

iii

Signatures

iv

To all my family.

vi

ACKNOWLEDGEMENTS

First of all, I would like to stress that this work would not have been possible without

my teacher and now advisor, Professor Jordi Cortadella. Although a fearless and

full-time devoted leader to the design of asynchronous circuits, he has always been

available for help, always putting me on the right track, always seeing the bright

side of my problems.

I would like to thank Enric Pastor, Ferm��n S�anchez, Oriol Roig, Marco A. Pe~na

and Gianluca Cornetta, all members of the CAD-VLSI group where I have been

working these last years, for their help and support. I would like to thank also my

colleagues at the Computer Architecture Department.

Special thanks to Rosa M. Bad��a and Tom�as Lang, who have reviewed some parts of

this work, and to Joan Figueras. Their technical discussions and suggestions have

de�nitely improved the quality of this work. To all of them, my sincere thanks.

This work has been supported in part by the Ministerio de Educaci�on y Ciencia

of Spain under contracts CYCIT TIC94-0531-E and TIC95-0419. My bank ac-

count is de�nitely indebted to the Departament d'Ensenyament de la Generalitat

de Catalunya for their help �nancing my doctorate and recognizes the Amics de

Gaspar de Portol�a association for providing the funds to present part of this work

in a conference in California.

I would like to acknowledge the secretary sta� of the Computer Architecture Depart-

ment for coping so well with the administrative paperwork. My sincere thanks also

to the systems group people, who have perfectly managed the advanced computing

resources provided by the Computer Architecture Department.

During the last years, this work has absorbed all my time, even the so-called free

time. I would like to thank the people who have tried, most of the times unsuccess-

fully, to put for a while my eyes out of the books and my hands out of the keyboard.

Special thanks to my best friends and the UPC Rowing team for this work.

Last, but not least, thanks to my parents, Pilar and Pere, and my brother Ramon,

for their unconditional patience and support. Thank you all.

vii

viii High-level and logic synthesis techniques for low power

CONTENTS

ACKNOWLEDGEMENTS vii

LIST OF FIGURES ix

LIST OF TABLES xiii

1 INTRODUCTION 1

1.1 Why low-power design techniques? 2

1.1.1 Reliability 2

1.1.2 Chip package 2

1.1.3 Batteries 2

1.2 Applications 4

1.3 Low-power design approach 5

1.3.1 Overall power reduction 6

1.4 Research objectives 7

1.5 Overview 8

2 STATE-OF-THE-ART IN LOW-POWER DESIGN 9

2.1 Power-consumption sources 10

2.1.1 Static dissipation 10

2.1.2 Dynamic dissipation 11

2.1.3 De�ning power consumption 13

2.2 System layer 14

2.2.1 System shutdown 14

2.2.2 System partitioning 15

2.2.3 Algorithm selection 15

2.3 Architecture layer 16

2.3.1 Parallel and pipelined processing 17

2.3.2 Compiler transformations 20

v

vi High-level and logic synthesis techniques for low power

2.3.3 Cache design 22

2.3.4 Data representation 22

2.4 Logic layer 24

2.4.1 Combinational circuits 24

2.4.2 Sequential circuits 29

2.5 Circuit layer 33

2.5.1 Logic style 33

2.5.2 Synchronous vs. asynchronous design 35

2.5.3 Design style 37

2.5.4 Adiabatic computing 38

2.6 Layout layer 39

2.7 Technology layer 41

2.7.1 Technology scaling and SOI process 41

2.7.2 Packaging technology 42

2.8 Low-power techniques summary 42

2.9 Conclusions 43

3 HIGH-LEVEL SYNTHESIS TECHNIQUES FOR LOW

POWER 45

3.1 Introduction 46

3.2 Previous work 47

3.2.1 Estimating power consumption 48

3.2.2 Reducing power consumption 49

3.3 Power-consumption model of functional units 51

3.4 Register-transfer level techniques for low power 55

3.4.1 Loop interchange 56

3.4.2 Operand reordering 61

3.4.3 Operand sharing 66

3.4.4 Operand retaining 70

3.4.5 Operand similarity 72

3.4.6 Summary of targeted circuit domains 75

3.5 Scheduling and register binding for low power 76

3.5.1 High-level synthesis 76

3.6 Previous work on high-level synthesis for low power 78

3.6.1 Overview 80

Contents vii

3.6.2 Scheduling for low power 81

3.6.3 Register binding for low power 85

3.7 Conclusions 89

4 ARCHITECTURAL TECHNIQUE FOR LOW POWER 91

4.1 Introduction 92

4.2 Parallel multipliers 93

4.3 Previous Work 94

4.4 Potential power reduction in array multipliers 95

4.5 Transition-Retaining Barriers 98

4.6 Implementation of the TRB 100

4.7 Results 102

4.8 Conclusions 104

5 LOGIC/CIRCUIT TECHNIQUE FOR LOW POWER 107

5.1 Introduction 108

5.1.1 Motivation examples 108

5.2 Previous work and overview 112

5.2.1 Overview of our approach 113

5.3 Power consumption of CMOS gates 115

5.3.1 De�nitions and overview 115

5.3.2 Transition density 116

5.3.3 Extended power-consumption model 116

5.4 Power-optimization algorithm 121

5.4.1 Algorithm overview 122

5.4.2 Monotonic characteristic 122

5.4.3 Equilibrium probabilities 123

5.4.4 Exhaustive exploration of gate con�gurations 123

5.5 Results 126

5.5.1 Scenarios for the experiments 126

5.5.2 Discussion 127

5.6 Conclusions 128

6 CONCLUSIONS AND FUTURE RESEARCH 131

6.1 Introduction 132

6.2 Contributions 133

viii High-level and logic synthesis techniques for low power

6.2.1 System layer 134

6.2.2 Architecture layer 135

6.2.3 Logic/circuit layer 136

6.3 Future research 138

A CIRCUIT DESIGN AND ANALYSIS TOOLS 141

A.1 Introduction 142

A.2 Ocean 142

A.3 SLS 145

A.4 SIS 146

REFERENCES 149

LIST OF FIGURES

Chapter 1

1.1 State-of-the-art in battery technology ([Pow95]). 3

1.2 Power-consumption trend ([Mat96]). 3

1.3 Di�erent layers in the design
ow of a circuit. 6

1.4 Power breakdown in the ThinkPad notebook ([Ike95]). 7

Chapter 2

2.1 Static CMOS inverter: schematic, transistor and switch representa-

tions. 10

2.2 Short-circuit power dissipation. 11

2.3 (a) Input waveform; (b) charging and (c) discharging the capaci-

tance C

load

. 12

2.4 (a) Data-path circuit at 5V; (b) Parallel and (c) pipelined versions

at 2.9V. ([BCS92]) 17

2.5 Implementing polynomial X

3

+AX

2

+BX+C (a) straightforward

and (b) Horner's scheme. 20

2.6 Substituting one multiplication by one addition. 21

2.7 (a) Unbalanced and (b) balanced data-
ow graph of the addition

of four operands. 21

2.8 Delaying signals to eliminate hazards. 25

2.9 Di�erent subject graphs implementing a 4-input NAND function. 28

2.10 (a) Subject graph; (b) available gates; (c) low-area mapping; (d)

low-power mapping. 28

2.11 (a) FSM example; (b) two di�erent codings with di�erent switching

activity among them ([RP93]). 29

2.12 Sequential circuit (a) before and (b) after re-timing. 30

2.13 Comparator circuit (a) without and (b) with disabled input regis-

ters. 32

ix

x High-level and logic synthesis techniques for low power

2.14 (a) STG and (b) FSM with the registers enabled/disabled by signal

f

a

. 32

2.15 (a) Static and (b) dynamic implementations of the boolean function

Y = (A

1

+A

2

)(B

1

+B

2

). 34

2.16 (a) Original synchronous system; (b) asynchronous system with

adaptive scaling of the supply voltage ([NS94]). 36

2.17 Design time vs. power consumption of some design styles. 37

2.18 Clock tree driving schemes: (a) bu�ers at the clock source and (b)

distributed bu�ers. 40

Chapter 3

3.1 Activity of a 16-bit data stream for di�erent temporal correlations

(data approximated from [LR94a]). 48

3.2 (a) Average activity in a multiplier as a function of the constant

value (data approximated from [CR94]). (b) A parallel and serial

implementations of an adder tree. 49

3.3 Transformations for reducing (a) activity at the address bus and

(a) number of memory references. 50

3.4 (a) Coarse-grained and (b) �ne-grained power-consumption model

for an 8�8-bit Booth multiplier. 52

3.5 (a) Data-
ow graph; (b) and (c) are two possible schedules and

functional-unit bindings. 54

3.6 The input data order in (b.1) leads to a higher operand AHD than

in (b.2). Big arrows indicate the input data. Thin arrows indicate

the AHD between two consecutive input data. 55

3.7 Example of application of the loop-interchange technique. 57

3.8 (a) Motion estimation algorithm and (b) motion-estimation algo-

rithm with two loop interchanges. 58

3.9 Data-path for executing (a) the motion-estimation algorithm and

(b) the matrix-vector product algorithm. 59

3.10 Matrix-vector product algorithm when referencing matrix A (a) by

rows and (b) by columns. 60

3.11 (a) MAC operator for p = 4 and (b) DFG of the 4th-order LMS

adaptive �lter. 62

3.12 Di�erent input-reusing graphs for: (a) the MAC operator and (b)

the symmetric matrix-vector product operator. 65

3.13 (a) DFG of the AR �lter; (b,c) two possible schedule and bindings. 67

List of Figures xi

3.14 (a) Original code and (b) after loop unrolling. 68

3.15 (a) Low-pass image �lter algorithm; (b) DFG of the inner loop of

(a) (without division by nine) and (c) DFG after loop unrolling. 70

3.16 (a) DFG of the 4th-order FIR �lter; (b,c) two possible schedule

and bindings. 74

3.17 DFG of the Di�erential Equation Solver. 75

3.18 High-level synthesis process. 76

3.19 Example of peak-power and average-power optimization during the

scheduling and functional-unit binding tasks; (a) DFG; (b) adder

characteristics; (c-e) di�erent schedules and bindings and (d) re-

sults. 78

3.20 Register binding for low power. 80

3.21 List-scheduling algorithm. 82

3.22 Low-power list-scheduling algorithm. 83

3.23 (a) DFG of the LMS �lter and (b) schedule and FU binding. 86

3.24 Register-binding algorithm for low power. 87

Chapter 4

4.1 (a) Circuit structure with glitching; (b) block C presents more

activity than block A. 92

4.2 5�5-bit array multiplier. 96

4.3 (a) FA and (b) HA structure. 96

4.4 Signal transitions per operation for each basic block in a 16�16-bit

array multiplier. 97

4.5 Useful and total number of signal transitions for an 8�8, 16�16,

32�32 and 64�64-bit array multiplier. 98

4.6 (a) Possible locations for one TRB and (b) transitions per input

vector for di�erent locations of one TRB in a 16�16-bit array. 99

4.7 Signal transitions per input vector in a 16�16-bit array multiplier.

(a) General view of the design with no TRBs and side view with

(b) no TRBs, (c) one TRB and (d) two TRBs. 100

4.8 (a) Comparison between Static CMOS and C

2

MOS and (b) avoid-

ing direct-path currents. 101

4.9 4�4-bit array with two TRBs. The four types of delay-cells (TA-

TD) are shown. 102

4.10 Design of a FA. 102

xii High-level and logic synthesis techniques for low power

4.11 Layout of an 8�8-bit array multiplier in a sea-of-gates design style. 103

Chapter 5

5.1 (a) Four implementations of function y = (a1 + a2) b and (b) rel-

ative power consumption for two di�erent input activity scenarios. 109

5.2 SPICE simulations of con�gurations (A) and (D) in Figure 5.1 for

two di�erent input activity scenarios. 110

5.3 Transistor-reordering technique in a 3-input NAND gate (example

from [SLW95]). 111

5.4 (a) Static CMOS 3-input NAND gate (b) relative power consump-

tion for di�erent input activities (without varying the equilibrium

probabilities of the inputs). 114

5.5 (a) Static CMOS gate representation and (b) algorithm to obtain

function H

n

k

. 117

5.6 Two BDD representations of function f = abc + bd + cd using

di�erent variable order. 120

5.7 Capacitances in a MOS transistor. 121

5.8 Optimization algorithm. 122

5.9 Exhaustive exploration algorithm. 124

5.10 Execution example of the exhaustive exploration algorithm. 125

5.11 A gate (y = a d+ b e+ b c d + a c e) without a series-parallel repre-

sentation. 126

5.12 The two scenarios considered. 127

Chapter 6

Appendix A

A.1 (a) Schematic and (b) gate description of a full adder. 142

A.2 Sea-of-gates layout architecture. 143

A.3 (a) Full-adder netlist description and (b) layout produced by Ocean. 144

A.4 (a) Command �le and (b) graphical output of the SLS simulator. 145

A.5 (a) Library and (b) circuit description in SIS. 147

LIST OF TABLES

Chapter 1

1.1 Power dissipation of high-performance microprocessors ([BE95]). 5

1.2 Power dissipation of high-performance low-power microprocessors

(updated from [BE95]). 5

1.3 Power breakdown for di�erent processors ([Keu94]). 7

Chapter 2

2.1 Switching power in di�erent types of circuits [Tiw94]. 13

2.2 Number of multiplications and additions of the 8�8-matrix DCT

execution for di�erent algorithms [BCS92]. 16

2.3 Normalized area and power for the di�erent architecture designs of

the dat-apath example in Figure 2.4 ([BCS92]) 19

2.4 Two's complement and sign-magnitude representation for the values

�3 to 3 using 8 bits. 23

2.5 Area/delay/power/design simplicity comparison of some logic styles. 33

2.6 Technology scale factors for some parameters. 41

2.7 Power reductions obtained by di�erent techniques. 43

Chapter 3

3.1 Factors of the coarse-grained model. 53

3.2 Two di�erent input reorderings for the 4-input MAC unit. M

j

represent the multiplications of the MAC unit. 63

3.3 Results obtained by applying the operand-sharing technique. 69

3.4 Idle time spent by the functional units. 71

3.5 Features of the targeted circuit domains. 75

3.6 Results obtained with the LPLS algorithm. 85

3.7 Comparison between the traditional resource-binding algorithm (TRB)

and its low-power version (LPRB). 88

xiii

xiv High-level and logic synthesis techniques for low power

Chapter 4

4.1 Comparison between the original design and the new designs with

TRBs. 104

Chapter 5

5.1 SPICE and SLS comparison for the con�gurations in Figure 5.2.

Numbers in parenthesis show the power-consumption ranking. 110

5.2 Number of di�erent con�gurations for some standard gates obtained

by reordering its transistors. 124

5.3 Results obtained for several MCNC benchmarks for both scenarios

considered. 129

Chapter 6

Appendix A

1

INTRODUCTION

Historically, power consumption has not been a priority issue in the semiconductor

industry. Until recently, the two leading parameters that a designer had to take

into account when designing a chip were area and delay.

The area of a circuit has become smaller with the increasing levels of integration

and the performance has improved with higher clock frequencies. By the year 2001,

the frequency and integration density is expected to increase by a factor of 2 and

2.5 respectively with respect to 1995.

One of the consequences of these high levels of integration and performance is the

increase in power consumption. Nowadays, and for certain applications, the power

consumption is a design parameter as important as area or delay. So far the designer

had to �nd the best design in a two-dimensional space (area/delay). Now, there

is a three-dimensional space (area/delay/power) to dive in, with the corresponding

increase in complexity.

This chapter presents a motivation for low-power design and the research objectives

of this work.

1

2 Chapter 1: Introduction

1.1 WHY LOW-POWER DESIGN TECHNIQUES?

Several factors have pushed the concern for low-power as a critical design constraint.

The three most important are: reliability, chip package cost and battery life in

portable systems.

1.1.1 Reliability

The power dissipated by a circuit turns into heat. The excessive heat may cause a

decrease of the circuit's reliability, i.e., failure mechanisms such as silicon intercon-

nect fatigue, package related failure, electrical parameter shift, electro-migration,

junction fatigue, etc. may occur with the generation of on-chip high-temperature. In

fact, every 10

�

C increase in the on-chip temperature doubles the failure's rate [Sma94].

1.1.2 Chip package

The dissipated heat in chips causes a cost increase in packaging. Packages are

characterized by the thermal resistance (in �

�

C per watt), which means that one

watt will raise the temperature by �

�

C. For chips consuming a few watts a plastic

package (40-50

�

C/watt) may be used. For more power hungry chips, a ceramic

package (15-30

�

C/watt) is needed [WE93]. This may increase the overall cost of

the chip in US$ 5-10. Moreover, high-cost packaging might include forced air or

liquid cooling through tiny ducts, increasing even more the cost of the �nal chip.

1.1.3 Batteries

Portable battery-driven applications such as notebook and laptop computers rep-

resent the fastest growing segment of the computer industry and the driving factor

for low-power design concern. In the Figure 1.1 we observe the state-of-the-art in

batteries [Pow95]. For example, Li ion batteries currently present 60 Wh/Kg. Li

ion technology will probably improve a 25% over the next 10 years [War95]. These

improvements can not meet the high increase in power consumption of the circuits

(a factor of four every three years as shown in Figure 1.2).

For example, consider the hypothetical case of a portable application based on a

DEC Alpha processor (30-50 Watts). Using NiCd batteries, we would need roughly

0.6 Kg of batteries per hour of operation. The problem is not solved by using more

powerful batteries (with Li ion technology, we reduce the weight to 0.4 Kg, still too

1.2 Applications 3

0

N
om

in
al

 c
ap

ac
ity

(W
at

t−
ho

ur
/K

g)

125

100

75

50

25

Battery technology

NiCd NiMH Li ion LiPE

Figure 1.1 State-of-the-art in battery technology ([Pow95]).

80 85 90 95 2000
0.01

0.1

1

10

100

1000

Year of publication

P
ow

er
 c

on
su

m
pt

io
n

(W
)

4 times/3 yearvdd=5V
vdd=3.3V

Figure 1.2 Power-consumption trend ([Mat96]).

heavy). The solution relies on applying also design techniques for low power during

the design of the processor.

4 Chapter 1: Introduction

1.2 APPLICATIONS

Low-power design techniques are suitable for portable applications, where the life of

the battery is a primary design constraint, and high-performance computing, where

the power has increased and is increasing at a high pace.

Battery-operated applications

Battery-operated applications clearly bene�t the most from the low-power design

techniques. Examples of these applications may be found in di�erent �elds:

computing: notebook and laptop computers.

personal communications: the current generation of digital cellular phones and

the Personal Digital Assistants (pocked-sized devides with multimedia access

supporting full motion digital video and control via hand-write or speech recog-

nition [CSB90]).

consumer electronics: wrist watches (targeted long ago for low power), digital

TV, pocket calculators.

medicine: hearing aids, implantable cardiac equipments.

military: night visors, surveillance systems.

Many of the above applications, specially those related to personal communications,

demand the same computation capabilities as found in desktop machines since they

execute complex speech and data compression algorithms.

High-performance computing

High-performance systemsmay also bene�t from low-power design techniques. With

large integration density and improved speed of operation, processors dissipating

30 to 50 Watts are emerging.

Table 1.1 shows some high-performance processors with their associated power con-

sumption. We observe that, for example, the DEC Alpha 21064 dissipates 30W.

With the integration level espected by the year 2000, several DEC Alphas may

be integrated in just one chip, but the power dissipated will certainly have to be

reduced.

Therefore, low-power design techniques are needed to implement either new versions

of these processors or completely new designs that consume less. Some examples

1.3 Low-power design approach 5

Processor Clock Technology V

dd

Power Ref.

(MHz) (�m) (V) Peak (W)

Intel Pentium 66 0.80 5.0 16 [Rep93]

DEC Alpha 21064 200 0.75 3.3 30 [ea92]

DEC Alpha 21164 300 0.50 3.3 50 [ea95b]

Power PC 620 133 0.50 3.3 30 [ea95a]

MIPS R10000 200 0.50 3.3 30 [MIP94]

UltraSparc 167 0.45 3.3 30 [ea95a]

Table 1.1 Power dissipation of high-performance microprocessors ([BE95]).

Processor Clock Technology V

dd

Power Ref.

(MHz) (�m) (V) Peak (W)

Power PC 603 80 0.5 3.3 2.2 [ea94a]

IBM 486SLC2 66 0.8 3.3 1.8 [ea94b]

MIPS R4200 80 0.64 3.3 1.8 [YSS

+

94]

ARM 710 33 0.8 5 0.5 [Gwe93a]

AT&T Hobbit 20 0.9 3.3 0.25 [Gwe93b]

Table 1.2 Power dissipation of high-performance low-power microprocessors (up-

dated from [BE95]).

are shown in Table 1.2. For instance, the Power PC 603 is the low-power version

of the Power PC 620. The frequency has been reduced to 80 MHz. This frequency

reduction reduces power by itself, but the great amount of reduction obtained with

the Power PC 603 processor (more than a factor of 10) has been obtained applying

low-power techniques during its design.

1.3 LOW-POWER DESIGN APPROACH

The power dissipated by a circuit may be tackled at all the di�erent layers of the

design process: from the system layer, where the speci�cations of the circuit are

de�ned, till the layout and technology layers (see Figure 1.3).

In general, larger power reductions are obtained in the early layers of the design

process, i.e. in the architecture and system layers. But the low-power techniques

in each layer are orthogonal among them. For example, the power savings obtained

6 Chapter 1: Introduction

SYSTEM

ARCHITECTURE

TECHNOLOGY

LOGIC/CIRCUIT

LAYOUT

Figure 1.3 Di�erent layers in the design
ow of a circuit.

at the logic/circuit layer will add up to those already obtained at the architecture

layer.

Therefore, it is important to �nd low-power techniques at each of the layers of the

design process of a circuit.

1.3.1 Overall power reduction

An application is not only composed of digital circuits. There are other components

that dissipate power. For example, Figure 1.4 shows the power distribution within

the ThinkPad notebook [Ike95]. The processor unit accounts for the 40% of the

total power budget. In a portable communications terminal, the processing units

may account for the 50% of the power [CSB92b].

Moreover, power may be further broken down in the processor unit as shown in

Table 1.3 for some processors. We observe that, for example, the logic power com-

ponent of an average processor is 27%. Assuming that this processor is integrated

in the ThinkPad notebook

1

, the complete elimination on the logic power only draws

an approximate 10% overall power reduction. Therefore, e�orts should be aimed at

1

In fact, it is a Pentium 75.

1.4 Research objectives 7

LCD

VIDEO

CPU

DC−DC
LOSS

HDD

37%

6%

40%

7%

8%

Figure 1.4 Power breakdown in the ThinkPad notebook ([Ike95]).

Processor Logic Clock Memories Interface

DEC Alpha 30% 50% 10% 10%

DEC NVAX 30% 40% 20% 10%

MIPS-X 25% 30% 35% 10%

TORCH 20% 25% 40% 10%

average 27% 36% 27% 10%

Table 1.3 Power breakdown for di�erent processors ([Keu94]).

reducing the power consumption of those components that have the highest impact

on reducing the overall power consumption.

1.4 RESEARCH OBJECTIVES

The goal of this work is to contribute to the actual state of low-power design with

techniques at the higher layers of the design process, namely, the logic/circuit,

architecture and system layers. These techniques will mainly focus on data-path

architectures, such as those used in high-performance, real-time systems in telecom-

munications, speech, video and image processing. A proper power-consumption

model for the system layer will be proposed to evaluate the techniques described.

Some of these techniques will be automated to study the area/delay/power trade-

o�. In these cases, the power savings obtained will be evaluated with existent circuit

simulators.

8 Chapter 1: Introduction

1.5 OVERVIEW

This work is divided into 6 chapters and one appendix. This chapter has presented

an introduction to the growing concern in system design houses related to the power

consumption of integrated circuits.

Chapter 2 brie
y shows the state-of-the-art in low-power design: some of the existing

techniques for low power will be outlined for each layer of the design process. The

goal of this chapter is not to provide a thorough description of these techniques,

but rather to give a
avour of the state-of-the-art in low-power design.

The remainder of the chapters are devoted to the contribution of this work. In

Chapter 3, some techniques for reducing power during the high-level synthesis pro-

cess are presented. These techniques rely on reducing the activity of the circuit,

i.e. reducing the number of transitions at its internal signals. To evaluate the

power savings obtained with these techniques, a proper power-consumption model

is presented for the functional units. In the same chapter, some of the techniques

are automated. The algorithms are presented and the area/delay/power trade-o�

is evaluated.

In Chapter 4, a technique at the architecture layer that reduces the generation and

propagation of the unnecessary activity of the circuit is described. This technique

is specially appropiated for array multiplier circuits. The power reductions for some

of these circuits are evaluated and again the area/delay/power trade-o� is studied.

The e�ect of the transistor-reordering technique in power consumption is studied

in Chapter 5. A power-consumption model for a static CMOS gate that takes

into account its internal capacitances is presented. An optimization algorithm that

�nds the best order of the transistors for each gate of the circuit is described. This

algorithm relies on the power-consumption model of the CMOS gate. The power

reductions obtained with this technique and the increase in delay are evaluated.

Finally, Chapter 6 concludes this work summarizing the main conclusions and in-

dicating future research work in the �eld of low-power design.

In appendix A, the tools used to design and evaluate the circuits in this work are

brie
y reviewed.

2

STATE-OF-THE-ART IN LOW-POWER

DESIGN

This chapter presents an overview of the state-of-the-art in low-power design. The

approach described in the last chapter will be followed: some of the existing tech-

niques for low power will be outlined for each layer of the design process. A more

thorough insight will be given for the logic, circuit, architecture and system layers

since this work focus on these steps of the design process.

Some of the techniques have been classi�ed in di�erent layers by other authors. It is

specially unclear the boundary between system and architecture layers. Clearly, de-

cisions taken at the system layer a�ect the architectural considerations. Moreover,

some authors further split or merge some of the layers. Nevertheless, the classi�-

cation presented in this chapter agrees with the majority of classi�cations done by

other authors.

During optimization for low power, it is necessary to know the power distribution

within a circuit. Therefore, the �rst section of this chapter is devoted to analyze

the power-consumption sources in digital circuits.

Sections 2.2 to 2.7 describe some of the existing techniques for low-power design for

each layer of the design process. Section 2.8 presents a summary of the techniques

described in the previous sections. Section 2.9 states the conclusions of this chapter.

9

10 Chapter 2: State-of-the-art in low-power design

A Y

Vdd

Gnd

C

A Y

load

1 0

NMOS

PMOS

Figure 2.1 Static CMOS inverter: schematic, transistor and switch representa-

tions.

2.1 POWER-CONSUMPTION SOURCES

To minimize the power consumption (measured in Watts) of a CMOS circuit, the

di�erent power components and their e�ect must be identi�ed. The power dissipated

in a CMOS circuit is divided into two components [WE93]:

static dissipation caused by leakage and other static currents.

dynamic dissipation caused by the switching transient current (or short-circuit

current) and the charging and discharging of load capacitances.

To describe these power-consumption sources, a static CMOS inverter will be used

as example. Figure 2.1 shows its schematic, transistor and switch representations.

2.1.1 Static dissipation

CMOS circuits ideally present no static power dissipation because there is no direct

path from power supply to ground. In practice, however, transistors behave as

non-perfect switches, thus allowing the generation of some leakage currents that

compose the static component of CMOS power dissipation.

The static dissipation is divided into two components: the leakage current, caused

by the parasitic diodes, and the static current which is a function of the input

voltage and the threshold voltage of the transistors.

The contribution of the static dissipation is less than 2% of the total power. But this

contribution increases with the scaling of the technology. An important prerequisite

of scaling down the device dimensions is the reduction of power supply because the

2.1 Power-consumption sources 11

0t 1t 2t

1 0 X X 0 1

0t 1t 2t

I sc

Tfall

Figure 2.2 Short-circuit power dissipation.

higher voltage undermine device reliability. Reducing the power supply leads to the

reduction of the threshold voltage of the transistors, implying an increase of the

static dissipation [Mei95].

2.1.2 Dynamic dissipation

This component is caused by the short-circuit current and the current used for

charging and discharging of load capacitances.

Short-circuit power dissipation

Since the transistors do not behave as ideal switches, a short-circuit current arises

when the input changes its value as shown in Figure 2.2. At time t

0

, the input to

the inverter is stable at 1 and the power dissipation (static) is negligible. At time

t

1

, the input is changing its value and, therefore, it takes an unde�ned value (X).

This values causes both transistors to be turned on and, therefore, a current (I

sc

)

is generated from power supply to ground. At time t

2

the input is again stable.

The power consumption produced by current I

sc

depends on the time that both

transistors are on. Therefore, if the input changes slowly, the power increases.

With careful design for balanced input and output rise times this power component

can be kept below 10-15% of the total power [Vee84]. Moreover, this component

highly depends on the circuit type, as will be shown in the next section.

Charging/discharging capacitances

The power component resulting from the charging and discharging of parasitic ca-

pacitances (switching power) in the circuit dominates the total power consumption.

12 Chapter 2: State-of-the-art in low-power design

Tcycle

(a)

0 to 1

I

Cload

char

(b)

1 to 0

I dis Cload

(c)

Figure 2.3 (a) Input waveform; (b) charging and (c) discharging the capacitance

C

load

.

The situation is illustrated in Figure 2.3, where the capacitance C

load

represents all

the di�erent parasitic capacitances.

Let us consider the case of one complete cycle of operation with two transitions

at the input signal (Figure 2.3(a)). When the input signal changes from 1 to 0, a

current (I

char

) is generated and the capacitance C

load

is charged (Figure 2.3(b)). It

can be easily derived that the energy (measured in Joules) delivered by the power

supply is:

E = C

load

V

2

DD

;

where V

DD

is the power supply.

Half of this energy is dissipated through the PMOS transistor as a result of the

ow of current I

char

. The other half is stored in the capacitance C

load

. When the

input signal changes to 1, a current (I

dis

) is generated and the capacitance C

load

is

discharged. The energy stored in C

load

during the previous input transition is now

dissipated through the NMOS transistor; the power supply does not deliver new

energy. Therefore, the average energy of a single output transition is:

E

avg

=

1

2

(C

load

V

2

DD

) :

Assuming that the output of the inverter changes every cycle, the average power

consumption produced by the charge and discharge of parasitic capacitances is:

W =

1

2

(C

load

V

2

DD

f) ;

where f is the operating frequency.

2.1 Power-consumption sources 13

Circuit Switching Total Switching as %

(mA) (mA) of total power

16-bit parallel 13.3 15.3 87%

multiplier

32-bit Manchester adder 3.33 3.92 85%

Floating-point processor 231 307 75%

Signal processor 20.1 27.2 74%

Sense ampli�er portion 12.3 22.6 54%

of static RAM

Micro-controller 7.91 16.9 47%

Static RAM 70.2 201 32%

Dynamic RAM 14.5 76.5 19%

Table 2.1 Switching power in di�erent types of circuits [Tiw94].

Since not always the outputs of the gates switch, the above expression is extended

as:

W

avg

=

1

2

(C

load

V

2

DD

�f) ; (2.1)

where � is the number of times that the capacitance C

load

is charged or discharged.

The product C

load

� is called the switched capacitance.

Again, the contribution of this power component to the total power depends on

the type of the circuit. In Table 2.1 we observe that for data-path circuits (i.e.

multipliers, adders, signal processors, etc.) this component accounts roughly for

the 80% of the total power [Tiw94].

2.1.3 De�ning power consumption

Since this work mainly focus on data-path circuits, the power consumption will be

de�ned by equation 2.1. This equation reveals the three degrees of freedom when

designing for low power (considering a �xed operating frequency): voltage, physical

capacitance and activity.

With its quadratic relationship to power, voltage reduction o�ers the most promising

means for reducing power. Section 2.3 will address the technique of reducing the

power supply to decrease power.

14 Chapter 2: State-of-the-art in low-power design

Reducing physical capacitances can be achieved by using small devices and short

interconnection wires. Sections 2.7 and 2.6 will brie
y address this issue.

But once the supply voltage and the device dimensions have been �xed, it is the

switching activity of the signals of the circuit that will ultimately determine its

power dissipation. Techniques that reduce this activity will be explained in Sec-

tions 2.2 to 2.4. Moreover, this is the degree of freedom targeted by the techniques

presented as contribution of this work.

2.2 SYSTEM LAYER

The least explored layer of the design process is the system layer. Although the

greatest power reductions may be obtained through a proper algorithm selection or

system partitioning, the designer has to trade o� among contradictory parameters,

and their impact is mostly unknown in the early phases of the design process.

The most well-known low-power design strategies at the system layer are: system

shutdown, system partitioning and algorithm selection.

2.2.1 System shutdown

An obvious mechanism for saving power is to implement power management tech-

niques to shut down parts of the system hardware that are idle. An idle part still

consumes power because of the clock line and the meaningless input data, which

generates some activity. Three system-shutdown strategies are divided into non-

predictive and predictive.

Non-predictive shutdown

The non-predictive approaches are based on shutting the system down after the

processor has been idle for a certain time interval. This interval is �xed or set by

the operating system. The system remains in a power-saving mode until an external

event asserting one of the wake-up signals will bring the processor out of that mode

(external interrupts, system management interrupts, reset, etc.). The system may

be partially shut down, thus still performing some operations while in one of the

power-saving modes. As an example, the Power PC 603 implements the following

software-programmable power-saving modes [GIG

+

94]:

doze mode: the cache coherence is maintained.

2.2 System layer 15

nap mode: all logic except the time base/decrementer is disabled. Since cache

coherence cannot be maintained in this mode, a pair of handshake signals enable

the system to ensure that the processor goes into this mode only when cache

coherency will no longer be a problem.

sleep mode: in this mode, the maximumpower savings are obtained. The clocks

to all units are disabled.

