c

c

de

Figure 10. (a) State graph and (b) Petri net.

Informally, the state separation property requires that for
any two different states there exists a region which contains
one of the states and does not contain the other. The state-
event separation property requires that, for every state s and
every event e, if the sets of pre-regions and co-regions of
e are included in the set of regions such that each of them
contains s, then e must be enabled in s (i.e. there must be
an arc leading from s labelled with e).

The basic procedure to produce a 1-safe Petri net from a
state graph satisfying the above properties is as follows:
1. For each event label e in the state graph a transition
named e is created in the Petri net.
2. For each region r a place named r is generated.
3. Place r is connected with a transition e by an arc going
from the place (transition) to the transition (place) if region
r is pre-region (post-region) for e. Place r is connected to e
by a bi-directional arc (self-loop) if region r is a co-region
for e.
4.Place r contains a token in the initial marking iff the
corresponding region r contains the initial state of the state
graph.

This (canonical) procedure, if applied, would generate
the so-called saturated net [2], since all regions are mapped
into corresponding places. A saturated net may have a lot
of redundancy, in the sense that some of its places may be
removed without disturbing the isomorphism between orig-
inal state graph and the reachability graph of the synthe-
sized net. Different criteria can be applied when building a
minimal Petri net (in terms of the net size). For example,
the criterion to guarantee the state and state-event separa-
tion properties, and use only the minimum number of re-
gions is implemented in the Petrify tool [2]. The resulting
Petri net reflects the notion of concurrent operation between
events forming commutative diamonds in the interleaving
(i.e. state graph) form.

Figure 10(b) depicts a Petri net obtained from the syn-
thesis of the state graph in Fig. 10(a). The subindices of
the places denote the states included in the region repre-
sented by the place (e.g. p13 = {s1, s3}). Note that not
all regions are used for the synthesis. the set of states

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05) 
1550-4808/05 $ 20.00 IEEE



p1234 = {s1, s2, s3, s4} is also a region, but it would be
redundant if added to the Petri net.

5.2. Synthesis for ACMs

Nets obtained by the aforementioned synthesis methods
do not necessarily satisfy the intuitive requirement of the
system composed of processes interacting via unidirectional
variables, or in other words interacting by reading some of
each other’s local states.

p0

p1 p2

x1
x2

y1

y2 p1 p2
p02 p01

x1

x2

y1

y2

s0

s1 s2

x1

x2

y1

y2

(a) (b) (c)

Figure 11. (a) State graph, (b) Petri net, (c)Petri
net with ACM-regions.

For the example of the state graph of the RRBB ACM,
our goal is to obtain a Petri net that consists of two sub-nets,
one containing events that are labelled with wr and λij and
the other with events labelled with rd and µkl.

The problem for ACM synthesis can be stated as follows:
given a state graph in which each event is associated to a
process, derive a Petri net that is the composition of a set of
subnets, each one representing a process, in such a way that
each place is only modified by one of the processes.

This formulation requires the association of each place to
a process. Other processes can only interact with the place
via read arcs.

The constraints imposed by ACMs can be illustrated by
the example depicted in Fig. 11. Figure 11(b) shows the
Petri net obtained from the synthesis of the state graph in
Fig. 11(a). The state graph has events from two processes,
x (events x1 and x2) and y (events y1 and y2). Note that
each place corresponds to one state.

Unfortunately, the net in Fig. 11(b) does not fulfil the re-
quirements for an ACM, since place p0 cannot be associated
to any process (it can be either modified by processes x or
y). By using a different set of regions, the net in Fig. 11(c)
can be obtained. In this net, places p1 and p02 belong to
process x, whereas places p2 and p01 belong to process y.
Note that the communication is produced via the read arcs
p01 ↔ x1 and p02 ↔ y1.

Therefore, the synthesis of ACMs can be performed by
using a restricted version of region called ACM-region. A
set of states r is an ACM-region if
(1) r is a region, and
(2) if e1 and e2 are two events that cross r, then e1 and e2

must belong to the same process.

