
Departament de Ciències de la Computació

Thesis presented in partial fulfillment
of the requirements for the Degree of

Ph.D. in Computing

Logic Decomposition and Adaptive Clocking for the
Optimization of Digital Circuits

Lucas Machado

Advisor: Jordi Cortadella Fortuny
Computer Science Department

Universitat Politècnica de Catalunya

Barcelona, January 2019

Abstract

Over the course of 60 years, since the invention of the integrated circuit
(IC), exponential improvements in cost, performance and power consumption
were observed. Such advances have been strongly linked with the continuous
reduction of the dimensions in manufactured ICs, but this trend has shown
decreasing benefits as fundamental limits are reached.

Notice that such tiny devices have increased variability, which generates
unpredictable variations in the behavior of the manufactured devices. These
uncertainties are typically addressed by defining margins on the clock period,
estimated during the design phase. However, the overly conservative margins
produce significant degradations in performance.

Additionally, the evolution that enabled circuits with increasingly higher
density of components, also resulted in an extremely complex IC design. At
every step, electronic design automation (EDA) tools are challenged to handle
this increasing complexity, requiring more powerful techniques to comply
with the specification constraints within an affordable runtime.

This thesis investigates alternatives in order to improve power, perfor-
mance, area, and cost, using established IC manufacturing technologies. Ad-
vances in EDA are proposed in three distinct topics: area minimization us-
ing Boolean methods, area and delay reduction for designs based on field-
programmable gate array (FPGA), and an alternative clocking scheme to
reduce timing margins.

The first contribution consists of a technology-independent method for
area minimization of combinational logic. Local optimization is applied on
and-inverter graphs (AIGs), performing multi-output Boolean decomposition
using two-literal divisors, targeting node count reduction.

The second contribution regards two methods targeting technology map-
ping of FPGAs. On one hand, a functional decomposition approach, which
uses the support size as cost function, exploring the inherent characteristics
of FPGAs. On the other hand, an approach for recursive remapping, which
reduces the structural bias of the subject graph, uses the mapping results as
cost function, and obtains significant reductions in area and delay.

iii

The third contribution evaluates the dynamic variability mitigation and
simplification of power delivery networks (PDNs) using an adaptive clocking
scheme based on ring oscillator clocks (ROCs). The impact of the PDN pa-
rameters and ROC location is investigated, showing potential improvements
in performance, leakage power and cost.

The contributions of this thesis have been published in the following papers:

• Lucas Machado, Antoni Roca, Jordi Cortadella. Increasing the Robust-
ness of Digital Circuits with Ring Oscillator Clocks. In Proceedings of
the International Workshop on Resiliency in Embedded Electronic Sys-
tems (REES), pages 29-34, March 2017.

• Lucas Machado, Jordi Cortadella. Boolean Decomposition for AIG
Optimization. In Proceedings of ACM Great Lakes Symposium on VLSI
(GLSVLSI), pages 143-148, May 2017.

• Lucas Machado, Antoni Roca, Jordi Cortadella. Voltage Noise Analysis
with Ring Oscillator Clocks. In Proceedings of IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 1-6, July 2017.

• Lucas Machado, Jordi Cortadella. Support-Reducing Functional De-
composition for FPGA Technology Mapping. In Proceedings of Inter-
national Workshop on Logic & Synthesis (IWLS), pages 79-86, 2018.

Also, extensions of the published papers have been submitted to journals:

• Lucas Machado, Jordi Cortadella. Support-Reducing Decomposition
for FPGA Mapping. In IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems (TCAD), 2018 (Accepted for
publication).

• Lucas Machado, Antoni Roca, Jordi Cortadella. Robustness to Voltage
Noise with Ring Oscillator Clocks. In IEEE Transactions on Nanotech-
nology (TNANO), 2018 (Under review).

iv

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Jordi Cor-
tadella Fortuny for giving me the possibility of pursuing my PhD degree
in Barcelona. His guidance, motivation, strive for excellence, and unending
source of ideas helped me a lot during every piece of work we did together.
It was an incredible opportunity to work with him.

I also thank the advisors of my Master’s thesis in Brazil, André Reis and
Renato Ribas, as they both encouraged me in thriving for a PhD degree in
Europe. Especially André, for the connection between me and Jordi, and the
support during the scholarship proposal and the first year in Catalonia.

I thank every person that I had the opportunity to work side by side these
years in Barcelona. My lab colleagues Àlex Vidal, Alberto Moreno, Javier
de San Pedro, Tuomas Hakoniemi, and Josep Sanchez, and the ones I had
the pleasure to work with, Antoni Roca and Mayler Martins.

I also thank all my friends and family from Lajeado, Cachoeira do Sul,
Porto Alegre, and now spread around the globe. You all helped me be who I
am today, and certainly have a part in this degree. Particularly, my grand-
parents (in memoriam to my grandma Maria, who passed away in this pe-
riod), my father Carson, my mother Gisele and my brother Jonas. I certainly
missed you a lot during these years, separated by 9642 km and several hours
by plane. You were, are and will always be my support to everything, the
giants that took me in their shoulders and made me look further.

For my wife Rafaela Bortolini, I may not have enough words to express
my gratitude. For marrying me, embarking with me in such a life-changing
adventure, getting way out of our comfort zones. For the understanding,
loving and caring. For insisting on having a dog, our beloved Pipoca, that
helped us so much with her partnership and joy. For everything, I thank you.

This thesis has been performed with the support of CNPq, Conselho Na-
cional de Desenvolvimento Científico e Tecnológico - Brasil, and has been par-
tially supported by funds from the Spanish Ministry for Economy and Com-
petitiveness and the European Union (FEDER funds) under grant TIN2017-
86727-C2-1-R, and the Generalitat de Catalunya (2017 SGR 786).

v

vi

Contents

Abstract iii

Acknowledgments v

Contents vii

List of Acronyms xi

List of Figures xv

List of Tables xix

1 Introduction 1
1.1 Research motivation and goal 4
1.2 Contributions of this thesis . 5

1.2.1 Boolean decomposition using two-literal divisors 5
1.2.2 Support-reducing logic decomposition and remapping . 6
1.2.3 Voltage noise mitigation using ROCs 7

1.3 Manuscript organization . 8

2 Background 11
2.1 Logic synthesis . 11

2.1.1 Boolean functions . 11
2.1.2 Representation of Boolean functions 13
2.1.3 Logic decomposition 17
2.1.4 Local optimization . 20
2.1.5 Collapsing . 23
2.1.6 AIG transformations 24
2.1.7 FPGA technology mapping 26

2.2 Adaptive clocking . 28
2.2.1 Power Integrity . 28
2.2.2 Voltage noise . 29

vii

2.2.3 Ring Oscillator Clocks 31

3 AIG Optimization via Boolean Decomposition 35
3.1 Motivation . 35
3.2 Overview . 37

3.2.1 Multi-output Boolean decomposition 38
3.2.2 AIG optimization example 38
3.2.3 Results obtained via AIG transformations 39

3.3 AIG optimization approach 41
3.3.1 Local optimization using KL-cuts 41
3.3.2 Boolean decomposition 42
3.3.3 Filters to reduce runtime 44

3.4 Experimental results . 45

4 Support-reducing Decomposition for FPGA Mapping 49
4.1 Motivation . 49
4.2 Motivating Example . 52
4.3 Support-reducing decomposition 54

4.3.1 Cost function . 55
4.3.2 Essential literals . 57
4.3.3 One-variable decompositions 58
4.3.4 Two-variable decompositions 59
4.3.5 Abstraction-based bi-decompositions 60

4.4 Recursive remapping . 61
4.5 Experimental results . 64

4.5.1 BDD-based FPGA mapping tools 65
4.5.2 20 largest MCNC benchmarks 67
4.5.3 EPFL benchmarks . 70
4.5.4 Remapping of the results from a commercial tool . . . 71
4.5.5 SR-map result as input to the commercial tool 73
4.5.6 Scalability analysis . 74

5 Robustness to Voltage Noise with Ring Oscillator Clocks 81
5.1 Motivation . 81
5.2 Models and metrics . 83

5.2.1 PDN model . 83
5.2.2 Delay model . 85
5.2.3 Performance Metric . 85

5.3 Voltage locality analysis . 88
5.3.1 Typical voltage noise 89
5.3.2 Worst-case voltage noise 90

viii

5.4 Relaxing PDN parameters . 92
5.4.1 On-chip decoupling capacitance 92
5.4.2 Power interconnections 95
5.4.3 Package decoupling capacitance parasitics 98

5.5 Discussion . 100
5.5.1 Simpler voltage/frequency scaling 101
5.5.2 EMI reduction . 101
5.5.3 Benefits of multiple ROC domains 103
5.5.4 Disadvantages . 103

6 Conclusions and Future Work 105
6.1 Summary of the thesis contributions 105
6.2 Future work . 106

Bibliography 109

ix

x

List of Acronyms

AI artificial intelligence
AIG and-inverter graph
API application programming interface
ASIC application specific integrated circuit

BDD binary decision diagram
BLIF Berkeley logic interchange format

CAD computer-aided design
CDC cross-domain crossing
CEC combinational equivalence checking
CMOS complementary metal-oxide-semiconductor
CP critical path
CTS clock tree synthesis
CUDD Colorado University Decision Diagram

DAG directed acyclic graph
DC don’t care
DDR double data rate
DRC design rule checking
DSD disjoint-support decomposition
DVFS dynamic voltage and frequency scaling

EDA electronic design automation
EMI electromagnetic interference
EPFL École Polytechnique Fédérale de Lausanne
ESL equivalent series inductance
ESR equivalent series resistance

FPGA field-programmable gate array

xi

GALS globally asynchronous locally synchronous

HDL hardware description language
HLS high-level synthesis

IC integrated circuit
IoT internet of things
ISF incompletely specified function
ITC International Test Conference
ITRS international technology roadmap for semi-

conductors

LUT look-up table

MCNC Microelectronics Center of North Carolina
MFFC maximum fanout-free cone

PCB printed circuit board
PDN power delivery network
PI primary input
PLL phase-locked loop
PO primary output
POS product-of-sums
PPAC power, performance, area, and cost
PVT process, voltage, temperature

QoR quality of results

ROBDD reduced-ordered BDD
ROC ring oscillator clock
RTL register-transfer level

SDC satisfiability don’t care
SEC sequential equivalence checking
SoC system-on-chip
SOP sum-of-products
SPICE Simulated Program with Integrated Circuits

Emphasis
SR-map support-reducing remapping tool
STA static timing analysis

xii

UPC Universitat Politècnica de Catalunya

VLSI very-large-scale integration
VRM voltage regulator module

xiii

xiv

List of Figures

1.1 Evolution over time of the transistors density and the mini-
mum feature size (Source: [36]). 2

1.2 Logic synthesis in the standard cell flow of integrated circuits. 3

2.1 (a) BDD and (b) ROBDD of the function F1 from Table 2.1. . 16
2.2 Example of an AIG, with 15 nodes and 5 levels. 17
2.3 Examples of (a) disjoint, (b) strong, and (c) weak bi-decompositions. 18
2.4 Example of a 1× 1 window on top of a DAG (Source: [83]). . 20
2.5 Example of a graph covering with K-cuts (Source: [20]). 22
2.6 Example of KL-cut computation. 23
2.7 Example of the collapsing process for a primary output. 24
2.8 Examples of AIG rewriting (Source: [84]). 25
2.9 Example of a tree-balancing transformation (Source: [81]). . . 26
2.10 Distribution of solutions for the benchmark cordic (Source: [38]). 27
2.11 PDN model with off-chip and on-chip parasitics. 29
2.12 (a) The frequency response of a typical PDN, and (b) the

voltage droops generated by a single current spike 30
2.13 Voltage droops generated by periodical current differences at

(a) low and (b) high impedance frequencies. 31
2.14 Synchronous circuit with a PLL or an ROC as the clock source. 32
2.15 PLL and ROC clock generation in the presence of voltage noise. 33

3.1 Decomposition using a two-literal Boolean divisor. 36
3.2 Iterative rewriting of KL-cuts on an AIG. 37
3.3 Optimization flow using different methods for b06. 39
3.4 AIG optimization using Boolean decomposition. 41
3.5 Boolean decomposition procedure. 43
3.6 Factored form trees from b06 benchmark. 44

4.1 Correlation between the number of AIG nodes and LUTs after
technology mapping (Source: [65]). 50

xv

4.2 Functionally equivalent and structurally different AIGs, ob-
tained via (a) algebraic factorization, and (b)(c) support-reducing
decomposition. 53

4.3 Pseudo-code of the proposed support-reducing decomposition. 56
4.4 Pseudo-code for an step of the support-reducing decomposition. 56
4.5 Pseudo-code for decomposition using essential literals. 57
4.6 Pseudo-code for one-variable decompositions. 58
4.7 Pseudo-code for two-variable decompositions. 59
4.8 The recursive remapping approach. 62
4.9 Pseudo-code of the recursive remapping approach. 63
4.10 Comparison of commercial tool results with the SR-map re-

sult as input vs. the initial description, for different synthesis
strategies. 78

4.11 Runtime and quality analysis, considering different limits for
the support size and time-outs. The area-delay product is the
result of number of LUTs times the number of levels. 79

5.1 Current source waveform and impedance response for a PDN
with a total of 200nF of on-chip decaps. 84

5.2 Path delay given by (5.1), with td = 1ns and VDD=0.9V. . . . 86
5.3 Placement of ROCs for different number of clock domains. . . 87
5.4 Patterns determining the grid points that are active. 87
5.5 Voltage distribution for some of the activity patterns in Fig. 5.4. 88
5.6 Delay increase in the clock period for each activity pattern

(200nF of on-chip decaps, activity at 1GHz). 89
5.7 Critical path delay, and the clock period of the PLL and the

ROC, for the activity patterns of Fig. 5.4(e) and Fig. 5.4(j). . 90
5.8 Largest delay increase vs. the distance between the ROC and

the critical path (200nF decaps, activity at 1GHz). 91
5.9 Delay increase in the clock period for each activity pattern,

for the PLL and the ROC (200nF of on-chip decaps, activity
at first droop). 91

5.10 Impedance response of the PDN with 200nF, 300nF, 400nF
and 500nF of on-chip decoupling capacitance. 93

5.11 Delay increase for the PLL and ROC, with different amounts
of on-chip decoupling capacitance. 94

5.12 Normalized leakage power and minimum voltage for different
amounts of on-chip decoupling capacitance (activity at 1GHZ). 95

5.13 Normalized leakage power and minimum voltage for different
amounts of on-chip decoupling capacitance (activity at first
droop frequency). 96

xvi

5.14 Different power bumps placement strategies (a VDD connection
is a black circle, and VSS connection is a white circle). 96

5.15 Impedance response of all grid points (200nF of on-chip ca-
pacitance) with (a) 36 bumps distributed and (b) 40 bumps
in the borders. 97

5.16 Voltage distribution for activity pattern of Fig. 5.4(j) with (a)
36 VDD/VSS bumps distributed (Vmin = 0.872V), and (b) 40
VDD/VSS bumps in the borders (Vmin = 0.837V). 97

5.17 Required margins for the PLL and ROC with different bump
placements (200nF of decoupling capacitance, activity at 1GHz). 98

5.18 Impedance responses with 500nF of on-chip capacitance and
different package decap parasitics. 99

5.19 Required margins for the PLL and ROC with the different
package decap parasitics (500nF of on-chip decaps, activity at
first droop). 100

5.20 Power/Performance trade-off for ±10% voltage noise. 101
5.21 Frequency spectrum comparison of ROC vs. PLL. 102

xvii

xviii

List of Tables

2.1 Example of truth table for a Boolean function F1 : B3 → B1. . 14
2.2 Boolean algebra properties. 19
2.3 K-cuts enumeration for the AIG in Fig. 2.5. 22

3.1 Results obtained through AIG transformations. 40
3.2 Divisors accepted based on the divided function f 45
3.3 AIG results of Boolean decomposition. 46
3.4 Technology mapping results. 47

4.1 Comparison of the FPGA mapping for the AIGs obtained via
algebraic factorization and support-reducing decomposition. . 54

4.2 FPGA mapping comparison with BDD-based approaches (k =
5). 66

4.3 FPGA mapping comparison for the 20 largest MCNC bench-
marks (k = 6). 68

4.4 FPGA mapping of 20 largest MCNC benchmarks (k = 6) for
MFS [82], BDS-pga [114], ABC and SR-map. 69

4.5 Best known results for EPFL benchmarks. 71
4.6 Remapping of the commercial tool results for the 20 largest

MCNC benchmarks (k = 6). 72
4.7 Results of a commercial tool for different strategies, after phys-

ical synthesis (post place-and-route). 73
4.8 Results of a commercial tool after physical synthesis using the

initial description as input. 75
4.9 Results of a commercial tool after physical synthesis using the

SR-map (area) + ABC (delay) remapping as input. 76
4.10 Results of a commercial tool after physical synthesis using the

SR-map (delay) + ABC (delay) remapping as input. 77

5.1 PDN parameters . 84

xix

xx

Chapter 1

Introduction

On September of 2018, the integrated circuit (IC) celebrated 60 years of its
invention [51]. This tiny electronic component, also known as chip, caused
one of most important technological progresses in human history: the digital
revolution. All areas of knowledge have taken advantage of the IC, gen-
erating remarkable improvements at a much faster rate than ever before.
Nowadays, there are far more chips than people on earth. They are present
in computers, phones, televisors, medical devices, cars, trains, airplanes, and
virtually everywhere with the introduction of the internet of things (IoT) [9].
Notwithstanding, ICs are also the underlying reason for the existence of mul-
tiple things: laptops, smart phones, self-driving cars, wearable devices, space
exploration, the Internet, and consequently, all Internet-related services.

An IC is a miniaturized electronic circuit [51] manufactured with semi-
conductors, and designed to perform one or more logic functions. The solid-
state transistors [108] are the on-off switches which turned out to be the
basis for the implementation of integrated circuits. In 1965, Gordon Moore
noticed that the number of transistors per chip doubled every year [91] since
the invention of the IC in 1958. After reaching the first limitations of the
complementary metal-oxide-semiconductor (CMOS) technology, Moore pre-
dicted that this trend would continue, but at a more conservative rate: the
number of transistors on a chip would double every 2 years [92]. This pre-
diction, later on called Moore’s law, helped to drive the progress of the semi-
conductor industry ever since. This evolution was made possible by a large
number of factors. For instance, the reduction of the transistor size shown in
Fig. 1.1 (minimum feature size). In the course of 60 years, the minimum fea-
ture size scaled ≈ 3500×, reaching 7nm in 2018. Furthermore, ICs enabled
the development of workstations, also emerging the industry of electronic
design automation (EDA), producing a self-reinforcing virtuous cycle which
continually pushed forward the state-of-the-art [1].

2 Chapter 1. Introduction

Figure 1.1: Evolution over time of the transistors density and the minimum
feature size (Source: [36]).

In the early days, ICs were designed by hand, using engineering paper
and color pencils. The masks for lithography were made out of rubylith [74],
and manufacturing was performed with primitive planar technology. Several
computer-aided design (CAD) tools were developed with the first computers:
to help with the artwork and the routing of wires connecting transistors, and
for circuit simulation (SPICE). During the 1980s, physical synthesis tools
emerged, and circuits started to be described at register-transfer level (RTL)
with the aid of a hardware description language (HDL), changing completely
the methodology which ICs were designed. Soon after, the system behavior
could be described in HDL and transformed into a netlist of logic gates,
arising the field of logic synthesis.

The standard cell methodology shown in Fig. 1.2 is one of the factors that
pushed forward Moore’s law, reaching very-large-scale integration (VLSI) cir-
cuits. It is based on a limited set of digital logic gates (a cell library), with a
standard height for all cells, and a rigid window of operation: the clock. This
methodology is also known as application specific integrated circuit (ASIC)
design flow, and can be divided into high-level synthesis (HLS), logic synthe-
sis, and physical synthesis. HLS makes transformations at an architectural
level, transforming a C-like algorithmic description into an RTL. Logic syn-
thesis is responsible for the transformation of the circuit behavior description
into a netlist of logic gates for a given technology, i.e., a digital mapped cir-
cuit [34]. The physical synthesis transforms the netlist derived by logic syn-
thesis into a set of geometric shapes, which represent the different layers to
be manufactured. Floor plan, placement, clock tree synthesis (CTS), routing
and design rule checking (DRC) are some steps of physical synthesis [5].

3

Technology-
dependent

Optimizations

RTL to Boolean
Functions

Technology-
independent

Optimizations

Technology
Mapping

Test Logic
Insertion

System
Specification

Tape out

Physical
Synthesis

Logic
Synthesis

High-level
Synthesis

Logic Synthesis

Figure 1.2: Logic synthesis in the standard cell flow of integrated circuits.

Logic synthesis is a key process in order to produce a chip with high
quality of results (QoR). It can be divided into five steps. The first step
consists of transforming the RTL description into a technology-independent
representation, e.g., Boolean networks or and-inverter graphs (AIGs). Then,
several optimizations are performed on this representation, reducing cost
functions regarding area and delay. The following step is technology map-
ping, matching parts of the circuit representation to logic gates of a library.
Several optimizations can be performed on the mapped circuit, such as re-
ducing delay in order to meet the constraints, and reducing area and power
consumption as low as possible. The final step is the test logic insertion.

Overall, logic synthesis methods try to minimize the number of com-
ponents, delay and power consumption. Notice that functionally equivalent
circuits with fewer components imply fewer transistors and lower costs. Mak-
ing a circuit faster means to have the same outcome in less execution time,
which is also desirable. The autonomy of portable devices based on batteries,
the limitation for heat dissipation (and its impact on performance) of many
devices are some of the reasons to have low power consumption as a goal.

4 Chapter 1. Introduction

1.1 Research motivation and goal
The scaling of the transistor size has historically resulted in reduction of costs,
higher performance and lower power. Some reasons for this behavior are: the
ICs are smaller and more chips can be manufactured in the same wafer, the
capacitances are reduced, and lower voltages were required. However, the
technology scaling is reaching a physical (and economical) limit [115].

The unavoidable heat generated by millions of devices jammed in the
same small piece of semiconductor is a problem, generating issues such as
dark silicon [35]. It is also worth noting that silicon is the most used semi-
conductor for manufacturing of ICs, and the feature size of 5nm predicted to
2020 also means that there will be features of ≈ 10 atoms in size [112]. At
this point, quantum uncertainties will increase significantly the variability
of devices, e.g., resistance, capacitance, and delay. The evolution of manu-
facturing technologies also has inherently high costs, with more photolithog-
raphy steps, different machines, and a large amount of design rules. The
investment of building a new foundry to scale down the feature size is in the
order of billions of dollars, which has a decreasing economical appeal [19].

Many different technologies have been investigated in order to substitute
CMOS and continue the exponential improvements witnessed in previous
decades. The ideas researched range from quantum [94] and neuromorphic
computing [47], to graphene compounds [63] and spintronic materials [118].
Nevertheless, no CMOS substitute has made into production until now.

In the past, when CMOS limits were hit, it did not result in the end of the
IC. Improvements will happen a slower rate, and come from different areas
instead of transistor scaling. Even if no changes are perceived in transistor
density, performance will be increased and costs will be reduced due to better
manufacturing productivity, cycle time reduction, defect elimination, and the
design of more powerful EDA tools. Note that the semiconductor industry
currently has a worldwide revenue of ≈ 450 billion dollars per year, and it
continues to reinvent itself, exploring artificial intelligence (AI) [59], cloud
computing [7], and hardware acceleration [100].

Many experts believe that improvements will continue to happen in the
foreseeable future [30]. The field-programmable gate array (FPGA) is one of
the potential driving forces of the industry. FPGAs emerged in the late 1980s,
composed of small memory blocks, which are used to implement combina-
tional and sequential logic, in an array of programmable interconnections.
An FPGA with ≈ 30 billion transistors, which implement 5.5 million logic
elements, is commercially available since 2016 [48]. Clearly, EDA methods
must be updated in order to deal with the size and complexity of such large
ICs, while maintaining or improving the QoR of the final implementation.

1.2. Contributions of this thesis 5

Logic synthesis is one of the topics of this thesis. The algorithms involved
in logic synthesis perform extremely complex tasks, with many variables to
be considered, and trying all possibilities is not computationally affordable.
The necessity of having reasonable solutions within time-to-market leads to
multiple heuristics, generating sub-optimal results. Notice that the results
obtained by state-of-the-art logic synthesis tools still have room for improve-
ment, and finding optimal solutions may be feasible only for small circuits.
Additionally, for numerous reasons, digital circuits typically operate with
rigid clock sources. However, the size and complexity of current ICs lead
to excessively conservative timing margins, and consequently, performance
degradation and increased costs. Considering these possibilities, the main
goal of this thesis is to explore alternatives in order to produce faster and
cheaper ICs, even with the established CMOS technology.

1.2 Contributions of this thesis
In this thesis, alternatives to improve power, performance, area, and cost
(PPAC) in the established CMOS technology are proposed. This work ex-
plores advances in EDA for three different topics: area minimization using
Boolean methods, area and delay reduction for designs based on look-up tables
(LUTs), and an alternative clocking scheme in order to improve performance,
leakage power and costs. Specifically, the proposed contributions are:

1. A technology-independent method for area minimization of combina-
tional logic, based on a multi-output decomposition using two-literal
divisors (see Chapter 3).