Predictive shutdown

The length of the idle time may be predicted based on the computation history,

and the processor is shutdown if the predicted length of idle time justi�es the cost

of shutting down. In [CSB94] a predictive system shutdown has been implemented

for a portable X-terminal device.

2.2.2 System partitioning

System partitioning may be considered at di�erent levels of granularity:

to decide which components of the system will be realized in hardware and

which will be implemented in software (hardware/software co-design). Some

preliminary research has been done in estimating the power consumption of a

software program [TMW94].

to decide which system functions go to which components. In a traditional

system partitioning, the primary design goal is to keep the chip count low. In

a low-power system partition, the new primary design goal of low-power may

favor a di�erent partitioning. Furthermore, the new system requires power

management functions that were not required in earlier systems. An example

is found in [Wol95].

to decide whether the system functions are distributed or not. Distributed

processors, memories and controllers can lead to signi�cant power savings. The

drawback is the increase in area. One example is found in [LR94b], where a

non-distributed and a distributed design of a vector quantizer is implemented

and the power compared.

2.2.3 Algorithm selection

The choice of the algorithm used to implement the application may have a dramatic

impact on the power consumption. The most straightforward decision is to select,

16 Chapter 2: State-of-the-art in low-power design

DCT Algorithm Multiplications Additions

(8�8)

Brute Force 4096 4096

Row-Col. DCT 1024 1024

Chen's Algorithm 256 416

Lee's Algorithm 192 464

Feig's Algorithm 54 462

Table 2.2 Number of multiplications and additions of the 8�8-matrix DCT exe-

cution for di�erent algorithms [BCS92].

from the di�erent algorithms that implement the same function, the one with less

number of operations to be executed. This statement may not be true if the algo-

rithm has di�erent types of operations. Since, for example, multiplications typically

consume much more power than additions, the algorithm with less multiplications

is a candidate.

As an example, consider the Discrete Cosine Transform (DCT) of an 8�8 matrix.

Table 2.2 shows �ve di�erent algorithms that implement the DCT and all of them

present di�erent number of additions and multiplications [BCS92]. Clearly, we will

choose Feig's DCT algorithm since it has the smallest number of multiplications.

Other features that a low-power algorithm should present are:

regularity: to minimize the power in the control hardware and the interconnec-

tion network.

modularity: to exploit data locality through distributed processing units, mem-

ories and control.

few memory references: since references to memories are expensive in terms of

power.

2.3 ARCHITECTURE LAYER

At the architecture layer, four topics will be studied: parallel and pipelined pro-

cessing along with voltage reduction, compiler-related techniques, cache design and

data representation.

2.3 Architecture layer 17

A

B

C

COMPARATOR

1/T

5V

(a)

COMPARATOR

COMPARATOR

1/2T

B

C

A
1/T

1/2T

2.9V

(b)

A

B

C

COMPARATOR

1/T

T T

2.9V

(c)

Figure 2.4 (a) Data-path circuit at 5V; (b) Parallel and (c) pipelined versions

at 2.9V. ([BCS92])

2.3.1 Parallel and pipelined processing

The most well-known technique for reducing power, i.e. decreasing the power sup-

ply, is combined at the architecture layer with parallel and pipelined processing to

overcome the loss of performance produced by the reduced power supply.

The power consumption depends quadratically on the power supply V

DD

(refer

to equation 2.1 in Section 2.1). Therefore, a reduction in V

DD

leads to a signi�-

cant power-consumption reduction. Moreover, reducing V

DD

leads to an increase

18 Chapter 2: State-of-the-art in low-power design

of the delay of the system since the delay is proportional to the capacity being

charged/discharged and inversely proportional to V

DD

=(V

DD

�V

th

)

2

), begin V

th

the

threshold voltage [CB95].

Through parallel and pipelined processing, this loss of performance is overcome.

To illustrate this, the simple data-path circuit of Figure 2.4(a) will be used. This

circuit compares an operand C and the result of an operation between A and B.

The power consumption of this circuit is:

W =

1

2

(C

switched

V

2

DD

f) ;

where f is the operating frequency and C

switched

is the capacitance of the circuit

signals being switched (i.e. the product C

load

and � in equation 2.1).

Let us assume that the V

DD

of this circuit is 5V and that if we reduce it to 2.9V

the delay is doubled.

Parallel processing

In Figure 2.4(b) the circuit is duplicated and powered at 2.9 V, therefore allowing

each part to work at half the original rate. Since there are two units producing a

result at half the original rate, the same throughput is maintained.

The power consumption of the parallel version of the data-path circuit is:

W

par

=

1

2

(2 + �

par

) C

switched

�

2:9

5

V

DD

�

2

0:5 f

!

:

The switched capacitance is at least the double of the original one (since the circuit

has been duplicated) plus some overhead because of the additional logic (shadowed

multiplexer in Figure 2.4(b)). Ideally (i.e. with �

par

= 0), W

par

= 0:34W , therefore

achieving a power reduction of 66%.

Pipelined processing

The same ideal power reduction of 66% can be obtained if the original circuit is

pipelined as shown in Figure 2.4(c). Now, both states can operate at half the

speed, and thus the supply voltage can again be reduced to 2.9V with no loss of

throughput.

The power consumption of the pipelined version is:

2.3 Architecture layer 19

Architecture Voltage Area Power

Original data-path 5V 1 1

Pipelined data-path 2.9V 1.3 0.39

Parallel data-path 2.9V 3.4 0.36

Pipeline-Parallel data-path 2.0V 3.7 0.2

Table 2.3 Normalized area and power for the di�erent architecture designs of the

dat-apath example in Figure 2.4 ([BCS92])

W

pip

=

1

2

(1 + �

pip

) C

switched

�

2:9

5

V

DD

�

2

f

!

:

The operation frequency remains the same and there is an overhead increase in

the switched capacitance because of the additional registers. If �

pip

= 0, then

W

pip

= 0:34W .

Overhead circuitry

The 66% power reduction obtained previously has neglected the overhead circuitry

needed to parallelize or to pipeline the original circuit. In [BCS92] this data-path

example has been implemented and the overhead has been taken into account. The

results are shown in Table 2.3.

In this table we observe that the actual power reductions obtained are 61% and 64%

for the pipelined and parallel versions respectively. Although higher power savings

are obtained with the parallel version, its large area overhead makes the pipelined

approach more appealing. Note, however, that the higher the level of pipelining is,

the higher is the power associated to clock the registers.

Both techniques of pipelining and parallelizing can be used together as shown in

the last row of Table 2.3 to further decrease the power supply and the power con-

sumption.

There is a limit in reducing the power supply. At low V

DD

voltages, the static power

consumption of the circuit becomes important and equation 2.1 is no longer valid

to model the power consumed by the circuit. In Section 2.7 this problem will be

addressed.

20 Chapter 2: State-of-the-art in low-power design

A

B

C

X

X

3

+AX

2

+BX + C

(a)

A B C

X
C +X(B +X(A+X)))

(b)

Figure 2.5 Implementing polynomial X

3

+ AX

2

+ BX + C (a) straightforward

and (b) Horner's scheme.

2.3.2 Compiler transformations

Several well-known compiler techniques used for optimizing area or throughput

may reduce the power of the synthesized circuit. These techniques transform the

data-
ow graph of the application in a manner that the input/output behavior is

preserved.

One straightforward use of these transformations is the following: once the through-

put design constraint has been met, further optimize for throughput. Afterwards,

the power supply can be reduced to trade the over-optimized throughput for power.

The following compiler transformations may reduce power [CPM

+

95]:

operand reduction: for example, using the Horner's scheme to implement polyno-

mials. Two multiplications are eliminated on a third-order polynomial without

increasing the critical path as shown in Figure 2.5.

operation substitution: costly operations in power may be substituted for other

less expensive operations. This is often used in software compilers [ASU86]. The

drawback of this transformation is that it often implies an increase in the critical

path length. An example is shown in Figure 2.6, where a multiplication has been

traded o� in Figure 2.6(b) for an addition at the expense of an additional adder

delay in the critical path.

When speed is not a major issue, a signi�cant reduction in hardware complexity

is achieved by performing multiplications over several clock cycles as a series of

shifts and adds. The average number of shifts and adds per multiplication can

be minimized by rounding precise coe�cients to the nearest canonical signed

digit coe�cients [Sam89].

reducing logic-depth: reducing logic depth leads to a decrease in useless activity

(see Section 2.4.1). An example of this fact is shown in Figure 2.7, where

2.3 Architecture layer 21

Yr

Yi

Xr

Xi

Ar

Ai
Xr

Xi
Ar

(a)

Yr

Yi
Xr

Xi Ar

Xr

Xi

Ai−Ar

Ai+Ar
(b)

Figure 2.6 Substituting one multiplication by one addition.

A B

C

D

(a)

A B C D

(b)

Figure 2.7 (a) Unbalanced and (b) balanced data-
ow graph of the addition of

four operands.

two di�erent implementations of the addition of four operands are shown. All

operands are assumed to arrive at the same time. The implementation in 2.7(a)

presents more activity because of the unbalanced paths: for example, the second

adder �rst computes the unnecessary addition of C and the previous output of

the �rst adder. When the correct value of the �rst adder �nally propagates, the

second adder recomputes the sum. This unnecessary activity is not presented

in Figure 2.7(b).

resource utilization: by distributing more uniformly the operations over the

available time, the scheduling algorithm may reduce the required amount of

hardware (i.e. increases the time-sharing of the resources) while preserving the

number of control steps [PR91]. Reducing the amount of hardware implies less

22 Chapter 2: State-of-the-art in low-power design

useless activity but the amount of interconnection units and control logic may

increase.

2.3.3 Cache design

A cache improves the system performance by reducing memory references. Since

memory references are very power consuming, the existing techniques to reduce the

miss rate and, therefore, increase performance (associativity, bu�ering, sub-array

access, etc.) also reduce power [RP96]. However, some guidelines should be followed

for the design of low-power caches:

power and hit rate increase with the cache size. Therefore, an increase in size

that only obtains a small reduction of the miss rate should be carefully consid-

ered since the power cost may outweigh the power savings obtained with the

lower miss rate.

implement the array part of the cache using a six-transistor SRAM cell design

instead of a four-transistor cell. The latter, although it presents less area,

consumes more static power.

2.3.4 Data representation

The representation chosen for the operands also a�ects the power dissipation since

one representation may inherently present more bit toggles between two consecutive

words.

Arithmetic representation and data encoding are two examples where a proper data

representation for low power may be used.

Arithmetic representation

There are several arithmetic representations for data: two's complement, sign-

magnitude and canonical signed-digit. Among them, two's complement is the most

widespread. In this representation, the most signi�cant bits are sign bits (1 for

negative and 0 for positive). In the sign-magnitude representation, however, only

the most signi�cant bit has the information of the sign. Therefore, if the application

usually has to operate with small values but needs to keep a large bit width for some

operations involving large values, a high activity may arise if the values present a

large number of sign transitions.

2.3 Architecture layer 23

Two's complement Value Sign-magnitude

11111101 �3 10000011

11111110 �2 10000010

11111111 �1 10000001

00000000 0 00000000

00000001 1 00000001

00000010 2 00000010

00000011 3 00000011

Table 2.4 Two's complement and sign-magnitude representation for the values

�3 to 3 using 8 bits.

For example, consider the two's complement and sign-magnitude representation for

the values �3 to 3 using 8 bits as shown in Table 2.4. Any transition from a negative

value to a positive (or vice-versa) implies an average number of 7 bit transitions

when using the two's complement representation, whereas only 2 with the sign-

magnitude representation. The drawback in using sign-magnitude representation is

the additional overhead required to perform the operation since it may depend on

the signs of the operands. This results in a sequence of decisions that have to be

made, implying additional logic and execution time [Kor93].

Data encoding

Data encoding is specially useful for low power when a large capacitance is driven

by these data. This occurs, for example, at the input/output pads (I/O) of the

chip. Typically, the load capacitances of the I/O pads are one to three orders larger

than in the internal circuit.

The Gray encoding is one example of a low-power address encoding. It takes advan-

tage of the sequential memory access, which occur often in a general processor for

executing consecutive instructions in basic blocks. For example, for the sequence

of values from 0 to 16, there are 31 bit switches when the values are encoded in

binary representation while only 16 bit switches when they are represented in Gray

code. For random access patterns, Gray code and binary code have similar number

of bit switches. The main feature of the Gray code is that contiguous Gray-coded

numbers only di�er in one bit [Hay88].

To implement a Gray-code addressing system, the instruction �eld of the target

address in a branch instruction is modi�ed in such a way that the calculated target

24 Chapter 2: State-of-the-art in low-power design

address is the correct target address in Gray-code addressing system. Moreover, a

Gray-code counter is needed for incrementing the program counter [STD94].

2.4 LOGIC LAYER

Several low-power design techniques exist at the logic layer (or gate layer). All the

techniques reviewed in this section aim at reducing the activity of the synthesized

circuit. Again, power is traded o�, in some cases, for area and delay. The techniques

target combinational and sequential circuits.

2.4.1 Combinational circuits

The power consumed by a combinational circuit can be reduced by a proper path

balancing of the signals and during the multi-level logic synthesis and technology

mapping process.

Path balancing and gate sizing

Equation 2.1 in Section 2.1 pointed out that once the supply voltage and the device

dimentions have been �xed, it is the switching activity that will determine the power

consumption of the circuit. The switching activity of a circuit may be divided into:

useful activity: those signal transitions needed to change the gate outputs of

the circuit from the previous cycle (a function of the previous primary inputs)

to the current cycle (a function of the current primary inputs).

useless activity (also called hazard activity): the rest of the circuit activity.

As an example, consider the circuit in Figure 2.8(a). Assume that the critical signal

is B. At time 0, the previous value of the output Y is 1 and at time T is the same.

Since the correct value of Y is at time T , any double transition of Y is considered

to be a hazard.

Hazards are generated because of the di�erent arrival times of the signals to the

inputs of the gates. One of the reasons of this unmatched delay is the di�erent prop-

agation times of the gates (which vary depending on the input) and interconnections

among gates

1

. Moreover, these propagation times vary inside each gate depending

1

At sub-micron design, the metal interconnect contributes most of the net's capacitance. The

narrow interconnect o�ers signi�cant resistance, while the smaller transistors switch faster and

cause much less capacitive loading.

2.4 Logic layer 25

A

B

Y

A

B

Y

0 T

(a)

A

B

Y

A

B

Y

0 T

(b)

Figure 2.8 Delaying signals to eliminate hazards.

on the input. Therefore, the amount of useful activity in a gate-level description

of a circuit can be calculated considering that the gates follow a zero-delay model,

that is, the propagation delays of the gates are 0.

The power dissipated because of hazards strongly depends on the circuit topology

and the applied inputs, but clearly accounts for a signi�cant fraction of the overall

power consumption (15%-20% [BFR94] or even higher (70%) [SGDK92]).

Hazards at the output of a gate can be minimized if all the paths in the circuit feed-

ing that gate have approximately the same delay. This implies that any potential

hazard at its output will be eliminated since the delay of the gate acts as a �lter.

Thus, balancing path delays may cause a reduction of the power consumption. One

method to balance the paths is by gate resizing [LM93], i.e. by replacing some

gates of the circuit with others implementing the same logic function but having

smaller area. A smaller gate takes longer in charging/discharging its output load,

thus delaying its output signal. In the example of Figure 2.8(a), signal A can be

delayed as shown in Figure 2.8(b). Now, signal Y presents no hazards.

Resizing a gate implies resizing its transistors. Since smaller devices present less

capacitance, an e�cient low-power strategy is to use minimumsize devices whenever

26 Chapter 2: State-of-the-art in low-power design

possible. But care has to be taken since smaller gates have larger transition times

at their outputs. A large transition time at the input of a gate a�ects the width of

the short-circuit region (see Section 2.1) of the gate and hence increases the power

consumption [BIO95]. Anyway, along the critical path devices should be sized up

to meet performance constraints.

Multi-level logic synthesis

Traditionally, logic optimization based on identifying logic shared among di�erent

nodes of a circuit has provided an e�cient method for minimizing a cost function

(the area) of a boolean network. The area is estimated by computing the number of

literals in the factored form of the network [BM82]. The same process of logic syn-

thesis can be applied to minimize the power of the network simply by incorporating

the power measure into the cost function [RP93, IP95].

As an example, consider the synthesis of the following boolean functions [RP93]:

f

1

= ad+ bcd+ ae ;

f

2

= a+ bc+ dh+ eh :

Assume that the signal probabilities of all input signals is 0.5 and that the activities,

i.e. the number of transitions per cycle, are:

�

a

= 0:1; �

b

= 0:6; �

c

= 3:6; �

d

= 21:6; �

e

= 129:6; �

h

= 3:6 :

The cost function mentioned above is simply the switched capacitance (C

load

� prod-

uct in equation 2.1 in Section 2.1). Therefore, the number of transitions at each

node of the circuit should be calculated. The transition density measure [Naj91]

will be used for this purpose. This measure will be explained in Chapter 5.

There are several ways to synthesize the boolean functions. For example, a straight-

forward two-level implementation has an area of 11 (5 literals for f

1

plus 6 literals

for f

2

). The power cost obtained with the transition density measure is 503.4. A

possible multi-level implementation is:

f

3

= a+ bc ;

f

1

= f

3

d + ae ;

2.4 Logic layer 27

f

2

= f

3

+ dh+ eh ;

with an area of 11 and a power cost of 476.5. Another multi-level implementation

is:

f

3

= d+ e ;

f

1

= f

3

a+ bcd ;

f

2

= a+ bc+ f

3

h ;

with an area of 12 and a power cost of 423.1. This implementation has more area

but less power.

Technology mapping

Once the logic optimization has been done, the logic functions obtained are trans-

formed into a technology-dependent circuit with minimized power consumption.

The graph-covering-based technology-mapping process can be summarized in the

following three steps [WE93]:

1. the logic equations are converted into a graph (subject graph) where each node

is restricted to one of a set of base functions (e.g. 2-input NAND gates and

inverters).

2. each library gate is also represented by a graph (pattern graph) where each node

is restricted to one of the base functions.

3. �nd a minimum cost covering of the subject graph.

Low-power techniques can be applied in steps 1 and 3 [TAM93, TPD94] during

step 1, a proper subject graph should be found that minimizes the activity at the

outputs of the gates. As an example, consider the subject graph of Figure 2.9(a),

implementing a 4-input NAND function. The input signals are assumed to be

independent. With the probabilities and activities of the input signals shown in

the �gure, the amount of activity at the output nodes is 1.505. The subject graph

in Figure 2.9(b), however, present less activity (2.095) and, therefore, should be

chosen. In this example, the cost function has been considered to be only the

activity. A more accurate cost function may be the switching capacitance.

Further power reductions during the covering step are obtained based on the fact

that internal nodes of a gate have less capacitance than output nodes. Therefore,

28 Chapter 2: State-of-the-art in low-power design

(0.3,0.5)

(0.4,0.5)

(0.7,0.5)
(0.5,0.5)

(0.88,0.35) (0.12,0.35)
(0.916,0.305)

(0.084,0.305)

(0.958,0.195)

A

B
C
D

probability
activity

Total node activity: 1.505

(a)

(0.3,0.5)

(0.4,0.5)

(0.7,0.5)

(0.5,0.5)

(0.88,0.35)

(0.958,0.195)

D

A

B

C

(0.65,0.60)

(0.12,0.35)

(0.35,0.60)

Total node activity: 2.095

(b)

Figure 2.9 Di�erent subject graphs implementing a 4-input NAND function.

High active node

(a)

(b)

High active node

(c)

Hidden active node

(d)

Figure 2.10 (a) Subject graph; (b) available gates; (c) low-area mapping; (d)

low-power mapping.

if a node in the subject graph presents a high activity, it should be hidden as an

internal node of a gate of the targeted library.

2.4 Logic layer 29

S SSS S
1 2 3 4 5

1/0 1/01/01/0

0/0 0/00/0

0/0

0/0
1/1

(a)

State Coding 1 Coding 2

S

1

010 000

S

2

101 100

S

3

000 111

S

4

111 010

S

5

100 011

 = 10
 = 5:5

(b)

Figure 2.11 (a) FSM example; (b) two di�erent codings with di�erent switching

activity among them ([RP93]).

For example, consider the subject graph of Figure 2.10(a) and the available library

gates of Figure 2.10(b). The mapping of Figure 2.10(c) presents less area (12 tran-

sistors in static CMOS), but the high active node still remains as an output node.

The mapping of Figure 2.10(d) presents more area (14 transistors) but the high

active node has been hidden on a gate.

2.4.2 Sequential circuits

The techniques addressed for low-power sequential circuits cover the �nite-state

machine (FSM) state assignment, the circuit re-timing and the disabling of input

registers when not needed.

FSM state assignment

The idea behind the FSM state assignment for low power is to assign similar codes

to states S

i

and S

j

if the probability of state transition between these two states is

high.

The di�erence between two codes is the number of non-equal bits. This measure is

called the Hamming Distance. Therefore, the goal of the FSM state assignment for

low power is to minimize a value
 de�ned as [RP93]:

 =

X

over all edges

p

ij

H(S

i

; S

j

) ;

where H(S

i

; S

j

) is the Hamming Distance between codes S

i

and S

j

and p

ij

is the

conditional state transition probability (the probability that the next state is S

j

given that the FSM is in state S

i

).

The FSM that produces a 1 whenever there is sequence if �ve 1's at its input is

shown in Figure 2.11(a) as an illustrative example. The probability of the input is

30 Chapter 2: State-of-the-art in low-power design

COMBINATIONAL
CIRCUIT

A A’

CA

C
REG

R
E

G

T1 T2

(a)

COMBINATIONAL
CIRCUIT

A

CA

R
E

G

T1 T2+

(b)

Figure 2.12 Sequential circuit (a) before and (b) after re-timing.

assumed to be 0.5. In Table 2.11(b), two di�erent state codings are shown. With

the �rst coding, value
 is 10; with the second coding,
 is reduced to 5.5. Both

codings can be implemented with the same area [RP93].

Re-timing

The re-timing technique [LS83] goal is to move registers across portions of combi-

national logic in order to minimize the cycle time or the number of registers while

maintaining the behavior of the circuit. For example, the sequential circuit in Fig-

ure 2.12(a) can be re-timed to eliminate one register as shown in Figure 2.12(b).

Moreover, the re-timing technique can be applied along with combinational syn-

thesis techniques to optimize the portions of combinational logic between register

boundaries [MSBSV91].

2.4 Logic layer 31

The re-timing technique for low power is based on the fact that the switching

activity at register outputs in a sequential circuit can be signi�cantly less than the

activity at the register inputs because only the last signal transition at the input

of a register may propagate to the output when the register is clocked. A register

may, then, save power specially if its input is very active and its output has a high

load capacitance.

Therefore, once the constraint on performance has been met, the re-timing technique

can be used to decrease power by selecting the set of nodes which, by having a

register placed at their output, lead to the minimization of the switching activity-

capacitance product in the circuit. For example, in the circuit of Figure 2.12(a), the

power consumption associated to signals A and A

0

is proportional to: �

A

C

REG

+

�

A

0

C

A

. Assuming that �

A

0

is signi�cantly lower than �

A

and C

A

is higher than

C

REG

, the power of both nodes A and A

0

is approximated by �

A

0

C

A

. The power

associated to signal A in Figure 2.12(b) is proportional to �

A

C

A

. Since �

A

0

< �

A

,

power is saved by not removing this register during the re-timing process.

A drawback of the re-timing technique is that the critical path of the circuit may

increase. The circuit in Figure 2.12(b) has a critical path of T

1

+ T

2

whereas in

Figure 2.12(a) it is max(T

1

; T

2

).

Disabling input registers

In synchronous circuits some useless power dissipation can be eliminated by dis-

abling the clock in parts of the circuit where useful computation is not being per-

formed. It is the same idea of the system shutdown described in Section 2.2 but at

the logic level.

One approach is to add a redundant logic to disable the registers at some of the

inputs if the operation that the combinational block has to perform does not depend

on those inputs [AMD

+

94]. Therefore, fewer activity is generated in the combina-

tional block, thus saving power, and also some power is reduced in the disabled

registers.

As an example, consider a comparator circuit in Figure 2.13(a) performing the

operation A < B being A and B the n-bit two's complemented operands (<

a

n�1

; : : : ; a

0

>;< b

n�1

; : : : ; b

0

>). Clearly, if a

n�1

= 1 and b

n�1

= 0 (B greater

than A) or vice-versa (A greater than B) the < a

n�2

; : : : ; a

0

> and < b

n�2

; : : : ; b

0

>

bits have no information to calculate the operation A < B. Therefore, the input reg-

isters of these bits may be disabled. Let f

a

be the boolean function that implement

these conditions. If f

a

= 1, the registers should be disabled (Figure 2.13(b)).

32 Chapter 2: State-of-the-art in low-power design

A < B
A

B

clk

(a)

A < B

clk

A

B

an−1

bn−1

en

en

(b)

Figure 2.13 Comparator circuit (a) without and (b) with disabled input regis-

ters.

0/0

1/1

11

1−

0−

0−
−0

(a)

COMBINATIONAL
LOGIC

R
E

G
IS

T
E

R
S

OUT

fa

clk

IN
IN

1

2

en

(b)

Figure 2.14 (a) STG and (b) FSM with the registers enabled/disabled by signal

f

a

.

Another approach is to disable all the input registers in a �nite-state machine (FSM)

when a self-loop in the signal-transition graph (STG) has been detected [BSdM94,

BM95]. In a self-loop, the state does not change. Therefore, by disabling the input

registers, no switching activity is generated in the combinational block and power

is saved.

As an example, consider the simple STG of Figure 2.14(a) with two self-loops. One

is produced when the FSM is in state 1 (with output 1) and the �rst input is 0.

The other self-loop is in state 0 (with output 0) and either the �rst input is 0 or the

second input 0. Again, a boolean function f

a

is needed to implement the self-loop

conditions.

2.5 Circuit layer 33

Logic Style Area Delay Power Design

Static CMOS

BICMOS

BINMOS

Pseudo-NMOS

N-P Domino Logic

CMOS PTL

CPL

DPL

SRPL

Table 2.5 Area/delay/power/design simplicity comparison of some logic styles.

In all these approaches of disabling the input registers, the area of the synthesized

circuit increases because the logic to implement the enabling/disabling function f

a

.

Moreover, the delay also increases since this logic usually is in the critical path.

2.5 CIRCUIT LAYER

At the circuit layer four topics related to low-power design will be addressed: the

logic style, the asynchronous design, the design style and the adiabatic computing.

2.5.1 Logic style

Table 2.5 presents a comparison in area, delay, power and design simplicity among

di�erent logic styles (or logic families). The �rst part of the table shows some

static and dynamic logic styles. The second one presents several pass-transistor

logic families [BE95]. A more accurate comparison in term of power is reported

in [LKB94] for some of these logic styles.

34 Chapter 2: State-of-the-art in low-power design

B1

B2

Y

A1

A2

A1 A2

B1 B2

(a)

Y
A1 A2

B1 B2

clk

(b)

Figure 2.15 (a) Static and (b) dynamic implementations of the boolean function

Y = (A

1

+A

2

)(B

1

+B

2

).

Static vs. dynamic logic style

Static CMOS logic design is very popular for its design simplicity and it also presents

a good low-power behavior because of its negligible static power dissipation. How-

ever, it su�ers from a high area and low speed. The BICMOS logic style overcomes

the limited current drive of the CMOS when the load capacitance is high. This

comes at the expense of an increase in area, power (specially for small loads) and

design simplicity. The BINMOS logic family presents less power consumption than

BICMOS but is still higher than in CMOS. The Pseudo-NMOS logic style o�er a

good design simplicity and low area since the P-block of the static CMOS is replaced

by a single PMOS transistor. The problem with this logic style is the non-zero static

power dissipation.

To reduce area and improve the speed of CMOS circuits, the dynamic logic style

may be used. The N-P Domino logic in Table 2.5 is a dynamic logic family. A clock

is needed in dynamic logic as shown in Figure 2.15, where a static CMOS gate is

compared to its dynamic version. When the clock is low, the output node is pre-

charged; when the clock is high, the output node may be discharged depending on

the logic performed by the N-logic block. During the evaluation phase, the output

node maintains the value stored in its load capacitance if it is not discharged.

In general, the dynamic logic families are not suitable for low power applications.

The most important reasons are [Lan94]:

the clocking scheme adds more capacitance to the clock distribution, increasing

the power and skew.

2.5 Circuit layer 35

the unnecessary activity generated at the output of the gates.

For example, the standard cells and data-path element libraries of the Power PC

603 [GIG

+

94] use fully static logic for design simplicity and avoid the higher power

dissipation of dynamic logic caused by the pre-charge phase. Moreover, a dynamic

design also requires saving the state of the chip if clocks are disabled.

Other drawbacks concerning the robustness and charge sharing are presented in

dynamic logic families [Lan94, BE95]. Nevertheless, dynamic implementation might

actually achieve low-power consumption in some speci�c applications such as PLAs.

Pass-transistor logic style

The most promising logic families for low power are those based on the pass-

transistor logic style. Some of these logic families are shown in the second part

of Table 2.5. The most important drawback in using a pass-transistor logic family

is the di�culty in designing circuits. There is not much commercial CAD support

for the synthesis of pass-transistor gate designs.

2.5.2 Synchronous vs. asynchronous design

Asynchronous circuits are typically designed on the basis of an explicit self-timed

protocol, which implies that the delay of an asynchronous circuit is data dependent.

Ideally the asynchronous circuits should drastically reduce the power consumption

of their synchronous counterparts since there is no global clock and any signal

transition generated in the circuit is useful (i.e. the circuit only dissipates when

and where necessary).

The main drawback with asynchronous circuits is the area overhead to implement

the handshake and completion protocols needed for a correct operation. In most

of the cases the power consumption of this overhead overcomes the power savings

obtained with the elimination of the clock signal.

However, CAD tools for asynchronous design are still under research and improve-

ments are expected in the next years in the asynchronous arena. Some of the results

reported so far seem to indicate that it is possible to obtain power reductions us-

ing asynchronous techniques, but it depends on the type and characteristics of the

circuit. For example, in [KGG95] a dynamic synchronous and asynchronous adder

are compared. The asynchronous version is 20% more power consuming then the

36 Chapter 2: State-of-the-art in low-power design

DATA PROCESSING
CIRCUITR

E
G

S

R
E

G
S

V
DD

Clock

(a)

R
E

G
S

R
E

G
S

Clock

DATA PROCESSING
CIRCUITF

IF
O

F
IF

O

State
Detect

V
DD

Converter

V
dd

Asynchonous

(b)

Figure 2.16 (a) Original synchronous system; (b) asynchronous system with

adaptive scaling of the supply voltage ([NS94]).

synchronous one. However, in [vBBK

+

94] the asynchronous implementation of a

DCC error corrector reduces the power 80% with respect the synchronous one.

Asynchronous design with adaptive scaling of the supply voltage

The data dependent delay of an asynchronous circuit can be combined with the

reduction of the power supply to obtain a low-power circuit that operates in a

synchronous environment [vBN93, NS94].

Figure 2.16(a) shows the original synchronous systemworking at a frequency 1=T

max

.

T

max

is de�ned so that the response time of the data processing circuit is guaran-

2.5 Circuit layer 37

Full Custom

Gate Arrays

Standard Cells

Macro Cells

Programmable
 Logic

D
E

S
IG

N
 T

IM
E

P
O

W
E

R
/O

P
E

R
A

T
IO

N

Figure 2.17 Design time vs. power consumption of some design styles.

teed for the worst-delay case. An asynchronous design of the circuit has an average

response time of T

avg

. The delay overhead, T

max

� T

avg

, can be converted into cor-

responding power savings by reducing the power supply until the computational

delay of the asynchronous circuit plus a safety margin is T

max

.

The asynchronous system with adaptive scaling of the supply voltage is shown

in Figure 2.16(b). The system consists of the data processing circuit itself, two

FIFO bu�ers, a state detecting circuit and a DC/DC converter for scaling down

the supply voltage. The converter can be anything from a resistive device to a

more sophisticated lossless device [SBS94]. The scaling circuit may consist of a

D/A converter, which scales the supply voltage linearly depending on the number

of data words in the input FIFO.

Since the system operates in a synchronous environment, the input (output) bu�ers

never should full (empty). Therefore, synchronization problems will not occur at

the synchronous/asynchronous interface. The state detecting circuit monitors the

state of one of the bu�ers, for example the input bu�er. If it is running empty,

it indicates that the circuit is operating too fast, and the supply voltage can be

reduced. If, on the contrary, the bu�er is running full, the supply voltage must be

increased.

2.5.3 Design style

There is a range of design style options to implement a circuit: full custom, gate

arrays, standard cells, macro cells, programmable logic structures. These design

38 Chapter 2: State-of-the-art in low-power design

style options have contradictory design-time and power-consumption characteristics

as shown in Figure 2.17. For example, in a full-custom design, techniques such as

transistor sizing can be optimally applied to individual circuits in an ad-hoc basis.

Unfortunately, this comes at a low design productivity. The gate array (and sea-

of-gates) design style consist of prede�ned transistors and the designer needs only

to wire the di�erent transistors using metalization and contacts. In a standard-cell

design style, the cells are already prede�ned. Care has to be taken in the routing

(discussed in the next section) to reduce the power. Moreover, di�erent designs of

the same cell with di�erent sizes should be available for low-power design.

In general, the more
exible design styles present more power per operation than

the least
exible. For example, in a programmable logic structure there is a higher

capacitance to be switched per operation than in full custom because of the overhead

needed to provide this
exibility.

2.5.4 Adiabatic computing

The idea of adiabatic or charge-recovery circuits is to recover some of the energy

needed to change the capacitor's voltage. This is possible since the energy dissipated

by a transistor when there is a one-step voltage of V across it is N times the energy

when this voltage step presents N sub-steps [RP96]. The adiabatic computing

becomes attractive only when the delay is not critical since power is traded for

delay [ea94c].