Thus, the synthesis method for ACMs can be imple-
mented as a slight variation of the method presented in [2],
using ACM-regions instead of regions. Petrify was modi-
fied to include this technique.

6. Case studies

This section shows two examples of the application of
the methodology described in the previous sections, starting
from the initial specification until the generation of the Petri
net modelling the behavior of each process.

The first step is done by the designer of the system, and
consists in the specification of the behavior of the processes
composing the system. As we state before, we want to pro-
vide the designer with the possibility of not making much
effort on it. So, instead of specifying the complex compo-
sition of the writer and reader processes, the designer only
needs to specify the size and the function type implemented
by the ACM. The second step corresponds to the synthesis
of the state graph specification, and the third step to the gen-
eration of the Petri net from such a state graph. The last two
steps are performed automatically.

6.1. 3-cell RRBB

To generate the 3 cell RRBB ACM described in Sec-
tion 3, it is only necessary to provide a textual input like:

channel ACM 3 message;

In the example above, the channel declaration on the first
line specifies a name (ACM), a capacity (3 memory cells)
and a type (message meaning RRBB) for the channel that
will be used to connect the two processes. The designer is
not troubled with deciding such details as how many slots a
cell should have, which is determined by the ACM type.

The next step is to transform this specification to a state
graph that satisfies the interleaving defined in Section 3, us-
ing Jabuti. The resulting specification, which is isomorphic
to the state graph of Figure 7, can be processed using the
techniques described in Section 5 to obtain a Petri net model
that captures the behavior of the reader and writer processes.

Figures 7 and 12 indicate that the silent actions of the
writer and reader depend on each other. For instance,
whether the next reader silent action will be µ11 or µ12 de-
pends on if λ20 has completed, and whether λ20 may start
(or the writer must wait) depends on if µ11 has completed.
This means that these silent actions set uni-directional con-
trol variables for the other sides silent actions to read. The
simplest set of uni-directional control variables included in

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05) 
1550-4808/05 $ 20.00 IEEE



wr2
p5

p10 p6

wr0 p9

p2 p11

wr1 p1

p12
p0

p7

λ12

λ01

λ20

w=2

w=0

w=1

(a) Writer process

µ01

µ12

µ20p1

p9

p5

p6

p11

p0
rd0

p4

rd2

p8

rd1

p3

µ00

µ22

µ11r=1

r=2

r=0

(b) Reader process

Figure 12. Petri net model for a 3-cell RRBB

the µ and λ actions consists of one writer index variable w
and one reader index variable r.

Figure 12(a) and 12(b) shows the Petri nets generated
by Petrify, with the result from Jabuti as the input, for the
writer and reader processes respectively. The places with
the same label are the same. A token in p5 means w = 2, in
the same way a token in p6 means r = 1.

In the initial state the writer is ready to write on cell 2
(transition wr2 is enabled), and the reader is ready to update
the value of its control variable from 0 to 1.

The writer presents a sequential behavior, i.e. it enters
into a loop writing data into the cells (alternating this with a
silent action) 2, 0 and 1 successively. If the reader is access-
ing, or will next access, the next cell the writer is preparing
to access, then the writer will wait until it can perform the
silent action without running the risk of compromising data
coherence.

The reader will also enter into a loop and read data from
cells 1, 2 and 0. But instead of waiting to preserve data
coherence, it will execute one of the transitions µ00, µ11 or
µ22, depending on the cell it read before, thus preparing to
reread.

Both choices, between two possible µ actions and be-
tween a λ action and writer waiting, are determined by how
the current values of w and r compare with each other. For
instance, if w is set to the current value of r, writer must
wait until reader has changed r before proceeding. Follow-
ing this line of reasoning, an algorithm for the RRBB ACM
may be derived (see Table 2). The control variables w and
r are initialized with values 2 and 0 respectively [10].