2. A functional decomposition which uses the support size as cost func-
tion, and a recursive remapping approach targeting LUT-based FPGAs
(see Chapter 4).

3. An analysis on dynamic variability mitigation and simplification of
power delivery networks (PDNs) using an adaptive clocking scheme
based on ring oscillator clocks (ROCs) (see Chapter 5).

The remaining of this section provides a summary of these contributions.

1.2.1 Boolean decomposition using two-literal divisors
Optimization techniques applied in technology-independent representations
are typically limited to single-output transformations. Additionally, these
techniques are highly biased by the structure, leading to sub-optimal results.

6 Chapter 1. Introduction

The work presented in Chapter 3 proposes a method for area minimization,
exploring multi-output decomposition and Boolean methods, which offer less
structural bias. Small parts of the circuit with multiple outputs are identified,
and Boolean division using two-literal divisors is applied in order to increase
logic sharing. This contribution presents the following characteristics:

• Boolean decomposition with two-literal divisors [90] is generalized from
single-output to multi-output functions.

• The selection of divisors is customized to increase the logic shared
among multiple outputs.

• A set of filters is proposed to reduce the search space.

• Area minimization is achieved by iteratively applying Boolean decom-
position to KL-cuts [69, 75] of the circuit representation.

These contributions have been published in the following paper:

[66] Lucas Machado, Jordi Cortadella. Boolean Decomposition
for AIG Optimization. In Proceedings of ACM Great Lakes Sym-
posium on VLSI (GLSVLSI), pages 143-148, May 2017

1.2.2 Support-reducing logic decomposition and remap-
ping

The cost functions for most decomposition methods were defined due to
the high correlation with the area of cell-based designs, e.g., literals, cubes.
However, these cost functions have a weaker correlation for FPGAs based on
LUTs. Moreover, local optimizations have limited power due to the structural
bias of the circuit descriptions, which are typically designed for ASICs. The
work presented in Chapter 4 proposes the reduction of the structural bias by
remapping the LUT network and decomposing the derived functions using
the support size as cost function. The two main contributions are:

1. A functional decomposition, which is guided by the support size, and
it is based on simple and fast support-reducing techniques.

2. A recursive remapping approach, that reduces the structural bias of the
subject graph, and uses the FPGA mapping metrics as cost function.

The methods are able to improve several best known results of the EPFL
benchmarks [6], and obtain significant improvements in comparison with the
results of a commercial tool. The reasons for these improvements are the
following.

1.2. Contributions of this thesis 7

• The mapping result is used to guide the resynthesis algorithm, instead
of literals and cubes. This cost function reduces the miscorrelation
between intermediate and final results, accepting transformations that
will contribute to improve the final solution.

• A recursive collapsing strategy is applied instead of a local partial col-
lapsing, which reduces the structural bias of the subject graph.

• Also, additional structures are explored, which are generated by a
support-reducing functional decomposition. Notice that the support
size as cost function makes sense for FPGAs: a k-input function with
any number of literals can be implemented with a single LUT of k
inputs.

These contributions have been published in the following papers:

[68] Lucas Machado, Jordi Cortadella. Support-Reducing Func-
tional Decomposition for FPGA Technology Mapping. In Pro-
ceedings of International Workshop on Logic & Synthesis (IWLS),
pages 79-86, June 2018

[67] Lucas Machado, Jordi Cortadella. Support-Reducing Decom-
position for FPGAMapping. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2018
(Accepted for publication)

1.2.3 Voltage noise mitigation using ROCs
Variability, static or dynamic, is one of the biggest challenges in current
ICs. Typically, variability is considered by adding guard band margins to
the nominal clock period. However, this has led to excessively conservative
timing margins, degrading performance. Voltage noise is the main source
of dynamic variability and a major concern for the design of PDNs. Lower
supply and threshold voltages were made possible with technology scaling,
but power density was also increased. Consequently, power integrity became
a key factor in the design of reliable high-performance circuits.

ROCs have been proposed as an alternative to mitigate the negative ef-
fects of voltage noise. The capability of reacting instantaneously to large
voltage variations makes ROCs an attractive solution, which also allows to
relax the constraints required for the PDN design. However, the effectiveness
highly depends on the design parameters of the PDN, power consumption
patterns, and the spatial locality of the ROC within the clock domains.

8 Chapter 1. Introduction

The work in Chapter 5 presents an analysis on voltage locality for a de-
sign using ROCs as clock source. Voltage locality is introduced by multiple
activity patterns using an on-chip power distribution model. A trade-off
between the number of ROC domains and performance is presented. Also,
modifications in the PDN are evaluated, such as removing on-chip decoupling
capacitance and changing the number and placement of the power bumps.
The goal of this work is to present a conservative analysis of the benefits of
using ROCs when dealing with problems related to voltage noise. Robustness
to voltage noise is achieved without degrading performance, making possi-
ble the simplification of the PDN design. These contributions have been
published in the following papers:

[71] Lucas Machado, Antoni Roca, Jordi Cortadella. Increasing
the Robustness of Digital Circuits with Ring Oscillator Clocks.
In Proceedings of the International Workshop on Resiliency in
Embedded Electronic Systems (REES), pages 29-34, March 2017

[72] Lucas Machado, Antoni Roca, Jordi Cortadella. Voltage
Noise Analysis with Ring Oscillator Clocks. In Proceedings of
IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 1-6, July 2017

[73] Lucas Machado, Antoni Roca, Jordi Cortadella. Robustness
to Voltage Noise with Ring Oscillator Clocks. In IEEE Transac-
tions on Nanotechnology (TNANO), 2018 (Under review)

1.3 Manuscript organization
This thesis is structured into 6 chapters. The present chapter constitutes an
introduction to the thesis. The remaining of this thesis is organized as follows.

Chapter 2: Background - This chapter provides a set of important prelim-
inary information regarding all contributions of the thesis, organized in two
main sections: logic synthesis and adaptive clocking.

Chapter 3: AIG Optimization via Boolean Decomposition - This chapter
investigates area minimization using AIGs, exploring Boolean methods in or-
der to reduce the number of nodes. Boolean division with two-literal divisors
is applied to multi-output functions, and AIGs are minimized through local
optimization.

1.3. Manuscript organization 9

Chapter 4: Support-reducing Decomposition for FPGA Mapping - This
chapter proposes two methods targeting LUT-based FPGAs. A functional
decomposition approach which uses the support size as cost function, ex-
ploring the inherent characteristics of FPGAs. Also, an recursive remapping
method is proposed, which reduces the structural bias of the subject graph
and uses the mapping results as cost function, obtaining significant reduc-
tions in area and delay.

Chapter 5: Robustness to Voltage Noise with Ring Oscillator Clocks - This
chapter presents an analysis of dynamic variability mitigation using an adap-
tive clocking scheme based on ROCs. The impact of the PDN parameters and
ROC location on the robustness to voltage noise are investigated. Several
PDN simplifications are analyzed, showing that tolerance to voltage noise
and related benefits can be increased with multiple ROC domains.

Chapter 6: Conclusions and Future Work - The final chapter concludes the
thesis, presenting a summary of the contributions and providing ideas for
future research based on the present manuscript.

10 Chapter 1. Introduction

Chapter 2

Background

This chapter presents two main sections that provide important concepts
regarding the contributions of the thesis. Section 2.1 presents background
for the contributions in logic synthesis, whereas Section 2.2 introduces topics
regarding adaptive clocking.

2.1 Logic synthesis
Logic synthesis is an important area of study in the field of electronic design
automation (EDA), being responsible for the transformation of a circuit be-
havioral description into a netlist of gates for a technology, i.e. a mapped
circuit. Typical objectives of the logic synthesis are to reduce area, delay,
power, or a combination of these. This section presents the background for
the thesis contributions on logic synthesis, presented on Chapters 3 and 4.

2.1.1 Boolean functions
The Boolean domain is defined as B = {0, 1}, where 0 and 1 represent two
well-defined logic states, such as true (1) and false (0). An n-dimensional
Boolean space Bn is composed of 2n distinct Boolean vectors of length n.
For instance, B1 = {0, 1}, B2 = {00, 01, 10, 11}, and so on.

A completely specified Boolean function can be described as a mapping
between Boolean spaces [34]. A Boolean function with n inputs and m out-
puts (n,m ∈ N) can be represented with the mapping: Bn → Bm. It is a
single-output function if m = 1, and it is a multi-output function if m > 1.

An incompletely specified function (ISF) is defined over a sub-set of Bn,
where there are undefined function points, which are also known as don’t
care (DC) conditions. In another definition, an ISF can be represented as

12 Chapter 2. Background

Bn → {0, 1,−}m, where ‘−’ denotes a DC value, i.e., it can be either ‘1’
or ‘0’. The sub-domains of the function F that evaluate to 1, 0 and − are
denoted the ON-set, the OFF-set, and the DC-set, and can be represented
by the completely specified functions FON, FOFF and FDC, respectively. If
the DC-set is empty, then the function is completely specified.

2.1.1.1 Boolean operations

There are three basic Boolean operations: negation (or complement) (NOT),
conjunction (AND), and disjunction (OR). The negation is a unary operation,
i.e., it is in the Boolean space B1, whereas the conjunction and disjunction
are operations between two or more Boolean variables. Consider the Boolean
variables x and y. The negation of x is denoted by x, and its result is x = 0
if x = 1, and x = 1 if x = 0. The AND operation can be denoted by x ·y (or
xy), and its result is x ·y = 1 if x = y = 1, and x ·y = 0 otherwise. The OR
operation can be represented as x+y, and its result is x+y = 0 if x = y = 0,
and x+ y = 1 otherwise.

Another important Boolean operation is the exclusive-or (XOR). The
XOR operation is denoted by x⊕ y, and its result is x⊕ y = 0 if x = y, and
x⊕ y = 1 if x 6= y. The exclusive-or can also be described in the conjunctive
and disjunctive forms: (x ·y) + (x ·y) and (x+ y) · (x+ y), respectively.

2.1.1.2 Cofactors

Consider the Boolean function F (X) : Bn → B1. The support of F is the set
of variables X = (x1, x2, . . . , xi, . . . , xn), and the support size is denoted by
|F |. A Boolean variable xi ∈ X is considered to be essential for the function
F if there are at least two elements in Bn that are different only due to xi.

The positive cofactor of F with respect to variable xi ∈ X consists of
assigning xi to ‘1’, i.e., Fxi

= F (x1, x2, . . . , 1, . . . , xn). Similarly, the negative
cofactor of F with respect to variable xi is obtained by assigning xi to ‘0’,
i.e., Fxi

= F (x1, x2, . . . , 0, . . . , xn). If the negative and the positive cofactors
with respect a variable xi are equal, i.e., Fxi

= Fxi
, then the variable xi is

not in the support of F . A cube-cofactor consists of performing the cofactor
operation recursively, e.g., assigning the variables {xi, xj} ⊆ X in F (X) to
xi = 0 and xj = 1, which can be denoted as Fxixj

.
Cofactors can be used to extract information from F with respect to a

variable in its support. One of the most important operations based on cofac-
tors is the Boole’s expansion theorem, also known as the Shannon expansion
or decomposition, which is described in (2.1).

F = xi ·Fxi
+ xi ·Fxi

(2.1)

2.1. Logic synthesis 13

There are also other important operations based on cofactors: the Boolean
difference (or derivative) in (2.2), the existential abstraction (or smoothing)
in (2.3), and the universal abstraction (or consensus) in (2.4).

δF/δxi = Fxi
⊕ Fxi

(2.2)
∃xiF = Fxi

+ Fxi
(2.3)

∀xiF = Fxi ·Fxi
(2.4)

The Davio expansion is another decomposition based on cofactors, us-
ing the XOR operation and the Boolean difference. There are two Davio
expansions: the positive (2.5), and the negative (2.6) forms.

F = (xi · δF/δxi)⊕ Fxi
(2.5)

F = (xi · δF/δxi)⊕ Fxi
(2.6)

2.1.1.3 Unateness and containment

A Boolean function F is positive unate in the variable xi if Fxi
⊇ Fxi

, where
⊇ is the set operation of inclusion. Similarly, F is negative unate in the
variable xi if Fxi

⊇ Fxi
. Otherwise, xi is considered a binate variable in

F . This is the concept of unateness [34], intended for completely specified
functions. If a function F has only positive and negative unate variables,
then F is considered unate. If F has one or more binate variables, then it is
a binate function.

Containment [116] is a generalization of the concept of unateness for ISFs.
There is a containment in the function G of the variable xi in the positive
polarity if

(GDC xi
∪GON xi

) ⊇ GON xi
,

and a containment in the negative polarity if

(GDC xi
∪GON xi

) ⊇ GON xi
,

where the operator ∪ is the set operation of union, GON is the ON-set of G,
and GDC is the DC-set of G.

2.1.2 Representation of Boolean functions
There are multiple forms to represent a Boolean function, each of them with a
characteristic: canonicity, scalability, expressivity, etc. This section presents
the representations used in the work proposed by this thesis: truth tables,
Boolean expressions, binary decision diagrams (BDDs), Boolean networks,
and and-inverter graphs (AIGs).

14 Chapter 2. Background

Table 2.1: Example of truth table for a Boolean function F1 : B3 → B1.
x1 x2 x3 F1
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

2.1.2.1 Truth tables

Truth tables are a straightforward representation of Boolean functions. A
truth table can be partitioned into two parts: on one side, all possible com-
binations of the input variables are described; on the other side, the values of
output variables are set according to the respective input combination. Ta-
ble 2.1 shows an example of truth table for a Boolean function F1 : B3 → B1.
The input vectors that evaluate the function to ‘1’ are the ON-set, e.g.,
{011, 101, 111}. Similarly, the input vectors that evaluate F1 to ‘0’ are the
OFF-set, e.g., {000, 001, 010, 100, 110}. Truth tables are a canonical repre-
sentation, given the same variable order.

2.1.2.2 Boolean expressions

A single-output Boolean function can also be represented as a Boolean ex-
pression. In this case, the Boolean operators are applied to the input variables
of the function in order to represent its functionality. Each time a Boolean
variable appears in a Boolean expression, negated or not, it is considered
as one literal. Boolean expressions with fewer literals are preferred, since
these will likely require less logic elements to be implemented. Notice that a
Boolean expression represents exactly one Boolean function, but a Boolean
function can be represented by multiple different Boolean expressions. For
example, consider the function F1 from Table 2.1.
Canonical sum-of-products: Extracting the Boolean vectors that eval-
uate F1 to ‘1’, and representing them as Boolean expressions, in order to
implement the correct functionality of F1, the result obtained is described in
(2.7), which is a sum-of-products (SOP).

F1 = (x1x2x3) + (x1x2x3) + (x1x2x3) (2.7)

2.1. Logic synthesis 15

Canonical product-of-sums: Similarly, considering the Boolean vec-
tors that evaluate F1 to ‘0’ as Boolean expressions, the result obtained is a
product-of-sums (POS), which is described in (2.8).

F1 = (x1+x2+x3)(x1+x2+x3)(x1+x2+x3)(x1+x2+x3)(x1+x2+x3) (2.8)

Such SOP and POS are canonical, as they are translations of the Boolean
vectors to expressions, applying logic operations to implement the Boolean
function. However, these representations typically have several literals and
cubes, with 9 literals (and 3 cubes) in (2.7), and 15 literals (and 5 cubes) in
(2.8). SOP and POS are also two-level Boolean expressions, and two-level
minimization [15] methods can be applied to reduce the number of literals.
Factored form: Further optimizations can be applied in order to reduce
the number of literals, such as factorization [13, 76], generating Boolean
expressions with unbounded number of levels. For instance, a factored-form
expression of the function F1 is shown in (2.9), with 3 literals.

(x1 + x2)x3 (2.9)

2.1.2.3 Binary decision diagrams

A BDD is another representation of Boolean functions [3]. BDDs are rooted,
directed acyclic graphs (DAGs) with two terminal nodes (0 and 1), and each
nonterminal node represents a Boolean variable with two outgoing edges:
the 0-edge and the 1-edge. The BDD representation of the function F1 from
Table 2.1 is shown in Fig. 2.1(a), where the dashed lines are the 0-edges,
the non-dashed ones are the 1-edges, the circles represent the nonterminal
nodes, and the squares are the terminal nodes. Notice that BDDs are based
on the Shannon expansion. A reduced-ordered BDD (ROBDD) is a BDD in
which the nonterminal nodes are organized in a fixed variable order, and the
number of BDD nodes is reduced using minimization rules [17]. ROBDDs
are a canonical representation, given the same variable order. In this work,
ROBDDs are referred as BDDs. BDDs are an efficient representation (with
a few exceptions) and are more scalable than other functional representa-
tions, such as truth tables. Also, there are modern software libraries which
efficiently implement BDD operations [109].

2.1.2.4 Boolean networks

Graphs are data structures widely used in computer science, due to their
high expressivity and the many efficient algorithms for graphs. A graph
G = {V , E} is a simple structure composed of the set of vertices V (or nodes),

16 Chapter 2. Background

x1

0

x2 x3

1

x3x3

0 0 10 10

x2x2

(a) BDD

x1

x2

x3

10

(b) ROBDD

Figure 2.1: (a) BDD and (b) ROBDD of the function F1 from Table 2.1.

and the set of edges E (or arcs), which connect two vertices. However, in
order to represent Boolean functions, two constraints are required: (1) the
edges must be directed; and (2) cycles are not allowed. These conditions
coincide with DAGs, which are used to represent circuits.

A Boolean network (or logic network) is a DAG with three types of nodes:
the primary inputs (with no incoming edges), the primary outputs (with no
outgoing edges), and the internal nodes (or logic gates). The edges are di-
rected from inputs to outputs. The internal nodes can represent any n-input
and m-output Boolean function. However, due to the limitation of appli-
cation specific integrated circuit (ASIC) and field-programmable gate array
(FPGA) technologies, the logic nodes are typically reduced to functions with
n ≤ 6 and m ≤ 2. This process of breaking a large function into smaller ones
is performed by decomposition, which is explained in Section 2.1.3.

2.1.2.5 And-inverter graphs

An AIG [79] is a specific type of Boolean network in which each node has
either 0 incoming edges - the primary inputs (PIs), 2 incoming edges - the
AND nodes, or 1 incoming edge - the primary outputs (POs). The PI and PO
nodes do not have a function associated, whereas the AND nodes perform the
Boolean operation AND for two input variables. The edges can implement an
NOT operation or not. Sequential elements are considered as PI/PO pairs.
An example of AIG is shown in Fig. 2.2: the dashed lines indicate negated
edges, the circles are AND nodes, the squares at the bottom are PIs, and the
squares at the top are POs.

Using only the NOT and AND operations, AIGs are a simple and powerful
data structure, and the state-of-the-art to represent very large circuits, e.g.,
thousands of inputs, millions of AIG nodes. However, AIGs are not canonical,
i.e., the same Boolean function can be represented by different AIGs.

2.1. Logic synthesis 17

pi1pi0 pi2 pi3 pi4

po2po0 po1

Figure 2.2: Example of an AIG, with 15 nodes and 5 levels.

In technology-independent logic synthesis, it is not known the effective
costs in the target technology. Therefore, different cost functions are used to
predict the cost of the final circuit, such as literals in Boolean expressions.
For AIGs, the area is correlated with the number of AND nodes, whereas the
delay is proportional to the logic depth between the PIs and POs.

2.1.3 Logic decomposition
Logic (or functional) decomposition is a method of breaking a large, complex
Boolean function into a set of smaller, simpler functions. Functional decom-
position was introduced by Ashenhurst [8], expressing a Boolean function
F (X) in terms of other Boolean functions G and H:

F (X) = H(G(X1), X2), (2.10)

where X1 6= ∅, X2 6= ∅, and X = X1 ∪X2. The sets X1 and X2 are known as
bound-set and free-set, respectively. Only single-output functions are con-
sidered in the Ashenhurst decomposition [8], and functional decomposition is
extended to multiple-output functions in the work proposed by Curtis [31].
An example of decomposition is shown in (2.11).

F = (x1 ·x4) + (x2 ·x3 ·x4) + x5
decomposition−−−−−−−→

G = x1 + (x2 ·x3)
F = (G ·x4) + x5

(2.11)

18 Chapter 2. Background

X2

X1

X3=∅

G1

G2

H F

(a) Disjoint support

X2

X1

X3

G1

G2

H F

(b) Strong

X2=∅

X1

X3

G1

G2

H F

(c) Weak

Figure 2.3: Examples of (a) disjoint, (b) strong, and (c) weak bi-
decompositions.

2.1.3.1 Bi-decomposition

A bi-decomposition is a special case of functional decomposition in which the
derived functions have two or fewer inputs, i.e., |H| ≤ 2. Given a function
H, such that |H| = 2, F is bi-decomposable if it can be represented as:

F (X) = H(G1(X1 ∪X3), G2(X2 ∪X3)), (2.12)

where X1 ∩X2 = ∅, X1 ∩X3 = ∅, X2 ∩X3 = ∅, and X = X1 ∪X2 ∪X3. If
X3 = ∅, then it is a disjoint-support decomposition (DSD), and such decom-
positions [11, 77, 78, 18] are of special interest for their low implementation
cost. If X1 6= ∅, X2 6= ∅, and X3 6= ∅, then it is a strong bi-decomposition.
Otherwise, if X1 = ∅ or X2 = ∅, then it is a weak bi-decomposition [87].
Fig. 2.3 shows schematics with examples of these bi-decompositions. A bi-
decomposition is also support-reducing if X1 ∪X3 < X and X2 ∪X3 < X.

Bi-decomposition algorithms typically perform decompositions based on
the Boolean operations AND, OR and XOR, recursively reducing the size of
the sub-functions. Such algorithms are top-down approaches, relying on cost
functions to estimate the actual implementation cost. This characteristic
may also impact the area results for the cases with potential logic sharing or
hierarchy, and a following process for area recovery may be required.

2.1.3.2 Algebraic and Boolean division

Logic synthesis algorithms can be divided into two groups: (1) the alge-
braic methods, which consider the Boolean functions as polynomial expres-
sions, and (2) the Boolean approaches. Table 2.2 presents all the properties
considered in Boolean approaches, whereas algebraic methods only consider
properties {1,2,3,4,5,6,8,10} during transformations. On one hand, algebraic
methods are very fast, but the quality of results are typically far from opti-
mal. On the other hand, Boolean approaches are able to obtain better results,
but also require much more execution time and memory consumption.

2.1. Logic synthesis 19

Table 2.2: Boolean algebra properties.
Property Expression
1 Associativity x+ (y · z) = (x+ y) · z
2 x · (y + z) = (x ·y) + z
3 Commutativity x+ y = y + x
4 x ·y = y ·x
5 Identity x+ 0 = x
6 x ·1 = x
7 Annihilator x+ 1 = 1
8 x ·0 = 0
9 Distributivity x+ (y · z) = (x+ y) · (x+ z)
10 x · (y + z) = (x ·y) + (x · z)
11 Idempotence x+ x = x
12 x ·x = x
13 Absorption x · (x+ y) = x
14 x+ (x ·y) = x
15 Complementation x ·x = 0
16 x+ x = 1
17 De Morgan x ·y = x+ y
18 x+ y = x ·y
19 Double negation (x) = x

The concept of division of a Boolean function F is given by the expression
F = (D ·Q) + R, where the Boolean functions D, Q and R are the divisor,
quotient and remainder, respectively. The function D is called a divisor of
F if R 6= 0, and a factor if R = 0. The division operation can be performed
by algebraic or Boolean means.

A common approach to perform Boolean division is by using two-level
minimizers that accept don’t care information [34]. A new variable x is
added and the division is performed by adding the satisfiability don’t care
(SDC) expression x⊕ d to the DC-set of F , where ⊕ represent the Boolean
exclusive-OR operator, followed by a two-level minimization.
Example: Consider the function F = (abc) + (a+ b)d represented as a fac-
tored form with 6 literals. It is possible to rewrite F as F = (abc) + (xd) by
performing algebraic division, using the divisor x = a + b. Boolean division
can be performed by incorporating x⊕ (a+ b) in the DC-set and running a
two-level minimization [15]. This process results in F = (acx) + (xd), which
can be represented as the factored form with 4 literals: F = ((ac) + d)x.

20 Chapter 2. Background

Figure 2.4: Example of a 1× 1 window on top of a DAG (Source: [83]).

2.1.4 Local optimization
Boolean methods are more powerful, but also computationally more expen-
sive in comparison with algebraic methods. In order to take advantage of
Boolean methods, a known approach is to apply the transformations only
to a part of a Boolean network at a time. Limiting the scope of the logic
synthesis, also known as local optimization, is crucial for the scalability of
many logic synthesis algorithms, specially considering the increasingly large
Boolean networks used in the semiconductor industry.

2.1.4.1 Windowing

Another method to perform local optimization is windowing, which was in-
troduced in [88]. The approach consists of gathering nodes around a node
N , given some parameters. An example of a window is shown in Fig. 2.4.

The leaf and the root set are non-overlapping sets of DAG nodes, such
that every path from the primary inputs to any node in the root set passes
through some node in the leaf set. The window is composed of every node in
the paths between the leaf set and the root set, including the root set, and
excluding the leaf set. The leaf and root nodes are shaded in the window of
Fig. 2.4, denoted L and R, respectively.