As an example, consider the energy dissipation by the charging of a capacitance C

through a transistor (modeled as a resistor R):

E

diss

=

Z

T

0

P (t) dt =

Z

T

0

V

2

R

e

�2t

RC

dt =

1

2

CV

2

(1� e

�2T

RC

) ;

where V is the voltage swing at the capacitance. The same result is obtained for

the discharging process.

The asymptotic energy dissipation, i.e. the limit as T approaches to in�nity, is

1

2

CV

2

, which draws a power consumption of

CV

2

T

for a charge and discharge of the

capacitance. This value coincides with the one obtained in Section 2.1.2.

It is important to point out that current, power and energy are exponential in

time relative to the circuit's RC time constant. Current and energy asymptotically

approach zero and

1

2

CV

2

respectively. Assuming that, for example, after 3RC the

circuit has reached its �nal output value, the transition time could be doubled (to

2.6 Layout layer 39

6RC) and apply a voltage step of V=2 from 0 to 3RC and a voltage step of V from

3RC to 6RC:

E

diss

=

Z

3RC

0

P (t) dt+

Z

6RC

3RC

P (t) dt =

1

4

CV

2

:

Therefore, doubling the transition time T and halving the maximum voltage drop

reduces the energy by a factor of two.

2.6 LAYOUT LAYER

The power consumption can be tackled at the layout layer during the
oorplanning,

placement and routing tasks.

The
oorplanning task consists of the allocation of space on a chip for a given set

of modules. A module may have its dimentions �xed or it may present di�erent

shapes. The goal is to �nd a suitable implementation for each module such that

the total area is minimized while meeting a
oorplan topology. Now, the power

consumption adds a new constraint. A
oorplanning for low power has to decrease

the power by [CW94]:

selecting the less power-consuming modules.

distributing the power consumption rather than to have hot spots.

The traditional placement algorithm tries to minimize the wire capacitance among

the di�erent modules. The low-power placement algorithm has to decrease the

switched cacitance [VP93].

The most well-known techniques for a low-power routing algorithm are:

keep the high switching activity wires short.

use the lower parasitic capacitance layer for the highest active wires.

Clock distribution

A particular critical signal to route is the clock. The clock signal has to drive

large loads with fast rise/fall times. For example, in the case of the DEC Alpha

chip [ea92] the clock load is 3.2 nF , and this capacity has to be charged/discharged

40 Chapter 2: State-of-the-art in low-power design

(a)

(b)

Figure 2.18 Clock tree driving schemes: (a) bu�ers at the clock source and (b)

distributed bu�ers.

every 5 ns in rise/fall times of 0.5 ns. This draws a power consumption for the

clock of 7 W, which corresponds to the 23% of the total power consumption of the

chip (30 W).

Aside from using a low capacitance layer for routing the clock signal, low-swing

drivers at the top level or at intermediate levels of the clock tree distribution may

be devised [KaKS94]. This scheme reduces the power a 75% at the expense of an

increase in delay.

To obtain the desired fast rise/fall times in the clock signal, bu�ers are needed to

drive the large load capacitance. These bu�ers may be grouped at the clock source

(Figure 2.18(a)) or may be distributed along the clock signal (Figure 2.18(b)). The

�rst option has the advantage of avoiding the adjustment of intermediate bu�er

delays. The second has the advantage that relatively small bu�ers are used and

they can be
exibly placed accross the chip to save area layout. This option

should be used because both wiring capacitance and driver power dissipation are

reduced [RP96].

2.7 Technology layer 41

Circuit characteristic Scale factor

Dynamic and static 1=�

2

power consumption

Delay 1=�

Power-delay product 1=�

3

Gate area 1=�

2

Power density 1

Table 2.6 Technology scale factors for some parameters.

2.7 TECHNOLOGY LAYER

The equation 2.1 of power consumption in Section 2.1 showed that the three degrees

for power reduction are: power supply, capacitance and activity. In the last sections

the reduction of the activity has been targeted by the majority of the low-power

techniques. At the technology layer, reducing power supply and capacitance is the

main goal.

Three topics related to power consumption are addressed at the technology layer:

technology scaling, SOI (Silicon-on-Insulator) process and MCMs (Multi-Chip Mod-

ules).

2.7.1 Technology scaling and SOI process

One straightforward way to drastically reduce the power consumption is through

technology scaling. Let us suppose that the power supply and the dimensions of the

transistors are scaled down by a factor � (� > 1). Table 2.6 shows what happens

to some parameters of the resulting circuit [WE93]. The power consumption is

signi�cantly reduced (although the power density is maintained since the integration

level has increased by �

2

).

The scaling behavior of Table 2.6 does not apply when the technology is scaled below

the half-micron. The delay is proportional to

1

V

DD

�V

th

, where V

th

is the threshold

voltage of the transistor. When V

DD

is near V

th

, the delay increases dramatically.

Therefore, to maintain the delay scaling by � at below the half-micron, the threshold

voltage of the transistor needs also to be scaled down. The problem of scaling down

the threshold voltage is that the static power consumption caused by sub-threshold

leakage currents is no longer negligible [BE95].

42 Chapter 2: State-of-the-art in low-power design

It is necessary, then, a proper technology process for low-power and low-voltage

applications. One such technology is a class of Silicon-On-Insulator (SOI), names

thin-�lm SOI, which presents a low cost and improvement of its performance at low

voltages. The performance improvement of SOI is mainly caused by the reduction

of parasitic capacitances and body e�ect [SNDD94].

2.7.2 Packaging technology

The o�-chip capacitances are approximately one to three orders larger than those

inside the chip. Therefore, the interconnections among the di�erent chips may

account for a signi�cant part of the overall power consumption of the system.

To reduce the o�-chip wiring capacitance, an obvious solution is to integrate as

many chips as possible into a single module. These modules, called Multi-Chip

Modules (MCM) are designed to accommodate 4 to 200 chips and combine the

function of the single-chip package and the printed circuit board [TRDH89]. In an

MCM, all the chips comprising the system are mounted on a single substrate. The

major problem associated to MCM is the power supply distribution and it is caused

by the material properties of the substrate.

2.8 LOW-POWER TECHNIQUES SUMMARY

The previous sections have reviewed some of the most well-known techniques for

low power. In this section we give an overview of the power reductions obtained

with these techniques. Table 2.7 shows, for the system, architecture, logic and

circuit layers of the design process, some results obtained by the low-power research

community. We have skipped the lower layers since they are out of the scope of this

work.

The power reduction values reported on the table should not be super�cially com-

pared to decide which technique is more powerful. Among the reasons:

the power reduction values have been mainly obtained by applying the tech-

niques reported in Table 2.7. However, some other low-power approaches are

applied together with the main technique to further reduce the power consump-

tion.

the type of comparison performed by the researchers. For example, larger power

reductions may be obtained by a low-power scheduling technique if it is com-

pared to an initial, poorly optimized register-transfer level description than if

2.9 Conclusions 43

Layer Technique Reductions References

System System shutdown 41%-99% [CSB94, GIG

+

94]

System partitioning 61% [Wol95]

Algorithm selection 33% [OY94]

Architecture Voltage scaling with 61%-80% [CSB92a]

pipel./parallel processing

Cache design 20%-85% [BAF94, PR95]

[KBN95]

Data representation 21%-58% [STD94]

Compiler transformations 44%-94% [CPM

+

95, WCF

+

94]

Logic Path balancing 9%-38% [BCH

+

94]

Logic synthesis < 67% [IP94, RP93]

[TMA95, SGDK92]

Technology mapping < 47% [LM93, TAM93]

[TPD93]

State assignment < 66% [TPCD94, HdlR94]

Re-timing < 16% [MDG93]

Disabling input registers < 75% [BFR94, AMD

+

94]

Circuit CPL vs. static CMOS 28% [YYN

+

90]

Asynchronous vs. synchronous -20%-80% [KGG95, vBBK

+

94]

Asynchronous with adaptive 29%-90% [NS94]

supply voltage

Adiabatic computing 77% [SK94]

Table 2.7 Power reductions obtained by di�erent techniques.

compared to an already optimized (for area or delay) description. In the �rst

case, some power reductions may be obtained by simply applying the traditional

techniques for low area and high performance.

Nevertheless, we believe that Table 2.7 provides an overview of the power reductions

obtained at the system, architectural, logic and circuit layers of the design process.

We observe that the highest power savings are obtained at the architecture and

system layers. However, signi�cant power reductions are also achieved at the logic

and circuit layers, which add up to those already obtained at the higher layers.

2.9 CONCLUSIONS

The power-consumption sources in a CMOS circuit have been described in this

chapter. Dynamic power consumption accounts for almost all the power in data-

path circuits and, in general, it is the major source in the rest of the circuits.

Three degrees of freedom are considered when designing for low power: supply volt-

age, capacitance and activity. Once the supply voltage and the device dimensions

44 Chapter 2: State-of-the-art in low-power design

have been �xed, it is the switching activity of the signals of the circuit that ulti-

mately determine its power consumption. Reducing the activity is the goal of the

techniques proposed in the next chapters as the contribution of this work.

This chapter has also reviewed some state-of-the-art low-power design techniques

covering all the layers of the design hierarchy ranging from the technology to the

system layer. A more thorough insight has been given for the logic, circuit, architec-

ture and system layers. The highest power savings are obtained at the architecture

and system layers. However, signi�cant power reductions are also achieved at the

logic and circuit layers, which may add up to those already obtained at the higher

layers.

3

HIGH-LEVEL SYNTHESIS TECHNIQUES

FOR LOW POWER

Decisions taken at the earliest steps of the design of an electronic circuit may have

a signi�cant impact on the characteristics of the �nal implementation. This chapter

illustrates how power consumption issues can be tackled at the system and archi-

tecture layer during the design of application speci�c integrated circuits (ASICs) in

an embedded system scenario. A set of RTL transformations aiming at reducing

power consumption are proposed and the potential bene�ts evaluated.

The common idea behind the transformations is to reduce the activity of the data-

path functional units (e.g. adders, multipliers) by minimizing the switching activity

of their input operands. Functional units highly contribute to the power consump-

tion of the data-path. Preliminary evaluations obtained by simulation show that

signi�cant improvements can be achieved.

Finally, this chapter demonstrates how some of the presented transformations can

be automated and incorporated in high-level synthesis tools.

45

46 Chapter 3: High-level synthesis techniques for low power

3.1 INTRODUCTION

An increasing demand for devices executing complex tasks, such as notebook com-

puting, video compression and speech recognition, has emerged. These tasks are

often implemented with application speci�c integrated circuits (ASICs) that in-

teract with general purpose processors and memories in an embedded system. In

this chapter we focus on estimating and reducing the power consumption of those

tasks that are mainly data driven such as, for example, digital signal processing

applications.

We present a set of register-transfer level (RTL) techniques for power reduction,

bearing in mind that decisions taken at the highest layers of the design process, i.e.

architecture and system, can have a signi�cant impact on the quality of the �nal

implementation.

One of the main problems of proposing RTL techniques is the estimation of power

consumption. At this level, there is a lack of information on the capacitance and

the switching activity of the signals of the circuit. The �rst part of the chapter

(Section 3.3) is devoted to propose power-consumption models for the functional

units of the data-path, based on the activity of their operands. Rather than accu-

rately estimating the power consumption of the �nal implementation, we focus on

fairly compare the relative bene�ts of di�erent RTL descriptions.

Section 3.4 presents �ve techniques for power reduction. Some of them have already

been proposed by other authors but focusing on di�erent targets (e.g. increasing

data locality). We believe that these techniques can be also applied to reduce the

power consumption of the synthesized design. All the techniques presented in this

chapter aim at reducing the power consumption of the functional units by means

of reducing the activity of the input operands. The bene�ts in power savings of the

di�erent techniques are evaluated.

Thus, the objective of this chapter is to help to the designer in deciding which

speci�cation of the circuit is more appropriate in terms of power consumption rather

than fully implement all the techniques.

The following example illustrates the spirit of the techniques.

Assume the average energy dissipated by an array multiplier is 1 unit/operation.

If two multiplications, say a� b and c � d, are executed at consecutive cycles, the

dissipated energy will be 2 units. On the other hand, if the second multiplication

is again a� b (instead of c� d), the switching activity of the multiplier will be null

during the second multiplication and, therefore, no energy will be dissipated. Our

3.2 Previous work 47

estimations also state that, if one of the operands remains unchanged during the

second multiplication, say a � d (the �rst operand does not change), the average

energy is 0.65 units.

Now assume the following two execution orders of a sequence of independent oper-

ations executed in the same multiplier:

Order 1 Energy Order 2 Energy

Cycle 1 x = a� b 1.00 x = a� b 1.00

Cycle 2 y = c� d 1.00 z = a� d 0.65

Cycle 3 z = d� a 1.00 y = c� d 0.65

Total 3.00 2.30

By applying simple RTL transformations to the �rst order (Order 1), a less power-

consuming description can be obtained (Order 2). Two techniques have been applied

in the example: operand reordering on the operation z = d�a (see Section 3.4.2) and

operand sharing to swap the operations y = c� d and z = d� a (see Section 3.4.3).

Thus, the multiplier sees no activity of its �rst operand between cycles 1 and 2 and

of its second operand between cycles 2 and 3. A 23% power savings is estimated.

Each of the techniques presented in the chapter is evaluated with some benchmarks

in which there is a clear evidence that signi�cant bene�ts can be obtained. The

techniques are complementary among them and not every technique produces a

tangible improvement on every benchmark.

To cope with the high complexity of the problem of power reduction, all the tech-

niques are based on heuristics, which trade, in some cases, power for area and

performance.

Finally, some of the transformations for low power have been automated and in-

corporated in high-level synthesis algorithms and their complexity along with the

hardware and delay overhead of the synthesized circuit are given. In particular,

a list scheduling algorithm and a clique partitioning approach for register binding

aiming at reducing power are presented and evaluated in Section 3.5.

3.2 PREVIOUS WORK

The e�orts in higher levels of the design process for low-power design have been de-

voted to estimate the power consumption and to reduce it through transformations.

48 Chapter 3: High-level synthesis techniques for low power

P(0 1)

−0.99
−0.80
−0.60

0.60
0.80
0.99

0.0

0.00

0.10

0.20

0.30

0.40

0.50

0.25

02468101214

BP0BP1

Figure 3.1 Activity of a 16-bit data stream for di�erent temporal correlations

(data approximated from [LR94a]).

3.2.1 Estimating power consumption

Landman has proposed two power-estimation models: in [LR94a], a model that

accounts for the random behavior of the LSB bits and the correlated behavior of

the MSB bits is presented for data-path circuits. Figure 3.1 shows the transition

activity for several di�erent two's complement data streams for each bit. Each curve

corresponds to a di�erent temporal (i.e. between successive data) correlation (�).

When the data stream is white noise, � = 0 and P (0 ! 1) = P (1 ! 0) = 0:25.

When the stream is highly correlated, �! �1. The MSB region corresponds to the

sign bit and, consequently, the transition probabilities of these bits clearly depend

on the correlation of the data stream. � > 0 corresponds to a lower activity for

positively correlated signals; � < 0 corresponds to a higher activity for negatively

correlated signals. Three bit regions are observed in Figure 3.1. The MSB and LSB

regions present a constant transition activity. The middle region may be modeled

by linear interpolation. Values BP0 and BP1 are determined from the data stream

statistics. In [LR95], this model is extended to control-path circuits.

In [BB95], di�erent processor models that account for the energy for the major

modes of computation are described: �xed throughput, maximum throughput and

burst throughput. Techniques for trading o� throughput and energy consumption

are derived for these modes.

Recently, entropy-based approaches at register-transfer level have been proposed

in [DMP95, Naj95]. The idea is that the switching activity of a circuit can be

3.2 Previous work 49

O
ut

pu
t m

ul
tip

lie
r

ac
tiv

ity

0.5

0.0

−1.0 −0.5 0.0 0.5 1.0
Value of constant

(a)

i0 1i 2i 3i0 1 2 3

(b.1)

i0

1i 2i 3i

0

1 2 3

(b.1)

Figure 3.2 (a) Average activity in a multiplier as a function of the constant value

(data approximated from [CR94]). (b) A parallel and serial implementations of an

adder tree.

predicted without simulation using either entropy or informational energy averages;

only the characteristics of the input sequence and some knowledge about the com-

position of the circuit are used to obtain power estimations.

3.2.2 Reducing power consumption

Few authors have addressed the set of transformations at the system and architec-

ture layer to obtain lower-power designs. In [CR94], the power consumption of ad-

ditions and constant multiplications as a function of the operand activity is studied.

The average activity at the output of the multipliermonotonically increases with the

absolute value of the multiplier constant (Figure 3.2(a)). The average activity at the

output of an adder may be approximated by the maximum of the activities of the

operands. From this study, a data
ow graph transformation is derived for the typ-

50 Chapter 3: High-level synthesis techniques for low power

if (a)

if (b)fg

elsefinstrg

if (a)

if not (b)fg

if (a)

if (b)fg

elsefg

if (a)

if not (b)finstrg

(a)

for i = 1 to N

B(i) = f(A(i))

for i = 1 to N

D = g(C(i);D)

for i = 1 to N

D = g(C(i); D)

for i = 1 to N

B(i) = f(A(i))

(b)

Figure 3.3 Transformations for reducing (a) activity at the address bus and (a)

number of memory references.

ical operations in signal processing applications shown in Figure 3.2(b). Values �

i

are constants. The conclusion is that the minimum average switching activity over

all the modules (adders and multipliers) of the data-
ow graph in Figure 3.2(b.1) is

obtained when either �

0

� �

1

� �

2

� �

3

or �

0

� �

1

� �

2

� �

3

. Similar results are

obtained when the additions are performed serially (Figure 3.2(b.2)). In this case,

the minimum activity is obtained when �

0

� �

1

� �

2

� �

3

.

In [WCF

+

94], some memory transformations for low-power systems are hinted. The

aim of these transformations is to reduce both the activity of the address lines and

the number of o�-chip references. One transformation that reduces the address

transitions consists of reordering memory references so that few bits as possible

toggle between successive addresses supplied to the memory. For example, the

instruction instr in the left-hand side code of Figure 3.3(a) may be moved from the

scope of the �rst if instruction to the scope of the second one (or vice versa) if the

switching activity at the address bus is reduced. This transformation is only allowed

if the instructions between the original and �nal position of the moved instruction

are independent.

A transformation that reduces the amount of o�-chip references consists also on

reordering memory references so that locality is exploited. As an example, consider

the left-hand side code of Figure 3.3(b). If we know that both the A and C arrays

are available in a local memory because of previous operations and that only array

C is not needed after the execution of the code, the references to array B in the �rst

for loop may throw some values of array C out of the local memory, values that will

have to be fetch again in the second for loop. This can be prevented if both loops

are reordered as shown in the right-hand side code of Figure 3.3(b).

In [CPRB92], the traditional transformations for faster and smaller circuits are

applied in order to evaluate the power consumption savings. Some of these trans-

formations are the following: critical-path balancing and reduction, operation count

reduction, optimization of data-path and control logic, operation substitution (e.g.

3.3 Power-consumption model of functional units 51

simple multiplications by shift-add operations) and bit-width optimization. When-

ever the resulting circuit is faster than the required throughput, power-supply re-

duction can be applied to take advantage of its quadratic impact on consumption.

3.3 POWER-CONSUMPTION MODEL OF

FUNCTIONAL UNITS

In high-level synthesis, a fast and accurate power-consumption estimation tool is

necessary to narrow down the design process space and to �nally obtain the design

to be implemented. The power-consumption model described in Section 2.1 of

Chapter 2 is not applicable to high-level synthesis because it would require the very

time-consuming task of, �rst, mapping down each implementation to the gate level

and, second, apply the model to obtain the power estimation.

Power consumption in the data-path accounts for a large fraction of the overall

power budget. Among the di�erent types of units, functional units (adders, mul-

tipliers, etc.) highly contribute to the power consumption of the data-path. For

example, consider a Newton-Raphson divider based on the Newton-Raphson itera-

tive algorithm. The power consumption of the functional units of the divider has

been estimated to be approximately the 85% of the total power of the circuit whereas

only a 15% is because of the registers, wire, control and multiplexers [LR95].

We use a high-level power-consumption estimation based on power pro�les of dif-

ferent units, with special insight in functional units. It is possible to obtain a

pro�le of the power consumption of each unit by simulating it and averaging the

power consumed over many input samples. This method provides a fast way

of estimating power consumption and it has been used previously by other au-

thors [MK95, PC91, LR94a, KKRV95].

Two power-consumption models of functional units will be described. Both consider

the operand variability of the inputs of the functional unit. In one of the models,

the activity of the operands is taken into account whereas the other model is based

on the repetition of the operands.

Operand activity relates to the variability of the bit-pattern of one operand from

one operation to the next. Power consumption is somehow related to the Hamming

distance of consecutive bit-patterns. Operand repetition relates to the coarse-grained

variability of the operand, i.e. the operand may or may not change between two

consecutive operations.

52 Chapter 3: High-level synthesis techniques for low power

0

1

2

3

4

5

6

�128 �64�32

0 32 64 127

nJ/op.

Unchanged operand

8�8-bit Radix-4 Booth multiplier

(1)

(2)

(3)

o

]

*

8x8-bit Radix-4 Booth multiplier

2
4

6
8H(x)

2
4
6
8H(y)

0
2
4
6

8

nJ/op.

2
4

6
8H(x)

2
4
6
8H(y)

(a) (b)

Figure 3.4 (a) Coarse-grained and (b) �ne-grained power-consumption model

for an 8�8-bit Booth multiplier.

Henceforth, we will call coarse-grained model the model based on the operand rep-

etition and �ne-grained model the one based on the operand activity.

Since these power-consumption models target at data-path circuits, whenever we

refer to the power consumption of a circuit we mean the energy per operation exe-

cuted by that circuit. Data-path circuits have a �xed throughput and, therefore, the

energy/operation metric is the most appropriate to quantify the energy e�ciency

for these type of circuits [BB95].

Coarse-grained model

To illustrate how this model works, consider Figure 3.4(a). Plot (3) represents the

energy of an 8�8-bit Booth multiplier [Kor93] in nJ=operation when one operand

remains unchanged (x axis) with respect to the previous operation executed on the

multiplier and the other operand varies randomly. Line (2) is the average energy of

plot (3) and line (1) is the average energy when both operands vary randomly with

respect to the previous operation. Comparing lines (1) and (2), we observe that

the average power consumption of the multiplier is approximately 35% less when

one operand remains unchanged. It is interesting to notice the in
uence of the

bit-pattern for the unchanged operand over the power consumption (e.g. operands

with many zeroes reduce the activity of the multiplier).

3.3 Power-consumption model of functional units 53

Factor De�nition 8-bit 12-bit 16-bit

�

rca

P

rca1

=P

rca2

0.74 0.74 0.74

�

cla

P

cla1

=P

cla2

0.74 0.75 0.75

�

amul

P

amul1

=P

amul2

0.74 0.79 0.82

�

booth

P

booth1

=P

booth2

0.65 0.65 0.68

�

rca=amul

P

rca2

=P

amul2

0.1 0.049 0.029

�

rca=booth

P

rca2

=P

booth2

0.04 0.025 0.016

�

cla=amul

P

cla2

=P

amul2

0.152 0.074 0.056

�

cla=booth

P

cla2

=P

booth2

0.061 0.039 0.027

Table 3.1 Factors of the coarse-grained model.

Absolute measures of the power consumption are very time-consuming in high-level

synthesis whereas relative measures give satisfactory results. Power consumption

estimations obtained with the coarse-grained model are relative to the number of

operands that remain unchanged at the inputs of the functional units. Relative

power estimations are expressed with the � and � factors shown in Table 3.1. The

notation followed in this table is the following: P

fu2

is the average energy spent by

functional unit fu when its two operands vary randomly at each cycle; P

fu1

is the

energy spent when one operand remains unchanged and the other varies randomly;

rca, cla, amul and booth stand for ripple-carry adder, carry-look-ahead adder, array

multiplier and Booth multiplier respectively.

Factors � hardly change with the operand bit-width, but factors � clearly change

because of the larger increase in power of the multipliers respect to the adders.

The factors of both models have been obtained by means of switch-level simulations

(see Appendix A, Section A.3) of functional units implemented with the library cells

provided with the Ocean system (see Appendix A, Section A.2).

As a simple example of how the coarse-grained model is applied, assume that the

data-
ow graph (DFG) shown in Figure 3.5(a) is a part of a larger DFG scheduled

with two carry-look-ahead adders (A1 and A2) and two Booth multipliers (M1 and

M2). Assume also an operand bit-width of 12 for all functional units.

Two schedules and functional-unit bindings for the DFG of Figure 3.5(a) are shown

in Figures 3.5(b) and 3.5(c). The power consumption because of the schedule and

binding in Figure 3.5(b) is expressed as 2 P

cla2

+2 P

booth2

= 2 (1+�

cla=booth

) , whereas

in the schedule and binding in Figure 3.5(c) it is expressed as P

cla2

+P

cla1

+P

booth2

+

P

booth1

= (1 + �

booth

) + �

cla=booth

(1 + �

cla

) . Thus, the power reduction estimated

54 Chapter 3: High-level synthesis techniques for low power

1

2

3 5

4

(a)

1

2

3

4

cycle

1 A1

A1

A1

A1

2

3

4

5 A2

(b)

1

2

3

4

cycle

1
A1

A1

2

3

4 5 A1

A2

A2

(c)

Figure 3.5 (a) Data-
ow graph; (b) and (c) are two possible schedules and

functional-unit bindings.

obtained with the schedule and binding in Figure 3.5(c) with respect to the one in

Figure 3.5(b) is:

1 + �

cla=booth

(1 � �

cla

) � �

booth

2 (1 + �

cla=booth

)

;

which draws a power reduction of 17%.

The coarse-grained model provides a fast estimation of the power consumption when

no information of the activity of the input data to the functional units is available.

Power consumption highly depends on the input data activity. As an example,

consider a 12�12-bit Booth multiplier with one operand remaining unchanged and

the other varying randomly (coarse-grained model). In this case, the multiplier

observes an average of 6-bit changes on the varying operand. But if the varying

operand presents an average of 4-bit changes, the power in the multiplier is reduced

a 19%. Thus, whenever the information of the input data activity is known, a more

accurate model should be used.

Fine-grained model

The activity of an operand can be measured with the Average Hamming Distance

(AHD) de�ned as:

AHD(x) = lim

n!1

P

n

i=1

H(x

i

; x

i�1

)

n

;

where: H(p; q) is the Hamming distance between p and q; x

i

is the value of operand

x in iteration i of the algorithm and n is the total number of iterations.

3.4 Register-transfer level techniques for low power 55

5 2

−86

−17

−60

−35

100

63

3 4

1462 2100 6300
8x8−bit Radix−4
Booth multiplier

−86 −35 100

−17 −60 63

6 5

4 7

1462 2100 6300
8x8−bit Radix−4
Booth multiplier

(a)

(b)

Figure 3.6 The input data order in (b.1) leads to a higher operand AHD than in

(b.2). Big arrows indicate the input data. Thin arrows indicate the AHD between

two consecutive input data.

Figure 3.4(b) illustrates the e�ect of the operand activity on the power consumption

of an 8�8-bit Booth multiplier. Obviously, power consumption tends to zero when

the AHD of both operands tend to zero.

A simple example of how the �ne-grained model is applied is shown in Figure 3.6(b).

The multiplier in the �gure has to perform three operations (Figure 3.6(b.1)). Tak-

ing advantage of the commutative property of the multiplication operation, a better

input data order is obtained in Figure 3.6(b.2), where the AHD of both operands

has decreased from 5.5 to 3.5. This decrease in the AHD of the operands makes the

multiplier a 22% less power consuming when executing the last two operations.

3.4 REGISTER-TRANSFER LEVEL TECHNIQUES

FOR LOW POWER

This section proposes a set of register-transfer level synthesis techniques that focus

on reducing the power consumption of functional units. Implementation of some of

these techniques is presented in Section 3.5.

The techniques proposed are summarized as follows:

56 Chapter 3: High-level synthesis techniques for low power

loop interchange: takes advantage of data locality to reduce the activity of

the inputs of the functional units.

operand reordering: seeks an appropriate operand order for commutative

operations to reduce the switching activity.

operand sharing: attempts to schedule and bind operations to functional

units in such a way that the activity of the input operands is reduced.

operand retaining: attempts to minimize the useless power consumption of

the idle units and

operand similarity: uses the information of the similarity among the operands

in the scheduling and register-binding steps.

All the benchmarks used to evaluate the techniques have only additions and mul-

tiplications. The power reduction estimations obtained with these techniques are

estimated as a function of �

mul

, �

add

and � with values �

booth

, �

cla

and �

cla=booth

respectively in Table 3.1 for 12-bit-wide functional units.

3.4.1 Loop interchange

The loop-interchange technique has been traditionally implemented in compilers to

obtain dependency graphs with a higher degree of parallelism, to reduce stride or

to increase data locality (and, thus, register reuse) [ASU86, AK84].

As an example, consider the algorithm in Figure 3.7(a.1) and its associated de-

pendence graph in Figure 3.7(a.2). The compiler creates a dependence graph to

capture the dependency information for a piece of code. Each node in the graph

typically represents one statement. An arc between two nodes indicates that there

is a dependence between the computation they represent. The dashed line shows

the execution order of the iterations of the algorithm.

With algorithm in Figure 3.7(b.1), the execution order varies as it is shown in

Figure 3.7(b.2). If matrix A is laid-out in memory in column-major form, execution

order in 3.7(a.2) implies more cache misses than the execution order in 3.7(b.2).

Thus, the compiler chooses algorithm 3.7(b.1) to reduce the running time.

Notice that in this example the loop interchange is a legal transformation since

iterations in 3.7(b.2) are all executed after iterations they depend upon. But in

general, the compiler has to verify that the transformation does not change the

semantics of the program [Pug91, SFCM95].

3.4 Register-transfer level techniques for low power 57

for i = 1 to N � 1

for j = 1 to N � 1

A(i; j) = A(i+ 1; j + 1)

(a.1)

j

i

(a.2)

for j = 1 to N � 1

for i = 1 to N � 1

A(i; j) = A(i+ 1; j + 1)

(b.1)

j

i

(b.2)

Figure 3.7 Example of application of the loop-interchange technique.

We apply loop interchange with the goal of minimizing the number of operand

changes of the inputs of the functional unit. This technique will be applied to the

motion-estimation algorithm for image compression [LK84] (Figure 3.8(a)) and to

the matrix-vector product algorithm to illustrate its e�ciency.

Application of loop interchange

In the algorithm of Figure 3.8(a) we observe three operations in the inner loop:

absolute value, addition and subtraction. We assume the data-path depicted in

Figure 3.9(a) for the execution of this algorithm. For simplicity, we will consider a

subtraction to be the same as an addition in terms of power consumption.

The absolute value in 2's complement arithmetic is computed in two steps: (a) to

check whether a number is negative and (b) complement the number and add 1

in this case. The �rst step represents negligible contribution to the total power

consumption: just check if the MSB bit is one. In average, the second step will be

executed half of the times.

In the algorithm in Figure 3.8(a) we also observe that: (1) both operands of the

accumulation usually change with respect to the previous iteration of the algorithm

58 Chapter 3: High-level synthesis techniques for low power

P;L: bit-length and bit-width of the current frame

M;N : max. horizontal and vertical vector coord

m;n: bit-length and bit-width of the current block

CV;RV : current and reference image frame value

CF;RF : current and reference frame

MV (g; h): motion vector of block (g; h)

for g = 0 to d

P

m

e � 1

for h = 0 to d

L

n

e � 1

4

optimal

(g; h) =1

for i = �b

M

2

c to b

M�1

2

c

for j = �b

N

2

c to b

N�1

2

c

4

part

(i; j) = 0

for k = 0 to m� 1

for l = 0 to n � 1

CV = CF (m � g + k; n � h+ l)

RV = RF (m � g + i+ k; n � h+ j + l)

4

part

(i; j) =4

part

(i; j) + jCV � RV j

if 4

part

(i; j) <4

optimal

(g; h) then

4

optimal

(g; h) =4

part

(i; j)

MV (g; h) = [i; j]

T

(a)

for i = �b

M

2

c to b

M�1

2

c

for j = �b

N

2

c to b

N�1

2

c

4

part

(i; j) = 0

for g = 0 to d

P

m

e � 1

for h = 0 to d

L

n

e � 1

for k = 0 to m� 1

for l = 0 to n � 1

CV = CF (m � g + k; n � h+ l)

for i = �b

M

2

cto b

M�1

2

c

for j = �b

N

2

cto b

N�1

2

c

RV = RF (m � g + i+ k; n � h+ j + l)

4

part

(i; j) =4

part

(i; j) + jCV � RV j

4

optimal

(g; h) =1

for i = �b

M

2

c to b

M�1

2

c

for j = �b

N

2

c to b

N�1

2

c

if 4

part

(i; j) <4

optimal

(g; h) then

4

optimal

(g; h) =4

part

(i; j)

MV (g; h) = [i; j]

T

4

part

(i; j) = 0

(b)

Figure 3.8 (a) Motion estimation algorithm and (b) motion-estimation algo-

rithm with two loop interchanges.

and (2) both operands of the subtraction inside the absolute value operator also

3.4 Register-transfer level techniques for low power 59

− A
B

S +CV

RV

part(i,j)

(a)

+X
A(i,j)

tmp

C(j)

(b)

Figure 3.9 Data-path for executing (a) the motion-estimation algorithm and (b)

the matrix-vector product algorithm.

change because both are fetched from memory in the inner loop (where the absolute

value operation is executed).