6.2. 4-cell OWBB

The advantage of our method is clearer when trying to
specify an ACM of bigger size and a more complex function

Writer Reader

write cell w; if (r + 1 mod 3) �= w then
w := (w + 1 mod 3); r := (r + 1 mod 3);
wait until r �= w; read cell r;

Table 2. 3-cell RRBB ACM algorithm

type. For example, to specify manually a state graph of a
4-cell OWBB ACM (only overwriting is allowed and the
reader and writer always access the memory cell containing
the oldest item in the ACM) is difficult due to the size of the
state graph.

Figure 13 presents part of the generated state graph for
a 4-cell RRBB ACM, with the initial state in node 0. The
entire graph has 928 states and 1824 arcs, and it is too big
to be shown here.

As in Figure 8 the overwriting cycles can be identified,
e.g. w00 −→ λ3001 −→ w01 −→ λ0111 −→ w11 −→
λ1121 −→ w21 −→ λ2130. Depending on where the
writer is, the reader may advance to the next cell, continue
advancing until it reaches the correct cell or wait until there
is new data in the ACM. Thus, the execution of a silent ac-
tion by the reader branches off to different parts of the state
graph that follow the same pattern. Each pair of black dots
linked by a dashed arc represents the beginning of one of
these branches. Note that the occurrence of the same action,
e.g. µ3101, branches to different subgraphs. It happens be-
cause it is necessary to avoid the reader and writer accessing
the same cell and slot pair.

Again, the resulting state graph can be used to synthe-
size two Petri nets that specify the behavior of the reader
and writer processes. Unfortunately, these are two big to be
included here.

7. Conclusions and future work

We have automated two key steps in ACM synthesis.
These are the deriving of an interleaving state graph speci-
fication given a functional specification, and the generation
of an ACM Petri net model in the form of independent state
machines using unidirectional shared variables. Previously,
these steps were the most tedious and time-consuming tasks
in the manual synthesis process and although suggested to
be “automatable” because of their systematic and step-by-
step nature, never shown to be so conclusively. We have
applied this method to a number of “standard” ACM types
for writing and reading multi-cell buffers. A library of Petri
net models of such buffers can be targeted to subsequent
hardware or software implementations.

We believe our results may have implications outside the
immediate area of ACMs. The modified Petrify, for in-
stance, may be useful in dealing with any systems involv-

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05) 
1550-4808/05 $ 20.00 IEEE



0 1
w01 w11 λ1121 w21

r3
1

λ2130 w30 λ3001 w01 λ0111 w11 λ1121 w21

µ3
13

0

µ3
12

1

µ3
11

1

µ3
10

1w01 w11

λ2130

λ2131

r0
1

w31 λ3100 w00 λ0011 w11 λ1121 w21 λ2131 w31
λ3100

µ3
10

1

µ0
11

1 µ0
11

1

µ0
12

1

µ0
13

1

µ0
10

0

λ3001 w01 λ0110

r1
1

µ1
12

1

µ2
13

1

w11

w11

r3
1

r3
1

r3
1

r3
1

r3
1

r3
1

r0
1

r0
1

r0
1

r0
1

r0
1

r0
1

µ3
10

1

µ3
10

1

µ3
10

1 µ3
10

1

µ3
11

1

µ0
11

1

µ0
11

1 µ0
11

1

µ0
11

1

λ1121

λ1121

λ1121

w21

w21

w21

w21

w21

λ2131

λ2131

λ2131

λ2130

µ2
13

1

µ2
13

1

µ2
13

1

λ0111

λ0111

w30 λ3001 w01 λ0111 w11

w31

w31

r1
1

r1
1

r1
1

r1
1

r1
1

µ1
12

1

µ1
12

1

µ1
12

1w31

λ3100

λ3001

w00

w01 λ0110

λ0011

λ1121 w21

µ3
12

1

µ3
13

0

r3
1

λ2130

λ3100

µ0
10

0

µ0
13

1

µ0
12

1w11 λ1121 w21 λ2131 w31

r01 r01 r01 r01 r01 r01

r0
1

r31 r31 r31 r31 r31 r31

Figure 13. A 4-cell OWBB ACM specification

ing independent processes communicating with each other
through unidirectional shared variables. Because using such
variables maximizes asynchrony among processes this may
be significant in future VLSI systems, in particular globally
asynchronous locally synchronous (GALS) systems.