A window is typically denoted n×m, where n denotes the number of levels
towards the primary inputs, and m define the levels in the outputs direction.
For example, the window presented in Fig. 2.4 is 1 × 1, where the nodes I1
and O1 are obtained from the fanin and the fanout of N , respectively.

A reconvergence computation is also typically performed, in order to iden-
tify a more significant portion of a DAG. The S nodes comprise the intersec-
tion of the fanins of O1 nodes and the fanouts of I1 nodes, given a distance

2.1. Logic synthesis 21

in levels of n + m. The leaf nodes (L) do not belong to S, but feed at least
one of the nodes in S. The root nodes (R) belong to the set of S nodes, and
also feed at least one node not in S. The nodes marked as P are obtained in
the reconvergence process, as they are not connected directly to N , and are
not leaf nor root nodes.

2.1.4.2 K-cuts

A K-feasible cut (or K-cut) of a node n is a subgraph (or a logic cone) rooted
in the node n and with no more than K inputs. It is a useful method in AIG
transformation algorithms [84], and in FPGA technology mapping [86].

Formally, a cut of a node n in a graph G is a set of nodes c such that
every path between a primary input and n contains a node in c. A cut is
irredundant if no subset of it is also a cut. If a cut is composed of one node,
then it is a trivial cut. A K-cut [85, 95] of a node n in the graph G is an
irredundant cut c with K or fewer nodes. The region defined by a K-cut is
composed of all nodes in the path between c and n, including the node n and
excluding the nodes in c.

The enumeration of K-cuts is realized by combining the cuts of the inputs
of a node, where each cut is a set of nodes, and a union of these two sets is
performed. Notice that the union of two K-cuts does not guarantee that the
cut generated is K-feasible, therefore the enumeration process must remove
any cut with more than K nodes. Consider the two sets of cuts A and B
and the auxiliary set operation ./ described in (2.13). The ./ set operation
removes the redundant cuts, and it is commutative, as the union set operation
∪ is also commutative.

A ./ B ≡ {a ∪ b | a ∈ A, b ∈ B, | a ∪ b |< K} (2.13)

Given that ΦK(n) is the set of K-cuts of n ∈ G and, if n is not a primary
input or output, that n1 and n2 are its inputs. Then, ΦK(n) is defined
recursively [20], as described in (2.14).

ΦK(n) =

{{n}}, n is a PI
{{n}} ∪ {ΦK(n1) ./ ΦK(n2)}, otherwise

(2.14)

K-cuts are considered a method to derive sub-circuits compared to win-
dowing, as the support size is controlled, and the reconvergence paths are
identified. However, notice that the number of K-cuts grows exponentially
with K, and for this reason different classes of K-cuts have been explored,
such as factor cuts [20] and priority cuts [86]. An example of graph covering
using K-cuts is shown in Fig 2.5. Given that K = 4, the K-cuts enumerated
for each node is described in Table 2.3.

22 Chapter 2. Background

Figure 2.5: Example of a graph covering with K-cuts (Source: [20]).

Table 2.3: K-cuts enumeration for the AIG in Fig. 2.5.
Node K-cuts
p {p}
q {q}
a {a}, {p, q}
b {b}
y {y}, {a, b}, {p, q, b}
c {c}
d {d}
z {z}, {c, d}

x
{x}, {y, z}, {y, c, d}, {a, b, z},
{a, b, c, d}, {b, p, q, z}

2.1.4.3 KL-cuts

K-cuts are an efficient way to represent a region of a graph regarding a single
output. However, several K-cuts may be necessary to cover regions with
multiple outputs, duplicating logic. A KL-cut [75, 69] identifies a multiple-
output region in order to overcome this issue. A KL-cut is a sub-graph GKL
of a graph G with K inputs and L outputs. It is represented as two sets of
nodes: the inputs GK , and the outputs GL.

If a node n belongs to a path between nK ∈ GK and nL ∈ GL, being
n /∈ GK , then n is contained in GKL. Notice that all nodes in GL are contained
in GKL, and GKL does not contain any node of GK . The same algorithms
used to enumerate K-cuts can be used to identify L-cuts, controlling both the
number of inputs and outputs of a region. However, in the work of Chapter 3,
the number of outputs is not restricted in KL-cuts enumeration, as in [70].
Therefore, for every K-cut of a node n, there is a unique KL-cut GKL.

2.1. Logic synthesis 23

50

30

51

31

52

40

53

41

32 33

14

20

12

21 22 23

1110

1

13

2 3 4 5 6 78

31

Figure 2.6: Example of KL-cut computation.

The nodes that are part of GKL are identified by traversing forward the
graph G from GK . A node n is part of GKL if at least one of the K-cuts of n
is a subset of or equal to GK . A node of GKL is contained in GL if it has a
fanout to a primary output, or to a node not contained in GKL.
Example: Figure 2.6 depicts GK = {3, 4, 5, 6, 10, 13} with its nodes in light
gray, which is one of the K-cuts of the node 31, in dark gray. The KL-cut GKL
is obtained by traversing the AIG forward from GK , identifying the sub-graph
hatched in Fig. 2.6. Nodes 31 and 40 have fanout to POs, and nodes 12 and 33
have fanout to nodes not contained in GKL, therefore GL = {12, 31, 33, 40}
is defined. Note that the logic of GL nodes can be described as Boolean
functions that depend on the same support, i.e., the GK nodes.

2.1.5 Collapsing
Collapsing [27] a Boolean network means to replace it by another network
with one node for each output, with each node representing the Boolean func-
tion of a primary output based solely on the primary inputs. This approach
can be helpful as it removes structural redundancies from the logic network.
The process of collapsing a circuit may be performed partially or globally.

Partial collapsing (or elimination) [23, 114] is an iterative process of re-
moving nodes of a Boolean network by merging the function of a node with
the ones in its fanout. The result is a Boolean network with a smaller set of

24 Chapter 2. Background

pi1pi0 pi2 pi3 pi4

po2po0 po1

011 1
100 1
010 1
111 1

collap
se

pi1pi0 pi2 pi3 pi4

po2po0 po1

Figure 2.7: Example of the collapsing process for a primary output.

nodes, but with more complex Boolean functions. The number of iterations,
or the number of nodes merged, is typically limited by a cost function, e.g.,
literals, AIG nodes, BDD nodes. Notice that the effectiveness of this process
is biased by the structure of the subject graph, and also by the order in which
is performed, generating sub-optimal results.

For the work proposed in Chapter 4, collapsing is performed globally and
for each output individually. The result of such collapsing process is the logic
function of a primary output based on the primary inputs, as shown in the
example of Fig. 2.7. The output function obtained is the same regardless of
the circuit structure, therefore the structural don’t cares are removed [32].
Notice that logic sharing between outputs is potentially lost in this process,
as observed in Fig. 2.7. This approach may result in larger area, but the
possibilities of reducing circuit delay are increased. There are different ap-
proaches for global collapsing, e.g., using a multi-rooted BDD, which perform
partial logic sharing.

2.1.6 AIG transformations
AIGs offer an homogeneous data structure, in which simple, fast, and scal-
able logic synthesis methods can be applied. The scalability is made possible
by performing transformations on the AIG structure, using the number of
nodes and the logic depth as cost function for area and delay, respectively.
These AIG transformations are typically realized with fast local optimiza-
tions, which can be repeated multiple times. After several iterations, the
optimized AIG is the subject graph for technology mapping. This section
reviews the main transformations used for AIG optimization.

2.1. Logic synthesis 25

Figure 2.8: Examples of AIG rewriting (Source: [84]).

The first step is to derive the AIG structure from an input description.
In ABC [14], this is performed by running the command strash, which can
be divided in two parts. The first part is to replace each node of the input
Boolean network by the equivalent AIG structure, which is derived by the
factorization [13] of the Boolean function of the node. The second part is the
redundancy removal, which detects and merges isomorphic circuit structures.
This process is also known as structural hashing [79], which is performed using
a hash-table, and ensures that there is only one node having the same pair of
AIG nodes as fanins, considering permutation. After this process, it is said
that the AIG is structurally hashed.

Refactoring [79, 84] is one of the methods for node count minimization.
The method is implemented on the command refactor in ABC [14], and
consists of iteratively extracting the maximum fanout-free cone (MFFC) for
each AIG node, with a maximum of 16 variables. The logic function of
the MFFC is factored [13], and the result of factorization is translated back
to AIG format, replacing the original logic cone if the number of nodes is
reduced (or not increased), and the logic depth is not increased.

Rewriting [79, 84] is another algorithm for minimizing the AIG size, enu-
merating all K-cuts at each AIG node, and replacing them by functionally
equivalent and smaller pre-computed cuts. Two examples of AIG rewriting
are depicted in Fig. 2.8. The example at the top regards a simple substitution
for a smaller structure, whereas the example at the bottom shows a replace-
ment for a larger AIG, but taking advantage of nodes already present in the
network. The command rewrite in ABC [14] implements this approach for
cuts with up to 4 variables, using pre-computed AIGs indexed in a hash table
with all 222 NPN-equivalent classes of 4-input functions [84]. This method
can also be restricted to transformations that do not increase logic depth.

26 Chapter 2. Background

Figure 2.9: Example of a tree-balancing transformation (Source: [81]).

Balancing [27, 81] is a depth-aware transformation using algebraic tree-
height reduction, performed by applying Boolean properties such as asso-
ciativity, commutativity, and distributivity (see Table 2.2). An example of
tree-balancing transformation is illustrated in Fig. 2.9. This algorithm [27] is
also implemented in ABC [14] on the command balance, and it is frequently
applied in between AIG node reduction approaches to minimize logic depth.

Another method for AIG optimization is resubstitution [79], which tries
to re-express the Boolean function of a node by reusing other nodes present
in the AIG, also known as divisors. The method is implemented on the
command resub in ABC [14], and consists of iteratively extracting the MFFC
for each AIG node, and rewriting the logic cone using k new nodes and
removing l nodes. Similarly to other methods, if the number of nodes is
reduced, i.e., l > k, then the modification is accepted. This approach can
be considered a technology-independent version of the resynthesis methods
based on resubstitution [53, 89].

It is also worth mentioning that AIG transformation methods are highly
dependent on the input description. Therefore, a higher quality of results can
be achieved by applying balancing, rewriting, resubstitution, and refactoring
iteratively. For example, the dc2 command [82, 75] in ABC [14] iterates these
methods in order to obtain an optimized AIG. Transformations that increase
the number of levels are accepted if dc2 is executed without the -l option,
therefore obtaining the minimum number of AIG nodes for this command.

2.1.7 FPGA technology mapping
Technology mapping is an important process in logic synthesis, which trans-
forms a technology-independent circuit description into a network of gates
from a given technology, i.e., a mapped circuit. This process can be divided
into three steps: decomposition, matching, and covering.

2.1. Logic synthesis 27

Figure 2.10: Distribution of solutions for the benchmark cordic (Source: [38]).

Decomposition transforms the initial description into a simpler, more re-
stricted representation: the subject graph. This is important to limit the
scope, making technology mapping computationally more tractable. Struc-
tural transformations are also applied in this step, such as breaking the sub-
ject graph into trees. The matching step consists of identifying logic gates
from a library that can implement parts of the graph, taking advantage of
techniques such as P-signature [45], considering the permutation of the inputs
of a logic gate. Finally, the covering step chooses a subset of the matching
possibilities in such a way that the entire subject graph is covered, while opti-
mizing a cost function, e.g., area, power. Notice that all technology mapping
steps are important. Low quality results can be delivered even with optimal
algorithms for matching and covering, given that the input circuit is poorly
described, or the decomposition step has incorrect metrics. This structure
dependence is a problem known as structural biasing [21].

FPGAs are integrated circuits consisting of programmable logic blocks
and interconnections. FPGAs can be reprogrammed multiple times, and
have a much smaller initial cost and production time in comparison with
ASICs. For these reasons, FPGAs are largely used for ASIC prototyping and
low-volume applications. For FPGAs, the technology is typically consisted
of look-up tables (LUTs), which are logic blocks that can be configured to
implement any logic function of up to k variables.

28 Chapter 2. Background

In ABC [14], the subject graph is a structurally hashed AIG, and the
FPGA mapping is performed on top of this structure [86]. Notice that the
FPGAs mapping may vary significantly for functionally equivalent but struc-
turally different AIGs. For example, a study on the impact of the variable
ordering of the subject graph on the mapping result is performed in [38], with
the distribution of solutions for the benchmark cordic shown in Fig. 2.10.

2.2 Adaptive clocking
The estimation of the path delays and their variability is critical for the
performance and reliability of digital circuits. It is necessary to consider all
conditions that may shift and affect the delay of every circuit path, such as
the manufacturing process, the supply voltage, and the temperature (PVT
corners). Static offsets of these conditions are considered at design phase,
but dynamic shifts are hard to predict and conservative margins are added
to prevent failures. Voltage noise is the main source of dynamic variability,
and adaptive clocking is one of the methods used to mitigate it. This sec-
tion presents the background for the contributions presented on Chapter 5,
regarding the use of ring oscillators as the clock source.

2.2.1 Power Integrity
Power integrity is one of the major challenges in the design of high-performance
circuits. All components of the power delivery network (PDN) have a direct
influence on the voltage fluctuations observed by the on-chip devices. Mit-
igating this noise is an arduous task that may have a significant impact on
all design metrics: power, performance and area. The main components of
voltage drops are resistive and inductive [99]:

∆V = R · i(t) + L · di
dt
. (2.15)

IR drops (static and dynamic) are produced by the parasitic resistance of the
PDN, whereas inductive noise is mainly caused by large current differences,
associated with the switching activity of the chip.

Static voltage offsets can be estimated at design time. However, the
dynamic variations are hard to predict and this is the reason why overly
conservative margins are often added to prevent unexpected failures. Un-
fortunately, voltage droops that exceed the defined margins cannot be fully
eliminated. Clock and power gating are typical low-power techniques that
can unintentionally produce large voltage droops. When many devices are

2.2. Adaptive clocking 29

+

−

LbumpRbump

Cpkg

Rcpkg

Lcpkg

LbumpRbump

Rpcb Lpcb

Vvrm

Rpkg Lpkg

Rcpcb

Lcpcb

Cpcb

LpkgRpkgLpcbRpcb

VDD

die
VSS

(a) Off-chip

Rgrid

Lgrid

Ickt Cckt

(b) On-chip (top view)

Rgrid Lgrid

Ickt Cckt

VDD

RbumpLbump VSS

RbumpLbump

Rgrid Lgrid

(c) On-chip (side view)

Figure 2.11: PDN model with off-chip and on-chip parasitics.

simultaneously activated, a large di/dt is originated. If that situation is pe-
riodically repeated and aligned with a resonant frequency of the PDN, large
voltage swings may appear, exceeding the ones tolerated by the system.

A common strategy to mitigate voltage noise is to increase the amount
of on/off-chip capacitance by adding decoupling capacitors (decaps) [99].
Unfortunately, the additional decaps imply an increase in area and leakage
power consumption. In [120], different amounts of integrated voltage reg-
ulators are investigated, analyzing the penalties in area and power for the
voltage noise reductions obtained. Other proposals include improving the
chip-package impedance, static and dynamic voltage margining, performance
throttling and stalling using voltage sensors [49, 12]. All these approaches
have important overhead in design cost, area, power or performance.

2.2.2 Voltage noise
The PDN delivers the power and ground voltages to all devices of a chip.
Fig. 2.11(a) depicts a PDN model with its off-chip components: voltage reg-
ulator module (VRM), board (PCB), package (PKG), and the connection

30 Chapter 2. Background

10 100 1000
Frequency (MHz)

Im
pe

da
nc

e
(m
Ω

)
1st droop

2nd droop
3rd droop

(a) Frequency response

1st droop

2nd droop

Time (ns)

1.005

1

0.995

0.99

0.985
0 20 40 60 80

V
ol

ta
ge

 (
V

)

(b) Voltage droops

Figure 2.12: (a) The frequency response of a typical PDN, and (b) the voltage
droops generated by a single current spike

bumps [99]. The on-chip power networks are modeled as a grid, shown in
Fig. 2.11(b) and Fig. 2.11(c). Notice that both the power and ground net-
works are considered in the model, with a VDD or a VSS bump connected at
every grid point.

The power distribution has parasitic inductances, resistances and capac-
itances, which can be modeled as illustrated in Fig. 2.11. Also, decaps are
placed at all levels of the PDN in order to reduce voltage fluctuations. The
parasitics of the capacitors are also known as equivalent series inductance
(ESL) and equivalent series resistance (ESR). All the PDN parasitics inter-
act with each other, forming LC circuits with different resonance frequencies,
which are responsible for the voltage droops.

The circuit composed by the on-chip capacitance and the power bumps
inductance (Lbump) generates the first droop, which typically produces the
largest voltage noise and has a resonance frequency of 100-400MHz [119].
The second droop is controlled by Cpkg and Lpkg, and the third droop is
dominated by Cpcb and Lpcb. Note that the second and third droops usually
have much lower resonance frequencies and amplitudes than the first droop.

Fig. 2.12(a) shows a frequency response typically generated by the PDN
of commercial high-performance integrated circuits, with the impedance and
the resonance frequency for the first, second and third droops. The supply
voltage behavior illustrated in Fig. 2.12(b) is observed when a current spike
is requested for this PDN: the first droop causes fast and large voltage swings
in the order of ns; then the voltage continues to fluctuate due to second and
third droops, until it becomes stable after a few µs.

Voltage noise is minimized when the activity takes place at frequencies
with low impedance associated. Fig. 2.13(a) shows the supply noise and the

2.2. Adaptive clocking 31

(a) Typical voltage noise (b) Worst voltage noise

Figure 2.13: Voltage droops generated by periodical current differences at
(a) low and (b) high impedance frequencies.

clock signal for a circuit operating at 1GHz (low impedance), with voltage
swings of ±10%. The clock can be set to the frequency of the first droop to
emulate the worst-case voltage noise, as seen in Fig. 2.13(b). In this case,
the voltage noise amplitude goes up to 20%. Such large fluctuations are also
known as voltage emergencies.

For designers, it is difficult to anticipate whether voltage emergencies will
actually show up in their designs. Very often, they just conjecture that these
events will not happen, without a full guarantee of safety. Note that a circuit
designed for an application can be used for other purposes, with changes in
the operating frequency, the submodules activated, the firmware, and the
packaging. In this context, it is very difficult to predict the presence of such
large voltage fluctuations. Still, if a voltage emergency occurs, then a timing
failure may be originated and the circuit operation becomes unpredictable.

2.2.3 Ring Oscillator Clocks
Jitter and other clock uncertainties are generally considered by increasing the
timing margins of the clock period, degrading circuit performance. For that
reason, the use of ring oscillator clocks (ROCs) as clock sources has been
discarded, as they have a high jitter caused by their sensitivity to the various
sources of variability. Therefore, rigid clock generators with low-jitter, such
as phase-locked loops (PLLs), became the de facto clock source paradigm.

Figure 2.14 shows a synchronous circuit fed by a PLL or by an ROC,
depending on the selection of a multiplexer. Figure 2.15 illustrates the clock
signals generated by the PLL and the ROC when a voltage droop occurs.
Note that the clock period of the PLL is not affected by the changes in the

32 Chapter 2. Background

Phase
detector

Voltage
controlled
oscillator

Fref

Frequency
divider

Low−pass
filter

QD

critical paths

QD

phase−locked loop ring oscillator clock

Figure 2.14: Synchronous circuit with a PLL or an ROC as the clock source.

voltage source, as it is designed to support such variations and deliver a low-
jitter clock. However, the circuit paths have a different behavior: their delay
increases when the voltage decreases. When the PLL is selected as the clock
source, timing failures are avoided by adding margins that consider the delay
of the critical paths at the minimum estimated voltage.

On the other hand, the period of the ROC is affected by the voltage
variation, as seen in Fig. 2.15. In [98], it is shown that the power supply is
the dominant source of jitter for ring oscillators. Recent studies demonstrate
that the jitter of ROCs is highly correlated with the delay variability of the
circuit paths [28, 29].

In other words, the process, voltage, temperature (PVT) variations suf-
fered by the ROC are perceived by the circuit paths in an analogous way,
as they are composed of similar logic gates. For example, when the circuit
path becomes slower due to a voltage droop or a temperature increase, the
frequency of the ROC slows down as well. This correlation between the jitter
of ROCs and the circuit delay variations enables the reduction of timing mar-
gins, and hence improve circuit performance or reduce power [28, 29]. Note
that the jitter of a PLL does not have similar correlation with the circuit
delay.

Obviously, there is not an exact match between the delay of the critical
paths and the period of an ROC. Standard cells have different responses to
PVT variations. Additionally, there are voltage and temperature differences

2.2. Adaptive clocking 33

0 2 4 6 8 10 12 14

S
ou

rc
e

(V
)

0

0.5

1

0 2 4 6 8 10 12 14

P
L

L
 (

V
)

0

0.5

1

Time (ns)
0 2 4 6 8 10 12 14

R
O

C
 (

V
)

0

0.5

1

Figure 2.15: PLL and ROC clock generation in the presence of voltage noise.

across the chip, and process variability is not identical throughout the die [2].
Moreover, unknown or not well-understood issues must be covered, such as
aging and radiation. Notwithstanding, the most significant variations are
strongly correlated between the critical paths and the ROC.

In this work, a rigid clock source (PLL) is compared with an ROC, that
is implemented using to the guidelines described in [28]. In summary, the
design of an ROC consists of:

• Delay extraction of the critical paths of the circuit.

• Use the delay data extracted to create a path of library gates with
similar delay behavior, considering all corners.

• Organize these gates in a ring to generate an oscillating signal.

The delay extraction is performed for all PVT corners available in the
technology, using static timing analysis (STA) tools. The extracted delays
are the input to a path synthesizer tool, which produces a single chain of
standard cells that is able to produce an oscillating signal, i.e. a clock. Note
that the design of an ROC depends only on the manufacturing technology
and the variability behavior. Hence, ROCs are agnostic to the characteristics
of the chip or the package.

34 Chapter 2. Background

Chapter 3

AIG Optimization via Boolean
Decomposition

Restructuring techniques for and-inverter graphs (AIGs), such as rewriting
and refactoring, are powerful, scalable and fast, achieving highly optimized
AIGs after few iterations. However, these techniques are biased by the orig-
inal AIG structure and limited by single output optimizations. This chapter
investigates AIG optimization for area, exploring how far Boolean methods
can reduce AIG nodes through local optimization. Boolean division is applied
for multi-output functions using two-literal divisors and Boolean decomposi-
tion is applied as a method for AIG optimization [66]. Multi-output blocks
are extracted from the AIG and optimized, achieving a further AIG node
reduction of 7.8% on average for a subset of ITC99 and MCNC benchmarks.

3.1 Motivation
Recently, technology-independent algorithms based on AIGs have been pro-
posed, enabling efficient and scalable optimizations. Restructuring methods
such as refactoring [79], rewriting [84], and balancing [27] are powerful, and
obtain highly optimized AIGs after few iterations. Still, these techniques are
constrained by single output transformations, and iterations with technology
mapping [82, 37] are often used to improve structurally biased results.

AIG rewriting and refactoring perform local transformations, extracting
the local context with K-cuts [95], windows or maximum fanout-free cones
(MFFCs). K-cuts can be considered a superior method to extract local con-
text compared to windowing [79, 37], as it is possible to control the support
of the Boolean functions to be optimized, while identifying a region of the
circuit that depends on this support.

36 Chapter 3. AIG Optimization via Boolean Decomposition

x1 xn

y1 ym· · ·

· · · x1 xnxi xj

y1 ym· · ·

· · · · · ·

F
z

G

Figure 3.1: Decomposition using a two-literal Boolean divisor.

Algorithms based on K-cut enumeration have been proposed, such as
factor cuts [20] and priority cuts [86], reducing the search space and enabling
cuts with more nodes and inputs. Also, multi-output blocks based on K-cuts
were presented [75, 69], extracting the complete local context.

This work studies technology-independent transformations that reduce
the AIG size by exploring the use of Boolean decomposition. This is done by
expanding the idea of two-literal divisors [90] to multi-output functions (see
Fig. 3.1). The principle is as follows. A multi-output function

(y1, . . . , ym) = F (x1, . . . , xn)

can be decomposed into another multi-output function

(y1, . . . , ym) = G(x1, . . . , xn, z),

with z being a two-literal divisor (z = xi � xj), and � being a Boolean
operator (such as an AIG node). G is supposed to be a function with a
simpler implementation than F , which can be obtained by Boolean division.
A multi-output Boolean function can be recursively decomposed using this
paradigm, and the result can be represented as an AIG network.

The main purpose of this work is to explore how far Boolean decompo-
sition can optimize beyond the existing AIG rewriting methods. Unfortu-
nately, scalability is an important issue when dealing with Boolean methods.
Obviously, collapsing large networks into one-node functions and then de-
composing is not computationally affordable.

This work takes a significant leap forward regarding [90], with the follow-
ing contributions:

• Boolean decomposition with two-literal divisors is generalized to cir-
cuits with multiple outputs, instead of single-output functions.

• The selection of divisors is customized to increase the logic shared
among multiple outputs.

3.2. Overview 37

collapse &

decompose

rewrite
(if improved)

extract

KL cut

AIG

Figure 3.2: Iterative rewriting of KL-cuts on an AIG.