But in the algorithm in Figure 3.8(b) we �nd out that one operand of the subtraction

inside the absolute value operator remains the same during M �N iterations.

With the notation in Table 3.1, the power-consumption estimation of algorithm (a)

is roughly:

P

a

= PLMN (2 P

add2

+

P

abs

2

) ;

and the power-consumption estimation of algorithm (b) is:

P

b

= PLMN (P

add2

+ P

add1

+

P

abs

2

) :

We have estimated, by simulation, the average power consumption of the increment

operation executed on an adder as P

abs

� 0:45 P

add2

. Thus, the estimated reduction

factor on power consumption is:

R (�

add

) =

1� �

add

2:225

;

obtaining a reduction of the power consumption of 11%.

Power consumption has only been estimated for the functional units of the data-

path.

With algorithm (b), both the control logic and the o�-chip reference order have

changed. Of course, a wise use of local registers is expected to minimize o�-chip

references. This is important particularly in the motion-estimation algorithm, where

60 Chapter 3: High-level synthesis techniques for low power

=
A B C

N

N

i

j

for j = 0 to N

tmp = 0

for i = 0 to N

tmp = tmp+A(i; j)B(i)

C(j) = tmp

(a)

=
A B C

N

N

i

j

for i = 0 to N

C(i) = 0

for i = 0 to N

tmp = B(i)

for j = 0 to N

C(j) = C(j) +A(i; j) tmp

(b)

Figure 3.10 Matrix-vector product algorithm when referencing matrix A (a) by

rows and (b) by columns.

its data working-set is considerably large. In order to minimize o�-chip references,

the most frequently referenced data can be stored in an internal cache. This implies

that the algorithm must adapt its structure to the size of this internal cache to

properly exploit data locality.

Moreover, the loop-interchange technique should be applied together with trans-

formations that optimize the number of o�-chip references [WCF

+

94]. Memory

related power consumption is an important factor specially in multi-dimensional

signal processing systems.

The loop interchange has also been applied to the matrix-vector product algorithm.

Two di�erent implementations of the algorithm can be devised depending on how

the matrix is referenced: by rows (see Figure 3.10(a)) or by columns (see Fig-

ure 3.10(b)). If the matrix is referenced by rows, N

2

multiplications are needed with

both operands not necessarily equal. But if the matrix is referenced by columns,

onlyN of those multiplications are necessary; the rest have one operand �xed (which

corresponds to the di�erent values of the vector). This draws a power reduction of

33% when referencing the matrix by columns rather than by rows. We assume the

data-path depicted in Figure 3.9(b) for the execution of this algorithm.

3.4 Register-transfer level techniques for low power 61

3.4.2 Operand reordering

The goal of this technique is to �nd an appropriate input operand order for com-

mutative operators in such a way that switching activity is reduced. This will be

achieved by reusing the same input operands to the operator among consecutive

iterations of the algorithm implemented by the operator.

The operand-reordering technique can be implemented using existing techniques

integrated in compilers for the manipulation of dependence graphs [ASU86].

In order to estimate its e�ciency, this technique will be applied to the multiply-

accumulate (MAC) operator and to the low-pass image-�lter operator.

The MAC operator

Digital �lters are basic components in digital signal processing systems. A typ-

ical substructure of a �lter is the MAC operator, which performs the operation

P

p�1

i=0

x

i

y

i

, where p multiplications and p � 1 additions are executed.

One possible DFG of a 4-input MAC operator is shown in Figure 3.11(a). Three

adders and four multipliers are used to implement this MAC operator. There are

other ways to reorganize the additions, but the balanced structure of Figure 3.11(a)

implies less power consumption [CPRB92].

Figure 3.11(b) shows a 4th-order LMS adaptive �lter [TJL87]. In the LMS �lter,

and in some other digital �lters (g.e. FIR and IIR �lters), the MAC operator plays

an important role and, therefore, minimizing its power consumption will decrease

the total power consumption of the �lter.

Application of operand reordering

For power consumption purposes, the MAC operator is classi�ed into three cases:

(a) both the x and y values change from one iteration to the next one (the general

case); (b) either x or y values are constant and (c) either the x or y values of

iteration i are the same as those of iteration i � 1 but shifted one position. The

IIR and FIR �lters follow cases (b) and (c). In the LMS �lter, the MAC operator

follows case (c).

In order to propose a better operand reordering for cases (a) and (b), the activity of

the operands is taken into account whereas for case (c) the repetition of the operands

(see Section 3.3) will determine the new operand reordering.

62 Chapter 3: High-level synthesis techniques for low power

x0 x1 x2 x3y0 y1 y2 y3

out

multiplier

adder

(a)

x(t) h0 x(t−1)h1 x(t−2) x(t−3)

d(t)

2a

h2 h3

y(t)

MAC

(b)

Figure 3.11 (a) MAC operator for p = 4 and (b) DFG of the 4th-order LMS

adaptive �lter.

Case (b) has been addressed in [CR94] and the conclusion is that the minimum

average activity over all nodes of the balanced MAC operator is obtained when the

constant operands (say the y values) satisfy y

0

� y

1

� � � � � y

n

or y

0

� y

1

� � � � �

y

n

.

We will focus on case (c). As previously explained, operand repetition will determine

the new reordering. In the MAC operator of the LMS �lter of Figure 3.11(b) we

observe that all multipliers receive di�erent operands at each iteration: the x values

are shifted one position to the left and the �rst position is the new operand value;

the h values are recalculated at each iteration and, therefore, are di�erent. This

fact is clearly shown in Table 3.2 (Reordering A).

Table 3.2 (Reordering B) shows a di�erent operand reordering that takes advantage

of the shift-wise behavior of the x values. With this new reordering, each multiplier

will have one �xed operand (the x value) during four consecutive iterations.

3.4 Register-transfer level techniques for low power 63

iter. Reordering A

M

0

M

1

M

2

M

3

i (x

i

; h

0

i

) (x

i�1

; h

1

i

) (x

i�2

; h

2

i

) (x

i�3

; h

3

i

)

i + 1 (x

i+1

; h

0

i+1

) (x

i

; h

1

i+1

) (x

i�1

; h

2

i+1

) (x

i�2

; h

3

i+1

)

i + 2 (x

i+2

; h

0

i+2

) (x

i+1

; h

1

i+2

) (x

i

; h

2

i+2

) (x

i�1

; h

3

i+2

)

i + 3 (x

i+3

; h

0

i+3

) (x

i+2

; h

1

i+3

) (x

i+1

; h

2

i+3

) (x

i

; h

3

i+3

)

i + 4 (x

i+4

; h

0

i+4

) (x

i+3

; h

1

i+4

) (x

i+2

; h

2

i+4

) (x

i+1

; h

3

i+4

)

i + 5 (x

i+5

; h

0

i+5

) (x

i+4

; h

1

i+5

) (x

i+3

; h

2

i+5

) (x

i+2

; h

3

i+5

)

i + 6 (x

i+6

; h

0

i+6

) (x

i+5

; h

1

i+6

) (x

i+4

; h

2

i+6

) (x

i+3

; h

3

i+6

)

i + 7 (x

i+7

; h

0

i+7

) (x

i+6

; h

1

i+7

) (x

i+5

; h

2

i+7

) (x

i+4

; h

3

i+7

)

iter. Reordering B

M

0

M

1

M

2

M

3

i (x

i

; h

0

i

) (x

i�1

; h

1

i

) (x

i�2

; h

2

i

) (x

i�3

; h

3

i

)

i + 1 (x

i

; h

1

i+1

) (x

i�1

; h

2

i+1

) (x

i�2

; h

3

i+1

) (x

i+1

; h

0

i+1

)

i + 2 (x

i

; h

2

i+2

) (x

i�1

; h

3

i+2

) (x

i+2

; h

0

i+2

) (x

i+1

; h

1

i+2

)

i + 3 (x

i

; h

3

i+3

) (x

i+3

; h

0

i+3

) (x

i+2

; h

1

i+3

) (x

i+1

; h

2

i+3

)

i + 4 (x

i+4

; h

0

i+4

) (x

i+3

; h

1

i+4

) (x

i+2

; h

2

i+4

) (x

i+1

; h

3

i+4

)

i + 5 (x

i+4

; h

1

i+5

) (x

i+3

; h

2

i+5

) (x

i+2

; h

3

i+5

) (x

i+5

; h

0

i+5

)

i + 6 (x

i+4

; h

2

i+6

) (x

i+3

; h

3

i+6

) (x

i+6

; h

0

i+6

) (x

i+5

; h

1

i+6

)

i + 7 (x

i+4

; h

3

i+7

) (x

i+7

; h

0

i+7

) (x

i+6

; h

1

i+7

) (x

i+5

; h

2

i+7

)

Table 3.2 Two di�erent input reorderings for the 4-input MAC unit. M

j

repre-

sent the multiplications of the MAC unit.

The estimated power consumption of the MAC operator with reordering A after p

iterations is:

P

A

(�) = p (p P

mul2

+ (p� 1) P

add2

) = p P

mul2

(p+ � (p � 1)) ;

and the estimated power consumption with reordering B after p iterations is:

P

B

(�

mul

; �) = p (p P

mul1

+ (p � 1) P

add2

) = p P

mul2

(p �

mul

+ � (p� 1)) :

Thus, the estimated power-consumption reduction factor from reordering A to B is

R (�

mul

; �) =

p (1 � �

mul

)

p (1 + �)� �

�

1 � �

mul

1 + �

;

achieving a 34% power-consumption reduction.

The operand-reordering technique has also been applied to the low-pass image-�lter

operator using 8 adders (its algorithm is shown in the next section). In this operator,

the accumulation of 9 values of the image is the main operation. Two consecutive

iterations of the algorithm have 6 out of the 9 input operands in common. Thus,

64 Chapter 3: High-level synthesis techniques for low power

an input operand reordering can be devised where three of the nine adders will

have the same operands during three consecutive cycles, which draws an estimated

reduction in power of 27%.

Implementation of the operand reordering

An appropriate operand reordering can be obtained by manipulating (using existing

compiler techniques [ASU86]) a graph (similar to a dependence graph) associated

to the operator. In this graph, an arc between two nodes indicates that an input

operand can be reused between the computations they represent. Let us call this

graph an input-reusing graph.

To illustrate how a compiler can manipulate an input-reusing graph, consider again

the MAC operator. The input reordering shown in Table 3.2 (Reordering A) cor-

responds to the input-reusing graph in Figure 3.12(a.1). The y-axis represents the

iterations and the x-axis corresponds to the functional units being considered (in

this case, the four multipliers of the MAC operator). A node in the graph corre-

sponds to a multiplication.

The compiler has to obtain the best mapping of multiplications into the multipli-

ers. This is accomplished by maximizing the number of input-reusing dependencies

among the multiplications executed in each multiplier, i.e. by maximizing the num-

ber of vertical input-reusing dependencies. Figure 3.12(a.2) shows the optimum

input-reordering which corresponds to the one represented in Table 3.2 (Reordering

B).

Another example is the matrix-vector product operator when the matrix has the

symmetry property (see Figure 3.12(b.1)). Figure 3.12(b.2) shows the data-
ow

graph for one iteration of this operator using four multipliers and three adders.

Again, we will focus on the multipliers for reducing power. Figure 3.12(b.3) shows

a possible input-reusing graph with no input-reusing dependencies among the mul-

tiplications executed in each multiplier (i.e. all possible input-reusing dependencies

are shown in dashed arcs, meaning that they are not achieved by the compiler).

Figure 3.12(b.4) obtains an improved input reordering with three input-reusing de-

pendencies.

The compiler can also obtain more input-reusing dependencies if another multiplier

is available in the targeted architecture, as it can be observed in Figure 3.12(b.5).

To synthesize the input reordering obtained by the compiler, it is necessary to route

the operands to the desired input of the functional unit. This implies, in some cases,

3.4 Register-transfer level techniques for low power 65

Multipliers
M0 M1 M2 M3

ite
ra

tio
n

(a.1)

Multipliers
M0 M1 M2 M3

ite
ra

tio
n

(a.2)

a

00

a

01

a

02

a

03

a

01

a

11

a

12

a

13

a

02

a

12

a

22

a

23

a

03

a

13

a

23

a

33

!

x

0

x

1

x

2

x

3

!

=

y

0

y

1

y

2

y

3

!

(b.1)

multiplier

adder

ai0 0x i3ai2ai1a 3x2x1x

yi

(b.2)

Multipliers
M0 M1 M2 M3

ite
ra

tio
n

(b.3)

Multipliers
M0 M1 M2 M3

ite
ra

tio
n

(b.4)

Multipliers
M0 M1 M2 M3

ite
ra

tio
n

M4

(b.5)

Figure 3.12 Di�erent input-reusing graphs for: (a) the MAC operator and (b)

the symmetric matrix-vector product operator.

an area overhead in terms of interconnection units and an increase in complexity in

the control unit.

66 Chapter 3: High-level synthesis techniques for low power

3.4.3 Operand sharing

The operand-sharing technique attempts to schedule and bind operations to func-

tional units in such a way that the activity of the input operands is reduced.

Operations sharing the same operand are bound to the same functional unit and

scheduled in such a way that the function unit can reuse that operand.

This technique is e�cient when it is applied to a DFG with variables used by more

than one operation. The AR �lter [Kun84] will be used to illustrate this technique.

The DFG of the AR �lter is presented in Figure 3.13(a).

Figure 3.13(b) shows a possible schedule of the AR �lter with two adders (one

cycle) and one pipelined multiplier (two cycles). We observe that there are some

operations which result is the input for more than one operation (thick lines in

Figure 3.13(a)). For example, the result of addition 5 is an input for multiplications

10 and 11. Assume we bind multiplications 10 and 11 to the same unit U . Assume

also that between the execution of multiplication 10 and 11 there is no other use of

unit U . Then, one of the operands of unit U will not change from multiplication

10 to multiplication 11. Henceforth, we will call operand reutilization (OPR) the

fact that an operand is reused by two operations consecutively executed in the

same functional unit. In Figure 3.13(a), 4 OPRs can be potentially obtained in a

multiplier.

An alternative schedule and unit binding with the same latency as the one in 3.13(b)

is presented in Figure 3.13(c) with all 4 OPRs achieved. In the schedule and unit

binding of Figure 3.13(b) no OPRs are obtained.

Thus, the estimated power consumption of one iteration in schedule (b) is:

P

b

(�) = 12 P

add2

+ 16 P

mul2

= P

mul2

(16 + 12 �) ;

and the estimated power consumption of one iteration in schedule (c) is:

P

c

(�

mul

; �) = 12 P

add2

+ 12 P

mul2

+ 4 P

mul1

= P

mul2

(12 + 4 �

mul

+ 12 �) :

The estimated power-consumption reduction is:

R(�

mul

; �) =

1 � �

mul

4 + 3 �

;

achieving an 8.5% reduction.

3.4 Register-transfer level techniques for low power 67

a

m

input/output variablei/o

addition a executed in adder unit

multiplication m executed in multiplier unit

1 2 3 4 5 6 7 8

2 3 4

5 6

9 10 11 12

7 8

13 14 15 16

9 10

11 12

1

multiplication

addition

(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

3

5

4

1

7

8

9

11

10

2

12

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18

cycle

16

7

8

1

10

2

9

11

12

14

3

13

15

4

5

6

(b)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

3

5

4

1

7

8

9

11

10

2

12

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18

cycle

16

5

6

7

8

1

10

2

11

12

3

13

15

4

9

14

(c)

Figure 3.13 (a) DFG of the AR �lter; (b,c) two possible schedule and bindings.

Application of loop unrolling for operand sharing

The operand-sharing technique is applied when some operations share the same

operand in the same iteration of the algorithm. But it can also be applied even

if operands feed more than one operation in di�erent iterations. We just need to

unroll the loop [BGS93]. The technique of loop unrolling replicates the body of a

68 Chapter 3: High-level synthesis techniques for low power

for i = 2 to N � 1

A(i) = A(i) +A(i � 1)A(i+ 1)

(a)

for i = 2 to N � 2 step 2

A(i) = A(i) +A(i � 1)A(i+ 1)

A(i+ 1) = A(i+ 1) + A(i)A(i+ 2)

(b)

Figure 3.14 (a) Original code and (b) after loop unrolling.

loop some number of times (unrolling factor u) and then iterates by step u instead

of step 1. This transformation reduces the loop overhead, increases the instruction

parallelism and improves register, data cache or TLB locality. Because of these

properties, this technique has been implemented in compilers to optimize the code

for performance.

Figure 3.14 shows an example of loop unrolling. The original code in Figure 3.14(a)

is unrolled once in Figure 3.14(b). Value N is assumed to be even. Loop overhead is

cut in half because two iterations are performed in each iteration. If array elements

are assigned to registers, register locality is improved because A(i) and A(i+1) are

used twice in the loop body. Instruction parallelism is increased because the second

assignment can be performed while the results of the �rst are being stored and the

loop variables are being updated.

The low-pass image �lter [Lim90] will be used to illustrate how the operand sharing

and loop unrolling techniques can be combined for power optimization. A DFG of

the low-pass image �lter is shown in Figure 3.15(b). We see that no OPR is possible.

But if we unroll the inner loop twice (the loop body contains now three iterations),

the DFG of Figure 3.15(c), with 9 potential OPRs are possible, is obtained.

With one adder, the schedule of the DFG in Figure 3.15(c) has a 24-cycle latency

and the one in 3.15(b), 8. Therefore, the total latency of the algorithm is the same

in both schedules. Moreover, all 9 OPRs are achieved.

The estimated power-consumption reduction is now:

R (�

add

) =

3

8

(1� �

add

) ;

obtaining a reduction of 9.4%.

There are some drawbacks in unrolling a loop that may diminish the power savings

achieved on the functional units. First, the lifetime of the variables may increase.

A side e�ect is the possible increase in the number of registers used. This is not a

problem (since an increase in the number of registers does not imply an increase in

3.4 Register-transfer level techniques for low power 69

Benchmark +/�
;� Power red.

5th-order Elliptic �ller [DDN85] 26/8 1
 (2 cycles),2 � (1 cycle) 12%

4th-order Daubechies �lter [PTVF92] 12/12 1
 (2 cycles),1 � (1 cycle) 21%

SHARF [TJL87] 11/12 1
 p. (2 cycles),2 � (1 cycle) 10%

1-D 8-input Lee DCT [RY90] 29/13 2
 (2 cycles),2 � (1 cycle) 6%

1-D 8-input Chen DCT [RY90] 26/16 2
 (2 cycles),2 � (1 cycle) 19%

4� 4 matrix multiplier 4/8 2
 (2 cycles),1 � (1 cycle) 26%

Table 3.3 Results obtained by applying the operand-sharing technique.

power consumption if the variables of the algorithm are properly assigned to those

registers - see Section 3.23) unless

the number of registers in the targeted architecture is �xed and it is exceeded

by the number of registers used. In this case, the contents of some of them have

to be temporarily stored in memory and loaded back when needed (register

spillage) and

the number of registers in the targeted architecture is not �xed (we can choose

it since we design the architecture) but there is an area constraint.

Second, the complexity of the control unit is increased because more cycles are

needed to schedule the operations of the unrolled loop.

Application of the technique to other benchmarks

Table 3.3 shows the results obtained when applying the operand-sharing technique

to other high-level synthesis benchmarks.

In all benchmarks except for the Elliptic �lter, the results have been obtained by

comparing the power-consumption estimation of the schedule with fewest achieved

OPRs and the schedule with the largest number of achieved OPRs, having both

schedules the lowest possible latency.

In the Elliptic �lter we have detected a tradeo� between the speed and the con-

sumption of the �nal design: it is possible to obtain a design with a longer latency

(23 cycles vs. 21 cycles) but also with a higher number of achieved OPRs.

70 Chapter 3: High-level synthesis techniques for low power

for i = 0 to M

for j = 0 to N

out =

(A[i�1][j�1]+ = � a0 � =

A[i�1][j]+ = � a1 � =

A[i�1][j+1]+ = � a2 � =

A[i][j�1]+ = � b0 � =

A[i][j]+ = � b1 � =

A[i][j+1]+ = � b2 � =

A[i+1][j�1]+ = � c0 � =

A[i+1][j]+ = � c1 � =

A[i+1][j+1])=9 = � c2 � =

(a)

a0 a1a2 b0 b1b2 c0 c1 c2

out

(b)

a0 a1a2a3a4 b0 b1b2b3b4 c0c1c2c3c4

out0 out1 out2

(c)

Figure 3.15 (a) Low-pass image �lter algorithm; (b) DFG of the inner loop of

(a) (without division by nine) and (c) DFG after loop unrolling.

3.4.4 Operand retaining

Not all resources of a data-path are always used during all cycles. Some remain

idle when no operation is available for them. A functional unit consumes useful

power when it is executing an operation and consumes useless power when there

is an input operand variation while the functional unit is idle. One of the reasons

for this possible variation of the input operands is that the control unit is usually

synthesized using don't care values to minimize area or increase speed. Thus, an

idle functional unit may have input operand changes because of the variation of the

selection signals of multiplexers.

The operand-retaining technique attempts to minimize the useless power consump-

tion of the idle functional units. Useless power is specially important in data-paths

3.4 Register-transfer level techniques for low power 71

Benchmark +/� �;
 Idle Power

time reduc.

(1) AR �lter [Kun84] 12/16 1 p.
 (2 c), 1 � (1 c) 27% 12%

(2) 4th-order Daubechies �lter [PTVF92] 12/16 1
 (2 c), 1 � (1 c) 37% 9%

(3) 1-D 8-input Lee DCT [RY90] 28/13 4
 (2 c), 3 � (1 c) 40% 38%

(4) 4� 4 matrix multiplication 4/8 2
 (2 c), 1 � (1 c) 33% 15%

(5) unrolled low-pass image �lter (3.13) 24/0 4 � (1 c) 25% 20%

(6) LMS adaptive �lter [TJL87] 8/9 2
 (2 c), 1 � (1 c) 45% 34%

(7) pixel interpolation [BS95] 5/0 3 � (1 c) 44% 34%

(8) 5th-order Elliptic �lter [DDN85] 26/8 1
 (2 c), 1 � (1 c) 33% 21%

Table 3.4 Idle time spent by the functional units.

synthesized from sparse schedules. A schedule is said to be sparse if its unit occu-

pation is relatively low. Table 3.4 presents the idle time spent by the functional

units for some high-level synthesis benchmarks for a schedule with the functional

units of the fourth column. The total number of operations for each benchmark is

shown in the third column.

Some approaches to minimize the useless power consumption of idle units are: (a)

with a proper register binding that minimizes the activity of the functional units

(this technique is addressed in Section 3.4.5); (b) by wisely de�ning the control

signals of the multiplexors during the idle cycles in such a way that the changes at

the inputs of the functional units are minimized (this may result in de�ning some

of the don't care values of the control signals) [RJ94] and (c) latching the operands

of those units that will be often idle.

In this section, approach (c) is evaluated. It consists of the insertion of latches at

the inputs of the functional units to store the operands only when the unit requires

them. Thus, in those cycles in which the unit is idle no consumption in produced.

The control unit has to be redesigned accordingly, in such a way that input latches

become transparent during those cycles in which the corresponding functional unit

must execute an operation.

The outcome of this technique in terms of power savings is somehow similar to the

well-known technique of putting the functional units (or other larger parts of the

circuit) to sleep when they are not needed through gated-clocking strategies [CSB94,

BSdM94, AMD

+

94].

The operand-retaining technique has been evaluated to several benchmarks. For

example, the least-mean square �lter (LMS) has been scheduled with two multipliers

(two cycles) and one adder (one cycle). In each iteration of this algorithm, the adder

becomes idle during 8 cycles and the multipliers during 14 cycles.

72 Chapter 3: High-level synthesis techniques for low power

The power consumption generated by the idle units (useless consumption) is:

P

useless

(�

add

; �

mul

; �) = 8 P

add1

+ 7 P

mul1

= 8 �

add

� + 7 �

mul

;

and the power consumption because of the useful calculations (useful consumption)

is:

P

useful

(�

add

; �

mul

; �) = 8 P

add2

+ 9 P

mul2

= 8 � + 9 :

The estimated reduction in power consumption is:

R (�

add

; �

mul

; �) =

P

useless

P

useless

+ P

useful

;

achieving a reduction of 34%. This estimation does not take into account the power

consumption overhead because of latches. For simplicity in the evaluation (and to

avoid synthesizing every control unit), we have assumed that, in average, only one

of the operands changes in each idle unit at each cycle. This assumption may be

optimistic or pessimistic depending on the �nal implementation. A more realistic

assumption would basically depend on the register binding done for the variables

of the algorithm.

More results obtained by applying the operand-retaining technique are reported in

the last column in Table 3.4.

3.4.5 Operand similarity

In the techniques previously presented, the main idea was to maximize the operand

locality or, in other words, the operand repetition in the functional units. The

operand-similarity technique takes into account the operand activity

1

. This tech-

nique uses the information of the similarity among the variables and constants of

the algorithm in the scheduling and register-binding steps.

We will show how the activity of the input operands a�ect the power consumption of

the design. Two examples will be presented to illustrate this technique: a low-power

schedule for a �nite impulse response �lter (FIR �lter) [TJL87] and a low-power

register binding for the Di�erential Equation Solver [GDWL92].

A pro�ling of the algorithm to be synthesized is needed in order to determine the

similarity (measured with the AHD) among its variables and constants.

1

See Section 3.3 for the de�nition of operand repetition and operand activity.

3.4 Register-transfer level techniques for low power 73

To verify the e�ect of the input operand activity in power consumption, we have

fed the LMS �lter of Figure 3.11(b) with a random signal and with a waveform

calculated as the sum of two sines. The AHD of both signals di�er in 2.5 and this

di�erence leads to a 22.6% power reduction when the LMS �lter is fed with the

sum-of-two-sines signal.

Example 1: scheduling of the FIR �lter

A FIR �lter follows the equation

P

p�1

i=0

x

i

c

i

where c

i

are constants.

When speed is not a major issue, a signi�cant reduction in hardware complexity is

achieved by performing multiplications over several clock cycles as a series of shift-

add operations. When speed is important, the multiplications must be executed by

multipliers. We will focus on this case and will show how a di�erent multiplication

execution order can in
uence over the �nal power consumption.

As an example, assume p = 4, the values -1870, 1867, -740 and -1804 for the

constants c

0

to c

3

and a bit-width of 12. Assume also that the input data is a

waveform calculated as a sum of two sines. If the DFG of the 4th-order FIR �lter

(Figure 3.16(a)) is scheduled with one multiplier and one adder, di�erent minimum-

latency schedules are possible with di�erent multiplication execution order. In one

of those schedules (Figure 3.16(b)), the multiplier observes the following changes in

one of its operands (numbers over the arrows indicate the AHD between constants):

c

0

10

! c

1

7

! c

2

6

! c

3

3

! c

0

10

! � � � (i.e. an AHD of 6.5) whereas in the another

schedule (Figure 3.16(c)), it may observe the following changes: c

0

10

! c

1

11

! c

3

6

!

c

2

7

! c

0

10

! � � � (i.e. an AHD of 8.5).

By means of switch-level simulations, the calculated power consumption for the

functional units associated to the �rst schedule is 6.3% less than the one associated

to the second. This reduction has been achieved only with the change of the schedule

of two multiplications.

Example 2: register binding for the Di�erential Equation Solver

The experiments done before for the LMS �lter of Figure 3.11(b) further showed

that the AHD among the variables h

i

is lower than among the other variables. The

same occurs for other groups of variables.

This information can be used in register-binding algorithms to obtain a register set

where activity of individual registers is minimized. As a side e�ect, those idle units

that observe the changes in the registers will also reduce its consumption. Further-

74 Chapter 3: High-level synthesis techniques for low power

x(t) c0 x(t−1) c1 x(t−2) c2 x(t−3) c3

out

2 3 4

1 2

3

1

multiplier

adder

a

m

input/output variablei/o

addition a executed in adder unit

multiplication m executed in multiplier unit

(a)

1

2

3

4

5

6

7

8

9

10

cycle
x(t−1)x(t) x(t−2) x(t−3)c0 c1 c2 c3

out

1

2

3

4

1

2
3

(b)

1

2

3

4

5

6

7

8

9

10

cycle
x(t−1)x(t) x(t−2) x(t−3)c0 c1 c2 c3

out

1

2

3

41

2
3

(c)

Figure 3.16 (a) DFG of the 4th-order FIR �lter; (b,c) two possible schedule

and bindings.

more, the operand-similarity information along with the commutative property of

some operations can be used also to decrease the power consumption in the non-idle

functional units by swapping their operands.

The Di�erential Equation Solver [GDWL92] data-
ow graph (see Figure 3.17) has

been scheduled with one adder (one cycle) and two multipliers (two cycles). The

AHD between all pairs of variables has been obtained by means of simulations of

the algorithm with di�erent input data. The �nal AHD used has been obtained as

the average of all simulations.

Two di�erent register bindings (A and B) have been obtained. Both bindings use

5 registers. The reduction of the register activity of binding B produces an average

power savings of 7.5% in the functional units with respect to A. This is obtained by

3.4 Register-transfer level techniques for low power 75

multiplication

addition

u
y

xdx 5

3

Figure 3.17 DFG of the Di�erential Equation Solver.

Technique Applicability range

Loop interchange Multi-dimensional signal processing

(e.g. image processing)

Descriptions with operations sharing input

Operand reordering operands between consecutive cycles

(e.g. digital �lters)

Operand sharing Descriptions with operations sharing

input operands in the same cycle

Operand retaining Descriptions where the functional units are

idle a large fraction of the time

Operand similarity Descriptions with a high similarity among

the operands of the operations

Table 3.5 Features of the targeted circuit domains.

the reduction of the operand activity at the inputs of the functional units during

the idle cycles.

3.4.6 Summary of targeted circuit domains

Not all the techniques produce a tangible improvement in all type of circuits. Ta-

ble 3.5 shows the applicability range targeted by each technique.

All the techniques are complementary among them. There is only an exception: if

the operand-retaining technique (i.e. the operands of the functional units are latched

76 Chapter 3: High-level synthesis techniques for low power

CONTROL

SYNTHESIS

Allocation

Scheduling

Resource binding

Control synthesis

ABSTRACT CIRCUIT DESCRIPTION

Figure 3.18 High-level synthesis process.

to avoid useless power consumption) is applied, then there is no need to use the

correlation information to reduce the power during the idle cycles (see section 3.23).

The power savings that each of the techniques would obtain if applied alone to

the same circuit do no add up when they are applied together to that circuit. For

example, if both operand-reordering and operand-sharing techniques are separately

applied to the same circuit and we observe an A% and B% power reduction re-

spectively, we can not assume an (A+B)% power reduction when both techniques

are applied together. If the operand-reordering technique is �rst applied, it may

happen that the operand-sharing technique can not achieve a B% power reduction

because the number of operations that share an operand may have been reduced

as a consequence of the transformation performed by the operand-reordering tech-

nique. Therefore, the designer should �rst apply the techniques that obtain the

largest power savings.

3.5 SCHEDULING AND REGISTER BINDING FOR

LOW POWER

In this section, algorithms for the scheduling and register-binding steps of high-level

synthesis are presented. These algorithms implement some of the concepts described

in the last three techniques in Section 3.4, therefore targeting at the reduction of

power consumption only in the functional units. They do not address the reduction

of power in I/O, clocks or data transfers.

3.5.1 High-level synthesis

3.6 Previous work on high-level synthesis for low power 77

High-level synthesis is the design task of converting an abstract description of a

digital system into a register-transfer level (RTL) design implementing that behavior

(Figure 3.18). This abstract description may be composed of programs, algorithms,

owcharts, data-
ow graphs, instruction sets, generalized FSMs, etc. The �nal RTL

design consists of functional units (ALUs, multipliers), storage units (memories,

register �les) and interconnection units (multiplexers, buses).

The high-level synthesis system compiles the abstract description into an internal

representation. All synthesis tasks work from this representation. A data-
ow graph

is used to represent descriptions with a large number of arithmetic operations. To

represent reactive or embedded systems, in which the control sequence is based on

external conditions, the DFG is extended with the control
ow (CDFG).

The high-level synthesis process is traditionally decomposed into four di�erent yet

interdependent tasks [GR94]: allocation, scheduling, binding and control synthesis.

The allocation task determines the type and quantity of resources used in the RTL

design. It also determines the clocking scheme, memory hierarchy and pipelining

style. The goal of allocation is to make appropriate trade-o�s between the design's

cost and performance. To perform the required trade-o�s, the allocation task must

determine the exact area and performance values. The number of functional units

is a �rst approximation of the cost in area. The number of control steps indicates

the performance.

The scheduling task schedules operations and memory references into clock cycles.

If the number of clock cycles (number of resources) is a constraint, the scheduler

has to produce a design with the fewest functional units (fewest clock cycles).

The binding task assigns operations and memory references within each clock cycle

to available hardware units. A resource can be shared by di�erent operations if they

are mutually exclusive, i.e. they will never execute simultaneously.

Furthermore, the binding task is decomposed into functional, storage and inter-

connection unit steps, all of them tightly related to each other. They are usually

ordered and executed sequentially because of the high complexity of the binding

task.

The �nal task, control synthesis, consists of reducing and encoding states and de-

riving the logic network for next-state and control signals in the control unit.

78 Chapter 3: High-level synthesis techniques for low power

0 1 2

(a)

Adder Area Delay Power

RCA � 2 cycles Cycle 1: �

Cycle 2: �=2

CLA (4=3)� 1 cycle Cycle 1: (7=4)�

(b)

0

1

2
Power

Schedule A

(c)

0
1

Power

2

Schedule B

(d)

0

2

Power

1

Schedule C

(e)

Schedules

A B C

Peak power 2:57� 1:5� 1:75�

Average power 1:19� 1:13� 1:25�

Area 2:3� 2� 2:3�

(d)

Figure 3.19 Example of peak-power and average-power optimization during the

scheduling and functional-unit binding tasks; (a) DFG; (b) adder characteristics;

(c-e) di�erent schedules and bindings and (d) results.