Our next task is the automatic derivation of ACM algo-
rithms (in both software and HDL forms) from the ACM
Petri net implementations obtained from the current pro-
cess. With that, a completely automated ACM synthesis
flow will become available for system designers who are
not necessarily familiar with the internal details of ACMs.

Acknowledgements. This work is part of the Coher-
ent project (http://async.org.uk/coherent) and supported by
grants EPSRC GR/R32666 at the Newcastle University
and CICYT TIN2004-07925 at the Technical University of
Catalunya. The authors benefited from extensive discus-
sions with I.G. Clark, H. Simpson and E. Campbell and
wish to express our gratitude.

References

[1] ITRS: http://public.itrs.net/files/2003itrs/home2003.htm.
[2] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev.

Deriving Petri nets from finite transition systems. IEEE
Transactions on Computers, 47(8):859–882, Aug. 1998.

[3] J.-P. Fassino. THINK: vers une architecture de systèmes
flexibles. PhD thesis, Ecole Nationale Supérieure des
Télécommunications, Dec. 2001.

[4] C. K. IV, V. Ekanayake, and R. Manohar. Snap: A sensor-
network asynchronous processor. In Proceedings of the 9th
International Symposium on Asynchronous Circuits and Sys-
tems, page 24. IEEE Computer Society, 2003.

[5] G. Jones and M. Goldsmith. Programming in occam 2. Pren-
tice Hall International, 1988.

[6] L. Lamport. On interprocess communication — parts I and
II. Distributed Computing, 1(2):77–101, 1986.

[7] M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Elemen-
tary transition systems. In Selected papers of the Second
Workshop on Concurrency and compositionality, pages 3–
33. Elsevier Science Publishers Ltd., 1992.

[8] H. R. Simpson. Protocols for process interaction.
IEE Proceedings on Computers and Digital Techniques,
150(3):157–182, May 2003.

[9] F. Xia and I. Clark. Algorithms for signal and message
asynchronous communication mechanisms and their analy-
sis. In Proceedings of the 2nd International Conference on
Applications of Concurrency to System Design, pages 65–
74, Newcastle upon Tyne (UK), June 2001. IEEE Computer
Society.

[10] F. Xia, F. Hao, I. Clark, A. Yakovlev, and G. Chester.
Buffered asynchronous communication mechanisms. In
Proceedings of the Fourth International Conference on Ap-
plication of Concurrency to System Design (ACSD’04),
pages 36–44. IEEE Computer Society, 2004.

[11] F. Xia, A. Yakovlev, I. G. Clark, and D. Shang. Data commu-
nication in systems with heterogeneous timing. IEEE Micro,
22(6):58–69, 2002.

[12] A. Yakovlev, D. Kinniment, F. Xia, and A. Koelmans. A
fifo buffer with non-blocking interface. TCVLSI Technical
Bulletin, pages 11–14, Fall 1998.

[13] A. Yakovlev and F. Xia. Towards synthesis of asynchronous
communication algorithms. In B. Caillaud, P. Darondean,
L. Lavagno, and X. Xie, editors, Synthesis and Control
of Discrete Event Systems. Part I: Decentralized Systems
& Control, pages 53–75. Kluwer Academic Publishers,
Boston, Jan. 2002.

[14] A. Yakovlev, F. Xia, and D. Shang. Synthesis and imple-
mentation of a signal-type asynchronous data communica-
tion mechanism. In ASYNC ’01: Proceedings of the 7th In-
ternational Symposium on Asynchronous Circuits and Sys-
tems, page 127. IEEE Computer Society, 2001.

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05) 
1550-4808/05 $ 20.00 IEEE