• A set of filters to reduce the search space is proposed.

• Scalability is addressed by iteratively applying Boolean decomposition
to KL-cuts [75, 69] of the AIG (see Fig. 3.2).

In [80], a resynthesis method based on Boolean decomposition is per-
formed on look-up table (LUT) networks by identifying and decomposing
MFFCs. However, [80] only performs a simplified version of disjoint-support
decomposition (DSD). In [104], windows are enumerated and don’t care con-
ditions identified in the network are used to simplify these windows, whereas
in [106] the algebraic decomposition method is improved by assigning previ-
ously calculated don’t cares using a set of rules. In this work, there is neither
search nor previous calculation of don’t care conditions, as the optimization
occurs solely inside the KL-cut logic.

Notice that a KL-cut represents a portion of the circuit that depends
on the same set of variables. The key idea is to take advantage of this
property of KL-cuts in order to identify divisors that are useful for multiple
functions, sharing more logic and reducing area. The results reported in
this work have been often obtained by applying computationally intensive
methods, e.g., many divisors, many cuts. Bear in mind that the goal now is
to establish the bounds potentially reachable by future work that could use
smart oracles to drive the search. Some preliminary criteria are discussed in
Section 3.3.3. Still, the method proposed in this work may be interesting for
highly repetitive structures or area-critical components.

3.2 Overview
This section introduces an overview of the contributions proposed, with
an example of Boolean decomposition for a multiple-output function, and
the optimization of a small benchmark. Additionally, a summary of results
achieved with existing AIG transformation methods is presented.

38 Chapter 3. AIG Optimization via Boolean Decomposition

3.2.1 Multi-output Boolean decomposition
Boolean decomposition is known to obtain good-quality results at the expense
of a high computational cost. Finding good divisors is the most challenging
task. Different approaches can be proposed to prune the search, e.g., use
two-literal divisors [90], consider polarity information to ignore unpromising
divisions, or reuse algebraic factored forms to select divisors. Considering all
these simplifications, is it still possible to obtain good results?

To illustrate the decomposition, consider the set of functions in (3.1).
Any combination of two literals of F can be selected as a Boolean divisor.
The number of literals is defined as the cost function, which is 12 in this case.

F =


F1 = bx+ cx

F2 = ax+ dx

F3 = ax+ be

DC = abx+ abx+ abx (3.1)

A reduction of 3 literals is achieved by performing a multi-output Boolean
division using the divisor y = ab, generating the new set of functions and
DC-set in (3.2). Note that this divisor is not easily extracted from the set
of functions F : F1 does not have the variable a and F2 does not have the
variable b. Still, all functions are reduced in 1 literal due to the effective
use of the DC-set. For further decomposition steps, it is possible to perform
a DC-set projection, removing variables from the DC-set that are not in
the support of F , and decreasing the computational effort of the Boolean
division. By projecting DC ′ to the support of F ′, DCproj = by is obtained.

F ′ =


F ′1 = y + c · x
F ′2 = y + dx

F ′3 = y + be

DC ′ = DC + (y ⊕ (ab)) (3.2)

3.2.2 AIG optimization example
In order to demonstrate the benefits of the approach introduced in this work,
the circuit b06 of the ITC99 benchmarks suite [4] is optimized. The flow and
the results for the different solutions are depicted in Fig. 3.3.

The input circuit is a Boolean network represented in a Berkeley logic
interchange format (BLIF) file. An AIG with 42 nodes is obtained after
decomposing the Boolean network with algebraic factorization and structural
hashing (strash command in ABC [14]). After iteratively applying algebraic
transformations using dc2 command, the number of nodes is reduced to 35.

3.2. Overview 39

Boolean
Decomposition

Nodes: 24
Levels: 9

AIG
Nodes: 47
Levels: 5

AIG
Nodes: 31
Levels: 5

AIG
Boolean network

Nodes: 9
Levels: 1

SOP literals: 85

collapse

Boolean network
Nodes: 40
Levels: 5

SOP literals: 84

Nodes: 42
Levels: 5

AIG
Nodes: 35
Levels: 4

AIG

b06.blif
strash dc2

strash dc2

Figure 3.3: Optimization flow using different methods for b06.

An alternative approach would start by collapsing the initial network,
which results in a Boolean network with one node for each output. De-
composing these nodes results in a larger AIG with 47 nodes, but applying
iterative algebraic transformations reduces it to 31 nodes.

The method proposed in Section 3.3 applies Boolean decomposition on
top of the collapsed network using an approach inspired by [90]. In this work,
multi-output decomposition is used by iteratively selecting the Boolean divi-
sor that minimizes the sum of the literals of the functions factored forms [13].
This approach is able to achieve a better logic sharing, obtaining an AIG with
only 24 nodes. Also, a set of filters is applied to reduce the search space of di-
visors. By reducing the amount of two-level minimizations compared to [90],
runtime is reduced 40 times on average, without sacrificing the quality of
the results. Note that the results in this work cannot be directly compared
with [90], which only presents the decomposition of single-output functions
and it is not applied for circuit optimization.

3.2.3 Results obtained via AIG transformations
This section presents the AIG size reduction achieved by AIG transformations
for a set of ITC99 and MCNC benchmarks [4]. Each benchmark is read and
transformed into an AIG through algebraic factorization. Then structural
hashing is performed, obtaining the number of AIG nodes and levels shown
in column “Initial” of Table 3.1.

In order to obtain a highly optimized AIG, the dc2 command is executed
iteratively until no changes are observed. This reduces the number of nodes
for the majority of cases, as seen in column “After dc2”. The number of
levels is usually reduced, but not for all cases. Geometric mean I and the
ratios 1 and 2 refer to the complete set of benchmarks.

40 Chapter 3. AIG Optimization via Boolean Decomposition

Table 3.1: Results obtained through AIG transformations.

Name Initial (a) After dc2 (b) After
collapse + dc2 Diff nodes

(a) and (b)

Best of (a)
and (b)

Nodes Levels Nodes Levels Nodes Levels Nodes Levels
b04 546 24 487 21 871 16 78.85% 487 21
b05 830 54 459 23 4095 19 792.16% 459 23
b06 42 5 35 4 31 5 -11.43% 31 5
b07 365 27 331 22 566 22 71.00% 331 22
b08 155 20 131 15 119 9 -9.16% 119 9
b09 136 12 123 10 197 12 60.16% 123 10
b10 180 11 162 9 175 8 8.02% 162 9
b11 611 28 452 21 1085 18 140.04% 452 21
b12 1002 17 947 14 1399 13 47.73% 947 14
b13 261 12 220 11 224 10 1.82% 220 11
b14 6069 60 3924 100 - - - 3924 100
b15 8432 65 7030 95 - - - 7030 95
alu4 2654 14 1573 15 625 14 -60.27% 625 14
apex2 2960 17 991 17 142 14 -85.67% 142 14
bigkey 3081 10 2847 10 3302 10 15.98% 2847 10
clma 11938 40 4842 38 527 16 -89.12% 527 16
diffeq 2575 40 2137 41 - - - 2137 41
ex1010 7681 17 4664 15 2337 14 -49.89% 2337 14
ex5p 1731 15 928 19 204 8 -78.02% 204 8
i10 3675 50 1637 36 - - - 1637 36
misex3 2454 13 1267 15 754 14 -40.49% 754 14
pdc 7757 19 3219 19 1717 18 -46.66% 1717 18
seq 2780 14 1373 13 1516 16 10.42% 1373 13
spla 6660 19 2298 16 525 14 -77.15% 525 14
tseng 1927 47 1763 41 - - - 1763 41
Geomean I 1409.43 21.26 921.52 19.48 - - - 614.49 17.56
Ratio 1 1.00 1.00 0.65 0.92 - - - 0.44 0.83
Ratio 2 - - 1.00 1.00 - - - 0.67 0.90
Geomean II 1090.95 17.03 698.38 14.93 550.87 12.78 - 420.83 13.11
Ratio 3 1.00 1.00 0.64 0.88 0.50 0.75 - 0.39 0.77
Ratio 4 - - 1.00 1.00 0.79 0.86 - 0.60 0.88

An alternative experiment is performed by collapsing the circuit after
reading the input file. The collapsing operation does not finish for some
benchmarks due to its complexity. In the cases the operation finishes, the
AIGs are obtained through algebraic factorization and structural hashing.
Then, dc2 command is run iteratively until no changes are observed, gener-
ating the results shown in column “After collapse + dc2”. Geometric mean
II and the corresponding ratios 3 and 4 refer to the benchmarks in which
collapsing could finish. The difference in the number of nodes varies from a
89% reduction (clma) to a 792% increase (b05).

3.3. AIG optimization approach 41

1: procedure booleanDecompositionAIG(AIG, cutParams)
Input: An AIG network, and parameters to enumerate KL-cuts
Post: The AIG has equal or fewer nodes

2: for each node N in AIG in topological order do
3: for each kcut C of node N from kcut enumeration do
4: obtain the klcut from C in AIG
5: if the klcut is accepted based on cutParams then
6: F = set of klcut functions
7: DC = ∅ // DC-set of F functions
8: divisors = boolDecompose(F , DC)
9: if size of divisors < size of klcut then
10: new_klcut = AIG network of divisors
11: replace klcut by new_klcut in AIG
12: restart kcut enumeration

Figure 3.4: AIG optimization using Boolean decomposition.

Collapsing a Boolean network may result in a larger AIG (see Section 3.2.2),
and the AIG transformations may not obtain the same results as before
collapsing, as these modifications are biased by the structure. In the b05
benchmark, the initial description has very good logic sharing between out-
puts, which is lost after collapsing. The shared logic is not recovered due to
local optimization limitations, such as single-output transformations, some
outputs depending on a large set of inputs. For several other cases, collapsing
enables significant AIG reduction by removing redundant structures.

3.3 AIG optimization approach
This section introduces a new AIG optimization approach, based on Boolean
decomposition with two-literal divisors [90]. Boolean methods are known to
be time-consuming and not scalable, but also to obtain better results when
compared with algebraic methods. In this work, the Boolean decomposition
method using two-literal divisors [90] is applied to multi-output functions,
and the runtime is reduced without losing quality of results. Still, the algo-
rithm does not scale for large circuits, and it is applied via local optimization.

3.3.1 Local optimization using KL-cuts
A pseudo-code of the AIG optimization strategy is presented in Fig. 3.4.
The procedure booleanDecompositionAIG receives an AIG and param-
eters to enumerate the KL-cuts, defining the limits for nodes and inputs, for
example. After the execution, the AIG has equal or fewer nodes.

42 Chapter 3. AIG Optimization via Boolean Decomposition

The method traverses the AIG in topological order (from the outputs
to the inputs), and all K-cuts are enumerated for each node, based on the
parameters cutParams (line 3). In line 4, the KL-cut is derived from the
K-cut (as described in Section 2.1.4.3) and if it is accepted based on the
parameters (line 5), then the Boolean decomposition is performed on the
Boolean functions of the KL-cut (line 8). It is important to note that the
method called in line 8, and explained in Section 3.3.2, could be replaced by
any other method based on the minimization of multiple output functions.

If the result of the decomposition is smaller than the number of nodes in
the KL-cut, then the KL-cut logic is replaced on the AIG (line 11). Note that
boolDecompose returns the set of two-literal divisors used to decompose
the function of the KL-cut, which can be easily translated to an AIG network.
Additionally, as the AIG is modified when there is a KL-cut replacement, the
previous K-cut enumeration has to be restarted (line 12).

3.3.2 Boolean decomposition
The algorithm for boolDecompose is presented in Fig. 3.5, which recur-
sively performs Boolean decomposition on a set of functions F . The algo-
rithm is divided into four steps: detection of trivial cases (I), generation of
candidate Boolean divisors and definition of the cost function (II), selection
of the best divisor (III), and preparation of the next recursive call (IV).

At line 3, detection of trivial cases (I) is performed, identifying when all
functions in F are decomposed. The algorithm is executed recursively until
this condition is satisfied. Step II starts by obtaining the algebraic factored
form for each function in F (line 9). The cost function to be minimized is
defined as the sum of literals of all functions in the factored form (numLiterals
at line 10). Then, the two-literal leaves of the factored form trees are selected
as candidate divisors for each function in F (see Fig. 3.6).

Boolean division is performed for all functions in F using each divisor in
D, in order to calculate the cost function for all divisors. The best divisor
(III) is the one that achieves the largest reduction in number of literals. As
explained in Section 2.1.3.2, Boolean division is performed by adding the
satisfiability don’t care (SDC) of a divisor to the DC-set of a function and
running two-level minimization. Notice that the DC-set may contain vari-
ables not relevant to the division, therefore a DC-set projection is performed
to the support of the function f and the divisor d (line 20). The projected
DC-set is accumulated with the SDC generated by the evaluated divisor
(line 21), generating the DC-set used in the two-level minimization (DCdiv).
The division may also be avoided depending on the analysis of the variables
polarity (see Section 3.3.3).

3.3. AIG optimization approach 43

1: function boolDecompose(F , DC)
Input: A set of functions F and their respective DC-set DC
Return: A set of divisors that form an AIG
// Each recursive call defines one divisor

2: // Step I - If all functions are decomposed, return
3: if all functions f ∈ F are trivial then return
4:
5: // Step II - Generate the candidate Boolean divisors
6: numLiterals = 0 // Number of literals of all functions in F
7: D = ∅ // Set of two-literal divisors considered
8: for each non-trivial f ∈ F do
9: a = algebraic factored form of f
10: numLiterals += number of literals in a
11: D = D ∪ {two-literal leaves of a}
12:
13: // Step III - Perform Boolean division for each divisor
14: x = new variable // Variable of the new divisor to be selected
15: bestDivisor = ∅
16: for each divisor d ∈ D do
17: divLiterals = 0 // Number of literals after division
18: for each non-trivial f ∈ F do
19: // DC(f) is the DC-set of f
20: DCproj = DC(f) projection onto support of f and d
21: DCdiv = DCproj + (x⊕ d)
22: Flits = Rlits = number of literals in f factored form
23: if d is accepted based on f vars polarities then
24: // R(f, d) is the result of the division of f by d
25: R(f, d) = twoLevelMinimization(f , DCdiv)
26: Rlits = literals in R(f, d) factored form
27: if Rlits > Flits then
28: // If R(f, d) has more literals, or division was not
29: // performed, select f as part of the solution
30: R(f, d) = f
31: divLiterals += Flits
32: else
33: divLiterals += Rlits
34: // If division reduced literals, update best result
35: if divLiterals < numLiterals then
36: for each non-trivial f ∈ F do
37: bestR(f) = R(f, d)
38: bestDivisor = d
39: numLiterals = divLiterals
40:
41: // Step IV - Set the functions for next recursive call
42: for each non-trivial f ∈ F do
43: newF(f) = bestR(f)
44: newDC(f) = DC(f) + (x⊕ bestDivisor)
45: // Return the best divisor and perform a new recursive call
46: return {bestDivisor} ∪ boolDecompose(newF, newDC)

Figure 3.5: Boolean decomposition procedure.

44 Chapter 3. AIG Optimization via Boolean Decomposition

+

∗

+

∗

c d

e

ā

∗

d̄ +

∗

a +

c ē

∗

ā c̄

+

∗

∗

ā d̄

+

∗

c ē

∗

c̄ e

∗

∗

a c

∗

d ē

+

∗

c̄ ∗

d ē

∗

∗

a d̄

+

c e

Figure 3.6: Factored form trees from b06 benchmark.

If the division is avoided, or if the number of literals of the Boolean
division result (R(f, d)) is larger than the ones for f (line 27), then f is used
as part of the current solution (line 31). If the minimum number of literals is
reduced after a division (line 35), the best solution is updated: the division
result (line 36), the divisor and the number of literals (line 39). The next
iteration is prepared at step IV. The ON-set (line 43) and the DC-set (line 44)
obtained by the best divisor are used in the next recursive call (line 46).

Notice that the two-level minimization could be performed for the whole
multi-output function. However, running single output two-level minimiza-
tions is preferred as it is more efficient, divisions can be filtered based on the
variables polarities, and the divisions that increase literals can be discarded
for each output individually.

3.3.3 Filters to reduce runtime
Select divisors from factored forms. In [90] all possible pairs of variables
and polarities are considered for Boolean division. In this work, only pairs of
literals obtained from the leaf nodes of the factored form trees are selected as
potential divisors. The divisors are derived from all output functions of the
KL-cut. For the benchmarks analyzed with our method, the quality of results
was not affected by applying this filter, while the optimization runtime was
significantly improved. In order to illustrate the divisor selection, factored
form trees obtained from the output functions of b06 benchmark are depicted
in Fig. 3.6. The two-literal leaves highlighted in Fig. 3.6 are the divisors
selected for Boolean division. Notice that only one polarity is investigated,
e.g., if the divisor c+ ē is chosen, its negated version c̄ · e is disregarded.

3.4. Experimental results 45

Table 3.2: Divisors accepted based on the divided function f .
Divisor variables a and b w.r.t. f Divisors accepted
a /∈ f support or b /∈ f support None

a is binate or b is binate (a · b), (a · b), (a · b), (a · b)
a and b have the same polarity (a · b), (a · b)
a and b have different polarities (a · b), (a · b)

Use variable polarity information. This filter is applied to avoid explor-
ing divisions with unpromising polarities between the divisor and the divided
function. Table 3.2 describes the divisors that are accepted based on its sup-
port and the polarities of the variables in the divided function. A total of
849 Boolean divisions are performed during the Boolean decomposition for
the benchmark b06 when using this filter versus 943 without it (and 13829
divisions would be done without any filter). The polarity of the variables
can be obtained using the concept of unateness, which is defined for com-
pletely specified functions. Unateness can only be used in the first iteration
of Boolean decomposition, when the DC-set is empty. After the first itera-
tion, the DC-set contains the SDCs of the previously selected divisors, and
the concept of containment [116] must be used (see Section 2.1.1.2).

3.4 Experimental results
Table 3.3 shows the AIGs metrics (nodes and levels) before and after Boolean
Decomposition. Column “Initial” reports the metrics of the AIGs after input
and structural hashing, and column “ABC smallest” reports the AIGs with
least number of nodes from Table 3.1 (column “Best of (a) and (b)”). The
experiments were run on an Intel Core i7 processor with 4GB of RAM. All
AIGs passed formal verification using ABC command cec.

The AIG optimization via Boolean decomposition is applied on the AIGs
of column (a) ABC smallest. KL-cuts with K=8 and unbounded L are enu-
merated in order to obtain smaller parts of the AIG with complete local
context. Also, the number of nodes of the KL-cuts is restricted to 30, there-
fore having a very limited scope of optimization. Boolean decomposition
with two-literal divisors is performed on the KL-cut outputs functions, only
replacing the KL-cut logic if the number of nodes is reduced. The column
“(b) Boolean Decomp.” reports the results obtained after performing two
iterations of the Boolean decomposition method. It is possible to reduce
the number of AIG nodes in 7.76% on average, with important results such
as 25.81% (b06), 16.95% (spla), 15.84% (bigkey) and 14.8% (clma), which

46 Chapter 3. AIG Optimization via Boolean Decomposition

Table 3.3: AIG results of Boolean decomposition.

Name Initial (a) ABC
smallest

(b) Boolean
Decomp. Runtime

(s)
Diff. nodes
(a) and (b)Nodes Levels Nodes Levels Nodes Levels

b04 546 24 487 21 442 21 222 -9.24%
b05 830 54 459 23 409 29 140 -10.89%
b06 42 5 31 5 23 9 0.55 -25.81%
b07 365 27 331 22 320 27 125 -3.32%
b08 155 20 119 9 113 10 2 -5.04%
b09 136 12 123 10 117 11 4 -4.88%
b10 180 11 162 9 156 10 14 -3.70%
b11 611 28 452 21 427 24 178 -5.53%
b12 1002 17 947 14 920 15 212 -2.85%
b13 261 12 220 11 207 12 3 -5.91%
b14 6069 60 3924 100 3810 120 14421 -2.91%
b15 8432 65 7030 95 6656 107 14592 -5.32%
alu4 2654 14 625 14 570 16 268 -8.80%
apex2 1960 17 142 14 128 15 5 -9.86%
bigkey 3081 10 2847 10 2396 15 2209 -15.84%
clma 11938 40 527 16 449 17 46 -14.80%
diffeq 2575 40 2137 41 2015 51 407 -5.71%
ex1010 7681 17 2337 14 2306 15 2004 -1.33%
ex5p 1731 15 204 8 197 8 127 -3.43%
i10 3675 50 1637 36 1530 37 882 -6.54%
misex3 2454 13 754 14 731 14 288 -3.05%
pdc 7757 19 1717 18 1543 18 1371 -10.13%
seq 2780 14 1373 13 1320 16 626 -3.86%
spla 6660 19 525 14 436 15 211 -16.95%
tseng 1927 47 1763 41 1696 42 445 -3.80%
Geomean 1391.5 21.2 614.4 17.5 566.7 19.9 147.4 -7.76%
Ratio 1 1.000 1.000 0.442 0.826 0.407 0.939 - -
Ratio 2 - - 1.000 1.000 0.922 1.137 - -

have an important level of sharing between primary outputs. Notice that the
worst result obtained is for the benchmark ex1010, which is consisted of 10
independent output functions with very little logic sharing between outputs.

Our approach is able to identify a better logic sharing, therefore increasing
the number of levels, which is not controlled by the method proposed. Still,
there is an increase of up to 1 level for 15 out of 25 benchmarks evaluated.
Also, the average number of levels is still smaller than the Initial results.

Table 3.4 presents technology mapping performed for field-programmable
gate arrays (FPGAs) and standard cells using the AIGs from Table 3.3. Area
reduction was observed simply by changing the input by AIGs with fewer
nodes. Mapping to LUTs was performed with the ABC command “if -K 4”,
obtaining 5.5% area reduction on average. Mapping to standard cells was per-

3.4. Experimental results 47

Table 3.4: Technology mapping results.

Name
FPGA (LUT4) Standard cell (µm2, ns)

(a) ABC (b) Bool. Dec. (a) ABC (b) Bool. Dec.
Nodes Levels Nodes Levels Area Delay Area Delay

b04 183 7 177 8 14041 1879 12735 1833
b05 222 9 201 11 14350 2057 12687 2545
b06 17 2 17 2 1191.9 567 993 754
b07 145 8 146 8 9828 1949 9645 2205
b08 55 4 50 5 3659 873 3460 934
b09 55 4 53 5 3554 876 3716 1060
b10 73 5 75 5 5076 881 4893 957
b11 179 7 175 8 13215 1916 12551 2086
b12 452 6 455 6 28188 1322 27922 1409
b13 95 4 94 4 6890 975 6482 1046
b14 1608 33 1544 37 112586 8639 112277 10068
b15 3021 33 2922 33 204689 8110 195332 9398
alu4 293 7 277 7 18114 1308 16446 1450
apex2 65 6 61 6 4218 1300 3884 1398
bigkey 1254 3 921 4 81867 901 73250 1327
clma 277 6 249 6 15934 1446 13968 1512
diffeq 824 14 754 14 61892 3658 57616 4129
ex1010 1132 7 1118 7 66649 1314 65849 1415
ex5p 129 3 122 4 6356 784 6090 789
i10 724 14 688 14 47974 3222 45120.5 3187
misex3 363 6 363 6 21716 1222.7 21162.1 1218
pdc 904 7 821 7 50301 1585 45429 1592
seq 716 6 673 7 40718 1232 38957 1438
spla 262 5 222 6 15108 1218 12991 1303
tseng 758 13 741 13 50583 3598 49251 3561
Geomean 284.35 6.84 268.64 7.39 18356 1607 17217 1859
Ratio 1.000 1.000 0.945 1.081 1.000 1.000 0.938 1.157

formed with the ABC command “map” using the library “GSCLib_3.0.lib”
from [4], obtaining an area reduction of 6.2% on average.

48 Chapter 3. AIG Optimization via Boolean Decomposition

Chapter 4

Support-reducing
Decomposition for FPGA
Mapping

The cost functions of two-level or factored-form representations, e.g., liter-
als, are used in most decomposition methods, as they have a high correlation
with the area of cell-based designs. However, this correlation is weaker for
field-programmable gate arrays (FPGAs) based on look-up tables (LUTs).
Moreover, local optimizations have limited power due to the structural bias
of the circuit descriptions. This chapter proposes the reduction of the struc-
tural biasing by remapping the LUT network and decomposing the derived
functions using the support as cost function [68]. The proposed method im-
proves the FPGA mapping results of a commercial tool for the 20 largest
MCNC benchmarks, with gains of 28% in delay plus 18% in area when tar-
geting delay, and a reduction of 28% in area plus 14% in delay with area as
cost function. Results with 23% less area and 6% less delay are obtained after
physical synthesis (post place-and-route). Furthermore, 12 of the best known
results for delay (and 6 for area) of the EPFL benchmarks are improved.