3.6 PREVIOUS WORK ON HIGH-LEVEL

SYNTHESIS FOR LOW POWER

High-level synthesis for low power has been addressed in [Mar95, RJ94, DK95,

CP95, KKRV95, RJ95].

In [Mar95], the scheduling and functional-unit binding tasks are applied to reduce

the average and the peak-power consumption. Peak power reduction is important

to avoid sudden high currents that may cause voltage drops, electron-migration

3.6 Previous work on high-level synthesis for low power 79

and other failure mechanisms. A simple example is shown in Figure 3.19. Fig-

ure 3.19(a) shows the data-path to be synthesized. Figure 3.19(b) presents the

characteristics (area, cycles and average power) of the two types of adders that can

be used (the power values are a simpli�cation of the values presented in [Mar95]

for the sake of clarity). The ripple-carry adder (RCA) presents more power in the

�rst cycle because there is activity throughout it from the very beginning. In the

second cycle, the least-signi�cant part has stabilized and only there is activity in the

most-signi�cant part because of carry propagation. Therefore, the average power

consumption in the second cycle is less. Figures 3.19(c) to 3.19(e) show di�erent

schedules with the same delay (4 cycles). We observe in Table 3.19(d) that Schedule

B presents both the lowest peak and average power.

In [RJ94], an scheduling method that attempts to reduce the transition activity

of the synthesized design is presented. The scheduling approach is driven by the

activity at the inputs of the functional units; it selects a sequence of operations

(variables) for a module (register) such that the transition activity is reduced. The

same authors present in [RJ95] a linear integer programming formulation for the

problem.

Moreover, in [RJ94] a method for optimizing the control is described. The controller

generates the control signals (load signals for registers, select signals for multiplex-

ers). The inputs to functional units and registers during idle periods do not a�ect

the behavior of the circuits, i.e. they are don't cares that are used to prevent the

load of a register in those cycles it is idle. The don't cares can also be used to select

the registers with least activity for the idle units, so that the useless power con-

sumption is minimized. Power reductions applying both scheduling and controller

optimization for low power range from 5 to 33%. The study in [RJ94] is the closest

work to the one presented in this chapter as contribution.

In [DK95], a scheduling and binding technique for reducing the activity in the buses

is described. This is accomplished by properly multiplexing the data transfers onto

the buses. Busses are high-capacitance signals; therefore, reducing their activity

implies decreasing signi�cantly the power of the RTL design. An average reduction

of 45% is achieved for three well-known high-level synthesis benchmarks at the

expense of a very high average increase in delay of 31%.

In [CP95], a similar register binding algorithm to the one presented in this chapter as

contribution is described. It is also formulated as a clique covering of a compatibility

graph. Unfortunately, no power reduction results are reported for a comprehensive

set of benchmarks.

80 Chapter 3: High-level synthesis techniques for low power

v2
v3

v4

v5

v6
v7v8

v9

v10

v11

v1

Variable Compatibility Graph R0

R1

R2

R3

R0

R1

R2

R3

R4

Minimum register set

Maybe not minimum
 register set

v2
v3

v4

v5

v6
v7v8

v9

v10

v11

v1

Clique Partitioning

 Clique
Partitioning

Modified Variable Compatibility Graph

Figure 3.20 Register binding for low power.

Other works related to high-level synthesis for low power are found in [KKRV95,

RJ95].

3.6.1 Overview

Two traditional approaches for the scheduling and register-binding tasks modi�ed

to obtain lower-power designs are presented in the following sections.

The scheduling algorithm for low power uses a list-scheduling approach where the

priorities of the operations of the ready-operation queue are set in such a way that

operations sharing the same operand are bound to the same functional unit and

scheduled so that the functional unit can reuse that operand.

The register-binding algorithm for low power is based on a clique partition of a

restricted variable-lifetime compatibility graph to obtain a register set that, for each

functional unit, reduces the power consumption during idle cycles. A drawback of

this algorithm is that larger register sets may be obtained (Figure 3.20). Power

consumption in the functional units during non-idle cycles is decreased by taking

into account the AHD among the variables of the behavioral description and the

commutative property of some operations.

3.6 Previous work on high-level synthesis for low power 81

Although the scheduling and register-binding techniques for low power are compat-

ible and complementary, the scheduling technique will obtain better improvements

if applied to dense schedules (e.g. schedules where the functional unit occupation

is high) whereas the register-binding technique is more suitable to sparse schedules.

3.6.2 Scheduling for low power

The goal of the scheduling algorithm for low power is to increase the potential

for a functional unit (FU) to reuse an operand. Henceforth, we will call operand

reutilization (OPR) the fact that an operand is reused by two operations consecu-

tively executed in the same FU. The OPR concept has already been explained in

Section 3.4.3.

A traditional list-scheduling algorithm (LS) will be compared with a modi�ed list-

scheduling targeting at low power (LPLS). In both cases, the FU-binding task is

based in a clique partition of a variable-lifetime compatibility graph but it di�ers

in the number of edges of this graph as will be shown later.

LPLS also trades o� latency for OPRs: assume that an operation happens to be in

the critical path of the DFG but it is scheduled later than indicated by LS because

an OPR is then achieved. In this case, the latency of the synthesized circuit has

increased.

List-scheduling algorithm

The list-scheduling algorithm [GDWL92] is a popular method for scheduling oper-

ations when the number of resources is a constraint. The algorithm is shown in

Figure 3.21.

The list-scheduling algorithm maintains a priority list of ready operations. An op-

eration is ready if it has all predecessors already scheduled. During each iteration of

the algorithm (which corresponds to a control step) the operations in the beginning

of the ready list are scheduled till all the resources get used. The priority list is al-

ways sorted with respect to a priority function. One such a function is the mobility

range, which indicates in how many di�erent cycles the operation may be scheduled

considering no restriction on the number of resources. A smaller value of mobility

indicates a higher urgency for scheduling an operation since the schedule will run

out of alternative control steps earlier. The mobility range can be easily calculated

with an ASAP and ALAP scheduling (refer to [GDWL92] for more details). Thus,

the priority function resolves the resource usage among the ready operations; the

82 Chapter 3: High-level synthesis techniques for low power

V is the set of operations.

PList

t

k

is the priority list for each

operation type t

k

2 T .

C

step

is the current control step.

m is j T j.

N

t

k

is the number of FUs performing

operations of type t

k

.

S

current

is the current schedule.

INSERT READY OPS (V;PList

t

1

; PList

t

2

; : : : ; PList

t

m

);

C

step

= 0;

while ((PList

t

1

6= ;) or : : : or (PList

t

m

6= ;)) do

C

step

= C

step

+ 1;

for k = 1 to m do

for funit = 1 to N

k

do

if PList

t

k

6= ; then

SCHEDULE OP (S

current

; FIRST (PList

t

k

); C

step

);

PList

t

k

= DELETE (PList

t

k

; FIRST (PList

t

k

));

endif

endfor

endfor

INSERT READY OPS (V; PList

t

1

; PList

t

2

; : : : ; PList

t

m

);

endwhile

Figure 3.21 List-scheduling algorithm.

operation with higher priority gets scheduled. Operations with lower priority will

be deferred to the next or later control steps.

The algorithm uses a priority list PList for each operation type (t

k

2 T). These lists

are denoted by the variables PList

t

1

, PList

t

2

, : : :, PList

t

m

. The operations in these

lists are scheduled into control steps based on N

t

k

which is the number of functional

units performing operation of type t

k

. The function INSERT READY OPS() scans the set

of operations, V , determines if any of the operations in the set are ready, deletes

each ready operation from the set V and appends it to one of the priority lists based

on its operation type. The function SCHEDULE OP(S

current

,o

i

,s

j

) returns a new schedule

after scheduling the operation o

i

in control step s

j

. The function DELETE(PList

k

,o

i

)

deletes operation o

i

from the speci�ed list.

Initially, all operations that do not have any predecessor are inserted into the appro-

priate priority list by the function INSERT READY OPS(), based on the priority function.

The while loop extracts operations from each priority list and schedules them into

the current step until all the resources are exhausted in that step. Scheduling an

operation in the current step makes other successor operations ready. These ready

3.6 Previous work on high-level synthesis for low power 83

ASS = CREATE ALL SS (V);

INSERT READY OPS (V;PList

t

1

; PList

t

2

; : : : ; PList

t

m

);

C

step

= 0;

while ((PList

t

1

6= ;) or : : : or (PList

t

m

6= ;)) do

C

step

= C

step

+ 1;

for k = 1 to m do

UPDATE PRIORITIES (PList

t

k

);

while PList

t

k

6= ; do

op = FIRST (PList

t

k

);

if IS OSS (ASS; op) then

ifnot SS HAS RESERVED FU (SS) then

funit = GET FREE AND NOT RESERVED FU (SS);

RESERVE FU IN SS (SS; funit);

endif

schedule operation = TRUE;

else

funit = GET FREE AND NOT RESERVED FU (SS);

if funit = ; then

schedule operation = FALSE;

else

schedule operation = TRUE;

endif

endif

if schedule operation = TRUE then

SCHEDULE OP (S

current

; op;C

step

);

endif

PList

t

k

= DELETE (PList

t

k

; op);

endwhile

endfor

INSERT READY OPS (V; PList

t

1

; PList

t

2

; : : : ; PList

t

m

);

endwhile

Figure 3.22 Low-power list-scheduling algorithm.

operations are scheduled during the next iterations of the loop. These iterations

continue untill all the priority lists are empty.

Low-power list-scheduling algorithm

The traditional list-scheduling algorithm shown in Figure 3.21 has been modi�ed

by means of including some heuristics to achieve as many OPRs as possible. A

simpli�ed version of its algorithm is presented in Figure 3.22. Both algorithms

follow the notation in [GDWL92].

Those operations that share an operand are grouped in operand-sharing sets (hence-

forth named SS) (CREATE ALL SS()). All operations of a group are able to be exe-

cuted on the same FU. An operation of an SS (IS OSS()) is able to reserve the FU

where it is going to be assigned for the rest of its SS in case it has not one re-

84 Chapter 3: High-level synthesis techniques for low power

served yet (RESERVE FU IN SS()). Given an SS and its reserved FU, in the best case

jSSj � 1 OPRs can be obtained. All these consecutive OPRs on the same FU are

called an operand-sharing chain. LPLS attempts to schedule as many operations

as possible of the SS on its reserved FU. It also attempts not to execute other

operations on this FU in order to prevent breaking the operand-sharing chain (OB-

TAIN FREE AND NOT RESERVED FU()). The scheduling of the operation of an SS is guided

by giving more priority to the operations in the operand-ready queue whose SS has

already a reserved FU (UPDATE PRIORITIES()). The priority of an operation is decreased

(i.e. will be scheduled later) if it is going to be assigned to an FU not reserved by

its SS. If the operation scheduled in a later cycle happens to be in the critical path,

the �nal latency is increased.

All the information about achieved OPRs gathered during the execution of LPLS

is transferred to the FU-binder as a set of binding constraints. The FU-binder

�rst complies with all these constraints (i.e. achieves all OPRs already obtained

by LPLS) and after that proceeds as the traditional FU-binder with weights to

minimize the number of interconnection units (multiplexers).

LS has a complexity of O(n), where n is the number of operations. LPLS has a

complexity of O(n

2

m), where m is the number of unit types.

Results

The power consumption of the designs synthesized with LS are compared with the

power consumption of those obtained with LPLS. To estimate power consumption,

the coarse-grained model (see Section 3.3) is used and 12-bit-wide FUs are assumed.

It is important to notice that LS already achieves many of the possible OPRs

because the FU binder already forces some OPRs in its attempt to minimize the

number of multiplexers (e.g. interconnections).

Several results are shown in Table 3.6. The benchmarks have been scheduled with

the resources reported in Table 3.4. The fourth column in Table 3.6 indicates the

maximum possible number of OPRs. The �fth and sixth columns show the number

of OPRs (for both type of FUs) achieved with LS and LPLS.

The last column of Table 3.6 accounts for the savings in power consumption in the

FUs because of the increment of achieved OPRs obtained with LPLS. The power

consumption of an operation of the benchmark depends on the type of FU where

this operation is scheduled and on how many operand changes that FU has when

executes the operation. A 17% of power reduction is achieved in the Daubechies

3.6 Previous work on high-level synthesis for low power 85

Bench. LS LPLS Max. OPRs OPRs Power

Latency Latency OPRs with LS with LPLS reduc.

(1) 20 20 4
 3
 4
 2%

(2) 20 22 10
 7
 10
 17%

(3) 14 15 11 �/3
 5 �/2
 5 �/2
 0%

(4) 11 11 6
 0 4
 7%

(5) 9 9 9 � 2 � 9 � 10%

(6) 17 17 3
 3
 3
 0%

(7) 5 5 2 � 1 � 1 � 0%

Table 3.6 Results obtained with the LPLS algorithm.

�lter and a 7% in the 4�4 matrix multiplication. The rest of the benchmarks present

a small or null power-consumption reduction because of the following reasons: (a)

the maximum number of possible OPRs is too small compared to the number of

operations of the benchmark and (b) the null or little increase in OPRs achieved

by LPLS with respect to LS.

3.6.3 Register binding for low power

Once the scheduling and FU-binding tasks have been done, the register-binding

algorithm for low power (LPRB) attempts to further reduce the useful and the

useless power consumption of FUs (see Section 3.4.4).

LPRB assumes that the control unit maintains, for each FU, the same registers at

its inputs during idle cycles.

The LMS benchmark (see Figure 3.23(a) for its DFG) will illustrate how LPRB

works.

Reducing useless power consumption in FUs

One way to tackle the reduction of useless power consumption is by building up a

register set that minimizes the number of input changes at the idle units. LPRB

algorithm follows this approach (�rst part of the algorithm in Figure 3.24).

A traditional approach for building up a register set is the clique-partitioning

method. After applying this method to a lifetime compatibility graph for the vari-

ables (CG), each clique of the partition corresponds to one register. LPRB uses the

same traditional approach but applied to a di�erent variable-compatibility graph

(LPCG). To build up the LPCG, the register-binding for low power �rst constructs

86 Chapter 3: High-level synthesis techniques for low power

v3v0 v7 v4 v8 v11 v14v12

v1 v5 v9 v13

v18 v19

v20v16

v17c22

v21

v2 v6 v10 v15

m1 m2 m3 m4

a1 a2

a3

a4

m5

m6 m7 m8 m9

a5 a6 a7 a8

(a)

(v7) (v6)

(v7) (v6)

(v7) (v6)

(v1) (v5)

v9 v13
v19

v19 v18
v20

v16 v20
v17

(v16) (v20)

(v16) (v20)

(v16) (v20)

(v16) (v20)

v11 v10
v11

v12 v15
v12

v3 v2
v3

v7 v6
v7

(v7) (v6)

(v4) (v21)

v0 v3

v1

v8 v11

v9

(v8) (v11)

(v8) (v11)

(v8) (v11)

v17 c22

v21

v8 v21

v10

v4 v21

v6

(v4) (v21)

(v4) (v21)

(v4) (v21)

(v0) (v21)

v4 v7

v5

v14 v12

v13
(v14) (v12)

(v14) (v12)

(v14) (v12)

(v14) (v12)

(v14) (v12)

v14 v21

v15

v0 v21

v2

(v0) (v21)

(v0) (v21)

(v0) (v21)

v1 v5
v18

a1

a2

a3

a4

a7

a8

a5

a6

m1

m3

m5

m8

m7

m2

m4

m9

m6

cycle

FU

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A0 M0 M1

v1

v5

v18
a1

Operation a1
reads

variables v1 and
and writes variable v18

A0

v5

is executed

in unit A0 and

1 2 3

(b)

Figure 3.23 (a) DFG of the LMS �lter and (b) schedule and FU binding.

the CG (CREATE CG()). In a second step, a set of edges of the CG are removed (RE-

MOVE EDGE()). Each edge removed from the CG connects two compatible variables

with the following property: should both be assigned to the same register, an idle

FU would have an input change.

Figure 3.23(b) illustrates this concept. It shows the schedule and FU binding of the

DFG of Figure 3.23(a) with one adder (one cycle) and two multipliers (two cycles).

The shadowed slots represent the cycles in which the FUs are idle. For each FU,

the control unit maintains, during idle cycles, the same registers (containing the

variables in parenthesis) on its inputs. Let us consider what happens with FU A0

in cycle 10. An input change will occur at the inputs of idle unit A0 if, for example,

variables v16 and v21 are assigned to the same register because multiplierM0 will

modify the value of that register in cycle 9. The same happens with variable pair

(v20 � v21). But not all the variables of these two pairs have compatible lifetime

between them. In this example, only the pair (v20 � v21) does. Thus, for the FU

A0 in cycle 10, this edge is removed from the CG. If the same procedure is applied

to all the idle slots of Figure 3.23(b), 6 edges will be removed.

3.6 Previous work on high-level synthesis for low power 87

= � reduce power consumption in idle functional units � =

CG = CREATE CG (V);

for c = 1 to MAX CYCLES do

for fu = 1 to MAX FUs do

if IDLE (fu; c) then

for each operation op whose result

is in cycle (c� 1) MOD MAX CYCLES do

op source = OPERATION IN FU (fu);

REMOVE EDGE (CG;<VAR DEST(op source);VAR A(op) >);

REMOVE EDGE (CG;<VAR DEST(op source);VAR B(op) >);

endforeach

endif

endfor

endfor

REGISTER BINDING(CG);

= � reduce power consumption in non� idle functional units � =

for each FU fu do

OBTAIN BEST VARIABLE ORDER (fu;AHD);

endforeach

INTERCONNECTION UNIT BINDER();

Figure 3.24 Register-binding algorithm for low power.

The drawback in removing edges is the possibility to obtain a larger register set, as

it will be con�rmed later with the results.

Not all the useless power consumption in the idle FUs is eliminated with this tech-

nique. As an example, let us consider FU A0 in cycle 16 in Figure 3.23(b). Because

the previous operation executed in FU A0 has variable v7 as an operand and as the

result, FU A0 has in cycle 16 an input change.

Further reducing useful power consumption in FUs

By taking into account the commutative property of some operations and the av-

erage Hamming distance (AHD) among the variables of the design, useful power

consumption in FUs may be further reduced (it was �rst reduced in the scheduling

task). This reduction has to be done after the register set has been derived. This

process is shown in the second part of the algorithm in Figure 3.24.

As an example, consider additions a1 and a2 of Figure 3.23(b). With the variable

input order shown, the FU A0 has an AHD on one of its inputs of H(v1; v9) and on

the other input of H(v5; v13). Recall from Section 3.5 how the power consumption

of an FU depends on the AHD of its inputs. If the AHD information among the

variables is available, the reduction in power can be evaluated if the variable order

in addition a2 is changed. The problem of obtaining the best variable order for all

88 Chapter 3: High-level synthesis techniques for low power

Bench. LPLS and TRB LPLS and LPRB Power

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6) Red.

(3) 21 14.9 65 33.2 73.0/182.1 303.2 23 14.7 67 34.2 48.5/184.0 281.4 7%

(6) 12 4.6 23 13.3 1.4/104.3 123.6 12 4.5 24 13.9 0.2/98.4 117.0 5%

(7) 6 1.21 5 0.85 0.33/1.45 3.84 7 1.38 4 0.68 0.0/1.46 3.52 8%

Table 3.7 Comparison between the traditional resource-binding algorithm (TRB)

and its low-power version (LPRB).

operations requires an exhaustive exploration. Thus, for simplicity, LPRB follows

a greedy approach (OBTAIN BEST VARIABLE ORDER()).

By de�ning a variable order, the degrees of freedom for the interconnection-unit

binder are reduced because the correct variable order (which implies the correct

register order) has to be satis�ed. This implies that the number of multiplexers will

be larger than the number obtained if no useful power is reduced.

Results

TRB is compared with its low-power version LPRB over three data-path bench-

marks for which we have representative input data

2

. The AHD among the variables

has been obtained by means of pro�ling the benchmarks. In all of them, the schedul-

ing and FU-binding tasks have been done with the low-power methods described in

Section 3.6.2. The benchmarks have been scheduled with the resources reported in

Table 3.4. To estimate power consumption, the �ne-grained model (see Section 3.5)

is used and 12-bit-wide FUs are assumed.

For both register-binding algorithms, useful and useless power consumption of FUs,

and the number of registers and multiplexers

3

along with estimations of their power

consumption are reported in Table 3.7. All power estimations are in nJ=iteration.

Columns (1) to (6) are, respectively, number of registers, power of registers, number

of multiplexers, power of multiplexers, useless/useful power of FUs and total data-

path power.

In the 1-D 8-input Lee DCT and pixel interpolation benchmarks, no improvement

has been observed when applying the algorithm for reducing the useful power con-

2

It is important to notice that the AHD among the variables highly depends on the input

data. The AHD of the benchmarks related to image processing has been obtained using the well-

known Lena picture. We have observed that the AHD values converge fast (in approximately 500

iterations of the algorithm).

3

The equivalent number of 2-input multiplexers.

3.7 Conclusions 89

sumption in FUs. The greedy method used did not change the variable order for

any FU.

In the pixel interpolation benchmark, only two adders are used. This implies that

the power consumption of the registers and multiplexers plays an important role in

this benchmark.

It is worth noticing the area-power trade-o�: in two benchmarks the number of

registers and multiplexers has increased when applying LPRB. Although the total

area has increased, the power consumption has been reduced.

3.7 CONCLUSIONS

In this chapter, several strategies to tackle the problem of power consumption at

register-transfer level have been presented. The common idea behind these strate-

gies is to reduce the activity of functional units by reducing the switching activity

of their input operands. The potential bene�ts have been evaluated in di�erent

DSP examples. The techniques have been evaluated with a novel two-level power

consumption model of functional units. Up to 34% power reductions have been

obtained.

Algorithms that reduce the activity of the functional units by minimizing the chan-

ges of their input operands have been presented for the high-level synthesis tasks

of scheduling and register binding. A signi�cant power-consumption reduction is

obtained in the scheduling task with little increase or no increase at all in latency.

Further power reduction is achieved in the idle functional units during the register-

binding task by increasing the number of storage and interconnection units and

taking into account both the commutative property of some operations and the

average Hamming distance among the variables of the data-
ow graph to be syn-

thesized.

90 Chapter 3: High-level synthesis techniques for low power

4

ARCHITECTURAL TECHNIQUE FOR LOW

POWER

This chapter presents a method for reducing the power dissipation produced by

useless activity that only dissipates power and do not contribute to the calculation

of the �nal result of the circuit. This method is specially indicated for the class

of circuits that present a layered structure, where each layer is driven by primary

inputs from the very beginning, thus generating a high amount of useless activity.

Arithmetic circuits, such as parallel multipliers, belong to this class of circuits.

The technique proposed to reduce the useless activity is based on the insertion of

self-timed controlled latches on the high active paths of the circuit.

In this chapter, this technique has been implemented and evaluated for several

con�gurations of array multipliers.

91

92 Chapter 4: Architectural technique for low power

A

B

C P
rim

ar
y

in
pu

ts

(a)

Primary inputs arrive

A

B

C

(b)

Figure 4.1 (a) Circuit structure with glitching; (b) block C presents more ac-

tivity than block A.

4.1 INTRODUCTION

The switching activity of a circuit may be divided into:

useful activity: those signal transitions needed to change the gate outputs of

the circuit from the previous cycle to the current cycle.

useless activity: the rest of the circuit activity. Consumes power and does not

generate correct outputs.

The amount of useless activity depend on the structure of the circuit. It can range

from 15 to 70% [BFR94, SGDK92]. Useless activity is generated because of the

di�erent arrival times of the signals to the inputs of the gates. The di�erent propa-

gation times of the gates is one reason of these unmatched delays. Reducing the logic

depth of the circuit and equalizing paths through gate sizing techniques decrease

the amount of useless activity.

However, some circuits present a regular structure with a �xed logic depth. In these

circuits, other more e�cient techniques for reducing the useless activity should be

devised. For example, the block C in Figure 4.1(a) will start computing when the

primary inputs arrive (Figure 4.1(b)). However, block C only needs to compute its

output then the correct output of block B is available.

4.2 Parallel multipliers 93

In this simple example, a large amount of useless activity may be eliminated by

delaying the primary inputs to blocks B and C till the outputs of, respectively,

blocks A and B have been calculated. This solution is not appropriate if the circuit

presents several blocks and the primary inputs go to di�erent blocks since the area

overhead produced by the delay components may be prohibited. Moreover, the

delay components consume power and may overcome the power savings obtained

with the reduction of the useless activity.

Array multipliers belong to this type of highly regular circuits. In this chapter, a

technique that reduces the useless activity in array multipliers is proposed. It is

based on the insertion of self-timed controlled latches on some high-active signals

of the circuit.

This chapter is organized as follows. In Section 4.2, an overview of parallel multi-

plier circuits is given. In Section 4.3, previous studies in the area of low-power arith-

metic circuits in general and multipliers in particular are presented. In Section 4.4,

the potential power reduction in array multipliers is analyzed. In Section 4.5, the

transition-retaining barrier (TRB) technique is proposed. In Section 4.6, the im-

plementation of the TRBs is described. Finally, the results obtained are presented

in Section 4.7. In Section 4.8, some conclusions are presented.

4.2 PARALLEL MULTIPLIERS

Multipliers are basic arithmetic circuits for many DSP applications. Among multi-

pliers, parallel multipliers are the fastest and they are widely used in order to achieve

high execution speed. Parallel multipliers present a good regularity but also a high

dissipation that increases dramatically with the operand bit-width. Techniques for

decreasing the dissipation of this type of circuits are thus suitable and in some cases

necessary if power dissipation is a major issue.

Multipliers are classi�ed into two basic types: sequential and parallel. The parallel

ones are further classi�ed into two subtypes:

tree multipliers: all partial products are generated in parallel and afterwards a

multi-operand adder is used to obtain the �nal result. The delay of a parallel

multiplier is O(log n), being n the bit-width of the input data.

array multipliers: these multipliers do not use two separate circuits for partial

product generation and accumulation. A single cell is used in an array struc-

94 Chapter 4: Architectural technique for low power

ture where the new partial products and the partial accumulation are produced

simultaneously. The delay of an array multiplier is O(n).

Schemes for parallel multipliers have been studied for decades trying to reduce the

number of logical levels of the multiplier [BW73, Pez71].

Tree multipliers are faster than array multipliers because the former reduce the

number of logical levels; however, they also su�er from a bad layout regularity.

This bad regularity implies a large routing area.

4.3 PREVIOUS WORK

The design of arithmetic circuits aiming at minimizing power dissipation has ba-

sically focused on multipliers. Other arithmetic circuits have been rarely studied.

The power consumption of adders has been estimated in [CS93, KGG95, NMO94].

Some low-power arithmetic designs have been proposed in [EL94, KBL95, EL95].

In [SLB95] the delays in the full adder cells of the multiplier are balanced by imple-

menting a few delay bu�er circuits and, therefore, power savings are obtained since

the unnecessary activity is reduced.

In [YYN

+

90], a comparison is presented between the design of a static CMOS

multiplier and the design using Complementary Pass-Logic (CPL) [WE93]. Because

of the fewer transistors used in the CPL design and their lower input capacitance,

a 28% of power dissipation reduction is achieved with a frequency of operation of

100 MHz and a power supply of 4V.

In [SA95], an architecture to implement the data compression in a 52�52-bit Booth

multiplier [WE93] based on tally functions is described. The authors derive a re-

duction in power of 35% in the compression stage of the multiplier compared with

that of a conventional multiplier.

The characterization of unnecessary activity in an array multiplier has been studied

in [OF94]. It is shown that the unnecessary activity in a 16�16-bit array multiplier

is the 50% of the total activity.

In [MT95], the switching activity of multipliers is studied as a function of the

multiplication algorithm, the compressor circuitry and the circuit design style. A

8�8-bit modi�ed Booth multiplier is designed where the activity is estimated to be

reduced by a factor of 2.

4.4 Potential power reduction in array multipliers 95

In [LvMJ95], the transition activity in array and tree (Wallace) multipliers is ana-

lyzed. This study shows that the number of total transitions in a 16�16-bit Wal-

lace multiplier is less than half of those in the array design. Moreover, the ratios

useless/useful transitions are 3.26 and 0.16 in the array and Wallace multipliers,

respectively.

The switching activity during the partial product generation in a radix-4 Booth

multiplier is reduced in [ZA95]. This is done by converting the multiplicand from

two's complement into sign-magnitude representation. Signi�cant bit transitions

are saved because negating the multiplier in sign-magnitude representation implies

only one bit toggle. Unfortunately, no power reductions are reported for the entire

multiplier in this work.

Asynchronous multipliers have also been studied in [HvBPS93, SNNS93]. The au-

thors of [HvBPS93] conclude that for small multipliers, a synchronous design is

better in terms of power consumption than its asynchronous counterpart. The

take-over point for asynchronous is predicted to be near an input width of 16.

Three small (input width of 4 bits) asynchronous multipliers are also compared to

the synchronous design in [SNNS93] showing that the energy per operation of the

synchronous design is less than one third of the asynchronous designs.

Finally, in [LS94, SR95] a similar technique as the one proposed in this paper is

studied. In [LS94], latches are inserted in a 16x16-bit radix-4 Booth multiplier

to reduce the switching activity. The authors claim that a 40% of power savings

is achieved with a frequency of operation of 50 MHz and a power supply of 3V.

In [SR95], a design of a Booth encoded array multiplier is presented that uses

dynamic CMOS logic together with a self-timed evaluate signal in such a way that

each carry-save adder within the array evaluates only after all of its inputs have

stabilized. No power reductions obtained with this technique are reported.

4.4 POTENTIAL POWER REDUCTION IN ARRAY

MULTIPLIERS

The array multiplier structure studied is depicted in Figure 4.2. This array mul-

tiplier computes the 2n-bit product of two n-bit unsigned numbers. The basic

building blocks of the array multiplier are full-adders (FA) and half-adders (HA)

(see Figure 4.3).

Figure 4.4 plots the logic transitions per operation that take place in the inter-

connections among the FA and HA in a 16�16-bit array. These results have been

96 Chapter 4: Architectural technique for low power

FAFAFAFA HA

FAFAFAFA HA

FAFAFA HA

FAFAFAFA HA

x0y0x1y0x0y1x2y0
x1y1

x0y2x2y1
x1y2

x0y3x2y2
x1y3

x0y4x2y3x1y4

x3y0x3y1x3y2

x4y0x4y1x4y2x4y3

x2y4

x3y4

x4y4CPA

x3y3

HA

Figure 4.2 5�5-bit array multiplier.

a b

scout

cin

scout

a b

FA

HA

Figure 4.3 (a) FA and (b) HA structure.

obtained with a gate-level simulator for a totally inertial gate-delay model

1

. Each

block in the �gure represents the sum of the s and cout signal transitions of the

corresponding FA or HA.

1

A gate with a delay t

i

(from input i to the gate output) has an inertial degree d if the gate

�lters all those glitches of length g

i

such that g

i

< d� t

i

. If d = 0 we say that the gate follows

a pure delay model (i.e., no glitch is �ltered). If d = 1 , we say that the gate follows a totally

inertial delay model (i.e., all glitches shorter than the gate delay t

i

are �ltered). If 0 < d < 1 ,

we say that the gate follows a partially inertial model.

4.4 Potential power reduction in array multipliers 97

CPA

ARRAY PART

Y

X

XY

16x16-bit / Original / General View

0
10

20

30
X

0

5

10

15
Y

0

2

4

6

8

0
10

20

30
X

0

5

10

15
Y

0

2

4

6

8

Figure 4.4 Signal transitions per operation for each basic block in a 16�16-bit

array multiplier.

The layout of the �gure has been rotated to allow an appropriate observation of

the transitions at each cell. The tallest bars of the plot correspond to the carry-

propagate adder (CPA)

2

.

Since the average power dissipation of a CMOS circuit is dominated by the switching

activity, useless signal transitions (i.e. transitions that only dissipate power and do

not contribute to the calculation of the �nal result) should be prevented.

In the layered structure of array multipliers, where each layer is excited from the

very beginning, many useless transitions are generated. These transitions, in their

turn, generate more useless transitions, thus creating a snow-ball e�ect. We observe

in Figure 4.4 the consequence of this e�ect. The deepest layers of the array (i.e.

those closest to the CPA) are the most power consuming.

The potential power reduction in array multipliers increases dramatically with the

operand bit-width. Consider Figure 4.5. Both useful and total number of signal

transitions for an 8�8, 16�16, 32�32 and 64�64-bit array multiplier are shown.

It is clear that the larger the array multipliers is, the larger is the possibility for

reducing its power dissipation.

2

CPA is used here for its simplicity and inherent low-power (although high power-delay prod-

uct) [NMO94].

98 Chapter 4: Architectural technique for low power

10000

30000

50000

70000

8 16 32 64

total transitions/input vector

Min. trans.

r

r

r

r

r

Total trans.

?

?

?

?

?

Figure 4.5 Useful and total number of signal transitions for an 8�8, 16�16,

32�32 and 64�64-bit array multiplier.

It is interesting to notice that the potential for reducing power consumption in

tree multipliers (e.g. Wallace) is lower than in array multipliers. The reason is that

parallel multipliers present less generation of useless transitions because of the more

balanced paths to the basic blocks that compose the multiplier. We have observed

that, for example, the number of signal transitions in a 32�32-bit array multiplier

doubles the number in its Wallace counterpart.

4.5 TRANSITION-RETAINING BARRIERS

A strategy to avoid useless transitions is to insert self-timed controlled latches on the

paths where these transitions occur. A possible solution is to latch every output of

each cell. This con�guration has some drawbacks that make it not very appealing:

area and delay (and even power dissipation) increase as a result of the latches.

A trade-o� is to �nd, for instance, a barrier of latches that divides the array into

two parts (the upper and bottom halves). Thus, the useless transitions that are

generated in the upper half of the array will not cross the barrier until the bar-

rier switches into transparent mode. Henceforth, this barrier of latches is called a

transition-retaining barrier (TRB).

4.6 Implementation of the TRB 99

CPA
Y

X

XY

8

13

1
(a)

13000

14000

15000

16000

0 2 4 6 8 10 12 14

barrier position

total transitions/input vector

r

r

r

r

r

r

r

r

(b)

Figure 4.6 (a) Possible locations for one TRB and (b) transitions per input

vector for di�erent locations of one TRB in a 16�16-bit array.

For VLSI arrays, a regular implementation of this barrier is sought. The easiest way

to insert latch barriers in the array is by taking advantage of the layered structure

of the array.

The enabling signal of the latch barriers is generated by delaying an input signal

(for example, the clock signal). The delay should be no longer than the critical

path from the inputs of the array to the barrier (thus not increasing the delay

of the multiplier) and as similar as possible to the critical path (thus no useless

transitions are allowed to cross the barrier too early).

It is obvious that the best location for the array is the middle of the array because

we balance the useless transitions between the two partitions. Figure 4.6(b) shows

an analysis of the number of transitions per input vector in the 16�16-bit array with

di�erent locations for the TRB. The optimum partition is in row 8 of Figure 4.6(a).

We can evaluate also the switching activity if two or more TRBs are inserted.

Similarly, the minimum is obtained when the array is divided into equal parts.

Figure 4.7 shows how the transitions in the array are reduced when inserting one

and two TRBs.

100 Chapter 4: Architectural technique for low power

16x16-bit / Original / General View

0
10

20

30
X

0

5

10

15
Y

0

2

4

6

8

0
10

20

30
X

0

5

10

15
Y

0

2

4

6

8

(a)

16x16-bit / Original / Side View

0
10

20

30

X

0 5 10 15
Y

0

2

4

6

8

0
10

20

30

X

0 5 10 150

2

4

6

8

(b)

16x16-bit / 1 Barrier / Side View

0
10

20

30

X

0 5 10 15
Y

0

2

4

6

8

0
10

20

30

X

0 5 10 150

2

4

6

8

(c)

16x16-bit / 2 Barriers / Side View

0
10

20

30

X

0 5 10 15
Y

0

2

4

6

8

0
10

20

30

X

0 5 10 150

2

4

6

8

(d)

Figure 4.7 Signal transitions per input vector in a 16�16-bit array multiplier.

(a) General view of the design with no TRBs and side view with (b) no TRBs, (c)

one TRB and (d) two TRBs.

4.6 IMPLEMENTATION OF THE TRB

Since the cost of latches may be too high (both in area and power dissipation),

other structures that perform the same transition-retaining function at the outputs

of the multiplier cells have to be devised.

The designer can choose between a static or dynamic implementation of the latch.

The most appropriate dynamic latch structure in terms of area is the Clocked-CMOS

(or C

2

MOS) latch [WE93]. The area overhead consists of four transistors per cell

(two for each output of the full-adder cell). Figure 4.8(a) depicts the C

2

MOS latch.

4.6 Implementation of the TRB 101

P

N

out

P

N

enable

out

enable

Static CMOS C2MOS

(a)

P

N
enable

out

enable

(b)

Figure 4.8 (a) Comparison between Static CMOS and C

2

MOS and (b) avoiding

direct-path currents.

Related work with power dissipation using C

2

MOS has been presented in [SNK73,

BOI95].

The main problem with the use of C

2

MOS structures is that capacitive coupling may

arise at the out node in Figure 4.8(a), causing direct-path currents in the gates fed

by this node. To avoid this problem, the static structure depicted in Figure 4.8(b)

should be used.

The delay mentioned in Section 4.5 is implemented now as a chain of inverters. We

distinguish 4 types of delay-cells:

TA simulates the delay of the �rst layer of the array

TB simulates the delay of a full-adder

TC simulates the delay of a full-adder and controls the TRB and

TD is the same as TC but has no other delay-cell as fanout

Figure 4.9 depicts a 4�4-bit array with two TRBs where the four types of delay-

cells can be observed. All the controlling signals are obtained by delaying the input

signal start.

The number of inverters in each delay-cell depends on the delay of the inverter, the

input capacitance of the inverter and the capacitance of the C

2

MOS signals (enable

102 Chapter 4: Architectural technique for low power

X3X2X1X0

Y0

Y1

Y2

S0 S1 S2 S3

S4

S5

S6

S7Y3
AND

AND

AND

AND FA FA

FA

FA

FA

FA

FA

FA

FA FA

FA

FA

FA

FA

FA

FA

TA TC TB TD
CPA

Transition−Retaining Barriers

start

Figure 4.9 4�4-bit array with two TRBs. The four types of delay-cells (TA-TD)

are shown.

a
b

b
cin

a

cin

a b b

a

cout

cin a b

a
b
cin

cin
a
b

a b cin

s

Figure 4.10 Design of a FA.

and enable of Figure 4.8(b)). The number of inverters in TC and TD delay-cells

also depends on the operand bit-width of the array.

4.7 RESULTS

Four con�gurations of array multipliers have been implemented for the evaluation

of power dissipation, area and delay. The original array multiplier is compared to

designs with one, two and three TRBs.

4.7 Results 103

Figure 4.11 Layout of an 8�8-bit array multiplier in a sea-of-gates design style.

The con�gurations are implemented in a sea-of-gates (SoG) design style using the

Ocean system (see Appendix A, Section A.2). A layout of an 8�8-bit array mul-

tiplier is shown in Figure 4.11. The full-adder cell is implemented as in [WE93]

(see Figure 4.10). The evaluation of the power dissipation has been obtained with

a switch-level simulator [vG89] that uses an RC model for timing calculations.

The scenario of the simulation is the following:

input patterns are randomly generated with probability of logical 1 at the pri-

mary inputs being 0.5

all inputs to the multiplier arrive at the same time and

between one pseudo-random input vector and the following one there is enough

time for the multiplier outputs to settle.

The results are presented in Table 4.1. In the 8�8-bit multipliers with one and two

TRBs, the overhead of the additional logic generates more power than it reduces.

Hence, the overall power dissipation is higher than in the original design.

A trade-o� exists between the delay of the new designs and their power dissipation.

If the delay of the delay-cells is greater than the delay of the full-adder cell, the

multipliers will present less power but will be slower. Thus, the increase in the delay

of the designs with barriers is because of the additional transistors of the latches

and the longer delay of the delay-cells.

104 Chapter 4: Architectural technique for low power

Array Area Area Delay Delay Energy Energy

Multiplier Incr. Incr. Reduc.

8�8-bit original 1 - 1 - 1 -

8�8-bit 1 TRB 1.144 14.4% 1.042 4.2% 1.056 -5.6%

8�8-bit 2 TRB 1.154 15.4% 1.119 11.9% 1.060 -6.0%

16�16-bit original 1 - 1 - 1 -

16�16-bit 1 TRB 1.071 7.1% 1.029 2.9% 0.927 7.3%

16�16-bit 2 TRB 1.078 7.8% 1.049 4.9% 0.873 12.7%

16�16-bit 3 TRB 1.082 8.2% 1.180 18% 0.795 20.5%

24�24-bit original 1 - 1 - 1 -

24�24-bit 1 TRB 1.047 4.7% 1.059 5.9% 0.901 9.9%

24�24-bit 2 TRB 1.049 4.9% 1.089 8.9% 0.825 17.5%

24�24-bit 3 TRB 1.054 5.4% 1.144 14.4% 0.745 25.5%

32�32-bit original 1 - 1 - 1 -

32�32-bit 1 TRB 1.033 3.3% 1.021 2.1% 0.870 13.0%

32�32-bit 2 TRB 1.037 3.7% 1.044 4.4% 0.780 22.0%

32�32-bit 3 TRB 1.039 3.9% 1.076 7.6% 0.700 30.0%

Table 4.1 Comparison between the original design and the new designs with

TRBs.

We have the best results in power dissipation reduction when three TRBs are in-

serted. However, it is important to notice that the greatest decrease in power is

achieved when inserting one TRB with regard to the original design rather than

when inserting two TRBs with regard to inserting one TRB.

The increase in area when inserting TRBs is small, and more negligible as the bit-

width increases (there is an increase of 15.3% when inserting three TRBs in the

16�16-bit and just a 7.6% in the 32�32-bit with also three TRBs). The overhead

in power dissipation, area and delay as a result of the insertion of TRBs has been

taken into account in the results in Table 4.1.

4.8 CONCLUSIONS

In this chapter we have studied the power consumption of a class of circuits (array

multipliers) that present a high power consumption because of the generation and

propagation of a large amount of useless activity.

The technique of inserting transition-retaining barriers (TRB) in order to decrease

the propagation of the useless transitions in array multipliers has proved e�ective in

reducing the power dissipation of this type of circuits. With three TRBs we achieve

4.8 Conclusions 105

a reduction in power of 30% in a 32�32-bit array multiplier with an increase in area

and delay of 3.9% and 7.6% respectively.

The �nal multiplier remains combinational and highly regular. This implies that

the technique presented in this chapter can be easily integrated in existing CAD

tools for the generation of array multipliers.

This technique should be evaluated for other type of circuits that present a high

amount of useless activity.

106 Chapter 4: Architectural technique for low power

5

LOGIC/CIRCUIT TECHNIQUE FOR LOW

POWER

This paper addresses the optimization of a circuit for low power using transistor

reordering, a technique that has been traditionally used to improve the performance.

In this chapter this technique is used to �nd a proper order of the transistors of a

gate so that the switching activity at the internal nodes of the gate is minimized.

A stochastic power-consumption model that depends on the switching activity and

the signal probabilities of the inputs of the gate is presented. This model takes into

account the power at the internal nodes of the gate.

An optimization algorithm that relies on the stochastic model is described. It

performs an exhaustive exploration of the di�erent con�gurations of a gate that are

obtained by reordering its transistors. Thus, the best con�guration for low power

of each gate is selected and the overall power consumption of the circuit is reduced.

Power-reduction results are reported for several benchmarks.

107

108 Chapter 5: Logic/Circuit technique for low power

5.1 INTRODUCTION

This chapter addresses the optimization of a circuit for low power using transistor

reordering from a gate-level description. The optimization algorithm uses a power-

consumption model of a static CMOS gate that takes into account the power of

the internal nodes of the gate. This model allows the exploration of the di�erent

con�gurations of a gate that are obtained by reordering its transistors. Thus, the

best con�guration of each gate is selected and the overall power consumption of the

circuit is decreased.

We focus on combinational multi-level circuits, where it has been shown that the

power consumption of useless signal transitions (i.e. those transitions that do not

contribute to the �nal result of the circuit) accounts for a large fraction of the overall

dynamic power consumption of the circuit. Thus, it is necessary to incorporate the

switching activity of the input signals into the power consumption of the gate.

5.1.1 Motivation examples

To illustrate why it is important to incorporate the switching activity information

to the power estimation of a gate, consider the four possible con�gurations of the

gate in Figure 5.1(a) that implement function y = (a1 + a2) b . Di�erent switching

activity at the inputs (D

a1

, D

a2

and D

b

) results in a di�erent optimal transistor

reordering for the gate as it is shown in Table 5.1(b). The equilibrium probability

(i.e. the probability for a signal to be '1') of all input signals has been set to

0.5. Table 5.1(b) shows the power consumption for two di�erent input switching

activity scenarios (cases (1) and (2)) of the di�erent con�gurations relative to

con�guration (D) in case (1). Time intervals between two consecutive transitions

at input signal k follow an exponential distribution with average 1=D

k

. In case

(1) the best transistor ordering is given by con�guration (A) of Figure 5.1(a); the

power consumption is decreased by 12% with respect to con�guration (D). In case

(2), the power is decreased by 17% if con�guration (D) is taken instead of (A).

The reason of these power savings is the reduction of the switching activity at the

internal nodes of the gate. This internal activity depends on the switching activity

and probability of the inputs and the order of the transistors.

The power-consumption values in the last experiment have been obtained with an

accurate switch-level simulator (named SLS, see Chapter A, Section A.3). Through-

out this work we will rely on switch-level simulations instead on SPICE [JQN

+

91]

simulations because we will deal with relatively large benchmarks and a large num-

ber of input vectors for each one. A SPICE simulator is characterized by high

5.1 Introduction 109

b b b b

b b

b b

y y y y

n0

n1

n0

n1

n0

n1 n1

a1

a2

a2

a1

a1

a2

a2

a1

a1 a2 a1 a2

a1 a2 a1 a2

(A) (B) (C) (D)

n0

(a)

Activity (trans./sec) (A) (B) (C) (D) Reduction

D

a1

= 10K

(1) D

a2

= 100K 0.81 0.84 0.98 1.0 19%

D

b

= 1M

D

a1

= 1M

(2) D

a2

= 100K 0.58 0.53 0.53 0.48 17%

D

b

= 10K

(b)

Figure 5.1 (a) Four implementations of function y = (a1 + a2) b and (b)

relative power consumption for two di�erent input activity scenarios.

accuracy but long simulation time. Simulation time is typically proportional to

N

m

, where N is the number of non-linear devices in the circuit, and m is between

1 and 2 [WE93].

However, we have performed an experiment using SPICE simulations to validate

the use of switch-level simulations in this work. Consider gate con�gurations (A)

and (D) in Figure 5.1(a) with an equivalent load capacitance of an inverter. Two

new scenarios are considered that produce the same output waveform. The current

drawn by the power supply (i

DD

(t)) for each scenario and con�guration is shown

in Figure 5.2. We observe signi�cant di�erences in current supply when the output

load has to be charged (at times 10ns and 20ns). Table 5.1 shows a comparison

of the power-consumption estimations provided by SPICE and SLS. The power

110 Chapter 5: Logic/Circuit technique for low power

a1

a2

b

y

0

1
0

1

0

1

0

1

0 5 10 15 20 25
t(ns)

Scenario 1

�4

�3

�2

�1

0

1

0 5 10 15 20 25

ns

i

DD

(t) (mA)

Con�g. (A)

�4

�3

�2

�1

0

1

0 5 10 15 20 25

ns

i

DD

(t) (mA)

Con�g. (D)

a1

a2

b

y

0

1
0

1

0

1

0

1

0 5 10 15 20 25
t(ns)

Scenario 2

�4

�3

�2

�1

0

1

0 5 10 15 20 25

ns

i

DD

(t) (mA)

Con�g. (A)

�4

�3

�2

�1

0

1

0 5 10 15 20 25

ns

i

DD

(t) (mA)

Con�g. (D)

Figure 5.2 SPICE simulations of con�gurations (A) and (D) in Figure 5.1 for

two di�erent input activity scenarios.

Con�g. (A) Con�g. (D)

SPICE: 0:305mW SPICE: 0:757mW

Scenario 1 SLS: 0:334mW SLS: 0:667mW

Error: �10% (1) Error: 12% (4)

SPICE: 0:438mW SPICE: 0:558mW

Scenario 2 SLS: 0:390mW SLS: 0:544mW

Error: 11% (2) Error: 3% (3)

Table 5.1 SPICE and SLS comparison for the con�gurations in Figure 5.2. Num-

bers in parenthesis show the power-consumption ranking.

consumption in SPICE is calculated as:

W =

1

T

Z

T

t=0

i

DD

(t)� V

DD

dt ;

5.1 Introduction 111

b

y

n0

n1

TA

TB

TC
C1

0
C load

C
a

c

a b c

1

11

1

Case 1 Case 2

Figure 5.3 Transistor-reordering technique in a 3-input NAND gate (example

from [SLW95]).

where T is the cycle time (10ns) and V

DD

is the power supply voltage, while in SLS

it is obtained as explained in Chapter A. In this experiment, relative errors of SLS

with respect to SPICE are less than 12%. However, it is important to notice that

both simulators agree on the power-consumption ranking for the four cases (shown

in parenthesis in Table 5.1).

We conclude from this experiment that, indeed, power consumption depends on the

order of the transistors and the switching activity of the inputs to the gate and that

SLS simulations are valid to discern the lowest power-consuming con�guration.

The ripple-carry adder is another example in which the equilibrium probability

does not give enough information to optimize gates for low power. Consider an

adder implemented as a chain of full-adders that has to calculate the addition of

two n-bit operands with equal equilibrium probability for all bits. The equilibrium

probabilities of all inputs of the full-adders is 0.5, but it is clear that the switching

activity of the inputs of the full-adders corresponding to the operands is low (0.5

transitions per operation) whereas the switching activity of the input corresponding

to the propagated carry is higher (specially in those full-adders that compute the

most-signi�cant bits) because of the generation and propagation of useless signal

transitions.

To show how transistor reordering a�ects the number of transitions at the internal

nodes of a gate, consider the 3-input NAND gate in Figure 5.3. In this particular

example, the techniques of input reordering and input interchange (i.e. interchange

those inputs to the gate that are logically equivalent) coincide. In Case 1, inputs b

and c are \1" and a is initially \0". The capacitances associated to internal nodes

112 Chapter 5: Logic/Circuit technique for low power

n

0

and n

1

(C

0

and C

1

) are discharged. The output capacitance (C

load

) is charged.

When input a changes to \1", only the output capacitance is discharged. In Case

2, inputs a and b are \1" and input c is initially \0". All capacitances are charged.

When input c changes to \1", all capacitances will discharge, thus consuming more

power than in Case 1. Therefore, if the probabilities of two of the inputs are close

to 1 and the other input is very active, we should assign this input to the transistor

TA to minimize the power consumption at the internal nodes of the gate.

5.2 PREVIOUS WORK AND OVERVIEW

Transistor reordering is a technique that does not signi�cantly a�ect layout area

and it may decrease the propagation delay of the gate.

Carlson [CC93] hinted the possibility to use the transistor-reordering technique to

decrease power consumption and he presented an algorithm for delay/power/area

optimization where high speed was synonym of high power consumption. This ap-

proach of measuring power consumption is not su�ciently accurate since it does not

consider the probability and switching activity of signals. No power-consumption

reductions are reported in [CC93].

Input reordering conform a subset of transistor-reordering techniques. For example,

by reordering the inputs in a 3-input NAND gate, 6 di�erent con�gurations of the

gate are obtained; the same occurs if we apply transistor reordering. But in the

gate represented in Figure 5.1(a), only two di�erent con�gurations are obtained by

applying input reordering and four are obtained with transistor reordering. Input

reordering has been used in [TA94, BIO95] along with transistor sizing to reduce

power consumption. It is not clear in those works which is the contribution of the

input-reordering technique by itself. This is true specially in [BIO95], where the

largest power consumption reduction (15%) is achieved in the benchmark with the

largest number of high-fanout gates. Input (or transistor) reordering techniques

obtain better results when applied to low-fanout gates because these techniques

focus on reducing the power consumption of the internal nodes of the gate. If

the output capacitance is increased, the overall gate power reduction obtained is

decreased [HZA94].

A study of the potential bene�ts of transistor reordering for a speci�c library is

presented in [GBJ95], where an average power-consumption reduction of 13% and

up to 17% for complex gates is obtained. A novel binary-decision diagram is used to

represent the structure of the gate. An algorithm is presented to obtain all possible

5.2 Previous work and overview 113

transistor reorderings of the gate. No model for the power consumption of a CMOS

gate is presented.

In [HZA94], input-reordering techniques are applied to a large variety of CMOS

NAND gates ranging from 2 to 8 inputs. The major contribution in [HZA94] is the

description of a new model for the power consumption of a MOSFET chain. This

model accounts for the consumption of internal nodes and it depends only on the

equilibrium probabilities of the inputs of the gate.

The closest works to ours are [PR94, SLW95]. In [PR94], a clear example of the

e�ect of transistor reordering on the power consumption of a circuit is shown. An

estimated average of 6% in power reduction is obtained for some MCNC bench-

marks.

Finally, in [SLW95] the authors propose a set of simple transistor reordering rules

for both basic and complex CMOS gates to minimize the switching activity at the

internal nodes. These rules are:

For NAND gates,

{ place the input signal with high signal probability near ground

{ place the input signal with low switching activity near ground

For NOR gates,

{ place the input signal with low signal probability near power supply

{ place the input signal with low switching activity near power supply

For complex gates,

{ transform the complex gates into NOR or NAND structures

{ apply the rules of NAND and NOR gates to the transformed gate

Whenever the rules con
ict, heuristics are applied based on probability/activity

ratios. Average reductions of 9% are reported for several circuits.

5.2.1 Overview of our approach

The goal of this chapter is to evaluate the power reduction that can be obtained by

reordering the transistors that compose the di�erent gates of a circuit. Our work

accounts for the transistor-reordering technique by itself. We maintain the size of

the transistors constant when they are reordered.

114 Chapter 5: Logic/Circuit technique for low power

y

b

a b c

c

a

(a)

10K trans./sec a b a c b c

100K trans./sec b a c a c b

1M trans./sec c c b b a a

Power 0.91 0.91 0.95 0.96 0.99 1.0

(b)

Figure 5.4 (a) Static CMOS 3-input NAND gate (b) relative power consumption

for di�erent input activities (without varying the equilibrium probabilities of the

inputs).

It has been shown that the arrival times of the input signals a�ect the consumption

of the gate [CC93]. However, we do not take into account the arrival times because

we are more concerned about the switching activity of an input during all the cycle

time than just the last transition that settles the correct value at the output of the

gate.

We present a power-consumption model of a static CMOS gate that depends on

both the static probability and the switching activity of its inputs. Our power-

consumption model di�ers from the one presented in [HZA94] in that we take into

account the switching information of the input signals. (our model is based on the

transition density measure of activity in digital circuits proposed by Najm [Naj91]).

As an example, consider a 3-input NAND gate (Figure 5.4(a)). Consider equilibrium

probabilities of 0.4, 0.5 and 0.6 for its inputs a, b and c respectively. Table 5.4(b)

shows the relative power consumption of the gate for di�erent input switching activ-

ity scenarios. Our model discerns, among the six possible input reorderings, those

that give the maximum and minimum power consumption. The model in [HZA94],

on the contrary, can not discern any of the reorderings and it provides the same

power estimation for all of them.

An algorithm that traverses the gate-level description of the circuit and uses the

gate model mentioned above is presented and results are reported for a wide range

of MCNC benchmarks. A cell library with di�erent instances of a single gate to

obtain all its possible transistor reorderings has been implemented in a sea-of-gates

design style. The results are based on switch-level simulations and show that power-

consumption reductions of up to 20% may be obtained when applying the transistor-

reordering technique.

5.3 Power consumption of CMOS gates 115

This chapter is organized as follows: in Section 5.3, a power-consumption model of

a static CMOS gate that takes into account the power consumption of the internal

nodes is presented. In Section 5.4, an algorithm that traverses the gate-level de-

scription of the circuit and generates an optimized circuit for low power is described.

Results are presented for several MCNC benchmarks in Section 5.5. In Section 5.6,

some conclusions are drawn for this chapter.

5.3 POWER CONSUMPTION OF CMOS GATES

5.3.1 De�nitions and overview

De�nition 5.3.1 (Stochastic process) Let x(t) be the value of a system charac-

teristic being observed at time t. In most situations, x(t) is not known before time

t and may be viewed as a random variable. A stochastic process is a description of

the relation between the random variables x(t).

De�nition 5.3.2 (Stationary Markov process) A stationary Markov process is

a stochastic process where the probability law relating the next period's state to the

current state does not change (or remains stationary) over time.

De�nition 5.3.3 (Equilibrium probability) Let x(t); t 2 (�1;+1), be a 0-1

stationary Markov process with random transition times. The probability that it

takes the value \1" at any given time t is the expected value E[x(t)] at that time

and it is independent of time. This value is called the equilibrium probability of x(t)

and is denoted as P (x).

De�nition 5.3.4 (Switching activity) The switching activity of a 0-1 stochastic

process x(t) is the number of 0-to-1 transitions and 1-to-0 transitions of x(t) in a

time unit.

Henceforth, we will model logic signals of a circuit as 0-1 stationary Markov pro-

cesses as in [Naj91] to derive a power-consumption model of a static CMOS gate

that includes the switching activity at the output and internal nodes of the gate.

The model depends on both the equilibrium probabilities and the switching activity

of the inputs of the gate.

The switching activity in both input and output nodes of a gate is measured with the

transition density technique described in [Naj91]. This technique is brie
y reviewed

in the next section.

116 Chapter 5: Logic/Circuit technique for low power

5.3.2 Transition density

The transition density is a compact measure of the switching activity in digital

circuits. The transition density of a node is the average number of signal transitions

per time unit at that node and it is de�ned as

D(y

j

) =

n�1

X

i=0

P (

@y

j

@x

i

)D(x

i

) ;

where P (z) is the equilibrium probability of a signal or logic function, D(z) is the

transition density of a signal, x (y) are the n (m) gate inputs (outputs).

@y

j

@x

i

is

named the boolean di�erence and it is a boolean function that may depend on all

x

p

; p = 1 : : : n; p 6= i. The boolean di�erence

@y

j

@x

i

is de�ned as

y

j

j

x

i

=1

� y

j

j

x

i

=0

= y

j

(x

i

)� y

j

(x

i

) :

If

@y

j

@x

i

= 1, then all the transitions at input x

i

are propagated to output y

j

. In other

words,

@y

j

@x

i

expresses the sensibility of y

j

with respect to input x

i

.

Thus, the transition density provides a fast way of propagating switching activ-

ity from the primary inputs to the outputs of the gates that compose a circuit.

The main drawback of the transition density is that it does not take into account

the spatial and temporal correlation of the input signals to the gate (although it

considers the signal correlations within the logic module).

As an example, the transition density at the output of a 2-input AND gate is:

D(y) = D(a)P (b) +D(b)P (a) ;

where y is the output of the gate and a; b are the two inputs. However, when a = b

(P (a) = 1 � P (b)), y is always \0" and, therefore, D(y) = 0. However, using the

above transition density measure, we obtain:

D(y) = D(a)P (b) +D(b)(1 � P (b)) = D(b) ;

which is not correct. This drawback, caused by the simultaneous switching of the

inputs, can be overcome using conditional probabilities [CRP94].

5.3.3 Extended power-consumption model

Notation

5.3 Power consumption of CMOS gates 117

vss

y

n0

n1

a2
N

b
P

b
N

a1
N

a2
P

a1
P

vdd

(a)

CALCULATE H FUNCTION (n

k

; function)

dfs list

k

= DEPTH FIRST SEARCH (n

k

; vdd)

foreach element (dfs list

k

; e

k

i

)

ADD INPUT TO MINTERM (e

k

i

; function)

if source(e

k

i

) = vdd then

CREATE NEW MINTERM (function)

(b)

Figure 5.5 (a) Static CMOS gate representation and (b) algorithm to obtain

function H

n

k

.

We represent a static CMOS gate as a directed acyclic graph (V;E). V = fn

0

: : : n

p�1

;

y; vdd; vssg is the set of nodes representing the p internal nodes of the gate (n

0

: : : n

p�1

),

the output node (y) and the power and ground nodes (vdd; vss). The set of edges

representing the 2q transistors (q of type P and q of type N) that connect nodes in V

is E = fe

0

P

: : : e

q�1

P

; e

0

N

: : : e

q�1

N

g. Figure 5.5(a) shows the graph representation

of gate (C) in Figure 5.1(a). Note that this representation retains the transistor

order information of the gate.

The power consumption of a node (output or internal) of a gate is potentially

a�ected by all the inputs of the gate. In particular, the power consumption of node

n

k

produced by input x

i

(W

n

k

j

x

i

) is:

1

2

V

2

DD

C

n

k

T

x

i

!n

k

T

cyc

;

where T

x

i

!n

k

is the number of transitions at node n

k

because of input x

i

. In other

words, T

x

i

!n

k

expresses how many signal transitions of x

i

(D

x

i

) are propagated to

node n

k

. C

n

k

is the capacitance of node n

k

.

Henceforth, we assume that a node is charged (discharged) only when there is a

direct path from power (ground) supply to the node, i.e. we do not consider charge

sharing among the nodes of the gate.

Computation of the model

To compute T

x

i

!n

k

, the boolean function that represents all possible paths from

power supply to node n

k

needs to be calculated. Let us call H

n

k

this function;

118 Chapter 5: Logic/Circuit technique for low power

similarly, G

n

k

is the boolean function that represents all possible paths from n

k

to

ground

1

.

The algorithm to obtain the H

n

k

function is depicted in Figure 5.5(b). Func-

tion H

n

k

is obtained by generating a minterm for each possible path from node

n

k

to supply node vdd. A path from node n

k

to vdd is a set of r edges e

k

i

so

that dst(e

k

0

) = n

k

; dst(e

k

1

) = src(e

k

0

); : : : ; dst(e

k

r�1

) = src(e

k

r�2

) and src(e

k

r�1

) =

vdd, where src(e

k

) (dst(e

k

)) is the source (destination) node of edge e

k

. Us-

ing a depth-�rst-search approach [CLR90], a list of all edges to visit is created

(depth first search list

k

). Afterwards, the edges of this list are added to the cur-

rent minterm of the H

n

k

boolean function (ADD INPUT TO MINTERM()) until an edge

e

k

j

is reached so that src(e

k

j

) = vdd. In this case, a new minterm is created (CRE-

ATE NEW MINTERM()), sharing with the last created minterm all its edges but the last

one visited.

In the example of Figure 5.5(a), the four minterms generated when calculating H

n

1

are fa1 b; a1 a2; a1; a2 b; a2 a2 a1g, leading to H

n

1

= b (a1 + a2). Similarly, G

n

k

can

also be derived. In Figure5.5(a), G

n

1

= b. The time complexity of these algorithms

is linear in the number of transistors of the gate.

Afterwards, the boolean di�erence of function H

n

k

with respect to input x

i

(that

is

@H

n

k

@x

i

) and the equilibrium probabilities of node n

k

need to be calculated. The

boolean function

@H

n

k

@x

i

is calculated as explained in Section 5.3.2. The equilibrium

probability of node n

k

is obtained as follows [HZA94]: the probability of node n

k

of

being \1" at a given instant of time (P (n

k

) j

c

) is the probability that n

k

was \1" in

the instant before (P (n

k

) j

b

) and it is not discharged (P (

@G

n

k

@x

i

)) or that it was \0"

(P (n

k

) j

b

) and it is charged (P (

@H

n

k

@x

i

)), i.e.:

P (n

k

) j

c

= P (n

k

) j

b

P (

@G

n

k

@x

i

) + P (n

k

) j

b

P (

@H

n

k

@x

i

) ;

where P (f) = 1� P (f).

Since all signals are assumed to be 0-1 stationary Markov processes, the steady state

value of P (n

k

) can be derived as:

P (n

k

) =

P (

@H

n

k

@x

i

)

P (

@H

n

k

@x

i

) + P (

@G

n

k

@x

i

)

:

1

Note that G

n

k

and H

n

k

are complementary functions only when n

k

is the output node (y) of

the gate.

5.3 Power consumption of CMOS gates 119

We conclude that W

n

k

j

x

i

is:

1

2

V

2

DD

C

n

k

D(x

i

) (P (

@H

n

k

@x

i

)P (n

k

) + P (

@G

n

k

@x

i

)P (n

k

))

T

cyc

:

If the contributions of all nodes (output and internal) are taken into account, the

power estimation of the gate is obtained as:

P

gate

=

p�1

X

k=0

(

n�1

X

i=0

W

n

k

j

x

i

) +

n�1

X

i=0

W

y

j

x

i

;

where p is the number of internal nodes and n is the number of inputs of the gate.

The power consumption of a circuit is, then, the sum of the power consumption of

its gates.

Computing functions H

n

k

and G

n

k

Boolean functions H

n

k

and G

n

k

that appear in the model in the last section may

be symbolically calculated using Binary Decision Diagrams (BDDs) [Bry86].

There exist several representations of boolean functions (truth table, Karnaugh's

map, canonical sum, canonical product, product of sums, sum of products, multi-

level form, etc.). Among these, the canonical representations present the desirable

property that if two functions are equivalent, their representations are the same, and

vice-versa. Therefore, the equivalence test is straightforward. A form is canonical

if the representation of a function in that form is unique. The problem of canon-

ical representations is that they are large (typically exponential in the number of

variables). A BDD is a canonical and compact (for many functions) of a boolean

function.

Given a boolean function f(: : : ; x

j+1

; x

j

; x

j�1

; : : :) the positive and negative co-

factors of f with respect to x

j

are de�ned by f

x

j

= f(: : : ; x

j+1

; 1; x

j�1

; : : :) and

f

x

j

= f(: : : ; x

j+1

; 0; x

j�1

; : : :), respectively. A BDD of a boolean function is a direct

acyclic graph based on the successive Shannon decompositions of f given a sequence

of splitting variables x

i

. Each non-terminal N

x

j

corresponds to a splitting variable

x

j

and is the origin of two arcs: low(N

x

j

) and high(N

x

j

). The subgraph rooted at

low(N

x

j

) represents the negative cofactor f

x

j

, and the graph rooted at high(N

x

j

)

represents the positive cofactor f

x

j

.

Figure 5.6(a) shows a BDD that represents the function f(a; b; c; d) = abc+ bd+ cd.

Edges are assumed to go from the top to the bottom terminal. A negative cofactor is

120 Chapter 5: Logic/Circuit technique for low power

f

a

b

c

d

1 0

b

c

(a)

f

1 0

b

c

a

d

(b)

Figure 5.6 Two BDD representations of function f = abc+bd+cd using di�erent

variable order.

shown with a circle in the edge. There are one root node (the name of the function)

and two terminal nodes, \0" and \1". Therefore, to evaluate function f for some

variable values. we start at the root node and, for each variable, we choose the

edge representing the positive cofactor (if the variable is 1) or the negative cofactor

(if it is 0). The explored path for f(a; b; c; d) = (1; 0; 1; 0) is shown in bold in

Figure 5.6(a), obtaining the value \0".