4.1 Motivation
FPGAs are integrated circuits consisting of programmable logic blocks and
interconnections. FPGAs can be reprogrammed multiple times, and have
an extremely smaller initial cost and production time in comparison with
application specific integrated circuits (ASICs). For those reasons, FPGAs
are largely used for prototyping of ASICs and applications with low volume.
However, when compared to ASICs, the flexibility given by FPGAs comes

50 Chapter 4. Support-reducing Decomposition for FPGA Mapping

Figure 4.1: Correlation between the number of AIG nodes and LUTs after
technology mapping (Source: [65]).

at the expense of larger area and power consumption, and lower perfor-
mance [57]. Recently, FPGAs started to be employed in the optimization of
specific tasks in data centers, with technology leaders making great efforts in
hybrid solutions with ASICs and FPGAs [24, 100, 111].

The FPGA implementation process inherited many techniques from the
ASIC design flow (see Fig. 1.2). The use of well-established methods enabled
the fast growing and wide-usage of FPGAs, but these algorithms generally
have cost functions customized for cell-based designs, in which the area is
proportional to the number of transistors. Usual cost functions in logic syn-
thesis are cubes in sum-of-products (SOP) forms, literals in Boolean function
expressions, or nodes and levels of and-inverter graphs (AIGs). On the other
hand, FPGAs based on LUTs are composed of logic blocks with k inputs
(typically 4 to 6), and each LUT can implement any logic function of up to
k inputs.

A study on this miscorrelation is presented in [65], showing that the
reduction of nodes and levels in AIGs do not necessarily translate to fewer
LUTs or less logic depth in the FPGA mapping derived. Two examples of
this study are shown in Fig. 4.1, using perturbations in the logic network and
accepting changes based on a cost function. In the first 200 iterations the
objective is to reduce the number of AIG nodes, and the corresponding FPGA
mapping has a reduced LUT count as well. For the following 200 iterations,
the cost function is the amount of LUTs. However, the corresponding number
of AIG nodes is increased.

There are several works on FPGA technology mapping based on cut-
enumeration, performing a covering of the subject graph using k-cuts [26,

4.1. Motivation 51

22, 86]. FlowMap [26] was the first approach to guarantee minimal depth
for a given structure, and the algorithms just improved ever since. These
cut-based techniques vary on the algorithms, parameters, and cost functions
used for the cut-enumeration and covering. Nevertheless, the quality of the
solution heavily depends on the structure of the subject graph.

A second group of works rely on binary decision diagrams (BDDs) to per-
form FPGA mapping [61, 114, 23, 56, 110]. BDDs typically provide per se
a good starting point for FPGA mapping, as the redundant variables are re-
moved and the structure size is reduced. Also, BDDs enable the application
of functional techniques, reducing the structural bias. However, the complex-
ity of BDDs increases significantly with the number of variables, becoming
computationally unfeasible for large designs. Thus, BDD-based methods are
often applied to portions of the circuit (partial collapsing), but these methods
are also structurally biased. This work proposes to combine these two groups
of strategies, using both functional decomposition and cut-based mapping.

The idea of performing decomposition while reducing the support (and
targeting FPGAs) has already been proposed. The support is minimized us-
ing don’t cares in [105], as explained by [16]. In [62], it is proposed a complex
decomposition aiming support minimization, by identifying the compatibility
of all variables (or classes) in the bound-set. The decomposition proposed
in [62] is applied in BoolMap [61]. Our work proposes the restructuring of
the LUT network using the support size as cost function, with the aid of
simple and fast decompositions.

The support-reducing techniques presented in this work are well-known
methods, with the exception of the abstraction-based decompositions (see
Section 4.3.5). Other decomposition methods could be considered, such
as [62, 87, 60, 25], which are more time-consuming, but could improve the
quality of results. Still, the key idea is to consider the support size as the cost
function for decomposition, which restructures the subject graph targeting
LUT-based FPGAs, and not the techniques incorporated.

In this thesis, a decomposition of a function F is considered support-
reducing if the decomposing functions have their support size smaller than
F . This definition differs from [54], which limits the term support-reducing
to disjoint-support decompositions (DSDs).

This work proposes two main contributions:

1. A functional decomposition, which is guided by the support size, and
it is based on simple and fast support-reducing techniques.

2. A recursive remapping approach, that reduces the structural bias of the
subject graph, and uses the FPGA mapping metrics as cost function.

52 Chapter 4. Support-reducing Decomposition for FPGA Mapping

The proposed contributions are implemented into an FPGA remapping
tool, named Support-Reducing Remapping (SR-map). By remapping the
results of a commercial tool for the 20 largest MCNC benchmarks, SR-map
is able to reduce delay in 28% (plus 18% in area) when targeting delay, and
improve area in 28% (plus 14% in delay) with area as cost function. The
main reasons for these improvements are:

1. The FPGA mapping metrics are used to guide the resynthesis algo-
rithm, instead of literals and cubes.

2. A new and aggressive collapsing strategy is applied, instead of a local
partial collapsing.

3. A new structure is generated by a support-reducing decomposition.

The goal of using the mapping result as cost function is to reduce the
miscorrelation between intermediate and final results, accepting transforma-
tions that will contribute to improve the final solution [65]. This is possible
with fast and high-quality FPGA mapping algorithms [86].

BDD-based methods often rely on the partial collapsing of the subject
graph [61, 114, 23]. The effectiveness of this process depends on the structure
of the subject graph, which can easily reach a local minimum. This work
performs a recursive global collapsing on the LUT network (see Section 4.4),
with the goal of reducing the structural bias from the subject graph.

The support size as cost function makes sense for FPGAs: a k-input
function with any number of literals can be implemented with a single LUT
of k inputs. This concept is illustrated with an example in Section 4.2.

4.2 Motivating Example
In this section, an example is used to illustrate the support-reducing decom-
position. Consider the following expression of a 6-input Boolean function:

F (a, b, c, d, e, f) = abcdef + abcdef (4.1)

This expression has 12 literals, and it is also the optimal AND/OR factored
form, as there is no other expression with fewer literals. The AIG shown
in Fig. 4.2(a) is derived from the expression in (4.1). A structural FPGA
mapping targeting LUTs with 4 inputs is also shown in Fig. 4.2(a), with the
5 shadowed regions representing the LUT covering of the AIG. The FPGA
mapping derived by [86] is the following:

x1 = abc, x2 = def, x3 = abc, x4 = def, x5 = x1x2 + x3x4 (4.2)

4.2. Motivating Example 53

a b c d e f

x1 x2

F

x5

x3 x4

(a) Factorization (LUT4 mapping)
a b c d e f

F

x1

x2

(b) Support-reducing decomposition (LUT4 mapping)

x1

a b c d e f

F

x6

x3 x4 x5

x7

x2

x8

x9

(c) Support-reducing decomposition (LUT2 mapping)

Figure 4.2: Functionally equivalent and structurally different AIGs, obtained
via (a) algebraic factorization, and (b)(c) support-reducing decomposition.

By applying the proposed support-reducing decomposition on (4.1), the
following expression (with 20 literals) is obtained:

F = (ab+ ab)(bc+ bc)(cd+ cd)(de+ de)(ef + ef) (4.3)

The AIG presented in Fig. 4.2(b) is derived from expression (4.3). This
AIG has 8 more nodes than the one in Fig. 4.2(a). This means that it would
likely result in a circuit with larger area, if implemented as a cell-based
design. However, its mapping with 4-input LUTs has only 2 LUTs, whereas
the one for Fig. 4.2(a) has 5. The FPGA mapping given by [86] for the AIG
of Fig. 4.2(b) is the following:

x1 = (ab+ ab)(bc+ bc)(cd+ cd), x2 = x1(de+ de)(ef + ef) (4.4)

Similarly, the FPGA mapping for LUTs of different sizes would require
fewer LUTs for the AIG obtained by the support-reducing decomposition, as

54 Chapter 4. Support-reducing Decomposition for FPGA Mapping

Table 4.1: Comparison of the FPGA mapping for the AIGs obtained via
algebraic factorization and support-reducing decomposition.

LUT size
Algebraic

factorization
Support-reducing
decomposition

LUTs Levels LUTs Levels
2 inputs 11 4 9 4
3 inputs 6 3 4 2
4 inputs 5 2 2 2
5 inputs 3 2 2 2

shown in Table 4.1. The derived FPGA mapping is smaller for all cases, even
for 2-input LUTs, which is illustrated in Fig. 4.2(c).

Note that a and a are different literals. This makes sense for cell-based
designs, as each literal generally will result in a transistor. Still, a and a are
the same in terms of support, as both refer to the variable a. Therefore, the
support is the key cost function for the proposed decomposition, generating
a structure more suitable for LUT-based FPGAs, even with larger AIGs.

4.3 Support-reducing decomposition
This section presents the proposed functional decomposition, based on sim-
ple and fast support-reducing techniques. It is a technology-independent
decomposition, i.e., it is agnostic to the target FPGA technology. The goal
is to generate a structure guided by the support size. The resulting subject
graph typically produces a faster or smaller LUT network, but there are cor-
ner cases that poor results are obtained, e.g., multiplier. For this reason,
the remapping approach in Section 4.4 selects the best result between the
existing LUT network and the one derived by the decomposition.

The decomposition input is an incompletely specified function (ISF). It
is possible to identify external don’t care conditions and use them as input
to the decomposition. However, in this work, the don’t care conditions are
identified only in the internal recursions of the method. The output of the
decomposition is a Boolean network consisted of logic gates from the set
{AND2, OR2, XOR2, MUX21, AO21, AX21}, which are required to imple-
ment the techniques considered.

Fig. 4.3 presents a pseudo-code of the algorithm. The trivial cases are
checked at line 4. If the DC-set is not empty, then minimization is applied
(line 7), updating F if the minimized function has a support smaller or equal
to F . The minimization can be implemented by any method that accepts an

4.3. Support-reducing decomposition 55

ISF, e.g., Espresso [15], BDD minimization [46, 109].
The decomposition method described in Fig. 4.4 is invoked at line 12,

which receives an ISF as input and returns a solution consisting of a de-
composing gate op and a set of functions 〈F1, ..., Fn〉. If the solution has
no disjoint support, then the satisfiability don’t care (SDC) conditions are
calculated by calcSDC (line 15), which is implemented as in [32].

Each derived function is decomposed recursively, generating a Boolean
network (line 17). The network obtained is connected to the related input
in the decomposing gate (op) at line 18. Notice that the resulting network is
also a tree, and the task of sharing logic is postponed to structural hashing
and AIG optimizations (see Section 4.4).

The method in Fig. 4.4 performs several support-reducing techniques on
the input function F , selecting the one with the lowest sum of support sizes,
given that all functions in 〈F1, ..., Fn〉 have a support size smaller than |F |. If
several solutions are found, additional costs are considered (see Section 4.3.1).
Other techniques could be incorporated [62, 87, 60, 25], which are slower but
could improve the results. Still, the idea is to use simple and fast techniques
that reduce the support, obtaining an efficient method that is able to produce
good results by using the support size as cost function.

The support-reducing techniques considered are: (1) essential literals
(lines 4-5), which is a simple and fast DSD; (2) trying to remove one vari-
able from the support (line 9), using Shannon and Davio expansions (and
their simplifications); (3) trying to remove two variables (line 11), with ad-
ditional DSD techniques; and (4) a new bi-decomposition method, based on
the universal and existential abstractions, applied to one and two variables.

4.3.1 Cost function
In this work, the cost function is the sum of support sizes of the derived
functions, i.e., ∑i=n

i=1 |Fi|. Moreover, a solution is only accepted if all derived
functions have a support size smaller than F , i.e., ∀i|Fi| < |F |. Additionally,
if there is more than one solution with the smallest sum of support sizes,
then the following costs are considered, in this order:

1. The sum of squares of the BDD sizes [10], targeting a balanced solution,
which favors delay reduction.

2. The gate implementation cost in CMOS transistors, e.g., an AND2 gate
costs less than a MUX21 or an XOR2.

As BDDs are the representation of choice, the cost function exploits their
structure to guide the decomposition, but similar costs could be derived for
other representations.

56 Chapter 4. Support-reducing Decomposition for FPGA Mapping

1: function supportReduceDecomposition(F , DC)
Input: An ISF, with the ON-set (F) and the DC-set (DC)
Output: A Boolean network (tree) that implements the ISF

2: // check for trivial cases (constants, variables)
3: // the support size of F is denoted as |F |
4: if |F | ≤ 1 then return F

5: // if DC-set is not empty, then minimize F
6: if DC 6= ∅ then
7: Fmin = minimize(F , DC) // Espresso [15], BDD reduction [46]
8: // accept Fmin if support is reduced or the same
9: if |Fmin| ≤ |F | then F = Fmin

10: // perform decomposition
11: // op ∈ {AND2, OR2, XOR2, MUX21, AO21, AX21}
12: (op, 〈F1, ..., Fi, ..., Fn〉) = decomposeFunction(F , DC)
13: for each function Fi in 〈F1, ..., Fi, ..., Fn〉 do
14: // calculate SDC as in [32]
15: DCi = DC + calcSDC(op, i, 〈F1, ..., Fi, ..., Fn〉)
16: // decompose Fi recursively
17: network = supportReduceDecomposition(Fi, DCi)
18: op.connect(i, network) // connect network to gate input i
19: return op // root of the tree

Figure 4.3: Pseudo-code of the proposed support-reducing decomposition.

1: function decomposeFunction(F , DC)
Input: An ISF, with the ON-set (F) and the DC-set (DC)
Output: A decomposition (op, 〈F1, ..., Fi, ..., Fn〉)

2: Q = ∅ // priority queue of potential solutions
3: // check for essential literals
4: decomposeEssentials(F , 1, Q)
5: decomposeEssentials(F , 0, Q)
6: // if essential literals found, return
7: if Q 6= ∅ then return best solution ∈ Q
8: // check one-variable decompositions
9: decomposeOneVariable(F , DC, Q)
10: // check two-variable decompositions
11: decomposeTwoVariables(F , DC, Q)
12: return a solution with the lowest cost ∈ Q

Figure 4.4: Pseudo-code for an step of the support-reducing decomposition.

4.3. Support-reducing decomposition 57

1: procedure decomposeEssentials(F , P , Q)
Input: Boolean function F , polarity P , priority queue of decompositions Q
Post: decompositions added to Q

2: E = 〈e1, ..., en〉 // set of n essential literals of F
3: if E == ∅ then return
4: H = Fe1...en // cube-cofactor of F w.r.t. E
5: if H 6= 1 then
6: G = (e1 · ... · en) // AND of all essential literals
7: // polarity P ∈ {0, 1}
8: if P == 1 then Q.add(G ·H) // AND2
9: else Q.add(G+H) // OR2
10: else
11: G1 = (e1 · ... · en

2
) // AND of essential literals 1 to n

2
12: G2 = (en

2 +1 · ... · en) // AND of essential literals n
2 +1 to n

13: if P == 1 then Q.add(G1 ·G2) // AND2
14: else Q.add(G1 +G2) // OR2

Figure 4.5: Pseudo-code for decomposition using essential literals.

4.3.2 Essential literals

Fig. 4.5 describes the decomposition method using essential literals, i.e., lit-
erals that are common to all prime implicants. Decomposition with essential
literals is checked first and preferred to the other techniques, as it is a fast
DSD method which removes the simple part of the decomposition. For exam-
ple, given F (X) and {a, b, c} ⊆ X, if {a, b, c} are essential literals of F (X),
then F can be rewritten as F (X) = (abc)Fabc. Similarly, given G(X) = F (X)
and {x, y, z} ⊆ X, if {x, y, z} are essential literals of G(X), then F can be
decomposed as F (X) = (xyz) +Gxyz.

It is possible to check if a literal is essential by comparing the literals with
the function F . For example, if F is smaller or equal to the function H = a
(F ≤ H), then a is an essential literal of F . However, BDD packages [109]
have more efficient methods to derive all essential literals of a function.

The essential literals of F are checked at line 8 (P = 1), and the one for
F at line 9 (P = 0). If the function is solely composed of essential literals,
i.e., the cube-cofactor w.r.t. to the essential literals is the constant 1 (F is a
cube), then a balanced decomposition is performed (lines 13-14).
Example: Consider the function F = ac(b(d+ f) + e), which has the essen-
tial literals {a, c}. By calculating the cube cofactor Fac = (b(d+ f) + e), it is
possible to decompose the function F = (ac)(b(d+ f) + e). Consider another
function G = (ab+ cd) + (e+ f), which has no essential literals. The com-
plement function G = H = (a+ b)(c+ d)ef has the essential literals {e, f}.
The cube cofactor in this case is Hef = (a+ b)(c+ d), deriving the decom-
position G = (ef) + (a+ b)(c+ d) = (e+ f) + (ab+ cd).

58 Chapter 4. Support-reducing Decomposition for FPGA Mapping

1: procedure decomposeOneVariable(F , DC, Q)
Input: ON-set (F), DC-set (DC), priority queue of decompositions Q
Post: decompositions added to Q

2: for each variable xi ∈ support of F do
3: if δF/δxi == 1 then
4: Q.add(xi ⊕ Fxi

)
5: Q.add(xi ⊕ Fxi

)
6: return
7: if ∃xiF == Fxi

then
8: Q.add((xi ·Fxi

) + Fxi) // AO21
9: else if ∃xiF == Fxi

then
10: Q.add((xi ·Fxi

) + Fxi
) // AO21

11: else // full Davio and Shannon expansions
12: Q.add((xi · δF/δxi)⊕ Fxi

) // AX21
13: Q.add((xi · δF/δxi)⊕ Fxi) // AX21
14: Q.add(xi ·Fxi

+ x ·Fxi) // MUX21
15: // one-variable abstraction-based bi-decompositions
16: if ∃xiF 6= 1 then
17: G = ∃xiF
18: H = minimize(F , G+ DC) // Espresso [15], BDD reduction [46]
19: Q.add(G ·H) // AND2
20: if ∀xiF 6= 0 then
21: G = ∀xiF
22: H = minimize(F , G+ DC) // Espresso [15], BDD reduction [46]
23: Q.add(G+H) // OR2

Figure 4.6: Pseudo-code for one-variable decompositions.

4.3.3 One-variable decompositions
The basic one-variable support-reducing decompositions are given by the
Shannon expansion (2.1), and the Davio expansions (2.5-2.6). These methods
isolate one variable, thus reducing the support size of the derived functions
in at least one. Simplifications of these expansions can be obtained given
specific conditions, as shown in (4.5). Essential literals cover the cases in
which one of the cofactors is a constant.

F = xi ⊕ Fxi
, if δF/δxi = 1

F = xi ⊕ Fxi
, if δF/δxi = 1

F = xi ·Fxi
+ Fxi

, if ∃xiF = Fxi

F = xi ·Fxi
+ Fxi

, if ∃xiF = Fxi

(4.5)

The Davio and Shannon expansions are added to the priority queue in
the method described in Fig. 4.6 (lines 12-14). The simplifications listed in
(4.5) are also checked (lines 4-5, 8 and 10) and preferred to the full Davio
and Shannon expansions.

4.3. Support-reducing decomposition 59

1: procedure decomposeTwoVariables(F , DC, Q)
Input: ON-set (F), DC-set (DC), priority queue of decompositions Q
Post: decompositions added to Q

2: for each pair of variables xi, xj ∈ support of F do
3: found = true // checks AND DSD condition
4: if Fxi

== Fxj
then

5: S = (xi ·xj); G = Fxixj
; H = Fxi

6: else if Fxi
== Fxj

then
7: S = (xi ·xj); G = Fxixj

; H = Fxi

8: else if Fxi == Fxj
then

9: S = (xi ·xj); G = Fxixj
; H = Fxi

10: else if Fxi
== Fxj

then
11: S = (xi ·xj); G = Fxixj

; H = Fxi

12: else found = false
13: if found then
14: if G == 0 then Q.add(S ·H) // AND2
15: else if G == 1 then Q.add(S +H) // OR2
16: else Q.add(S ·H + S ·G) // MUX21

return
17: // checks XOR DSD condition
18: if δF/δxi == δF/δxj then
19: S = (xi ⊕ xj), G = Fxy, H = δF/δxi

20: if G == 0 then Q.add(S ·H) // AND2
21: else if G == 1 then Q.add(S +H) // OR2
22: else if H == 1 then Q.add(S ⊕G) // XOR2
23: else Q.add((S ·H)⊕G) // AX21

return
24: // two-variable abstraction-based bi-decompositions
25: if ∃xixjF 6= 1 then
26: G = ∃xixjF
27: H = minimize(F , G+ DC) // Espresso [15], BDD reduction [46]
28: Q.add(G ·H) // AND2
29: if ∀xixjF 6= 0 then
30: G = ∀xixjF
31: H = minimize(F , G+ DC) // Espresso [15], BDD reduction [46]
32: Q.add(G+H) // OR2

Figure 4.7: Pseudo-code for two-variable decompositions.

4.3.4 Two-variable decompositions

In [18], it is proposed the use of simple cofactor tests in order to perform
disjoint-support decompositions. The cofactor tests and decompositions for
AND and XOR are described in (4.6), given F (X) and {x, y} ⊆ X. These
tests are performed in the method of Fig. 4.7 (lines 4-10, and 18).

If one of the cube-cofactors in (4.6) is a constant, then simplifications can
be derived (lines 14-15 and 20-22). If this is not possible, then a MUX21

60 Chapter 4. Support-reducing Decomposition for FPGA Mapping

gate is defined for the AND decomposition (line 16), and an AX21 gate for
the XOR decomposition (line 23).

F = (xy)Fx + (xy)Fxy, if Fx = Fy

F = (xy)Fx + (xy)Fxy, if Fx = Fy

F = (xy)Fx + (xy)Fxy, if Fx = Fy

F = (xy)Fx + (xy)Fxy, if Fx = Fy

F = ((x⊕ y) · δF/δx)⊕ Fxy, if δF/δx = δF/δy

(4.6)

4.3.5 Abstraction-based bi-decompositions
A Boolean function F is bi-decomposable if it can be written as F = G op H,
where op is a Boolean operation and G and H are non-constant functions.
This work introduces two methods for bi-decomposition, which are based on
the existential and the universal abstractions. As described in [16], these
abstractions are related to F as follows:

∀xiF ≤ F ≤ ∃xiF. (4.7)

The existential abstraction ∃xiF is larger than F . Therefore, it implies an
AND decomposition, e.g., F = ∃xiF ·H. Similarly, the universal abstraction
∀xiF is smaller than F , and it implies an OR decomposition, e.g., F =
∀xiF+H. Notice that this method can be applied to any number of variables,
as long as the abstractions are not constants, i.e., ∃xiF 6= 1, and ∀xiF 6= 0.
In this work, the abstraction-based bi-decompositions are applied to one
variable (lines 16-23 in Fig. 4.6) and two variables (lines 25-32 in Fig. 4.7).

These abstractions have a characteristic of interest: their support is
smaller than F in at least one variable, i.e., |∃xiF | < |F | and |∀xiF | < |F |,
given that xi is in the support of F . Consequently, it is possible to guarantee
the support reduction for at least one of the decomposing functions by using
these abstractions.

The method proposed differs from other bi-decomposition methods [87,
60, 25], which try to identify variable partitions and the decomposing func-
tions. The abstraction-based bi-decomposition is applied by setting one of
the derived functions (G) to an abstraction (∃xiF or ∀xiF), and obtaining
the other function (H) via don’t care minimization.

The following conditions are used to obtain H via don’t care minimiza-
tion. For the AND bi-decomposition F = G ·H, F ≤ H ≤ F + G, given F
and G. Considering G = ∃xiF , then F ≤ H ≤ F + ∃xiF . Similarly, the
condition for the OR bi-decomposition F = G+H is F ·G ≤ H ≤ F , given
F and G. Considering G = ∀xiF , then F · ∀xiF ≤ H ≤ F .

4.4. Recursive remapping 61

Example: Consider the function F = abcdef + abcdef . The universal ab-
straction w.r.t. any variable is the constant 0. Hence, it is not useful to
perform the OR bi-decomposition F = G+H, since it degenerates to G = 0
and H = F . On the other hand, the AND bi-decomposition based on the ex-
istential abstraction generates a good support-reducing decomposition, as
seen in Section 4.2. Consider the existential abstraction w.r.t. variable
a: G = ∃aF = bcdef + bcdef . Using the conditions for H in an AND bi-
decomposition (F ≤ H ≤ F +G), the following ISF is defined:

abcdef + abcdef ≤ H ≤ a+ b+ c+ d+ e+ f

By applying Boolean minimization, H = (ab + ab) is obtained, and the
following AND bi-decomposition is produced:

F = (bcdef + bcdef)(ab+ ab)

Notice that this is not a disjoint-support decomposition.

4.4 Recursive remapping
This section presents the proposed remapping approach. The idea is to col-
lapse the whole LUT network recursively, decompose, and select the best
mapping for each circuit part. An overview of the method is illustrated in
Fig. 4.8, and a pseudo-code of the proposed approach is shown in Fig. 4.9.
Different approaches were considered, such as computing maximum fanout-
free cones and performing partial collapsing [114]. However, these methods
were computationally more expensive and produced worse results than the
approach proposed in this section. Notice that windowing and partial col-
lapsing are biased by the structure and by the order that these processes
are applied. On the other hand, the recursive remapping proposed is more
aggressive, leading to potential (manageable) time-outs, but also larger gains.

The inputs for the remapping approach are a circuit description (N), the
number of LUT inputs (k), and a cost function (cost), e.g., area, delay. The
description can also be a valid FPGA mapping (for k-LUTs), indicated by
the flag isMap. The output is an optimized FPGA mapping regarding cost.