The complexity in terms of node count and graph depth strongly depends on the

choice of the splitting variables. The same function f is represented in Figure 5.6(b)

using a di�erent variable order. A good reordering is essential for obtaining a

small graph. Some heuristics have been proposed to �nd a good ordering for a

BDD [FFK88, MWBSV88]. An ordered BDD (OBDD) is a BDD where variables

appear in the same order along all paths from the root to the terminal nodes.

Moreover, an OBDD can be reduced by iteratively applying the reductions:

identi�cation of isomorphic subgraphs

elimination of redundant nodes

to obtain a reduced OBDD (ROBDD). An ROBDD is a canonical form.

5.4 Power-optimization algorithm 121

BulkCS

GC

GDCGSC

DC

Gate
Gate Oxid

Source Drain

Figure 5.7 Capacitances in a MOS transistor.

In this work, we have used the subroutines provided with the SIS package (see

Chapter A, Section A.4) for handling BDDs.

Node capacitances

Several intrinsic capacitances are associated to a MOS transistor (Figure 5.7). The

values of these capacitances (and, therefore, the capacitance of an internal node

of a gate) clearly depend on the technology and design style used. For example,

most gates may be designed using an unbroken row of transistors in which abutting

source-drain connections are made. But because of transistors with the same signal

on its gate terminal should be vertically aligned to reduce internal routing, the

layout algorithmmust �nd the minimumset of transistor chains in order to minimize

the number of di�usion gaps. This leads to the fact that two internal nodes with the

same number of source-drain connections may actually have di�erent capacitances.

Furthermore, source and drain di�usions are di�erent in PMOS and NMOS-type

transistors.

Moreover, it is clear that gate output nodes are more capacitive than internal nodes

because of the additional routing and transistor-gate (fanout) capacitances.

Because of the task of modeling the capacitances of the nodes of a gate is di�-

cult, these capacitances should be extracted and stored for all gates of the library

whenever it is possible. This is the approach followed in this work.

5.4 POWER-OPTIMIZATION ALGORITHM

In this section, an algorithm that traverses the gate description of the circuit is

presented. For each gate, it �nds the best transistor reordering based on the power-

122 Chapter 5: Logic/Circuit technique for low power

OBTAIN PROBABILITIES (circuit)

gate list = DEPTH FIRST TRAVERSE (circuit)

for each gate gate in gate list do

info inputs = OBTAIN PROB AND DENS (gate; circuit)

FIND BEST REORDERING (info inputs; gate; circuit)

info output = CALCULATE DENS (info inputs; gate)

UPDATE CIRCUIT INFORMATION (info output; circuit)

Figure 5.8 Optimization algorithm.

consumption model explained in Section 5.3 and an exhaustive exploration of all

possible reorderings.

5.4.1 Algorithm overview

Finding the best transistor reordering implies an exhaustive exploration of each gate.

Since most gates only have a small number of transistors in series, an exhaustive

exploration is feasible. The algorithm to obtain all possible transistor reorderings

of a gate will be addressed later.

A simpli�ed algorithm of the optimization approach for low power is shown in

Figure 5.8. The probabilities for all output nodes of the gates of the circuit are

computed in OBTAIN PROBABILITIES(). DEPTH FIRST TRAVERSE() returns the list of gates

(gate list) of the circuit (circuit) ordered in a depth-�rst fashion [CLR90] from the

outputs, i.e. every gate appears somewhere after all of its transitive fan-in gates.

For each gate of this list, the probability and transition density information for all of

its inputs is obtained from the circuit (OBTAIN PROB AND DENS()). Afterwards, the best

reordering is derived for gate (FIND BEST REORDERING()). Finally, the transition density

of the output node of the gate is calculated (CALCULATE DENS()) and this information

is transferred to the circuit (UPDATE CIRCUIT INFORMATION()).

5.4.2 Monotonic characteristic

The algorithm takes advantage of the following property of the model explained

in Section 5.3: the reduction of the power in an individual gate always decreases

the power of the circuit. The reason of this monotonic behavior is that all possible

transistor reorderings of a gate lead to the same probability and transition density

at its output node if the model explained in Section 5.3 is used to compute them.

Since:

5.4 Power-optimization algorithm 123

1. the model precisely relies on the probability and transition density of the inputs

of a gate to decrease its power consumption and

2. the power of the circuit is the sum of the power of its gates,

it is clear that the reduction of the power in an individual gate always decreases

the total power of the circuit. This monotonic behavior may not correspond to the

actual behavior of a circuit, but our results show that this local (greedy) approach

results in an overall power reduction for the whole circuit.

Thus, with only one traversal of the circuit, the optimal reordering (always with

respect to the model) for all gates is obtained.

5.4.3 Equilibrium probabilities

To apply the power-consumption model explained in Section 5.3, the equilibrium

probabilities of the inputs of the gate need to be known. The calculation of the

probabilities for all nodes in a circuit that has re-convergent fanout (i.e. there is

correlation among the signals) is an NP-hard problem [Naj91]. Without properly

partitioning the circuits ([CRP94, Kap94]), the method may not be applicable to

very large circuits.

Since having correct equilibrium probabilities is important to obtain a better ac-

curacy, we have implemented the algorithm proposed in [PM75] and suitable to

compute probabilities when re-convergent fanout exists.

This algorithm traverses the circuit starting at its inputs and computes the logical

expression for the output of each gate as a function of its inputs expressions. Once

an expression has been calculated, all its exponents are suppressed to obtain the

correct probability expression for that signal.

5.4.4 Exhaustive exploration of gate con�gurations

Table 5.2 shows the number of possible con�gurations obtained by reordering the

transistors of some standard gates. These con�gurations are obtained by pivoting on

the internal nodes of the gate. More formally, this process of obtaining a new con-

�guration is described as follows: let BS be the subgraph (of the graph representing

the PMOS or NMOS blocks of a gate) composed of all edges whose source is node

n

k

and whose destination node is either node n

bs

or another node n

dummy

. The same

de�nition is recursively applied to node n

dummy

until all destination nodes are n

bs

.

124 Chapter 5: Logic/Circuit technique for low power

Gate #Conf. Gate #Conf. Gate #Conf.

inv 1 aoi21[A,B] 4 oai21[A,B] 4

nand2 2 aoi22 8 oai22 8

nand3 6 aoi31[A,B] 12 oai31[A,B] 12

nand4 24 aoi32[A,B] 24 oai32[A,B] 24

nor2 2 aoi33 72 oai33 72

nor3 6 aoi211[A,B,C] 12 oai211[A,B,C] 12

nor4 24 aoi221[A,B,C] 24 oai221[A,B,C] 24

aoi222 48 oai222 48

Table 5.2 Number of di�erent con�gurations for some standard gates obtained

by reordering its transistors.

PIVOTE AND SEARCH (gate graph; visited reords; current node)

gate graph = PIVOTING ON NODE (gate graph; current node)

if not VISITED (gate graph; visited reorderings) then

visited reords = ADD TO VISITED REORDS (gate graph)

for index = 1 to number of internal nodes do

if index 6= current node then

PIVOTE AND SEARCH (gate graph; visited reords; index)

FIND ALL REORDERINGS (gate graph)

visited reords ;

for index = 1 to number of internal nodes do

PIVOTE AND SEARCH (gate graph; visited reords; index)

Figure 5.9 Exhaustive exploration algorithm.

Similarly, let TS be the subgraph with its associated node n

ts

. A new con�guration

of the gate is obtained by interchanging subgraphs BS and TS.

For example, in any con�guration of Figure 5.1(a), new con�gurations are obtained

by pivoting on node n

1

, being n

ts

and n

bs

, in all cases, y and vss respectively.

For the graph representation of the gate explained in Section 5.3.3, an algorithm

that �nds all possible transistor reorderings of a gate is presented in Figure 5.9.

The strategy of pivoting on an internal node to obtain a new reordering of tran-

sistors leads to the generation of repeated reorderings. A dynamic programming

approach with memoization [CLR90] is used to avoid the generation of overlapping

subproblems.

The algorithm recursively points to an internal node (current node) and pivots on it

to obtain a new reordering (PIVOTING ON INTERNAL NODE()). Further searching for new

reorderings is pruned if the reordering obtained has already been visited (VISITED()).

5.5 Results 125

vdd

vss

y

n0

n1

a2
N

b
P

b
N

a1
N

a2
P

a1
P

vdd

vss

y

n0

n1

a2
P

a1
P

b
P

a2
Na1

N

b
N

vdd

vss

y

n0

n1

b
P

a2
P

a1
P

a2
Na1

N

b
N

already
visited

vdd

vss

y

n0

n1

a2
Na1

N

b
N

b
P

a2
P

a1
P

vdd

vss

y

n0

n1

a2
P

a1
P

b
P

a2
Na1

N

b
N

vdd

vss

y

n0

n1

b
P

a2
P

a1
P

a2
Na1

N

b
N

(1) pivoting
on node n0

(2) pivoting
on node n1

(3) pivoting
on node n0

(4) pivoting
on node n1

(5) pivoting
on node n1

Figure 5.10 Execution example of the exhaustive exploration algorithm.

If it has not been visited, it is added to the set of transistor reorderings of the

gate already visited (ADD TO VISITED REORDERINGS()) and the algorithm is called again

for all internal nodes of the gate except the current one (this is so to prevent the

generation of a reordering that we know beforehand that we have already visited).

The algorithm in Figure 5.9 works for gates that can be represented with a series-

parallel graph. Almost all the gates of typical libraries can be represented with

this type of graphs. Figure 5.11 shows a gate that does not admit a series-parallel

representation. The authors are currently working on the formal demostration that

all possible transistor reorderings of a static CMOS gate are generated with this

algorithm.

To illustrate how this algorithm works, it has been applied to the gate implementing

the function y = (a1 + a2) b. Figure 5.10 shows the execution. The starting graph

representation of the gate is the one in Figure 5.5(a). We observe that all four

possible reorderings (those already seen in Figure 5.1(a)) are generated.

126 Chapter 5: Logic/Circuit technique for low power

y

b c
a

a b

d

c
d

e

e

Figure 5.11 A gate (y = a d+ b e+ b c d+ a c e) without a series-parallel repre-

sentation.

5.5 RESULTS

5.5.1 Scenarios for the experiments

A wide range of MCNC [Yan91] circuits have been used as benchmarks. They have

been mapped into the gate library shown in Table 5.2. In some cases, to obtain

all transistor reorderings of a gate, it is necessary to have more instances of that

gate. For example, there are two instances of gate oai21: oai21[A], which is able to

implement con�gurations (A) and (B) of Figure 5.1(a) and oai21[B], which is able

to implement con�gurations (C) and (D). All instances of the gates in Table 5.2

have been implemented in a sea-of-gates design style (see Chapter A, Section A.2).

Two scenarios have been considered to evaluate the power-consumption savings

obtained with the transistor reordering technique (see Figure 5.12(a)). In Scenario

A, the circuit is considered to be embedded in a larger digital system. Thus,

the equilibrium probability and specially the transition density of the inputs of

the circuit may take very di�erent values. In this scenario, the probabilities and

transition density of the primary inputs of each circuit are randomly set with a

uniform distribution. Probabilities range from 0 to 1 and transition densities range

from 0 to 1 million transitions per second. In Scenario B, the circuit is considered

to be the combinational part of a sequential system. In this scenario, both the

probability and transition density of the primary inputs of the circuit may take

values between 0 and 1. We have set both values to 0.5 and 0.5 transitions per

cycle, respectively.

5.5 Results 127

Scenario A

Circuit

clock
Scenario B

Circuit

Figure 5.12 The two scenarios considered.

In both scenarios, the optimization algorithm has been applied to the original gate-

level description of the circuits to obtain, for each gate, the best instance and, for

each instance, the best input reordering. Because of all instances of the same gate

have the same area, the total area of the optimized circuit remains the same.

For each scenario and circuit, two new gate-level descriptions have been created.

One of them contains the best transistor reordering for low power for all gates

whereas the other contains the worst one. A switch-level simulator (see Appendix A,

Section A.3) extracts the power consumption of each description. Thus, the maxi-

mum power reduction for each scenario is obtained. The input signals to the circuits

used by the switch-level simulator have been generated with an exponential distri-

bution, i.e. time intervals between two consecutive transitions of input signal k to

the gate follow an exponential distribution with average 1=D

k

, being D

k

the tran-

sition density of input signal k. The delay information has been obtained with the

SIS system (see Appendix A, Section A.4).

5.5.2 Discussion

Table 5.3 shows the results obtained. Columns Model and SLS show the power-

consumption reduction (best case compared to worst case for low power) obtained

with the model and with switch-level simulations respectively. ColumnDelay shows

the increase in delay (best case for low power compared to a mapping into the

original cell library). The delay increases in most of the benchmarks because not

always the best transistor reorderings of a gate for low power and low delay coincide.

In fact, the rule of thumb that states that the critical transistor should always be

placed near the output terminal to obtain a fast gate contradicts the low power rule

128 Chapter 5: Logic/Circuit technique for low power

of placing it close to the ground node as can be observed in the motivation example

(case (2)) in Section 5.1.1 and in [SLW95].

It is shown that the average improvement in power consumption in scenario A is

12% with an average increase in delay of 4%. The estimated average improvement

is 9%. The reason of this lower value in the estimated improvement is that the

model, in general, overestimates the power consumption by an o�set, thus leading

to a lower estimated reduction.

The power reduction in scenario B is roughly half the one in scenario A because of

the smaller amount of the circuits in scenario B. The power and delay of latches and

the clock line in scenario B has not been included in the results. In both scenarios

there is a small average increase in delay.

Thus, signi�cant power consumption reduction can be obtained in both scenarios

with little average increase in delay and it is possible to achieve power reductions

without increasing the delay of the circuit (see, for example, benchmarks c8 and

too large in Table 5.3.

5.6 CONCLUSIONS

This chapter has shown that the performance optimization technique called tran-

sistor reordering may be also used to reduce the power consumption of a circuit.

Average power reductions of 12% at the expenses of 4% increase in delay have been

obtained for a wide range of benchmarks.

An optimization algorithm that uses a stochastic power-consumption model of a

static CMOS gate has been presented. This novel power-consumption gate model

takes into account both the probabilities and the switching activity of the inputs of

the gates that compose the circuit to estimate the activity at the internal nodes of

the gate.

The results obtained suggest that:

current libraries may be upgraded with more instances of the gates with di�erent

transistor reorderings, so that an optimization algorithm can choose the best

instance for power reduction and

it is also possible to obtain power reductions without increasing the delay of the

circuit.

5.6 Conclusions 129

Circuit Gates Scenario A Scenario B

name Model SLS Delay Model SLS Delay

alu2 224 9.5 14.6 1.2 5.7 6.4 -0.2

c432 148 6.2 14.1 -0.7 4.3 8.2 -3.7

c499 316 2.8 4.6 -1.6 1.7 3.9 -3.0

c8 99 11.5 13.7 -15.5 4.1 5.1 -2.9

cht 117 9.9 9.3 4.4 3.7 6.9 2.5

cm150a 43 7.8 11.9 1.1 2.7 5.5 10.8

cm85a 24 15.4 20.0 0.0 8.7 15.3 -1.2

comp 94 5.8 10.2 17.5 2.2 3.7 7.4

cordic 64 6.5 11.9 -2.7 1.8 1.6 -0.7

i5 244 10.2 12.5 9.4 3.8 7.4 14.4

mux 55 9.7 12.5 13.3 4.1 5.5 -2.6

my adder 128 4.3 12.3 6.2 1.7 0.7 5.4

parity 45 2.8 5.9 1.1 0.6 0.1 0.0

too large 459 10.5 11.0 -8.0 4.6 3.2 -2.6

x1 192 11.2 12.4 11.7 5.3 4.9 10.2

x4 313 11.0 13.3 -2.4 5.1 6.4 -1.9

pcle 47 8.4 13.6 11.8 6.4 10.0 15.3

pcler8 64 7.7 16.8 13.8 6.4 11.5 14.1

frg1 67 12.2 15.2 8.4 4.9 8.3 4.4

sct 62 13.0 13.8 1.5 5.5 3.6 8.1

unreg 49 8.4 3.8 0.0 0.8 0.1 -14.0

z4ml 41 10.7 15.4 -5.3 3.0 1.7 -4.9

f51ml 73 13.8 15.0 7.5 4.5 5.4 -4.3

symml 84 12.7 12.6 3.7 3.0 3.3 -4.9

apex7 155 7.9 11.5 11.7 4.7 8.3 5.9

count 80 11.8 18.2 4.0 6.1 9.6 5.3

c1355 540 2.1 2.9 2.3 1.9 4.6 2.2

c1908 401 5.4 9.0 1.0 3.5 5.0 -2.0

c880 235 8.6 13.6 -0.4 4.5 10.2 -6.4

alu4 424 7.9 12.0 3.6 5.7 7.7 4.3

apex6 442 7.5 12.3 0.2 4.2 7.1 -3.4

example2 222 6.2 8.4 17.2 2.1 2.5 16.4

i6 284 7.7 7.6 8.1 1.6 4.6 -6.1

i7 411 8.4 7.9 9.6 1.2 2.2 10.9

i9 516 5.6 3.3 1.3 4.5 5.5 0.3

rot 408 8.8 12.3 13.5 4.6 7.0 15.2

term1 206 12.9 13.7 6.0 6.5 5.7 -4.7

ttt2 132 12.5 13.4 -11.2 7.1 5.7 -9.2

x3 485 11.0 13.3 -2.4 7.0 7.1 17.2

Average 8.9 11.7 3.6 4.1 5.7 2.3

Table 5.3 Results obtained for several MCNC benchmarks for both scenarios

considered.

130 Chapter 5: Logic/Circuit technique for low power

6

CONCLUSIONS AND FUTURE RESEARCH

This chapter presents the conclusions for the contributions of this work, namely

some low-power design techniques at the system, architecture and logic/circuit lay-

ers of the design process of a circuit. In addition, some research directions derived

by these techniques are discussed.

131

132 Chapter 6: Conclusions and future research

6.1 INTRODUCTION

Concern about the increasing power consumption of the circuits has grown in the

recent years among the semiconductor industries. Issues like battery life, chip pack-

age and cooling devices, reliability, etc. are becoming key factors for the successful

outcome of the products for a large sector of the microprocessor market.

The main factor that has driven most of the e�orts in low-power design is the

increasing demand of portable battery-operated applications such as notebook and

laptop computers or PDAs (Personal Digital Assistants). In these applications, one

of the primary design constraints is the battery life.

Thus, circuit designers face a new dimension (power) in the traditional two-dimen-

sional (area and delay) search space, with the associated increase in complexity.

There exist few CAD tools that take into account the power consumption during

the design process; therefore, new low-power design techniques are needed to help

the designer in the complex task of meeting area, delay and power constraints.

There are two main research �elds in the low-power design area: power estimation

and low-power design. Both are tightly related since a previous analysis of the

power consumption of the design to be implemented is needed to understand where

the power goes, i.e. which are the most power-consuming parts that need to be

targeted by the low-power design techniques. In this work we have focused on

low-power design techniques.

The power consumed by a circuit is divided into static and dynamic. Static power

is consumed when there is no activity. Transistors do not behave as perfect switches

and, therefore, leakage currents (caused by parasitic diodes) and static currents (a

function of the input voltage and the threshold voltage of the transistors) arise. The

contribution of the static consumption is less than 2% of the total power and it is

usually neglected.

Dynamic power is consumed when there is activity. This component of the power

is divided into:

short-circuit power consumption: a short-circuit current arises when there is

a path between power supply and ground where all transistors are on. The

power associated to this e�ect can be kept below 10-15% of the total power for

data-path circuits.

capacitance charge/discharge power consumption: whenever a circuit node chan-

ges its value, its associated capacitance has to be charged or discharged, thus

6.2 Contributions 133

consuming power. For data-path circuits, this component accounts roughly for

the 80% of the total power.

Considering only the capacitance charge/discharge power component, the power

consumption of an output node i of a gate is de�ned as:

1

2

(C

i

V

2

DD

� f) ;

where V

DD

is the power supply, f is the operating frequency and � is the number

of times that the capacitance C

i

is charged or discharged per cycle. This equation

reveals the three degrees of freedom when designing for low power: voltage, physical

capacitance and activity. Once the supply voltage and the device dimensions have

been �xed, it is the switching activity of the signals of the circuit that will ultimately

determine its power dissipation.

Techniques for reducing this activity are the contribution of this work. Several low-

power design techniques have been reviewed covering all the layers of the design

hierarchy:

system (system shutdown, system partitioning, algorithm selection)

architecture (parallel and pipelined processing with voltage scaling, compiler

transformations, cache design, data representation)

logic (path balancing and gate sizing, multi-level logic synthesis, technology

mapping, FSM state assignment, re-timing, disabling registers)

circuit (logic style, asynchronous design, design style, adiabatic computing)

layout (
oorplanning, placement and routing)

technology (technology scaling and SOI process, packaging technology).

The highest power savings are obtained at the architecture and system layers. How-

ever, signi�cant power reductions are also achieved at the logic and circuit layers,

which may add up to those already obtained at the higher layers.

6.2 CONTRIBUTIONS

This work contributes to the design of low-power at the system, architecture and

logic/circuit layers of the design process. The contributions have been published in

several international conferences [MC95a, MC95b, MC95c, MC96].

134 Chapter 6: Conclusions and future research

6.2.1 System layer

At the system layer, a set of high-level synthesis techniques (loop interchange,

operand reordering, operand sharing, operand retaining, operand similarity) that

tackle the problem of power consumption at the register-transfer level (RTL) have

been presented and evaluated using an appropriate high-level power-consumption

model. Rather than accurately estimating the power consumption of the �nal im-

plementation, we focus on fairly compare the relative bene�ts of di�erent RTL

descriptions.

The common idea behind these techniques is to reduce the activity at the inputs of

the functional units (the most power-consuming units in an RTL architecture). To

cope with the high complexity of the problem of power reduction, all the techniques

are based on heuristics which trade, in some cases, power for area and performance.

Each of the techniques presented has been evaluated with some benchmarks in

which there is a clear evidence that signi�cant bene�ts can be obtained. Up to 34%

power reductions in the functional units have been evaluated. The techniques are

complementary among them and not every technique produces a tangible improve-

ment on every benchmark. Moreover, the implementation of these techniques may

cause an increase in area . In the evaluation of the power-consumption reductions,

we have not taken into account the power of this additional circuitry. However, we

believe that it is negligible compared to the power consumption of the functional

units.

The high-level synthesis tasks of scheduling and register binding have been auto-

mated and power/area and power/delay trade-o�s have been studied. The schedul-

ing algorithm for low power uses a list-scheduling approach where the priorities of

the operations of the ready-operation queue are set in such a way that operations

sharing the same operand are bound to the same functional unit and scheduled so

that the functional unit can reuse that operand. Signi�cant power reductions are

obtained in the scheduling task (up to 17%) with little increase or no increase at

all in latency.

The register-binding algorithm for low power is based on clique partitioning of a

restricted variable-lifetime compatibility graph to obtain a register set that, for each

functional unit, reduces the power consumption during its idle cycles. Power con-

sumption in the functional units during non-idle cycles is decreased by taking into

account the average Hamming distance among the variables of the behavioral de-

scription and the commutative property of some operations. The power reductions

obtained (5-8%) consider all units of the RTL design, not only the functional units.

6.2 Contributions 135

Although the scheduling and register-binding techniques for low power are compat-

ible and complementary, the scheduling technique obtains better improvements if

applied to dense schedules (e.g. schedules where the functional unit occupation is

high) whereas the register-binding technique is more suitable to sparse schedules.

Both algorithms of scheduling and register binding for low power trade o�, in some

cases, latency and area for power. They should be modi�ed to achieve, �rst, the

same performance or area as the original algorithms and, later, as much power re-

duction as possible. Moreover, the algorithms proposed are modi�cations of two tra-

ditional approaches for scheduling (list-based) and binding (clique covering). Other

approaches for the scheduling and binding tasks (force-directed, greedy, integer pro-

gramming) should be investigated.

The techniques presented only focus on functional units since we target at data-

intensive applications. For memory-intensive circuits, di�erent techniques should

be devised that reduce the amount of memory references.

6.2.2 Architecture layer

Useless activity does not contribute to the calculation of the �nal result of the circuit

and only dissipates power. Useless activity is the main power-consumption source in

a class of circuits that present a regular, layered structure, where each layer is driven

by primary inputs from the very beginning. Moreover, the useless/useful activity

ratio increases with the bit width of the inputs of the circuit. Array multipliers

belong to this class of circuits.

The technique proposed to reduce the useless activity is based on the insertion of

self-timed controlled latches on the high-active paths of the circuit. The enabling

signals for these latches are generated by delaying an input signal. This technique

has been implemented and evaluated for several con�gurations of array multipliers.

An implementation of this technique that retains the regularity of the array struc-

ture consists of inserting the latches following the layered structure of the array, i.e.

latches are inserted acting as a transition-retaining barrier (TRB) for the useless

activity.

Two di�erent trade-o�s have been studied:

area/power: the more number of latches are inserted, the more number of useless

transitions are eliminated. However, latches and their associated delay cells

136 Chapter 6: Conclusions and future research

increase the total area and consume power. As an example, the insertion of a

TRB in an 8�8-bit array multiplier increases the power instead of reducing it.

delay/power: if the delay of the delay-cells used for the enabling of the TRBs is

greater than the delay of the basic cell of the array, the multipliers will present

less power but will be slower. If not, the TRBs will switch into transparent

mode too early, allowing some useless transitions to pass through and generate

more useless activity in the next part of the array.

The best results are obtained when three TRBs are inserted. However, it is impor-

tant to notice that the greatest decrease in power is achieved when inserting one

TRB compared to the original design rather than when inserting two TRBs com-

pared to inserting just one. There is an optimal (for power consumption) number of

TRBs. This number is a complex function of the size of the multiplier, the useless

activity generated and the power consumption of the TRBs and delay cells. The

evaluation of this optimal number has not been addressed in this work and it is left

as future research.

With three TRBs, we achieve a reduction in power of 30% in a 32�32-bit array

multiplier with an increase in area and delay of 4% and 8% respectively. Further

power savings are obtained with a proper design of the basic building block of the

multiplier (the full-adder cell) with its balanced paths so that the generation of

useless transitions is minimized.

The �nal multiplier remains combinational and highly regular. This implies that

the TRB technique can be easily integrated in existing CAD tools for the generation

of array multipliers.

6.2.3 Logic/circuit layer

Some complex logic functions accept several static CMOS implementations that

present a di�erent order of the transistors. The transistor reordering technique has

already been proposed to decrease the propagation delay of the gate. We have used

this technique to �nd a proper order of the transistors of a gate so that the switching

activity at the internal nodes of the gate is minimized.

The power consumption at the internal nodes of a gate depends on the signal prob-

abilities and the amount of switching activity at the inputs of that gate, and the

order of the transistors that compose the gate. Therefore, an stochastic power-

consumption model of a gate that takes into account these parameters has been

proposed. One drawback of this model is that it is based on the transition density

6.2 Contributions 137

measure of the activity. This measure, although fast to evaluate, does not take into

account the correlation (spatial or temporal) of the input signals to the gate. Other

more accurate (but more time consuming) models that take into account the signal

correlation should be used to evaluate the power reductions.

This model is the core of an optimization algorithm that traverses that gate de-

scription of a circuit and, for each gate, it �nds the best order of the transistors

for low power. This algorithm presents the following property: the power reduction

in an individual gate always decreases the power of the circuit. The reason of this

monotonic behavior is that all possible transistor reorderings of a gate lead to the

same probability and switching activity at its output node if the model mentioned

before is used to compute them.

Moreover, this algorithm works for gates that can be represented with a series-

parallel graph. Almost all the gates of typical libraries can be represented with this

type of graphs.

Finding the best transistor reordering implies an exhaustive exploration of each gate.

Since most gates only have a small number of transistors in series, an exhaustive

exploration is feasible. An algorithm that performs this exploration is presented

and it is based on a graph representation of a CMOS gate that preserves the order

of the transistors.

Two scenarios have been considered to evaluate the power-consumption savings

obtained with the transistor-reordering technique. The main di�erence between

these scenarios is the di�erent amount of switching activity that the primary inputs

present. A standard gate library has been implemented with all the necessary

instances of a gate to obtain all transistor reorderings for that gate.

The results obtained show that:

the power consumption is always decreased.

an average power reduction of 12% and up to 20% may be achieved.

lower power reductions (6% in average) are obtained for the scenario with less

switching activity at the primary inputs.

the delay increases in most of the benchmarks because the best transistor re-

ordering for low power usually does not coincide with the best one for perfor-

mance.

in some circuits, both power and delay may be reduced at the same time.

138 Chapter 6: Conclusions and future research

the reductions predicted by the model underestimate the results obtained with

a switch-level simulator because the model, in general, overestimates the power

consumption by an o�set, thus leading to a lower estimated reduction.

6.3 FUTURE RESEARCH

The techniques presented as the contribution of this work may be improved to

obtain better power reductions and extend their applicability domain. Some of the

future research lines are outlined for each of the three parts of the contributions of

this work.

With regard to the high-level synthesis techniques,

evaluate the area and delay overhead and implement those techniques that have

not been automated (loop interchange, operand reordering).

focus on the power consumption of memory-intensive applications and propose

techniques to reduce the number of memory references (for example, study a

mechanism to map the arrays to memory so that the activity at the address bus

is minimized).

modify the scheduling and register binding algorithms for low power to achieve

the same performance and area as the original algorithms.

investigate other approaches (force-directed, greedy, integer programming) to

the scheduling and resource binding for low power.

With regard to the transition-retaining barrier technique,

use a full-adder design with balanced paths so that the generation of useless

transitions is minimized.

reduce the area overhead by not inserting those latches that would eliminate a

small amount of useless activity.

experimentally calculate the optimal (for power) number of TRBs.

evaluate this technique for other types of circuits.

And with regard to the transistor reordering technique,

6.3 Future research 139

upgrade other standard libraries with more instances of the gates with di�erent

transistor reorderings and evaluate again the technique.

modify the power-optimization algorithm to apply the transistor-reordering

technique only to those gates that are not in the critical path of the circuit,

thus not increasing the delay.

extend the stochastic power-consumption model of the static CMOS gate to be

applicable to other logic families and to static CMOS gates that do not admit

a series-parallel representation.

use other more accurate measure of the switching activity that takes into ac-

count the spatial and temporal correlation of the input signals to the gate.

140 Chapter 6: Conclusions and future research

A

CIRCUIT DESIGN AND ANALYSIS TOOLS

The designs proposed in this work have been implemented and evaluated with three

circuit design and analysis tools: Ocean, SLS and SIS. In this chapter, these tools

are reviewed. The design and analysis of a full-adder circuit is presented as an

example.

141

142 Appendix A: Circuit design and analysis tools

FULL ADDER

X Y CIN

SCOUT
(a)

X Y

CIN

COUT S
(b)

Figure A.1 (a) Schematic and (b) gate description of a full adder.

A.1 INTRODUCTION

In this work three tools have been used to implement and evaluate the proposed

designs. All the tools have been developed at universities.

The Ocean design system [GS93] has been used to implement, in a sea-of-gates

design style, some of the cells and circuits proposed in this work. It has provided

also an accurate estimation of the area at the layout level.

The SLS switch-level simulator [vG89] has been used to obtain the power consump-

tion of the circuits either implemented with the Ocean system implemented using

its gate libraries. Also timing analysis is provided with this simulator.

The SIS synthesis system [SSL

+

92] has been used to calculate the critical path of

a gate-level circuit description.

In this chapter we review some of the features of these three tools. The full-adder

circuit of Figure A.1 is implemented and analyzed with the tools.

A.2 OCEAN

Ocean [GS93] is a chip design package developed at Delft University of Technology,

the Netherlands. It includes a set of tools for the synthesis and veri�cation of semi-

custom sea-of-gates and gate-array [WE93] chips. Its main features are:

A.2 Ocean 143

Vdd metal

Poly gates

P diffusion

N diffusion

Vss metal

Figure A.2 Sea-of-gates layout architecture.

hierarchical (full-custom like) layout style on sea-of-gates.

automatic tools for placement, routing and extraction.

Sea-of-gates [WE93] is a design option where the design cost of the integrated

circuit is reduced since the designer only has to de�ne the connections with metals,

contacts and vias. The core of the chip already contains a continuous array of

N- and P-transistors. Those rows are repeated vertically (Figure A.2). Routing

channels are formed by routing over the top of unused transistors. In contrast to

the conventional gate-arrays, a sea-of-gates image does not have pre-de�ned routing

channels. This enables a much more compact implementation of structured circuits

such as processors.

Most designs choose equally sized transistors to equalize rise and fall times. The

absolute size of transistors is a trade-o� between drive capability, fan-in loading,

and the array density required. The size of the transistors also a�ects the routing

tracks.

The package is provided with some standard gate libraries which have been used

to implement the circuits throughout this work. Whenever needed, we have imple-

mented our own gates. The full-adder circuit in Figure A.1 may be described with a

network description language as shown in Figure A.3(a). Gates na210 and ex210

belong to the standard digital library provided with the Ocean package.

Once this description of the circuit is compiled and entered into a database, the

Ocean system is able to perform an automatic placement and routing. The resulting

144 Appendix A: Circuit design and analysis tools

extern network na210 (terminal A,B,Y,vss,vdd)

extern network ex210 (terminal A,B,Y,vss,vdd)

network full adder (terminal X,Y,CIN,S,COUT,vss,vdd)

f

ex210 (X,Y,V0,vss,vdd);

ex210 (V0,CIN,S,vss,vdd);

na210 (X,Y,V1,vss,vdd);

na210 (V0,CIN,V2,vss,vdd);

na210 (V1,V2,COUT,vss,vdd);

g

(a)

(b)

Figure A.3 (a) Full-adder netlist description and (b) layout produced by Ocean.

circuit is shown in Figure A.3(b). The transistors and capacitances of this layout

can be extracted and saved into the database for later simulations.