The method can be divided into three sequential steps:
Step 1: Obtain LUT network M1 by mapping (or remapping) the input
description N . This is performed in function fpgaMap (line 4), which
runs structural hashing and AIG algebraic optimization. FPGA mapping is
performed for each different structure generated, returning the best mapping
for the cost function (cost).

62 Chapter 4. Support-reducing Decomposition for FPGA Mapping

Step 1

Step 3

Run structural hashing, AIG
optimization and FPGA map (k)

Merge (structural hashing), run
AIG optimization and FPGA map (k)

Circuit
description N

FPGA
mapping M1

... ...Om

... ...

OjO1

I1 Ii In

Extract the sub-network for each output,
collapse, decompose, and FPGA map (k)

select best
w.r.t. COST

select best
w.r.t. COST

select best
w.r.t. COST

Extract shared sub-network, with the
multiple fanout LUTs as outputs

Extract the sub-network for each
output (with the Mf outputs as inputs),
collapse, decompose, and FPGA map (k)

Merge (structural hashing),
run AIG optimization

and FPGA map (k)

N can be a valid FPGA mapping (isMap flag)

generate
Mf mapping
recursively... ...

I1 Ii In F1 Fi Fn

...
I1 Ii In F1 Fi Fn

...
I1 Ii In F1 Fi Fn

...

O1 Oj Om

... ...
O1 Oj Om

... ...
I1 Ii In

... ...
I1 Ii In

... ...
I1 Ii In

FPGA
mapping M2

... ...Om

... ...

OjO1

I1 Ii In

FPGA
mapping M3

... ...Om

... ...

OjO1

I1 Ii In

Step 2

F1 Fj Fm... ...

I1 Ii In

... ...

Shared
sub-network Mf

Figure 4.8: The recursive remapping approach.

4.4. Recursive remapping 63

1: function collapseDecomposeMap(N , k, cost, isMap)
Input: Circuit description (N), LUT size (k), cost function (cost), flag (isMap)
Output: An FPGA mapping guided by cost (BestMap)

2: // Step 1 - obtain M1 by mapping (or remapping) input N
3: // run structural hashing, AIG optimizations, FPGA mapping
4: M1 = fpgaMap(N , k, cost)
5: // define best mapping result regarding cost
6: if isMap and cost(N) < cost(M1) then BestMap = N
7: else BestMap = M1

8: // if the number of levels is 1, return
9: if levels(BestMap) == 1 then return BestMap
10: // Step 2 - obtain M2 by remapping outputs individually
11: outputNetworks = ∅ // best mapping for each output
12: // map each output individually
13: for each output i in BestMap do
14: // extract single output network
15: Ntk_Oi = extractOutputToPIs(BestMap, i)
16: // collapse, decompose, optimize, FPGA mapping
17: Oi = collapseFpgaMap(Ntk_Oi, k, cost)
18: outputNetworks.insert(Oi, i)
19: // merge output networks using structural hashing
20: Ntk_M2 = mergeNetworks(outputNetworks)
21: // run AIG optimizations, FPGA mapping
22: M2 = fpgaMap(Ntk_M2, k, cost)
23: if cost(M2) < cost(BestMap) then BestMap = M2

24: // Step 3 - obtain M3 by remapping outputs with a shared sub-network
25: sharedNodes = ∅ // set of shared nodes used
26: // create network with all multiple fanout nodes as primary inputs
27: tempNtk = multipleFanoutToPI(BestMap)
28: // map each output individually
29: for each output i in tempNtk do
30: // extract single output network
31: Ntk_Oi = extractOutputToPIs(tempNtk, i)
32: // collapse, decompose, optimize, FPGA mapping
33: Oi = collapseFpgaMap(Ntk_Oi, k, cost)
34: if cost(Oi) < cost(outputNetworks[i]) then
35: outputNetworks.insert(Oi, i)
36: sharedNodes.insert(inputs of Oi)
37: if sharedNodes 6= ∅ then
38: // get shared sub-network with sharedNodes as outputs
39: sharedNtk = getSharedSubNetwork(BestMap, sharedNodes)
40: Mf = collapseDecomposeMap(sharedNtk, k, cost, true)
41: // merge output networks and shared sub-network with struct. hashing
42: Ntk_M3 = mergeNetworks(outputNetworks, Mf)
43: // run AIG optimizations, FPGA mapping
44: M3 = fpgaMap(Ntk_M3, k, cost)
45: if cost(M3) < cost(BestMap) then BestMap = M3

46: return BestMap

Figure 4.9: Pseudo-code of the recursive remapping approach.

64 Chapter 4. Support-reducing Decomposition for FPGA Mapping

Step 2: For each output, extract the single-output cone from the LUT
network, optimize and map. The mapping is performed in the function
collapseFpgaMap (line 17), which runs collapsing, decomposition, AIG
optimization, and FPGA mapping. Collapsing is a computationally expen-
sive process that may be unfeasible for complex networks, so a time-out is set
to avoid a long runtime. If collapsing is successful (and a BDD is obtained,
for example), then the decomposition presented in Section 4.3 is applied,
generating a new network. If there is a time-out (or if the support size is too
large), then the single output network extracted is the only structure consid-
ered. For each different network, structural hashing is performed, followed by
a single execution of AIG optimization scripts and FPGA mapping. The best
mapping for each output is greedily selected, and the FPGA mapping M2
is generated by merging these mappings using structural hashing (line 20),
followed by the function fpgaMap (line 22).
Step 3: Extract a shared sub-network from the best mapping found (N ,
M1 or M2). The outputs of this shared sub-network are the nodes with
multiple fanout identified in topological order. These nodes are transformed
to primary inputs from the outputs perspective (line 27), and the function
collapseFpgaMap is applied for each output. The implementation for
the sub-network is obtained recursively (line 40), until the number of levels
reaches 1 (line 9). The FPGA mapping M3 is generated by merging the
output networks and the mapping of the shared sub-network using structural
hashing (line 42), followed by the function fpgaMap (line 44). Finally, the
method returns the best mapping between N , M1, M2 and M3.

The recursive remapping approach creates different optimization oppor-
tunities. Regarding M1, it is possible to derive better solutions by applying
AIG optimization in a shared part of the network, instead of the whole circuit.
RegardingM2, if it is not possible to collapse the primary output function, it
may be possible for a less complex function, removing part of the structural
bias. Furthermore, an area recovery process is achieved, as common parts
shared by more than one output are remapped.

4.5 Experimental results
The support-reducing functional decomposition and the recursive remapping
are implemented in C++. BDDs are the representation of choice for the func-
tional decomposition, and the CUDD BDD package [109] is used. CUDD pro-
vides an intuitive C++ API, and efficient methods to implement the decom-
positions proposed, with functions to calculate cofactors and abstractions,
to identify essential literals, and to perform don’t care minimization. Also,

4.5. Experimental results 65

BDDs are used in the collapsing of the LUT network, and provide an input
for the decomposition without the need for a translation. The FPGA map-
ping based on priority cuts [86] and choices [21] implemented in ABC [14] is
the one used in the recursive remapping approach. All results passed formal
verification with the ABC command cec.

In order to obtain a delay-oriented FPGA mapping with ABC, the com-
mand ‘if -C 12 -K k’ is used, which primarily targets delay, with a configu-
ration of at most 12 priority cuts per node [82]. Alternatively, area-oriented
FPGA mapping is obtained with the command ‘if -a -C 12 -K k’. The num-
ber of LUT inputs varies for the different sets of benchmarks. Regarding the
BDD-based methods, k=5 is defined to compare with the published results.
For the remaining cases, the LUT input size is k=6. Structural bias is further
reduced by identifying structural choices [21] using the commands ‘&synch2 ’
and ‘&dch’ on top of the best FPGA mapping obtained.

The proposed approach attempts to optimize a given FPGA mapping.
In the experiments presented in this section, the input FPGA mapping is
either the best known mapping result for the EPFL benchmarks [6], or the
FPGA mapping obtained by a commercial tool. For all other cases, the
circuit description is used as input, and the mapping is produced by ABC.

The FPGA mappings reported are greedily selected based on the cost
function. In this work, two cost functions are analyzed: logic levels and
LUT count. If the objective is reducing delay, then SR-map greedily selects
the circuit parts with less logic depth, using LUT count as a tie breaker.
Alternatively, if the goal is to minimize area, LUT count is the main cost
function and logic depth is the tie breaker.

4.5.1 BDD-based FPGA mapping tools
This section compares the results obtained with SR-map and the FPGA
mappings of the tools BoolMap [61], BDS-pga [114], and ABC [14]. The
FPGA mappings (with k=5) of BoolMap and BDS-pga refer to the best
delay results reported in [61] and [114], which are presented in Table 4.2.
BDS-pga obtains an area reduction of 9% in comparison with BoolMap, at
the expense of increasing delay in 9%.

The ABC results are derived by reading the descriptions1, applying struc-
tural hashing, 10 iterations of AIG optimization scripts (compress2rs and
dc2), and delay-oriented FPGA mapping (with structural choices). The num-
ber of iterations can be tuned to achieve better results or a lower runtime.
The ABC results are the same as the M1 mappings presented in Section 4.4.

1http://www.ecs.umass.edu/ece/tessier/rcg/bds-pga-2.0/

http://www.ecs.umass.edu/ece/tessier/rcg/bds-pga-2.0/

66 Chapter 4. Support-reducing Decomposition for FPGA Mapping

Table 4.2: FPGA mapping comparison with BDD-based approaches (k = 5).

Circuit
BoolMap [61]

(delay)
BDS-pga [114]

(delay) ABC (delay) SR-map (delay)
+ ABC (delay)

LUTs Lev. LUTs Lev. LUTs Lev. LUTs Lev. Time(s)
5xp1 13 2 15 2 21 3 14 2 3
9sym 7 3 7 3 60 4 8 3 2
9symml 7 3 7 3 58 4 8 3 2
alu2 43 4 41 4 117 7 35 4 13
alu4 268 7 190 7 219 9 102 4 26
apex6 188 4 186 4 171 4 169 3 26
apex7 78 3 71 3 61 3 54 3 8
b9 41 3 40 3 33 3 38 2 3
C1355 98 5 65 4 66 4 66 4 157
C1908 137 7 119 7 95 6 86 6 217
C499 102 4 64 4 66 4 66 4 162
C5315 672 9 447 7 365 7 374 6 217
C880 134 8 108 8 87 7 92 6 55
clip 15 2 30 4 71 4 19 3 8
count 42 2 26 5 36 3 33 3 5
des 594 3 909 4 623 4 568 4 328
duke2 192 5 169 7 141 4 120 4 26
misex1 15 2 14 2 15 2 11 2 2
rd84 10 2 13 3 109 5 13 3 11
rot 228 6 218 9 203 6 215 5 43
t481 5 3 5 2 148 6 5 2 2
vg2 30 4 12 3 27 3 21 3 6
z4ml 5 2 5 2 5 2 5 2 1
Geomean 49.63 3.60 44.95 3.91 74.81 4.20 40.59 3.31 57.52
Ratio 1.00 1.00 0.91 1.09 1.51 1.17 0.82 0.92 -

ABC produces worse results than the BDD-based tools, with mappings
51% larger in area and 17% larger in delay, compared to BoolMap. The differ-
ence in LUTs is larger than 90% for benchmarks rd84 and t481. The reason
for this behavior lies on the nature of each approach. BoolMap and BDS-pga
perform functional transformations using BDDs, which partially removes the
structural bias, whereas ABC performs an structural mapping of an AIG,
which nodes and levels were minimized. Notice that the ABC minimizations
have a limited scope (e.g., cuts, windows), and for some benchmarks the best
results are obtained after decomposing the global BDDs.

SR-map improves the ABC results and delivers a final result that outper-
forms BoolMap [61], even using the networks generated by ABC as starting

4.5. Experimental results 67

point. This work improves BoolMap results in 18% for area and in 8% for
delay, with the best delay result for 12 of the 22 benchmarks. The bold values
in Table 4.2 highlight the best delay results.

4.5.2 20 largest MCNC benchmarks
This section presents results for the 20 largest MCNC benchmarks, compar-
ing the results of this work with the ones obtained with a commercial tool
and ABC. The synthesis in the commercial tool is configured to avoid the
use of multiplexers and merging of LUTs, delivering results comparable to
the other tools. The reported runtime for the commercial tool regards only
the logic synthesis and optimization steps.

Table 4.3 presents the FPGA mappings to LUTs with k=6. The bold
numbers in ‘Levels’ highlight the best delay results, whereas the bold num-
bers in ‘LUTs’ underline the best results for area. Regarding the methods
analyzed, SR-map obtains the best delay result for 19 of 20, and the best area
result for 13 of the 20 benchmarks. All results are generated with the same
input description. The ABC mapping is obtained with structural hashing,
10 iterations of AIG optimization scripts, and FPGA mapping identifying
structural choices. The ABC results are the starting point for the proposed
method, showing the difference of using the same mapping algorithm but
exploring different structures.

BDS-pga [114] and MFS [82] results are omitted in Table 4.3 due to space,
but they are shown in Table 4.4 and their relationship is (> means better
results): commercial tool > MFS [82] > BDS-pga [114] > ABC (AIG op-
timization, and FPGA mapping with priority cuts and structural choices).
Notice that BDS-pga did not finish for one of the benchmarks (elliptic), and
it resulted in segmentation fault for other 4 benchmarks. Therefore, two ge-
ometric means and ratios are presented in Table 4.4: one for all benchmarks,
and another to compare with BDS-pga results.

4.5.2.1 Delay-oriented mapping

Using the delay-oriented FPGA mapping, ABC produces a result 99% larger
in area and 5% larger in delay when compared with the commercial tool.
SR-map produces a result with 27% fewer logic levels and 10% fewer LUTs
than the commercial tool, with ABC delay-oriented mapping, delay as cost
function (cost), and the ABC mapping as start point. Additionally, an area
reduction of 16% plus a delay reduction of 12% is achieved when area is
defined as the cost function in SR-map.

68 Chapter 4. Support-reducing Decomposition for FPGA Mapping
Table

4.3:
FPG

A
m
apping

com
parison

for
the

20
largest

M
C
N
C

benchm
arks

(k
=

6).
R

ecursive
rem

apping
Factor

(delay)
Factor

(area)
SR

-m
ap

(delay)
SR

-m
ap

(area)
SR

-m
ap

(area)
C
ircuit

C
om

m
ercialtool

A
B
C

(delay)
A
B
C

(area)
+

A
B
C

(delay)
+

A
B
C

(delay)
+

A
B
C

(delay)
+

A
B
C

(delay)
+

A
B
C

(area)
LU

Ts
Lev.

T
im

e
LU

Ts
Lev.

LU
Ts

Lev.
LU

Ts
Lev.

LU
Ts

Lev.
LU

Ts
Lev.

T
im

e
LU

Ts
Lev.

T
im

e
LU

Ts
Lev.

(s)
(s)

(s)
alu4

320
5

230
456

5
415

10
183

5
186

5
63

3
24

58
4

21
56

5
apex2

302
13

276
507

6
408

11
40

4
40

4
35

3
17

34
4

14
30

7
apex4

192
3

290
558

5
529

10
390

4
390

4
155

3
203

155
3

212
153

3
bigkey

569
3

313
577

3
577

3
577

3
577

3
685

2
257

491
3

191
577

3
clm

a
180

5
438

2614
8

2221
18

200
4

203
4

203
4

75
190

4
84

186
8

des
436

4
345

447
4

457
7

447
4

446
4

513
3

194
445

4
222

449
5

diffeq
472

8
348

559
7

510
13

559
7

532
8

533
7

241
527

8
262

502
14

dsip
690

3
338

871
3

871
3

869
2

869
2

869
2

190
869

2
224

869
2

elliptic
115

5
313

315
6

297
11

315
6

315
6

316
5

36
311

6
51

291
11

ex1010
210

3
335

572
5

550
10

453
4

432
5

208
3

107
207

4
180

207
4

ex5p
100

2
252

326
4

301
9

91
2

85
3

86
2

12
82

2
16

82
5

frisc
1694

13
292

1725
12

1698
26

1886
10

1692
13

1857
10

654
1689

13
853

1637
25

i10
557

9
285

535
8

500
22

627
7

522
9

537
7

329
505

9
317

481
24

m
isex3

197
5

240
284

5
234

9
205

4
193

4
117

4
37

102
4

35
94

5
pdc

155
4

286
1385

6
1143

14
154

4
148

4
157

3
70

142
4

67
144

6
s38417

1458
7

437
2557

6
2443

11
2460

6
2458

7
2450

6
1304

2396
7

1035
2369

12
s38584

1946
8

432
2287

6
2255

12
2463

5
2212

6
2224

5
1246

2229
5

729
2198

12
seq

531
7

247
583

5
520

10
560

4
486

5
527

4
307

459
5

114
420

10
spla

157
4

269
1350

6
1128

15
145

4
137

4
156

3
138

135
4

62
121

6
tseng

656
8

269
651

6
631

13
647

6
635

8
634

6
385

636
8

265
629

12
G
eom

ean
374.30

5.24
306.1

744.07
5.51

685.86
10.56

400.08
4.43

383.36
4.92

335.79
3.84

141.1
312.67

4.61
128.9

304.62
7.21

R
atio

1.00
1.00

-
1.99

1.05
1.83

2.01
1.07

0.84
1.02

0.94
0.90

0.73
-

0.84
0.88

-
0.81

1.38

4.5. Experimental results 69
Ta

bl
e4

.4
:F

PG
A

m
ap

pi
ng

of
20

la
rg
es
tM

C
N
C
be

nc
hm

ar
ks

(k
=

6)
fo
rM

FS
[8
2]
,B

D
S-
pg

a
[1
14
],
A
BC

an
d
SR

-m
ap

.
C
om

m
er
ci
al

to
ol

B
D
S-
pg

a
[1
14
]

M
FS

[8
2]

A
B
C

(d
el
ay
)

SR
-m

ap
(d
el
ay
)

SR
-m

ap
(a
re
a)

C
irc

ui
t

+
A
B
C

(d
el
ay
)

+
A
B
C

(d
el
ay
)

LU
Ts

Le
ve
ls

LU
Ts

Le
ve
ls

LU
Ts

Le
ve
ls

LU
Ts

Le
ve
ls

LU
Ts

Le
ve
ls

LU
Ts

Le
ve
ls

al
u4

32
0

5
56
8

7
43
3

5
47
0

5
62

3
62

4
ap

ex
2

30
2

13
75
9

8
64
0

6
51
2

6
39

4
37

4
ap

ex
4

19
2

3
-

-
77
6

5
56
9

5
15
5

3
15
5

3
bi
gk
ey

56
9

3
87
2

3
48
5

3
57
7

3
68
5

2
57
7

3
cl
m
a

18
0

5
-

-
60
9

7
26
41

9
20
5

4
19
2

6
de

s
43
6

4
59
6

3
55
8

4
75
1

5
57
6

3
52
7

4
di
ffe

q
47
2

8
64
8

8
64
5

7
56
5

7
54
3

7
53
4

8
ds
ip

69
0

3
88
5

3
68
0

3
87
1

3
86
9

2
86
9

2
el
lip

tic
11
5

5
-

-
17
54

10
31
6

6
31
3

6
31
3

6
ex
10
10

21
0

3
42
8

5
12
50

6
57
2

5
20
8

3
20
7

4
ex
5p

10
0

2
45
8

5
10
5

3
36
2

4
86

2
86

2
fr
isc

16
94

13
22
27

20
17
17

10
17
25

12
17
97

10
16
89

13
i1
0

55
7

9
81
2

10
53
0

8
57
8

8
52
5

8
51
8

10
m
ise

x3
19
7

5
54
0

6
50
7

4
34
5

5
12
4

4
10
8

4
pd

c
15
5

4
21
2

6
16
6

4
13
85

6
16
2

4
15
2

5
s3
84
17

14
58

7
27
39

6
22
02

6
24
89

7
26
18

6
24
35

6
s3
85
84

19
46

8
-

-
20
44

5
22
87

6
22
44

5
22
24

5
se
q

53
1

7
80
7

6
54
8

5
59
1

5
53
5

5
49
1

5
sp
la

15
7

4
18
1

5
13
5

4
13
50

6
15
8

3
12
1

4
ts
en

g
65
6

8
-

-
64
9

6
65
4

7
63
2

7
63
6

8
G
eo
m
ea
n
(a
ll)

37
4.
30

5.
24

66
2.
66

5.
93

61
4.
65

5.
21

78
1.
06

5.
70

34
1.
90

4.
09

32
3.
52

4.
74

R
at
io

(a
ll)

1.
00

1.
00

1.
77

1.
13

1.
64

0.
99

2.
09

1.
09

0.
91

0.
78

0.
86

0.
90

G
eo
m
ea
n
(B

D
S)

38
3.
65

5.
18

66
2.
66

5.
93

51
9.
30

4.
88

73
5.
90

5.
46

31
7.
62

3.
89

29
6.
40

4.
56

R
at
io

(B
D
S)

1.
00

1.
00

1.
73

1.
14

1.
35

0.
94

1.
92

1.
05

0.
83

0.
75

0.
77

0.
88

70 Chapter 4. Support-reducing Decomposition for FPGA Mapping

4.5.2.2 Area-oriented mapping

ABC produces a result 83% larger in area than the commercial tool using
area-oriented FPGA mapping. Notice that there is an area recovery post-
process in ABC delay-oriented mapping, but area-oriented mapping does
not try to improve delay. Therefore, delay is increased significantly, almost
doubling the logic levels. Using ABC area-oriented mapping and area as cost
function, SR-map obtains a result with 19% fewer LUTs than the commercial
tool, but with 38% more logic levels. The results are 3% smaller in area than
using ABC delay-oriented mapping, but with much worse delay results, as
this is disregarded in ABC area-oriented mapping. For this reason, this
configuration is not recommended if delay must be considered.

4.5.2.3 Support-reducing decomposition

The remapping approach proposed in Section 4.4 can be applied regardless of
the support-reducing decomposition presented in Section 4.3. For example,
the collapsed functions can be decomposed using algebraic factorization [15],
instead of the method proposed. The results for the recursive remapping
using factorization (derived by ABC command strash) instead of the support-
reducing decomposition are also presented in Table 4.3, denoted as ‘Factor ’.
For some benchmarks, e.g., apex2, clma, ex5p, the removal of the structural
bias using recursive remapping produces similar results both for factorization
and decomposition. However, considering the full set of benchmarks, the
results obtained using the support-reducing decomposition are considerably
better than the ones using factorization, both for area and delay.

4.5.3 EPFL benchmarks
The set of EPFL benchmarks [6] consists of 20 designs, 10 arithmetic and 10
random/control circuits. Since 2015, the best known FPGA mapping results
(with k=6) for delay and for area are recorded2. Consequently, these bench-
marks have highly optimized results, which are very difficult to improve. For
example, the commercial tool used in this work is not able to improve any of
the EPFL results, as it provides FPGA mappings with more balanced results
in area and delay, and also considers congestion issues.

The proposed method is able to update 12 of the best known results for
delay, and 6 for area, as presented in Table 4.5. The most remarkable results
are: cavlc, with a reduction of 25% in delay plus 36% in area; int2float,
reducing LUT count in 34%; and the arbiter, with an area reduction of 27%.

2https://github.com/lsils/benchmarks/tree/master/best_results

https://github.com/lsils/benchmarks/tree/master/best_results

4.5. Experimental results 71

Table 4.5: Best known results for EPFL benchmarks.
Circuit Best EPFL (delay) SR-map (delay) + ABC (delay)

LUTs Levels LUTs Levels Time(s)
adder 470 5 459 5 199
arbiter 2884 5 2099 5 729
cavlc 115 4 73 3 25
dec 270 2 264 2 11
i2c 244 3 240 3 30
int2float 41 3 27 3 5
mem_ctrl 2490 7 2458 6 792
max 882 10 857 10 313
multiplier 7274 27 6514 27 24034
priority 157 4 152 4 15
router 57 4 51 4 5
voter 1469 12 1435 12 4601

Circuit Best EPFL (area) SR-map (area) + ABC (area)
LUTs Levels LUTs Levels Time(s)

cavlc 101 6 68 4 25
dec 270 2 264 2 11
i2c 225 7 224 6 29
int2float 28 6 26 4 5
priority 108 26 106 26 25
router 52 6 51 4 5

4.5.4 Remapping of the results from a commercial tool

The results in Table 4.3 are obtained from the original BLIF descriptions. In
this section, the results obtained with the commercial tool are remapped by
SR-map. The remapping results are presented in Table 4.6. The commercial
tool performs sequential optimization, and equivalence checking with the
original description is performed with ABC command dsec.

A reduction of 4% in area and 18% in delay of the results from a commer-
cial tool is obtained with ABC by performing iterative AIG transformations
and FPGA mapping with choices. Using the ABC delay-oriented mapping
and delay as cost function, SR-map achieves even better results, with 28%
fewer logic levels and 18% fewer LUTs. Also, an area reduction of 28% plus
a logic depth reduction of 14% is obtained when area is defined as the cost
function for SR-map.

72 Chapter 4. Support-reducing Decomposition for FPGA Mapping

Table 4.6: Remapping of the commercial tool results for the 20 largest MCNC
benchmarks (k = 6).

SR-map (delay) SR-map (area)
Circuit ABC (delay) + ABC (delay) + ABC (delay)

LUTs Levels LUTs Levels Time(s) LUTs Levels Time(s)
alu4 232 5 65 3 28 58 4 19
apex2 179 6 33 4 13 32 4 9
apex4 193 3 155 3 107 155 3 86
bigkey 573 3 681 2 285 459 3 144
clma 193 3 181 3 24 166 4 17
des 446 4 445 3 232 436 4 178
diffeq 470 6 470 6 261 452 7 223
dsip 869 2 869 2 215 681 2 181
elliptic 105 4 110 3 21 99 4 16
ex1010 210 3 208 3 96 207 4 76
ex5p 92 2 86 2 10 82 2 7
frisc 1839 10 1892 9 947 1684 11 792
i10 551 8 533 8 302 512 9 280
misex3 158 4 112 4 28 96 4 21
pdc 126 4 148 3 23 114 4 15
s38417 2493 6 2432 6 967 1458 7 971
s38584 2188 6 2332 5 640 1946 8 641
seq 458 5 417 5 89 446 5 77
spla 131 4 145 3 20 119 4 15
tseng 649 6 636 6 240 625 7 237
Geomean 360.88 4.32 306.47 3.76 94.8 270.47 4.52 74.3
Ratio 0.96 0.82 0.82 0.72 - 0.72 0.86 -

4.5. Experimental results 73

Table 4.7: Results of a commercial tool for different strategies, after physical
synthesis (post place-and-route).

Synthesis strategy of the tool
Input from: Default Area Delay

Area Delay Area Delay Area Delay
Initial description 330.73 4.94 320.32 5.65 375.24 4.92
SR-map (delay) + ABC(delay) -20% -9% -16% -9% -20% -6%
SR-map (area) + ABC(delay) -23% -6% -22% -11% -23% -8%

4.5.5 SR-map result as input to the commercial tool

Previous experiments are presented with results in number of LUTs and
levels, but reduction in logic levels often does not translate into improved
delay post place-and-route due to congestion issues. In order to evaluate
this effect, SR-map results are fed back to the commercial tool, comparing
the post place-and-route metrics between using the initial description versus
using the SR-map remapping as input.

A summary of the geometric mean results is presented in Table 4.7. De-
tailed results are shown in Table 4.8, Table 4.9, and Table 4.10, with the “Ra-
tio” showing a comparison with the results obtained by the Default strategy
using the initial description. Three different synthesis strategies are inves-
tigated: (1) with the Default parameters, (2) targeting Area minimization,
and (3) Delay reduction. The delay reported is for the critical path, in ns.

In previous experiments, the synthesis of the commercial tool was config-
ured to avoid the use of multiplexers and merging of LUTs, delivering results
comparable to the other tools. In this section, the results presented may have
multiplexers, and the LUTs may be merged. Additionally, sequential opti-
mization is performed, and the number of registers may vary for the different
synthesis strategies and inputs. The area reported considers these charac-
teristics of the commercial tool: logic optimization and merging (LUTs),
sequential optimization (FFs), and the use of multiplexers to reduce delay
and implement functions with more inputs (7 and 8). Multiplexers occupy
much less area than LUTs and flip-flops, so we conservatively consider muxes
as half the size of the other elements, resulting in this function to compare
area: Area = LUTs + FFs + 0.5×Multiplexers.

In comparison with the Default strategy, and using the initial description,
the Area strategy improves area in 3% for an increase of 14% in delay, whereas
the Delay strategy reduces delay by 1% at the expense of an area 14% larger.

As observed in Table 4.8, Table 4.9, and Table 4.10, the post place-and-
route results show worse metrics than the ones reported in Table 4.6, as these

74 Chapter 4. Support-reducing Decomposition for FPGA Mapping

are implemented into an actual FPGA. Still, for the Default strategy, the
results have 20% less area and 9% less delay, by using the SR-map remapping
targeting delay as input, and 23% less area and 6% less delay, by using the
SR-map remapping targeting area as input. Similar results are achieved for
the other strategies. Notice that the commercial tool results in Table 4.3 are
for a different synthesis strategy, in which the use of multiplexers and LUT
combining is avoided.

Interestingly, the SR-map remapping targeting area as input to the com-
mercial tool generated better post place-and-route results, even for delay.
This is because aggressive reduction of logic levels often leads to congestion,
which prevents the place-and-route tools to translate this reduction into bet-
ter performance. A detailed comparison of the benchmark results for this
case is provided in the plots of Fig. 4.10.

4.5.6 Scalability analysis
Boolean methods are known to have scalability issues, and this is typically
handled by limiting the scope of application, with techniques such as partial
collapsing [23, 61, 114], windowing [82], and partitioning [40]. The proposed
approaches are no different. The size of BDDs may increase significantly
with the number of variables, slowing down even simple BDD operations.
For this reason, the collapsing process is only applied to functions with up
to a certain limit of input variables. Fig. 4.11 shows the average area-delay
product for different limits in the support, presenting a trade-off between
runtime and quality of results. The trade-off presented is obtained with
SR-map for a subset of the benchmarks considered in previous sections, which
have functions of 70 variables or more. The support limit is defined to 50
variables for the results previously presented in this work.

Additionally, a time-out is set to prevent a long runtime. This runtime
limit is set for the collapsing process and the decomposition. Notice that
the BDD size may be large and the BDD operations may take a long time,
even with a limit in the number of variables. As observed in Fig. 4.11, the
quality of results obtained by SR-map is similar for a time-out of 5 and 1000
seconds. The runtime with time-out of 1000 seconds exposes the exponential
behavior of increasing the number of variables for BDD operations. How-
ever, the runtime can be kept under control by defining a smaller time-out,
which also presents a linear increase with the support limit. As mentioned
in Section 4.4, if there is a time-out (or if the support size is larger than the
limit defined), then the output network extracted is the only one considered
in the remapping algorithm.

Also, note that the remapping method extracts a sub-network that feeds

4.5. Experimental results 75
Ta

bl
e
4.
8:

R
es
ul
ts

of
a
co
m
m
er
ci
al

to
ol

af
te
r
ph

ys
ic
al

sy
nt
he
sis

us
in
g
th
e
in
iti
al

de
sc
rip

tio
n
as

in
pu

t.
C
irc

ui
t

D
ef
au

lt
st
ra
te
gy

A
re
a
st
ra
te
gy

D
el
ay

st
ra
te
gy

LU
Ts

A
re
a

D
el
ay
(n
s)

T
im

e(
s)

LU
Ts

A
re
a

D
el
ay
(n
s)

T
im

e(
s)

LU
Ts

A
re
a

D
el
ay
(n
s)

T
im

e(
s)

al
u4

26
1

27
5.
5

4.
05

5
23

0
22

7
24

4.
5

4.
77

5
26

1
30

5
31

9.
5

4.
08

4
18

5
ap

ex
2

26
3

26
8

8.
74

7
27

6
22

4
22

6.
5

9.
26

4
24

9
30

0
30

5
7.
87

24
6

ap
ex
4

15
6

18
6

2.
39

9
29

0
16

1
19

2.
5

2.
90

8
25

8
15

7
18

7
2.
39

8
25

0
bi
gk
ey

57
3

57
3

5.
51

1
31

3
45

9
45

9
5.
3

26
6

56
9

56
9

4.
49

4
25

5
cl
m
a

14
7

14
7

3.
80

3
43

8
15

0
15

0
4.
05

7
57

1
18

0
18

0
3.
75

1
36

2
de

s
42

5
42

5
4.
74

8
34

5
45

7
45

7
4.
85

3
26

4
43

6
43

6
5.
19

7
26

2
di
ffe

q
43

3
43

3
6.
84

6
34

8
42

7
42

7
9.
14

2
26

2
47

2
47

2
7.
11

1
27

1
ds
ip

57
7

57
7

4.
28

33
8

58
0

58
0

3.
86

5
25

6
69

0
69

0
4.
82

7
24

9
el
lip

tic
85

85
3.
51

6
31

3
80

80
4.
04

3
24

5
11

5
11

5
3.
57

25
1

ex
10

10
17

0
23

0
2.
41

2
33

5
17

0
23

0
2.
41

2
26

3
17

0
23

0
2.
41

2
25

6
ex
5p

87
87

2.
48

5
25

2
86

86
3.
71

5
25

7
10

0
10

0
2.
52

8
24

4
fr
isc

15
64

15
64

12
.9
01

29
2

15
32

15
32

14
.7
18

31
6

17
03

17
03

12
.7
53

28
4

i1
0

49
7

49
7.
5

8.
59

7
28

5
49

9
49

9.
5

12
.4
09

33
8

54
9

54
9.
5

8.
34

7
29

6
m
ise

x3
15

9
17

3
3.
76

1
24

0
13

0
14

1
3.
68

27
5

17
8

19
2

3.
61

4
25

2
pd

c
12

8
12

8
4.
58

8
28

6
12

4
12

4
4.
57

8
38

1
15

5
15

5
3.
51

6
28

7
s3
84

17
12

27
12

28
7.
86

3
43

7
12

17
12

17
.5

9.
77

2
97

3
14

69
14

70
9.
26

1
39

9
s3
85

84
16

28
16

29
.5

6.
47

1
43

2
16

24
16

25
.5

6.
91

50
2

19
38

19
39

.5
6.
79

5
34

9
se
q

46
0

48
5.
5

6.
01

3
24

7
51

3
53

2
8.
63

9
32

0
50

9
53

4.
5

7.
18

9
18

5
sp
la

13
2

13
2

4.
18

3
26

9
13

2
13

2
4.
56

2
33

4
15

7
15

7
3.
71

6
20

4
ts
en

g
53

1
53

1
5.
96

6
26

9
52

9
52

9
7.
80

2
27

8
65

6
65

6
5.
95

2
19

7
G
eo
m
ea
n

31
9.
48

33
0.
73

4.
94

30
6.
10

30
9.
51

32
0.
32

5.
65

31
9.
29

36
2.
93

37
5.
24

4.
92

25
8.
91

R
at
io

1.
00

1.
00

1.
00

0.
97

0.
97

1.
14

1.
14

1.
13

0.
99

76 Chapter 4. Support-reducing Decomposition for FPGA Mapping
Table

4.9:R
esultsofa

com
m
ercialtoolafterphysicalsynthesisusing

the
SR

-m
ap

(area)+
A
BC

(delay)rem
apping

as
input.
C
ircuit

D
efault

strategy
A
rea

strategy
D
elay

strategy
LU

Ts
A
rea

D
elay(ns)

T
im

e(s)
LU

Ts
A
rea

D
elay(ns)

T
im

e(s)
LU

Ts
A
rea

D
elay(ns)

T
im

e(s)
alu4

76
76

3.597
259

67
67

4.516
256

93
93

3.536
254

apex2
32

32
3.327

242
30

30
3.611

237
35

35
3.426

244
apex4

125
153

2.425
258

125
153

2.425
257

125
153

2.425
264

bigkey
489

489
4.393

255
416

416
3.857

276
611

611
5.647

255
clm

a
113

113
3.174

243
108

108
3.488

247
130

130
3.013

249
des

426
426

4.85
269

416
416

4.963
286

435
435

4.821
264

diffeq
447

447
7.311

267
454

454
7.55

305
491

491
7.672

283
dsip

461
573

3.708
262

461
573

4.249
275

461
573

3.708
276

elliptic
77

77
3.728

244
76

76
3.093

243
102

102
3.463

251
ex1010

170
230

2.412
267

170
230

2.412
259

170
230

2.412
264

ex5p
83

83
2.476

246
83

83
2.855

248
93

93
2.235

248
frisc

1225
1225

13.792
298

1197
1197

15.291
329

1344
1344

12.847
297

i10
477

478.5
9.547

291
473

474.5
11.408

276
526

527.5
8.067

292
m
isex3

140
151

4.383
251

123
133

4.154
261

155
166

3.715
270

pdc
102

102
4.167

245
104

104
4.933

251
118

118
3.66

249
s38417

1217
1217.5

8.803
515

1238
1238.5

10.853
1713

1414
1414.5

9.466
520

s38584
1638

1638.5
6.638

417
1633

1633.5
6.892

532
1941

1941.5
6.508

391
seq

421
421.5

5.807
269

404
404.5

6.413
209

484
484.5

5.71
268

spla
111

111
3.641

247
111

111
4.607

246
130

130
3.591

233
tseng

472
472

5.908
300

534
534

7.067
266

583
583

6.143
264

G
eom

ean
244.60

254.62
4.63

276.65
238.99

248.81
5.01

297.51
276.21

287.41
4.54

276.62
R
atio

0.77
0.77

0.94
0.75

0.75
1.01

0.86
0.87

0.92

4.5. Experimental results 77
Ta

bl
e4

.1
0:

R
es
ul
ts

of
a
co
m
m
er
ci
al

to
ol

af
te
rp

hy
sic

al
sy
nt
he
sis

us
in
g
th
eS

R
-m

ap
(d
el
ay

)+
A
BC

(d
el
ay

)r
em

ap
pi
ng

as
in
pu

t.
C
irc

ui
t

D
ef
au

lt
st
ra
te
gy

A
re
a
st
ra
te
gy

D
el
ay

st
ra
te
gy

LU
Ts

A
re
a

D
el
ay
(n
s)

T
im

e(
s)

LU
Ts

A
re
a

D
el
ay
(n
s)

T
im

e(
s)

LU
Ts

A
re
a

D
el
ay
(n
s)

T
im

e(
s)

al
u4

84
84

4.
15

7
24

8
77

77
5.
05

1
26

2
10

2
10

2
3.
79

1
25

1
ap

ex
2

31
31

3.
56

5
25

0
31

31
4.
09

9
27

7
34

34
3.
50

8
25

2
ap

ex
4

12
5

15
3

2.
42

5
24

7
12

5
15

3
2.
42

5
29

1
12

5
15

3
2.
42

5
26

0
bi
gk
ey

45
7

56
9

5.
82

5
29

9
45

7
56

8
3.
72

3
28

9
45

7
56

9
5.
82

5
29

1
cl
m
a

11
7

11
7

3.
35

2
28

6
11

6
11

6
3.
31

1
26

3
13

9
13

9
3.
53

2
28

5
de

s
46

0
46

0
4.
17

1
28

3
47

8
47

8
5.
06

7
28

1
49

7
49

7
5.
23

1
29

0
di
ffe

q
43

5
43

5
6.
32

9
29

4
39

2
39

2
9.
06

3
27

9
47

7
47

7
6.
84

4
28

4
ds
ip

46
9

46
9

3.
58

5
38

7
46

9
46

9
3.
58

5
38

7
46

9
46

9
3.
58

5
38

7
el
lip

tic
83

83
3.
46

9
26

2
80

80
3.
50

6
33

9
11

1
11

1
3.
78

1
24

4
ex
10

10
17

0
23

0
2.
41

2
29

4
31

6
34

5.
5

4.
12

2
35

3
17

0
23

0
2.
41

2
28

9
ex
5p

85
85

2.
67

1
31

9
88

88
2.
99

4
24

9
99

99
2.
31

4
32

4
fr
isc

12
83

12
83

11
.6
66

41
3

12
63

12
63

14
.7
32

34
7

14
61

14
61

13
.0
66

41
9

i1
0

52
5

52
5.
5

8.
05

1
35

6
51

8
51

8.
5

10
.7
16

32
9

57
7

57
7.
5

7.
45

8
36

8
m
ise

x3
12

9
13

8.
5

3.
99

4
26

5
15

7
16

7
4.
29

5
26

2
14

1
15

0.
5

3.
52

8
26

7
pd

c
14

5
14

5
4.
16

8
25

4
13

8
13

8
4.
58

7
26

2
17

3
17

3
3.
99

2
25

7
s3
84

17
12

51
12

53
.5

8.
02

9
34

8
12

21
12

23
8.
96

8
12

98
14

33
14

35
.5

8.
33

5
35

3
s3
85

84
16

45
16

50
.5

5.
36

4
33

9
15

92
15

97
5.
22

5
30

0
19

46
19

51
.5

6.
10

4
34

1
se
q

41
9

41
9

5.
21

6
26

2
40

9
40

9
6.
38

4
20

9
49

4
49

4
6.
48

4
27

7
sp
la

13
1

13
1

4.
09

7
26

9
13

5
13

5
4.
52

6
20

1
15

6
15

6
4.
27

5
25

6
ts
en

g
49

0
49

0
5.
52

6
27

8
46

9
46

9
8.
50

6
22

6
61

0
61

0
5.
74

8
27

8
G
eo
m
ea
n

25
5.
14

26
5.
56

4.
50

29
4.
26

26
1.
33

26
8.
97

5.
13

30
2.
82

28
8.
01

29
9.
67

4.
62

29
5.
01

R
at
io

0.
80

0.
80

0.
91

0.
82

0.
81

1.
04

0.
90

0.
91

0.
94

78 Chapter 4. Support-reducing Decomposition for FPGA Mapping

(a) Default strategy (b) Area strategy

(c) Delay strategy

Figure 4.10: Comparison of commercial tool results with the SR-map result
as input vs. the initial description, for different synthesis strategies.

4.5. Experimental results 79

area x delay

runtime

Figure 4.11: Runtime and quality analysis, considering different limits for the
support size and time-outs. The area-delay product is the result of number
of LUTs times the number of levels.

all outputs, therefore a larger number of levels in the FPGA mapping may
also result in a larger runtime. The ABC tool presents a fraction of the
runtime obtained with SR-map, as it is part of the proposed method, and
it is repeatedly used. Nevertheless, the average execution time observed in
Table 4.3 for SR-map (141 and 129 seconds) is comparable with the one for
the commercial tool (306 seconds).

80 Chapter 4. Support-reducing Decomposition for FPGA Mapping

Chapter 5

Robustness to Voltage Noise
with Ring Oscillator Clocks

Voltage noise is the main source of dynamic variability in integrated circuits
and a major concern for the design of power delivery networks (PDNs). Lower
supply voltages were made possible with technology scaling, but power den-
sity was also increased. Consequently, power integrity became a key factor
in the design of reliable high-performance circuits.

ring oscillator clocks (ROCs) have been proposed as an alternative to
mitigate the negative effects of voltage noise [71]. The capability of reacting
instantaneously to large voltage droops makes ROCs an attractive solution,
which also allows to relax the constraints required for the PDN design. How-
ever, the effectiveness highly depends on the design parameters of the PDN,
power consumption patterns, and the spatial locality of the ROC within the
clock domain [72]. This chapter analyzes the impact of the PDN parameters
and ROC location on the robustness to voltage noise.

The experiments show that up to 83% of the margins for voltage noise
can be reduced by using ROCs instead of rigid clocks. Also, up to 27% of
the total leakage power can be reduced by using ROCs instead of decoupling
capacitors. Additional PDN simplifications are possible, with fewer power
interconnections or package decaps of lower quality. Tolerance to voltage
noise and related benefits can also be increased with multiple ROCs.

5.1 Motivation
The estimation of the path delays and their variability is critical for the
reliability of digital circuits. In order to define a robust clock period, it is
necessary to consider all conditions that may shift and affect the delay of

82 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

every circuit path, such as the manufacturing process, the supply voltage,
and the temperature (PVT conditions). Static offsets of these conditions
are estimated at design time and taken into account by adding guard band
margins to the nominal clock period. Nevertheless, dynamic shifts are hard
to predict and excessively conservative margins are often added to prevent
failures.

Augmenting the clock period offers more robustness against these changes
in the operating conditions, but this comes at the expense of reducing perfor-
mance. Another solution is to increase the amount of decoupling capacitors
(decaps) [96, 99]. Voltage noise is mitigated when the system has a larger
on-chip and off-chip capacitance. Unfortunately, the additional decaps imply
an increase in area and leakage power, and variations that exceed the defined
margins cannot be fully eliminated.

Several works in the literature suggest software-based solutions that do
not have negative impacts on power and performance. A voltage noise pre-
diction based on software signatures was proposed in [101], throttling the
processor during specific cases. Thread balancing also contributes to reduce
di/dt and smooth voltage swings [102]. Code sequences that may gener-
ate large voltage variations were identified in [42], and software guidelines
were proposed to avoid the loops that may potentially produce such large
voltage swings. The work in [43] proposes mechanisms to monitor the micro-
architectural events that may generate large voltage oscillations. All these
software solutions [42, 101, 102] are effective, but only applicable to micro-
processors. They cannot be used to address the problem in a general context,
for any kind of circuit or application.

In [120], the use of integrated voltage regulators is investigated, quantify-
ing the penalties in area and power for the voltage noise reductions obtained.
Other proposals include: improving the PDN impedance, which requires
adaptations for each particular circuit; static and dynamic voltage margin-
ing, which result in higher power consumption; and performance throttling
and stalling [49, 12], which require high-quality voltage sensors, with addi-
tional area and power. All these solutions have important overheads in design
cost, area, power or performance. Adaptive clocking [113, 58, 93, 50, 117]
seems to be a promising solution with low overhead, but with its efficiency
limited by the characteristics of its voltage sensors and clock generators.

ROCs [28, 29] are an alternative proposal for adaptive clocking, which
takes into account all sources of variability, voltage noise included. If the
ROC is correctly designed, then a strong correlation can be achieved between
the clock period and the delay of the critical paths. Considering that the
ROC and the critical paths are exposed to the same sources of variability,
the clock generator adapts immediately to the circuit demands.

5.2. Models and metrics 83

Unfortunately, voltage fluctuations are not uniform across the die. Two
distant points in the same die may have different voltage levels. This un-
steady behavior raises some questions:

• How the global and local portions of voltage noise affect the perfor-
mance when using ROCs?

• Is it possible to relax the PDN design by using ROCs?

• What is the relation between the required timing margins for an ROC
and the size of its clock domain?

• Where to locate the ROC within a clock domain?

Voltage noise analysis has been focused on estimating the global worst-
case and deriving the timing margins required [97]. For example, if the
nominal voltage is 1V and the minimum voltage estimated is 0.85V, then a
circuit with a rigid clock must consider a variation of 150mV for the clock
period. For ROCs, the key value is the largest differential voltage between
the ROC and the critical path [72]. If the voltage at the ROC is 0.9V when it
is 0.85V at the critical path, then the clock period margins must cover only
the difference: 50mV.

5.2 Models and metrics
The goal of this work is to present a conservative analysis of the benefits of
using ROCs when dealing with problems related to voltage noise. Robustness
to voltage noise is achieved without degrading performance, making possible
the simplification of the PDN design. In order to provide a flexible and easily
reproducible method, but also illustrative enough to cover a broad range of
potential applications, the models presented in this section are used.

5.2.1 PDN model
The chip-grid presented in [41] represents a system-on-chip (SoC) with four
cores of Pentium 4 and it is used as the PDN model in this work. The
components illustrated in Fig. 2.11 and their values presented in Table 5.1 are
obtained from [41] and described using SPICE netlists. Notice that the values
in Table 5.1 were derived via extensive measurements, being an excellent
representation of the design selected. However, the analysis presented in this
chapter would have similar results for different designs and models, as all
PDNs presents some level of voltage noise and voltage droops.

84 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

As external regulators typically do not regulate high frequency variations,
the voltage regulator module (VRM) is modeled as a fixed voltage source
delivering 1V at the power bumps. The on-chip power distribution is modeled
with a 12× 12 grid [97], as seen in Fig. 2.11(b). Both the power and ground
networks are considered in the model, with a VDD or a VSS bump connected
at every grid point.

Table 5.1: PDN parameters
Param. Value Param. Value Param. Value
Rpcb 0.094 mΩ Lpcb 21 pH Vvrm 1 V
Rcpcb 0.17 mΩ Lcpcb 1 pH Cpcb 240 µF
Rpkg 1 mΩ Lpkg 120 pH Cpkg 26 µF
Rcpkg 0.54 mΩ Lcpkg 5.61 pH Cckt 120 pF
Rbump 40 mΩ Lbump 72 pH Ickt 195 mA
Rgrid 50 mΩ Lgrid 5.6 fH - -

1/f
Time (ns)

I

C
ur

re
nt

 (A
)

(a) Current source waveform

105 106 107 108 109

Frequency (Hz)

Im
pe

da
nc

e

(b) Impedance response

Figure 5.1: Current source waveform and impedance response for a PDN
with a total of 200nF of on-chip decaps.

Each point in the grid models a portion of the circuit, with an intrinsic
decoupling capacitance and a current source emulating the circuit power con-
sumption considering the clock period, with rise, high and fall times set to
5%, 45%, and 5%, respectively (see Fig. 5.1(a)). Additionally, a decoupling
capacitor is added at each point. Note that spreading the decaps uniformly
is the best placement in order to reduce voltage fluctuations, considering a
similar power consumption throughout the die [99, 97]. The frequency re-
sponse of Fig. 5.1(b) is observed at any point of chip grid, considering a total
of 200nF of on-chip decoupling capacitance. For comparison, the frequency

5.2. Models and metrics 85

response changes significantly across the grid points by reducing the number
of power bumps between the package and the chip (see Fig. 5.15).