A.3 SLS 145

print X,Y,CIN,S,COUT

option level = 3

option sigunit = 100e-09

dissipation

set vdd = h*

set vss = l*

set X = (l*4 h*4)*

set Y = (l*2 h*2)*

set CIN = (l*1 h*1)*

(a)

(b)

Figure A.4 (a) Command �le and (b) graphical output of the SLS simulator.

A.3 SLS

SLS [vG89] is a switch-level simulator developed at Delft University of Technology,

the Netherlands. It can be used for simulating the logical and timing behavior of

digital MOS circuits at three levels:

level 1: purely logic without considering the actual circuit parameters.

level 2: logic simulation based on actual circuit parameters (transistor dimen-

sions and interconnection resistances and capacitances).

level 3: same as level 2 but with timing. To �nd the delay times, the simu-

lator uses approximating piece-wise-linear voltage waveform that are found by

performing RC constant calculations.

One important feature of the SLS simulator is the possibility to perform mixed-level

simulations for transistor-level, gate-level and function-level circuits. Therefore, a

network may consist of some functional blocks that will be functionally simulated.

A functional block is a software model of a digital design. It manipulates its inputs

and produces outputs. The language in which the function blocks is described is

mainly the C programming language.

A separate �le (the command �le) provides the simulation control commands. A

possible command �le for the full-adder example that explores all possible combi-

146 Appendix A: Circuit design and analysis tools

nation at its inputs is shown in Figure A.4(a). With the dissipation command, the

simulator is able to obtain the total dynamic dissipation if the circuit is described

at the transistor level. It may also provide the average dissipation for di�erent

time intervals. In our example, the power dissipation can be obtained since we are

simulating the layout of Figure A.3(b).

The total dissipation is obtained by adding the values 0:5C

i

V

2

step

i

for all node tran-

sitions in the circuit. C

i

is the capacitance of a node i where a voltage change occurs

and V

step

i

is the value of the voltage change at that node i. The total dissipation is

divided by the simulation time.

The delay model (simulation at level 3) causes that more accurate values for the

dissipation are obtained than no delay model (simulation at level 1 and 2). At level

3, even the size of transient e�ects (glitches) is taken into account to compute the

dissipation. At level 1 and 2, glitches are also considered to compute the dissipation,

but they may be much less realistic. In this work, we have always simulated the

circuits at level 3.

The simulation outputs can be visualized either in graphic or text form. Fig-

ure A.4(b) shows the graphical results of the simulation of the full-adder circuit

using the command �le in Figure A.4(a).

A.4 SIS

SIS [SSL

+

92] is an interactive tool for synthesis and optimization of sequential cir-

cuits developed at the University of California, Berkeley. Although it focuses on

sequential systems, it implements techniques implemented to handle the combina-

tional blocks of these systems.

The SIS package has several features:

signal-transition graph (STG) manipulation (state minimization, state assign-

ment, STG extraction).

combinational optimization (node simpli�cation, kernel and cube extraction,

test pattern generation, technology mapping, restructuring for performance,

delay analysis).

sequential optimization (re-timing and re-synthesis, technology mapping, state

enumeration).

A.4 SIS 147

LSILOGIC 0.5u 3.3V

GATE nd2 1.0 O = ! (a * b);

PIN a INV 0.9 999.0 0.06 0.035 0.08 0.025

PIN b INV 1.0 999.0 0.06 0.035 0.08 0.025

GATE eo 3.0 O = ((!a * b) + (a * !b));

PIN a UNKNOWN 2.0 999.0 0.16 0.035 0.14 0.025

PIN b UNKNOWN 1.1 999.0 0.30 0.035 0.29 0.025

(a)

.model full adder

.inputs X Y CIN

.outputs S COUT

.gate eo a=X b=Y O=V0

.gate eo a=V0 b=CIN O=S

.gate nd2 a=X b=Y O=V1

.gate nd2 a=V0 b=CIN O=V2

.gate nd2 a=V1 b=V2 O=COUT

.end

(b)

Figure A.5 (a) Library and (b) circuit description in SIS.

asynchronous synthesis (hazard-free synthesis with unbounded gate-delay, syn-

thesis with bounded gate-delay, removing hazards with bounded wire-delay,

ensuring complete state coding and persistency, etc.)

that have been built on top of the MISII [BRSVW87] system.

In this work we have mainly used the delay analysis and technology mapping fea-

tures for the combinational circuits. To perform the technology mapping, a descrip-

tion of the targeted gate library has to be provided to SIS. The genlib format is

used for this purpose. For example, Figure A.5(a) shows the description of a two-

input NAND and XOR gate of the LSILOGIC library [LSI94]. The logic function,

area and delay information is provided.

The blif format is used to describe a logic-level hierarchical circuit. This format is

di�erent from the one used with the Ocean package. The same description of the

full adder in blif format is found in Figure A.5(b).

Once the SIS system has read both descriptions of the library and circuit, delay

analysis may be performed to obtain, among other information, the critical time of

the circuit.

148 Appendix A: Circuit design and analysis tools

REFERENCES

[AK84] J.R. Allen and K. Kennedy. Automatic loop interchange. In Proc. of

the SIGPLAN Symp. on Compiler Construction, pages 233{246, 1984.

[AMD

+

94] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Pa-

paefthymiou. Precomputation-based sequential logic optimization for

low power. IEEE Transactions on VLSI Systems, 2(4):426{436, De-

cember 1994.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley, Reading, Massachussets, 1986.

[BAF94] J. Bunda, W.C. Athas, and D. Fussell. Evaluating power implica-

tions of CMOS microprocessor design decisions. In Proc. International

Workshop on Low Power Design, pages 147{152, April 1994.

[BB95] T.D. Burd and R.W. Brothersen. Energy e�cient CMOS micropro-

cessor design. In Proc. 28th Annual Hawaii International Conf. on

System Sciences, January 1995.

[BCH

+

94] R.I. Bahar, H. Cho, G.D. Hachtel, E. Macii, and F. Somenzi. A

symbolic method to reduce power consumption of circuits containing

false paths. In Proc. of the IEEE/ACM International Conference on

Computer Aided Design, pages 368{371, November 1994.

[BCS92] R. Brodersen, A. Chandrakasan, and S. Sheng. Low-power signal

processing systems. In Proc. of the IEEE VLSI Signal Processing

Workshop, 1992.

[BE95] A. Bellaouar and M.I. Elmasry. Low-power digital VLSI design: cir-

cuits and systems. Kluwer Academic Publishers, 1995.

[BFR94] L. Benini, M. Favalli, and B. Ricc�o. Analysis of hazard contributions

to power dissipation in CMOS ICs. In Proc. International Workshop

on Low Power Design, pages 27{32, April 1994.

[BGS93] D.F. Bacon, S.L. Graham, and O.L. Sharp. Compiler techniques for

high-performance computing. Technical Report UCB/CSD-93-781,

Computer Science Division (EECS), UCB, November 1993.

[BIO95] M. Borah, M.J. Irwin, and R.M. Owens. Minimizing power consump-

tion of static CMOS circuits by transistor sizing and input reordering.

In Proc. of the International Conference on VLSI Design, pages 294{

298, January 1995.

149

150 High-level and logic synthesis techniques for low power

[BM82] R. Brayton and C. McMullen. The decomposition and factorization

of boolean expressions. In Proc. International Symposium on Circuits

and Systems, pages 49{54, 1982.

[BM95] L. Benini and G. De Micheli. Transformation and synthesis of FSMs

for low-power gated-clock implementation. In Int. Symposium on Low

Power Design, pages 21{26, April 1995.

[BOI95] M. Borah, R.M. Owens, and M.J. Irwin. High-throughput and low-

power DSP using clocked-CMOS circuitry. In Int. Symposium on Low

Power Design, pages 139{144, April 1995.

[BRSVW87] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.R. Wang.

MIS: a multiple-level logic optimization system. IEEE Transactions

on Computer-Aided Design, 6(6):1062{1081, November 1987.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipu-

lation. IEEE Transactions on Computers, C-35(8):677{691, August

1986.

[BS95] C.W. Brown and B.J. Shepherd. Graphics File Formats: reference

and guide. Prentice-Hall, 1995.

[BSdM94] L. Benini, P. Siegel, and G. de Micheli. Saving power by synthesizing

gated clocks for sequential circuits. IEEE Design & Test of Computers,

pages 32{41, winter 1994.

[BW73] C.R. Baugh and B.A. Wooley. A two's complement parallel ar-

ray multiplication algorithm. IEEE Transactions on Computers, C-

22(12):1045{1047, December 1973.

[CB95] A.P. Chandrakasan and R.W. Brodersen. Low Power Digital CMOS

Design. Kluwer Academic Publishers, 1995.

[CC93] B.S. Carlson and C.Y.R. Chen. Performance enhancement of CMOS

VLSI circuits by transistor reordering. In Proceedings of the 30th

Design Automation Conference, pages 361{366, 1993.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo-

rithms. McGraw-Hill, 1990.

[CP95] J-M. Chang and M. Pedram. Register allocation and binding for low

power. In Proceedings of the 32nd Design Automation Conference,

pages 29{35, 1995.

[CPM

+

95] A.P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R.W.

Brodersen. Optimizing power using transformations. IEEE Transac-

tions on Computer-Aided Design, 14(1):12{31, January 1995.

[CPRB92] A. Chandrakasan, M. Potkonjak, J. Rabaey, and R.W. Brodersen.

HYPER-LP: A system for power minimization using architectural

transformations. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pages 300{303, November 1992.

REFERENCES 151

[CR94] A. Chatterjee and R.K. Roy. Synthesis of low power linear DSP cir-

cuits using activity metrics. In Proc. of the International Conference

on VLSI Design, pages 265{270, January 1994.

[CRP94] T-L. Chou, K. Roy, and S. Prasad. Estimation of circuit activity

considering signal correlations and simultaneous switching. In Proc. of

the IEEE/ACM International Conference on Computer Aided Design,

pages 300{303, 1994.

[CS93] T.K. Callaway and E.R. Swartzlander. Estimating the power con-

sumption of CMOS adders. In Proc. of the Custom Integrated Circuit

Conference, pages 210{216, 1993.

[CSB90] A. Chandrakasan, S. Sheng, and R.W. Brodersen. Design consid-

erations for a future multimedia terminal. In WINLAB Workshop,

October 1990.

[CSB92a] A. Chandrakasan, S. Sheng, and R. Brodersen. Low power CMOS

digital design. IEEE Transactions on Solid-State Circuits, 27(4):473{

483, April 1992.

[CSB92b] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-power techniques

for portable real-time DSP applications. VLSI Design, pages 203{208,

1992.

[CSB94] A.P. Chandrakasan, M.B. Srivastava, and R.W. Brodersen. Energy

e�cient programmable computation. In Proc. of the International

Conference on VLSI Design, pages 261{264, January 1994.

[CW94] K-Y. Chao and D.F. Wong. Low power considerations in
oorplan

design. In Proc. International Workshop on Low Power Design, pages

45{50, April 1994.

[DDN85] P. Dewilde, E. Deprettere, and R. Nouta. Parallel and pipelined VLSI

implementation of signal processing algorithms, chapter 15, pages 257{

264. VLSI and Modern Signal Processing. Prentice-Hall, Inglewood

Cli�s, NJ, 1985.

[DK95] A. Dasgupta and R. Karri. Simultaneous scheduling and binding for

power minimization during microarchitectural synthesis. In Int. Sym-

posium on Low Power Design, pages 69{74, April 1995.

[DMP95] R. Marculescu D. Marculescu and M. Pedram. Information theoretic

measures of energy consumption at register transfer level. In Int.

Symposium on Low Power Design, pages 81{86, April 1995.

[ea92] D.W. Dobberpuhl et al. A 200-MHz 64-b dual-issue CMOS micro-

processor. IEEE Journal of Solid-State Circuits, 27(11):1555{1567,

November 1992.

[ea94a] G. Gerosa et al. A 2.2 W 80 MHz superescalar RISC microprocessor.

IEEE Journal of Solid-State Circuits, 29(12):1440{1454, December

1994.

152 High-level and logic synthesis techniques for low power

[ea94b] R. Bechade et al. A 32-b 66 MHz microprocessor. In International

Solid State Circuits Conference, pages 208{209, February 1994.

[ea94c] T. Indermaur et al. Evaluation of charge recovery circuits and adia-

batic switching for low power CMOS design. In Int. Symposium on

Low Power Electronics, October 1994.

[ea95a] D. Bearden et al. A 133 MHz 64-b four-issue CMOS microproces-

sor. In International Solid State Circuits Conference, pages 174{175,

February 1995.

[ea95b] W.J. Bowhill et al. A 300 MHz 64-b quad-issue CMOS RISC mi-

croprocessor. In International Solid State Circuits Conference, pages

182{183, February 1995.

[EL94] M.D. Ercegovac and T. Lang. Reducing transition counts in arithmetic

circuits. In Int. Symposium on Low Power Electronics, pages 64{65,

October 1994.

[EL95] M.D. Ercegovac and T. Lang. Low-power accumulator (correlator).

In Int. Symposium on Low Power Electronics, pages 30{31, October

1995.

[FFK88] M. Fujita, M. Fujisawa, and N. Kawato. Evaluation and improvements

of boolean comparison method based on binary decision diagrams. In

Proc. of the IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pages 2{5, November 1988.

[GBJ95] A.L. Glebov, D. Blaauw, and L.G. Jones. Transistor reordering for

low power CMOS gates using an SP-BDD representation. In Int.

Symposium on Low Power Design, pages 161{166, April 1995.

[GDWL92] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-level synthesis: intro-

duction to Chip and System Design. Kluwer Academic Publishers,

1992.

[GIG

+

94] S. Gary, P. Ippolito, G. Gerosa, C. Dietz, J. Eno, and H. S�anchez.

PowerPC 603

TM

, a microprocessor for portable computers. IEEE De-

sign & Test of Computers, pages 14{23, winter 1994.

[GR94] D.D. Gajski and L. Ramachandran. Introduction to high-level syn-

thesis. IEEE Design & Test of Computers, 2(4):44{54, winter 1994.

[GS93] P. Groeneveld and P. Stravens. Ocean: The Sea-of-Gates design sys-

tem. Technical report, Delft University of Technology, 1993.

[Gwe93a] L. Gwennap. ARM7 cuts power, increases performance. Microproces-

sor Report, 7(15):12{13, November 1993.

[Gwe93b] L. Gwennap. Hobbit enables personal communications. Microproces-

sor Report, 14:15{21, October 1993.

[Hay88] J. P. Hayes. Computer architecture and organization. 1988.

REFERENCES 153

[HdlR94] G.D. Hachtel and M. Hermida de la Rica. Re-encoding sequential

circuits to reduce power dissipation. In Proc. International Workshop

on Low Power Design, pages 69{74, April 1994.

[HvBPS93] Jaco Haans, Kees van Berkel, Ad Peeters, and Frits Schalij. Asyn-

chronous multipliers as combinational handshake circuits. In S. Furber

and M. Edwards, editors, Asynchronous Design Methodologies, vol-

ume A-28 of IFIP Transactions, pages 149{163. Elsevier Science Pub-

lishers, 1993.

[HZA94] R. Hossain, M. Zheng, and A. Albicki. Reducing power dissipation in

serially connectedMOSFET circuits via transistor reordering. In Proc.

of the IEEE International Conference on Computer Design, pages

614{617, October 1994.

[Ike95] T. Ikeda. Thinkpad low-power evolution. In Int. Symposium on Low

Power Electronics, pages 6{7, October 1995.

[IP94] S. Iman and M. Pedram. Multi-level network optimization for low

power. In Proc. of the IEEE/ACM International Conference on Com-

puter Aided Design, pages 371{377, November 1994.

[IP95] S. Iman and M. Predram. Logic extraction and factorization for low

power. In Proceedings of the 30th Design Automation Conference,

pages 248{253, 1995.

[JQN

+

91] B. Johnson, T. Quarles, A.R. Newton, D.O. Pederson, and

A. Sangiovanni-Vincentelli. SPICE3 Version 3e User's Manual. Dept.

of Electrical Engineering and Computer Science, Univ. of California,

Berkeley, April 1991.

[KaKS94] H. Kojima and S. Tanaka ad K. Sasaki. Half-swing clocking scheme

for 75% power saving in clocking circuitry. In Symp. on VLSI Circuits,

pages 23{24, June 1994.

[Kap94] B. Kapoor. Improving the accuracy of circuit activity measurement.

In Proceedings of the 31st Design Automation Conference, pages 734{

739, 1994.

[KBL95] U. Ko, P.T. Balsara, and W. Lee. Low-power design techniques for

high-performance CMOS adders. IEEE Transactions on VLSI Sys-

tems, 3(2):327{333, June 1995.

[KBN95] U. Ko, P.T. Balsara, and A.K. Nanda. Energy optimization of multi-

level processor cache architectures. In Int. Symposium on Low Power

Design, pages 45{49, April 1995.

[Keu94] K. Keutzer. The impact of CAD on the design of low power digital

circuits. In Int. Symposium on Low Power Electronics, pages 42{43,

October 1994.

154 High-level and logic synthesis techniques for low power

[KGG95] D.J. Kinniment, J.D. Garside, and B. Gao. A comparison of power

consumption in some CMOS adder circuit. In Proc. of the Int. Work-

shop on Power and Timing Modeling Optimization and Simulation

(PATMOS), pages 106{118, 1995.

[KKRV95] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri. Pro�le-driven be-

havioral synthesis for low-power VLSI systems. IEEE Design & Test

of Computers, pages 70{84, fall 1995.

[Kor93] I. Koren. Computer Arithmetic Algorithms. Prentice-Hall, 1993.

[Kun84] S.Y. Kung. On supercomputing with systolic/wavefront array proces-

sor. In Proc. of the IEEE, pages 867{884, July 1984.

[Lan94] P. Landman. Low-power architectural design methodologies. PhD the-

sis, College of Engineering, University of California at Berkeley, Au-

gust 1994. UCB/ERL M94/62.

[Lim90] J.S. Lim. Two-Dimentional Signal and Image Processing. Signal Pro-

cessing Series. Prentice-Hall, 1990.

[LK84] C. Lin and S. Kwatra. An adaptive algorithm for motion compensated

colour image coding. IEEE Globecom, 1984.

[LKB94] W. Lee, U. Ko, and P.T. Balsara. A comparative study on CMOS dig-

ital circuit families for low-power applications. In Proc. International

Workshop on Low Power Design, pages 129{132, April 1994.

[LM93] B. Lin and H. De Man. Low-power driven technology mapping under

timing constraints. In Proc. of the IEEE International Conference on

Computer Design, 1993.

[LR94a] P.E. Landman and J.M. Rabaey. Black-box capacitance models for

architectural power analysis. In Proc. International Workshop on Low

Power Design, pages 165{170, April 1994.

[LR94b] D.B. Lidsky and J.M. Rabaey. Low-power design of memory intensive

functions. In Int. Symposium on Low Power Electronics, pages 16{17,

October 1994.

[LR95] P.E. Landman and J.M. Rabaey. Activity-sensitive architectural

power analysis for the control path. In Int. Symposium on Low Power

Design, pages 93{98, April 1995.

[LS83] C.E. Leiserson and J.B. Saxe. Optimizing synchronous circuitry by

retiming. In Third Caltech Conf. on VLSI, 1983.

[LS94] C. Lemmonds and S.S.M. Shetti. A low power 16 by 16 multiplier

using transition reduction circuitry. In Proc. International Workshop

on Low Power Design, pages 139{142, April 1994.

[LSI94] LSI LOGIC. LCA500K Preliminary Design Manual, November 1994.

REFERENCES 155

[LvMJ95] J. Leijten, J. van Meerbergen, and J. Jess. Analysis and reduction of

glitches in synchronous networks. In Proc. European Conference on

Design Automation (EDAC), March 1995.

[Mar95] R.S. Martin. Optimizing power consumption, area and delay in be-

havioral synthesis. PhD thesis, Department of Electronics, Faculty of

Enginering, Carleton University, March 1995.

[Mat96] A. Matsuzawa. Low-power portable design. In Proc. International

Symposium on Advanced Research in Asynchronous Circuits and Sys-

tems, March 1996. Invited lecture.

[MC95a] E. Musoll and J. Cortadella. High-level synthesis techniques for re-

ducing the activity of functional units. In Int. Symposium on Low

Power Design, pages 99{104, April 1995.

[MC95b] E. Musoll and J. Cortadella. Low-power array multipliers with

transition-retaining barriers. In Proc. of the Int. Workshop on Power

and Timing Modeling Optimization and Simulation (PATMOS), pages

227{238, October 1995.

[MC95c] E. Musoll and J. Cortadella. Scheduling and resource binding for

low power. In Int. Symposium on System Synthesis, pages 104{109,

September 1995.

[MC96] E. Musoll and J. Cortadella. Optimizing CMOS circuits for low power

using transistor-reordering. In Proc. European Design and Test Con-

ference (EDAC-ETC-EuroASIC), pages 219{223, March 1996.

[MDG93] J. Monteiro, S. Devadas, and A. Ghosh. Retiming sequential circuits

for low power. In Proc. of the IEEE International Conference on

Computer Design, pages 398{402, November 1993.

[Mei95] J.D. Meindl. Low-power microelectronics: retrospect and prospect.

Proceedings of the IEEE, 83(4):619{635, April 1995.

[MIP94] MIPS. MIPS Press release. 1994.

[MK95] R.S. Martin and J.P. Knight. Power-pro�ler: OptimizingASICs power

consumption at the behavioral level. In Proceedings of the 32nd Design

Automation Conference, 1995.

[MSBSV91] S. Malik, E.M. Sentovich, R.K. Brayton, and A. Sangiovanni-

Vincentelli. Retiming and resynthesis: optimizing sequential networks

with combinational techniques. IEEE Transactions on Computer-

Aided Design, 10(1):74{84, January 1991.

[MT95] V.G. Moshnyaga and K. Tamary. A comparative study of switch-

ing activity reduction techniques for the design of low-power multipli-

ers. In Proc. International Symposium on Circuits and Systems, pages

1560{1563, April 1995.

156 High-level and logic synthesis techniques for low power

[MWBSV88] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli. Logic

veri�cation using binary decision diagrams in a logic synthesis envi-

ronment. In Proc. of the IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 6{10, November 1988.

[Naj91] F.N. Najm. Transition density, a stochastic measure of activity in digi-

tal circuits. In Proceedings of the 28th Design Automation Conference,

pages 644{649, 1991.

[Naj95] F.N. Najm. Towards a high-level power estimation capability. In Int.

Symposium on Low Power Design, pages 87{92, April 1995.

[NMO94] C. Nagendra, U.K. Mehta, and R.M. Owens. A comparison of the

power-delay characteristics of CMOS adders. In Proc. International

Workshop on Low Power Design, pages 231{236, April 1994.

[NS94] L.S. Nielsen and J. Spars�. Low-power operation using self-timed cir-

cuits and adaptive scaling of the supply voltage. In Proc. International

Workshop on Low Power Design, pages 99{104, April 1994.

[OF94] M.A. Ortega and J. Figueras. Extra power consumed in static CMOS

circuits due to unnecessary logic transitions. In IV Int. Design Au-

tomation Workshop (RUSSIAN WORKSHOP'94), June 1994.

[OY94] P-W. Ong and R-H. Yan. Power-conscious software design - a frame-

work for modeling software on hardware. In Int. Symposium on Low

Power Electronics, pages 36{37, October 1994.

[PC91] S.R. Powell and P.M. Chau. A model for estimating power dissipation

in a class of DSP VLSI chips. IEEE Transactions on Circuits and

Systems, 38(6):646{650, June 1991.

[Pez71] S.D. Pezaris. A 40ns 17-bit by 17-bit array multiplier. IEEE Trans-

actions on Computers, C-20(4):442{447, April 1971.

[PM75] K.P. Parker and E.J. McCluskey. Probabilistic treatment of general

combinational networks. IEEE Transactions on Computers, C-24:668{

670, June 1975.

[Pow95] R.A. Powers. Batteries for low power electronics. Proceedings of the

IEEE, 83(4):687{693, April 1995.

[PR91] M. Potkonjak and J. Rabaey. Optimizing the resource utilization using

transformations. In Proc. of the IEEE/ACM International Conference

on Computer Aided Design, pages 88{91, November 1991.

[PR94] S.C. Prasad and K. Roy. Circuit optimization for minimization of

power consumption under delay constraint. In Proc. International

Workshop on Low Power Design, pages 15{20, April 1994.

[PR95] R. Panwar and D. Rennels. Reducing the frequency of tag compares

for low power i-cache design. In Int. Symposium on Low Power Design,

pages 57{62, April 1995.

REFERENCES 157

[PTVF92] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Nu-

merical Recipes in C: The Art of Scienti�c Computing. Cambridge

University Press, second edition, 1992.

[Pug91] W. Pugh. The omega test: a fast and practical integer programming

algorithm for dependence analysis. In Proc. Supercomputing'91, 1991.

[Rep93] Special Report. The new contenders. IEEE Spectrum, pages 20{25,

December 1993.

[RJ94] A. Raghunathan and N.K. Jha. Behavioral synthesis for low power.

In Proc. of the IEEE International Conference on Computer Design,

pages 318{322, October 1994.

[RJ95] A. Raghunathan and N.K. Jha. An iterative improvement algorithm

for low power data path synthesis. In Proc. of the IEEE/ACM Inter-

national Conference on Computer Aided Design, 1995.

[RP93] K. Roy and S.C. Prasad. Circuit activity based logic synthesis for

low power reliable operations. IEEE Transactions on VLSI Systems,

1(4):503{513, December 1993.

[RP96] J.M. Rabaey and M. Pedram, editors. Low power design methodolo-

gies. Kluwer Academic Publishers, 1996.

[RY90] K.R. Rao and P. Yip. Discrete Cosine Transform. Academic Press,

1990.

[SA95] M. Song and K. Asada. Design methodology for low power data com-

pressors based on a window detector in a 54�54 bit multiplier. In Proc.

International Symposium on Circuits and Systems, pages 1568{1571,

April 1995.

[Sam89] H. Samueli. An improved search algorithm for the design of multipli-

erless FIR �lters with power-of-two coe�cients. IEEE Transactions

on Circuits and Systems, 36:1044{1047, July 1989.

[SBS94] A.J. Strakatos, R.W. Brodersen, and S.R. Sanders. High-e�ciency

low-voltage dc-dc conversion for portable applications. In Proc. In-

ternational Workshop on Low Power Design, pages 105{110, April

1994.

[SFCM95] H. Samsom, F. Franssen, F. Catthoor, and H. De Man. System level

veri�cation of video and image processing speci�cations. In Int. Sym-

posium on System Synthesis, pages 144{149, September 1995.

[SGDK92] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer. On average power

dissipation and random pattern testability of CMOS combinational

logic networks. In Proc. of the IEEE/ACM International Conference

on Computer Aided Design, 1992.

[SK94] L.\J". Svenson and J.G. Koller. Adiabatic charging without inductors.

In Proc. International Workshop on Low Power Design, pages 159{

164, April 1994.

158 High-level and logic synthesis techniques for low power

[SLB95] T. Sakuta, W. Lee, and P.T. Balsara. Delay balanced multipliers for

low power/low voltage DSP core. In Int. Symposium on Low Power

Electronics, pages 36{37, October 1995.

[SLW95] W.Z. Shen, J.Y. Lin, and F.W. Wang. Transistor reordering rules for

power reduction in CMOS gates. In ASP-DAC, July 1995.

[Sma94] C. Small. Shrinking devices put the squeeze on system packaging.

EDN, 39(4):41{46, February 1994.

[SNDD94] G.G. Shahidi, T.H. Ning, R.H. Dennard, and B. Davari. SOI for low-

voltage and high-speed CMOS. In Int. Conf. on Solid-State Devices

and Materials, pages 265{267, 1994.

[SNK73] Y. Susuki, K. Nogami, and M. Kakumu. Clocked CMOS calculator

circuitry. IEEE Journal of Solid-State Circuits, SC-8(6):462{469, De-

cember 1973.

[SNNS93] J. Spars�, C. D. Nielsen, L. S. Nielsen, and J. Staunstrup. Design of

self-timed multipliers: A comparison. In S. Furber and M. Edwards,

editors, Asynchronous Design Methodologies, volume A-28 of IFIP

Transactions, pages 165{179. Elsevier Science Publishers, 1993.

[SR95] G.E. Sobelman and D.L. Raatz. Low-power multiplier design using

delayed evaluation. In Proc. International Symposium on Circuits and

Systems, pages 1564{1567, April 1995.

[SSL

+

92] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-

danha, H. Savoj, P.R. Stephan, R.K. Brayton, and A. Sangiovanni-

Vincentelli. SIS: A system for sequential circuit synthesis. Technical

Report Memorandum No. UCB/ERL M92/41, University of Califor-

nia, Berkeley, 1992.

[STD94] C-L. Su, C-Y. Tsui, and A.M. Despain. Saving power in the control

path of embedded processors. IEEE Design & Test of Computers,

pages 24{30, winter 1994.

[TA94] C.H. Tan and J. Allen. Minimization of power in VLSI circuits using

transistor sizing, input ordering, and statistical power estimation. In

Proc. International Workshop on Low Power Design, pages 75{80,

April 1994.

[TAM93] V. Tiwari, P. Ashar, and S. Malik. Technology mapping for low power.

In Proceedings of the 30th Design Automation Conference, pages 74{

79, 1993.

[Tiw94] G. Tiwary. Below the half-micron mark. IEEE Spectrum, pages 84{87,

November 1994.

[TJL87] J.R. Treichler, C.R. Johnson, Jr., and M.G. Larimore. Theory and

Design of Adaptive Filters. New York: John Wiley & Sons, 1987.

REFERENCES 159

[TMA95] V. Tiwari, S. Malik, and P. Ashar. Guarded evaluation: pushing

power management to logic synthesis/design. In Int. Symposium on

Low Power Design, pages 221{226, April 1995.

[TMW94] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded soft-

ware: a �rst step towards software power minimization. IEEE Trans-

actions on VLSI Systems, 2(4):437{445, December 1994.

[TPCD94] C-Y. Tsui, M. Pedram, C-A. Chen, and A.M. Despain. Low power

state assignment targeting two- and multi-level logic implementations.

In Proc. of the IEEE/ACM International Conference on Computer

Aided Design, November 1994.

[TPD93] C.Y. Tsui, M. Pedram, and A.M. Despain. Technology decomposition

and mapping targeting low power dissipation. In Proceedings of the

30th Design Automation Conference, pages 68{73, June 1993.

[TPD94] C.Y. Tsui, M. Pedram, and A.M. Despain. Power e�cient technol-

ogy decomposition and mapping under extended power consumption

model. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 13(9):1110{1122, September 1994.

[TRDH89] I. Turkik, A. Reisman, R. Darveaux, and L-T. Hwang. Multichip

packaging for supercomputers. In Proc. of the NEPCON West'89,

pages 280{287, March 1989.

[vBBK

+

94] K. van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij, and

A. Peeters. Asynchronous circuits for low power: a DCC error correc-

tor. IEEE Design & Test of Computers, pages 22{32, summer 1994.

[vBN93] C.H. van Berkel and C. Niessen. An apparatus featuring a feedback

signal for controlling a powering voltage for asynchronous electronic

circuitry therein. European Pattern Application 92203949.0, June

1993.

[Vee84] H.J.M. Veendrick. Short-circuit dissipation of static CMOS circuitry

and its impact on the design of bu�er circuits. IEEE Journal of Solid-

State Circuits, pages 468{473, August 1984.

[vG89] A.J. van Gerenden. SLS: An e�cient switch-level timing simulator

using min-max voltage waveforms. In Proc. VLSI 89 Conf., pages

79{88, August 1989.

[VP93] H. Vaishnav and M. Pedram. PCUBE: A performance driven place-

ment algorithm for low power design. In Proc. European Design Au-

tomation Conference (EURO-DAC), pages 72{77, 1993.

[War95] C.A. Warwick. Trends and limits in the \talk time" of personal com-

municators. Proceedings of the IEEE, 83(4):681{686, April 1995.

[WCF

+

94] S. Wuytack, F. Catthoor, F. Franseen, L. Nachtergaele, and H. De

Man. Global communications and memory optimizing transformations

for low power. In Proc. International Workshop on Low Power Design,

pages 203{208, April 1994.

160 High-level and logic synthesis techniques for low power

[WE93] N. Weste and Eshraghian. Principles of CMOS VLSI Design: A Sys-

tems Perspective. Addison-Wesley, 2nd edition, 1993.

[Wol95] A. Wolfe. A case study in low-power system level design. In Proc.

of the IEEE International Conference on Computer Design, October

1995.

[Yan91] S. Yang. Logic synthesis and optimization benchmarks user guide.

Technical report, Microelectronics Center of North Carolina, Research

Triangle Park, NC, January 1991.

[YSS

+

94] N.K. Yeung, Y-H. Sutu, T.Y-F. Su, E.T. Pak, C-C. Chao, S. Akki,

D.D. Yau, and R. Lodenquai. The design of a 55SPECint92 RISC

processor under 2w. In International Solid State Circuits Conference,

pages 206{207, February 1994.

[YYN

+

90] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi, and

A. Shimizu. A 3.8-ns CMOS 16x16-b multiplier using complementary

pass-transistor logic. IEEE Journal of Solid-State Circuits, 25(2):388{

395, April 1990.

[ZA95] M. Zheng and A. Albicki. Low power and high speed multiplication

design through mixed number representations. In Proc. of the IEEE

International Conference on Computer Design, October 1995.