5.2.2 Delay model
A simplification of the gate delay formulation was proposed in [103], which
is still widely accepted. This model defines the delay (td) for a given voltage
based on the threshold voltage (Vth) and a technology fitting value α in the
range of 1-2. Notice that the model was defined for a single gate, but the
relationship between delay and voltage holds for a path composed of several
gates. Considering that Vth, α and k have small variation with the voltage,
then it is possible to calculate the constant k in (5.1) and have the path delay
based on the supply voltage.

td(VDD) = k · VDD

(VDD − Vth)α (5.1)

A 65nm commercial library with nominal voltage of 1V is used as refer-
ence. The average Vth of all combinational cells of the library is 0.36V for
75oC, and 0.4V for 125oC. A typical value of α is 1.3 [103], and this param-
eter is closer to 1 for more advanced technologies. Generally, ±10% offsets
are defined for the voltage swings during STA. Therefore, the critical path at
VDD = 0.9V must have a maximum delay of 1ns, considering a clock source
of 1GHz. Fig. 5.2 shows the path delay curves with the k values calculated
using (5.1), with VDD = 0.9V , td = 1ns, α = [1.0, 1.3] and Vth = [0.36, 0.4].
For a conservative analysis, Vth = 0.4V and α = 1.3 are selected, indicating
larger delay variations for smaller voltage differences, with k = 0.45.

5.2.3 Performance Metric
In this work, the required timing margin is used to compare the performance
of the ROC and the phase-locked loop (PLL). For the PLL, the margin is the
difference between the critical path delay at the nominal voltage (Vnom) and
at the minimum voltage (Vmin):

marginPLL ≥ td(Vnom)− td(Vmin). (5.2)

The design of an ROC must consider the delay behavior of Fig. 5.2 in
order to keep the clock period larger than the delay of the critical paths for
any given voltage. For the simplification of this analysis, the delay behavior
of the ROC and the critical paths are both given by (5.1) with the same
parameters. Still, if the ROC has a larger Vth than the critical path, then
margins may also be smaller.

86 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Voltage (V)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D
el

ay
 (n

s)

α=1.0,Vth=0.36
α=1.0,Vth=0.4
α=1.3,Vth=0.36
α=1.3,Vth=0.4

Figure 5.2: Path delay given by (5.1), with td = 1ns and VDD=0.9V.

In order to perform a conservative analysis of the required timing margins
for the ROC, the following claims are made:

• The voltage at the ROC is always higher than at the critical path.

• The critical path is placed at the point with the largest voltage differ-
ence with respect to the ROC.

• The largest voltage difference happens at the minimum voltage, as delay
variations are larger for lower voltages.

• Positive effects due to the clock distribution are not taken into account,
such as clock-data compensation [119].

Thus, the margin for the ROC is given by (5.3), which is the difference
between the critical path delay at the minimum voltage and the ROC period
at the largest voltage difference.

marginROC ≥ td(Vmin + max(∆VDD))− td(Vmin) (5.3)

The PLL margin is required regardless of its placement, as the clock
period must consider the critical path delay at Vmin. But the ROC margin
varies with its location, as the voltage difference is smaller between points
closer to each other.

Fig. 5.3 depicts the three placement strategies analyzed, with circles at
ROC locations and squares around the grid points on the same clock domain:

5.3. Voltage locality analysis 87

(a) Center (b) 4 ROCs (c) 16 ROCs

Figure 5.3: Placement of ROCs for different number of clock domains.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.4: Patterns determining the grid points that are active.

one ROC at the center of the chip; 4 ROCs, with one at the center of each
processor core; and 16 ROCs uniformly distributed. Additionally, one ROC
placed at an arbitrary grid point is analyzed, reporting the placement that
requires the largest margin. Notice that 16 ROCs would require additional
synchronization between the clock domains, with an overhead in performance
and power not investigated. Therefore, this case is reported but its results
are not compared with the PLL.

88 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

5.3 Voltage locality analysis
The different patterns depicted in Fig. 5.4 are proposed to stimulate voltage
variations across the die. The dark areas represent the portions of the chip
that are active, i.e., with a current source of 195mA active at every clock
cycle, following the waveform in Fig. 5.1(a). The parts of the die that are
not active are modeled with constant current sources of 3mA.

Fig. 5.5 illustrates the global and local voltage variations due to some of
the proposed patterns in Fig. 5.4. These images show the voltage levels at
each grid point when the minimum voltage is reached during the simulation.
The pattern in Fig. 5.4(j) generates the lowest voltage, reaching a maximum
current of 28A. An on-chip decoupling capacitance of 200nF is necessary to
keep the voltage swings within ±10% for this activity pattern, considering
an activity frequency of 1GHz.

Columns

0
2

4
6

8
10

Rows
0

2
4

6
8

10

V
ol

ta
ge

0.880
0.893
0.907
0.920
0.933
0.947
0.960
0.973
0.987
1.000

global

local

0.916
0.920
0.924
0.928
0.932
0.936
0.940
0.944
0.948

(a) Pattern of Fig. 5.4(e)

Columns

0
2

4
6

8
10

Rows
0

2
4

6
8

10
V

ol
ta

ge

0.890
0.902
0.914
0.927
0.939
0.951
0.963
0.976
0.988
1.000

0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970

(b) Pattern of Fig. 5.4(h)

Columns

0
2

4
6

8
10

Rows
0

2
4

6
8

10

V
ol

ta
ge

0.890
0.902
0.914
0.927
0.939
0.951
0.963
0.976
0.988
1.000

0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950
0.955

(c) Pattern of Fig. 5.4(i)

Columns

0
2

4
6

8
10

Rows
0

2
4

6
8

10

V
ol

ta
ge

0.8995
0.8997
0.8999
0.9001
0.9003
0.9005
0.9007
0.9009
0.9011
0.9013

0.90030
0.90035
0.90040
0.90045
0.90050
0.90055
0.90060
0.90065
0.90070

(d) Pattern of Fig. 5.4(j)

Figure 5.5: Voltage distribution for some of the activity patterns in Fig. 5.4.

The grid model with 200nF of total on-chip decoupling capacitance is
selected. The activity patterns of Fig. 5.4 are simulated with Synopsys

5.3. Voltage locality analysis 89

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) max
Activity pattern

0

20

40

60

80

100

120

140

D
el

ay
 in

cr
ea

se
 in

 c
lo

ck
 p

er
io

d
(p

s)

V m
in

=
0.9

03
V m

in
=

0.9
06

V m
in

=
0.9

12
V m

in
=

0.9
15

V m
in

=
0.9

15
V m

in
=

0.9
39 V m
in

=
0.9

25
V m

in
=

0.9
27 V m

in
=

0.9
12
V m

in
=

0.9
V m

in
=

0.9

PLL
1 ROC (any point)

1 ROC (center)
4 ROCs

16 ROCs

Figure 5.6: Delay increase in the clock period for each activity pattern (200nF
of on-chip decaps, activity at 1GHz).

HSPICEr for 50 clock cycles at 125oC, gathering the minimum voltage (Vmin)
at all grid points, and the maximum voltage difference between any two
points in the grid (∆VDD). Two different cases are analyzed: the typical volt-
age noise, generated by the designed clock period, which has low impedance
(1GHz); and the worst-case voltage noise, caused by an activity frequency
with very high impedance (first droop).

5.3.1 Typical voltage noise
Fig. 5.6 is generated with the voltage data gathered, using (5.2) and (5.3)
to derive the required timing margins. The delay increase for the PLL is
proportional to the number of active points, which is related with the total
current and the minimum voltage. In the worst case for the PLL, Vmin = 0.9V
and the delay increase is 123ps.

For the ROC, the delay increase is related with the voltage difference be-
tween the ROC and the critical path (CP). Considering all activity patterns,

90 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

Required margin for ROC

(a) Fig. 5.4(e)

Required margin for PLL

(b) Fig. 5.4(j)

Figure 5.7: Critical path delay, and the clock period of the PLL and the
ROC, for the activity patterns of Fig. 5.4(e) and Fig. 5.4(j).

delay increase is 57ps if the ROC is placed at the center of the die and 71ps
if it is placed at any grid point, i.e., the two points with the largest voltage
difference.

In Fig. 5.7, the activity patterns of Fig. 5.4(e) and Fig. 5.4(j) are simu-
lated, keeping track of the voltage at the center of the grid and at the point
with the largest voltage difference. A 57ps margin is added to the ROC
period, as it is considered to be placed at the grid center.

Fig. 5.7(a) depicts the worst case for the ROC, whereas Fig. 5.7(b) shows
the largest delay of the critical path. Notice that the first and second volt-
age droops are present. As these effects are global, they affect the critical
path and the ROC similarly. Therefore, ROCs enable a 53% better average
performance for the same level of robustness against voltage noise.

Fig. 5.8 depicts the largest delay increase for each distance between any
two grid points, considering all activity patterns. As expected, the delay is
smaller if the critical path is closer to the ROC. This graph shows that a
trade-off is possible between performance and the number of clock domains.
The required delay is reduced to 43ps with 4 ROCs, and to 20ps with 16
ROC domains.

5.3.2 Worst-case voltage noise
The delay increase shown in Fig. 5.6 is required for a typical voltage noise,
but larger voltage droops may happen if the activity frequency has a high
impedance associated, as seen in Section 2.2.2.

The first droop frequency of the grid model with 200nF of on-chip decaps

5.3. Voltage locality analysis 91

0 5 10 15 20 25 30
Manhattan distance in the grid (mm)

0

20

40

60

80

100

120

D
el

ay
 in

cr
ea

se
 in

 c
lo

ck
 p

er
io

d
(p

s)

PLL
1 ROC (any point)
1 ROC (center)
4 ROCs
16 ROCs

Figure 5.8: Largest delay increase vs. the distance between the ROC and
the critical path (200nF decaps, activity at 1GHz).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) max
Activity pattern

0

500

1000

1500

D
el

ay
 in

cr
ea

se
 in

 c
lo

ck
 p

er
io

d
(p

s)

V m
in

=
0.6

06
V m

in
=

0.6
28

V m
in

=
0.6

78
V m

in
=

0.6
81

V m
in

=
0.6

8
V m

in
=

0.8
65

V m
in

=
0.7

75
V m

in
=

0.7
74

V m
in

=
0.6

8
V m

in
=

0.5
82

V m
in

=
0.5

82PLL
1 ROC (any point)
1 ROC (center)
4 ROCs
16 ROCs

Figure 5.9: Delay increase in the clock period for each activity pattern, for
the PLL and the ROC (200nF of on-chip decaps, activity at first droop).

92 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

is 125MHz. As a result, the voltage noise is amplified if a large current
difference happens every 8 clock cycles, considering a clock source of 1GHz.
In order to evaluate this phenomenon, the previous experiment is repeated
with the current sources operating at 125MHz. Fig. 5.9 depicts the delay
increase for each activity pattern in this case. As expected, the voltage noise
is boosted due to the high impedance, and the delay increase required for the
PLL is 1.5ns. Therefore, if worst-case voltage noise is considered, a design
with a PLL cannot operate at 1GHz with this PDN.

The ROC takes advantage of the global characteristic of voltage droops,
and the delay increase is 435ps if it is placed at an arbitrary point, and
260ps if placed at the center. Hence, it is possible to reduce the delay in
83%, without increasing the number of clock domains. Also, it is possible
to reduce margins by increasing ROC domains, with a delay increase of only
151ps with 16 ROCs, which is comparable to the delay increase of the PLL
for a typical voltage noise.

5.4 Relaxing PDN parameters
The design of the PDN is a difficult task that must take into account the
circuit specification, the decaps, and the parasitics. It is necessary to adjust
the characteristics of the PDN in order to avoid undesired voltage droops,
which may happen when the switching activity is aligned with a resonance
frequency of the PDN. This section shows how the robustness of ROCs con-
tributes to relax the PDN design constraints, given the tolerance to handle
global voltage variations. Three parameters are analyzed: on-chip decoupling
capacitance, the number and placement of power bumps, and the parasitics
of the package decaps.

5.4.1 On-chip decoupling capacitance
Fig. 5.10 depicts the impedance response of the PDN with 200nF, 300nF,
400nF, and 500nF of on-chip decoupling capacitance. Notice that adding
decaps to the chip has a linear increase in area and power, whereas the
impedance reduction is important, but a power-law function.

The reduction in voltage noise obtained by increasing the on-chip decaps
has a direct impact in the performance, as seen in Fig. 5.11(a), where all activ-
ity patterns of Fig. 5.4 are simulated for different amounts of on-chip decaps,
with activity at 1GHz. The behavior is similar with the activity aligned with
the first droop, with significant margin reductions in Fig. 5.11(b). Notice
that Fig. 5.11 presents the worst case result considering all activity patterns,

5.4. Relaxing PDN parameters 93

200nF

300nF

400nF
500nF

Figure 5.10: Impedance response of the PDN with 200nF, 300nF, 400nF and
500nF of on-chip decoupling capacitance.

as the “max” result on Fig. 5.6 and Fig. 5.9.
Notice that the first droop frequency varies with the amount of on-chip

capacitance (see Fig. 5.10). The lower impedance is one of the reasons for
the performance improvements seen in Fig. 5.11. Still, there is a saturation
on the positive effect of adding decaps.

Generally, on-chip decaps do not imply an increase in area, given that the
core utilization for standard cells is typically 70-90%, and decaps are placed
in the white space. Still, the leakage power consumption of the decaps is
important. As ROCs support larger voltage fluctuations with lower margins
than static clocks, it is possible to reduce the amount of decaps and leakage
power without degrading performance.

Leakage power can be modeled by expression (5.4), where P sq
std and P sq

dec
are the leakage power per area of the standard cells and the decoupling
capacitors, respectively. The area occupied by standard cells and decaps are
Astd and Adec, respectively.

Pleak = P sq
std · Astd + P sq

dec · Adec (5.4)

The leakage savings are estimated by using the parameters of a commer-
cial 65nm library. The least leaky decap cell is selected, with a capacitance
per area of 6nF/mm2 and leakage power consumption of 2.5mW/nF. Hence,
the leakage power per area of decaps is defined as 15mW/mm2.

For standard cells, leakage per area is estimated based on a design with
a representative mix of combinational gates and flip-flops [64], obtaining

94 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

50 100 200 300 400 500
Total on-chip decoupling capacitance (nF)

0

50

100

150

200

250

300
D

el
ay

 in
cr

ea
se

 in
 c

lo
ck

 p
er

io
d

(p
s)

Vm
in
= 0.814

Vm
in
= 0.852

Vm
in
= 0.9

Vm
in
= 0.915

Vm
in
= 0.927

Vm
in
= 0.934

PLL
ROC (any point)
ROC (center)
4 ROCs
16 ROCs

(a) Activity at 1GHZ

200 300 400 500 600 700
Total on-chip decoupling capacitance (nF)

0

500

1000

1500

D
el

ay
 in

cr
ea

se
 in

 c
lo

ck
 p

er
io

d
(p

s)

Vm
in
= 0.582

Vm
in
= 0.689

Vm
in
= 0.754

Vm
in
= 0.787

Vm
in
= 0.804

Vm
in
= 0.827

PLL
ROC (any point)
ROC (center)
4 ROCs
16 ROCs

(b) Activity at first droop frequency

Figure 5.11: Delay increase for the PLL and ROC, with different amounts of
on-chip decoupling capacitance.

5.4. Relaxing PDN parameters 95

0 100 200 300 400 500 600 700
Total on-chip decoupling capacitance (nF)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 le
ak

ag
e

po
w

er

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
in

im
um

 v
ol

ta
ge

 (
V

)

150nF

11%

Vmin

Leakage Power

Figure 5.12: Normalized leakage power and minimum voltage for different
amounts of on-chip decoupling capacitance (activity at 1GHZ).

20.9mW/mm2. These values are conservative, as decaps typically have a
larger average leakage power than standard cells. For the area ratio, it is
assumed that 200nF represent 20% of the core area (utilization of 80%).

Fig. 5.12 shows the leakage power and the minimum voltage for different
amounts of on-chip decaps, for typical voltage noise. Leakage power is nor-
malized with respect to 200nF. Considering the margins seen in Fig. 5.11(a),
it is possible to reduce up to 150nF in decaps without degrading performance,
by using ROCs. This reduction represents 11% of the total leakage power.

Similarly, Fig. 5.13 depicts the leakage and minimum voltage, but for
the worst-case voltage noise produced by activity aligned with first droop
frequency. In this case, leakage power is normalized with respect to 700nF.
Considering the data in Fig. 5.11(b), it is possible to have 200nF decaps
instead of 700nF, without degrading average performance, with ROCs. Re-
moving 500nF means a reduction of 27% in the total design leakage power
consumption. Furthermore, if 200nF occupy all the white space, then 700nF
entail a non-negligible area increase that can be avoided by using ROCs.

5.4.2 Power interconnections
The amount (and placement) of power bumps is another characteristic that
influences voltage locality. The experiments in previous sections were per-
formed with 72 pairs of VDD/VSS bumps uniformly distributed (Fig. 5.14(a)).
This placement minimizes the impedance between the chip and the pack-
age [99], and any grid point has practically the same impedance response.

96 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

100 200 300 400 500 600 700 800 900 1000
Total on-chip decoupling capacitance (nF)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 le
ak

ag
e

po
w

er

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
in

im
um

 v
ol

ta
ge

 (
V

)

500nF

27%

Vmin

Leak
age P

ower

Figure 5.13: Normalized leakage power and minimum voltage for different
amounts of on-chip decoupling capacitance (activity at first droop frequency).

(a) All points (b) Distributed (c) Border

Figure 5.14: Different power bumps placement strategies (a VDD connection
is a black circle, and VSS connection is a white circle).

As seen in Fig. 5.5, such placement reduces significantly the voltage differ-
ences across the die.

This section considers different bump placements in the grid model with
200nF, for typical voltage noise (activity at 1GHz). Two additional place-
ments are analyzed: 36 VDD/VSS pairs uniformly distributed, illustrated in
Fig. 5.14(b); and 40 VDD/VSS pairs placed in the borders (similar to wire
bonding), depicted in Fig. 5.14(c). These placements affect the impedance
response across the die, as observed in Fig. 5.15. Such configurations also
have a huge impact in the power distribution (see Fig. 5.16).

5.4. Relaxing PDN parameters 97

105 106 107 108 109 1010

Frequency (Hz)

Im
pe

da
nc

e

(a) Distributed

105 106 107 108 109 1010

Frequency (Hz)

Im
pe

da
nc

e

(b) Border

Figure 5.15: Impedance response of all grid points (200nF of on-chip capac-
itance) with (a) 36 bumps distributed and (b) 40 bumps in the borders.

Columns

0
2

4
6

8
10

Rows
0

2
4

6
8

10

V
ol

ta
ge

0.859
0.864
0.868
0.872
0.876
0.880
0.885
0.889
0.893
0.897

0.8768
0.8776
0.8784
0.8792
0.8800
0.8808
0.8816
0.8824

(a) Distributed

Columns

0
2

4
6

8
10

Rows
0

2
4

6
8

10

V
ol

ta
ge

0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91

(b) Border

Figure 5.16: Voltage distribution for activity pattern of Fig. 5.4(j) with (a)
36 VDD/VSS bumps distributed (Vmin = 0.872V), and (b) 40 VDD/VSS bumps
in the borders (Vmin = 0.837V).

98 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

72 pairs (all points) 36 pairs (distributed) 40 pairs (border)
Bump placement

0

50

100

150

200

250
D

el
ay

 in
cr

ea
se

 in
 c

lo
ck

 p
er

io
d

(p
s)

Vm
in
= 0.9

Vm
in
= 0.872

Vm
in
= 0.837

PLL
ROC (any point)
ROC (center)
4 ROCs
16 ROCs

Figure 5.17: Required margins for the PLL and ROC with different bump
placements (200nF of decoupling capacitance, activity at 1GHz).

All activity patterns are simulated, producing the results of Fig. 5.17.
As the impedance is higher, the minimum voltage is lower, indicating larger
margins. Also, ROC margins have an important increase, due to larger
voltage differences. Still, it is possible to reduce the bumps configuration
using ROCs, with same or better performance of a PLL. With bumps placed
in the border, it is possible to take further advantage of ROC characteristics
by placing it at the center. In this case, the ROC will have the lowest voltage
in the die, producing a clock slower than the critical paths during the periods
of voltage noise, and therefore enabling a higher average performance.

5.4.3 Package decoupling capacitance parasitics
The design of the PDN is a key factor in the quality of the supply voltage at
the chip devices, with the board and package playing important roles in the
solution. Small parasitics in the off-chip PDN may have a great impact in
the global voltage variations. This section proposes an analysis with different
parasitics in the package decoupling capacitance:

• Package 1 (PKG1): the same used in previous sections, with typical
equivalent series inductance (ESL): Lcpkg = 5.61pH.

5.4. Relaxing PDN parameters 99

PKG3

PKG1

PKG2

Figure 5.18: Impedance responses with 500nF of on-chip capacitance and
different package decap parasitics.

• Package 2 (PKG2): with almost ideal decoupling capacitance, maxi-
mizing voltage noise reduction: Lcpkg = 2pH.

• Package 3 (PKG3): using decaps with higher inductive parasitics, in-
creasing the equivalent inductance that forms the LC circuit with the
die capacitance: Lcpkg = 12pH.

In order to enforce a voltage variation of >10% for all cases and compare
their impact on the reference performance, all current sources are active and
aligned with the first droop frequency, which is different for each package
(see Fig. 5.18), with a total on-chip decoupling capacitance of 500nF. This
configuration generates voltage swings large enough to provoke a voltage
emergency for PKG2, and to keep the delay increase less than 1ns for PKG3.

Fig. 5.18 depicts the impedance responses of the 3 distinct packages.
Notice that the ESL parasitics in the package decaps have a massive influence
in the quality of the PDN. The very low inductance of the PKG2 decaps
results in a lower impedance at the first droop and a great voltage noise
mitigation. On the opposite side, the decaps with higher ESL of PKG3
increase the equivalent inductance connected to the chip, resulting in a higher
peak impedance. In practice, PKG3 can be used as a reference in terms of
impedance as if the flip chip interconnection would be replaced by a wire
bonding, which it is known to have higher impedance and to be cheaper [39].

Fig. 5.19 shows the delay increase for the PLL and the different ROC
configurations, taking into account all activity patterns of Fig. 5.4. For the
PLL, it is necessary to cover the deepest droops and to ensure that the delay

100 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

Package 1 Package 2 Package 3
0

200

400

600

800
D

el
ay

 in
cr

ea
se

 in
 c

lo
ck

 p
er

io
d

(p
s)

Vmin
= 0.787

Vmin
= 0.853

Vmin
= 0.671

PLL
ROC (any point)
ROC (center)
4 ROCs
16 ROCs

Figure 5.19: Required margins for the PLL and ROC with the different
package decap parasitics (500nF of on-chip decaps, activity at first droop).

of the critical paths are always shorter than the clock period. The largest
generated droop was -329mV, leading to a performance degradation of up to
84% with PKG3, comparing the delay increase of the PLL (773ns) with the
ROC in the center of the grid (123ns). As seen in Section 5.3.2, ROCs take
advantage of the global characteristics of voltage droops, requiring smaller
margins and achieving higher average performance.

5.5 Discussion
Voltage droops have a great impact in the performance when using rigid
clocks. For this reason, a significant effort must be invested in designing
high-quality PDNs: adding decaps at all levels, reducing the impedance at
each interconnection, considering the frequency response w.r.t. the activity
of the circuit, and using elements with low parasitics and low variability.

Section 5.4 presented different and illustrative configurations of the PDN,
demonstrating how harmful low-quality PDNs can be for PLLs. ROCs pro-
vide a better alternative to tackle power integrity problems without degrading
performance. This section presents a summary of advantages and disadvan-
tages of using ROCs as the clock source.

5.5. Discussion 101

0.9V

1.0V

1.1V

1.2V

Figure 5.20: Power/Performance trade-off for ±10% voltage noise.

5.5.1 Simpler voltage/frequency scaling
ROCs offer instantaneous adaptation to static and dynamic variability. Such
characteristic can be used for a simpler version of dynamic voltage and fre-
quency scaling (DVFS). Differently from the DVFS techniques currently used,
in which both frequency and voltage must be controlled, with ROCs it is pos-
sible to define the performance only with the voltage.

Furthermore, voltage scaling can be used for an improved trade-off of
power/performance [28]. Fig. 5.20 depicts the trade-off between power and
performance for the PLL and the different ROC strategies, with iso-voltage
curves. Notice that ROCs naturally adapt to the process variability, and
voltage scaling can be used after fabrication in order to find the minimum
energy point for the performance required.

5.5.2 EMI reduction
Electromagnetic interference (EMI) is an aspect that must be considered to
comply with the regulations in the application domain. In digital systems,
EMI is mostly produced by the periodic current differences generated by
clock edges.

Several techniques can be used to mitigate electromagnetic radiations.
Shielding is often used to isolate the product from the external world, but
this method has a significant cost.

A less costly approach is the use of spread-spectrum clock generators,
that outspread the energy over a wider bandwidth, reducing peak ampli-

102 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

2.8dB

Figure 5.21: Frequency spectrum comparison of ROC vs. PLL.

tude [44, 52]. This technique consists of inserting intentional jitter to the
clock generator, which implies additional timing margins. The presence of
dynamic variations implicitly injects jitter to the clock period of ROCs. For-
tunately, this jitter does not need to be margined since the period variability
is correlated with the circuit delays. Therefore, a natural spread-spectrum
effect is produced without affecting performance.

The frequency spectrum of a ROC and a PLL are compared in Fig. 5.21.
As expected, the jitter introduced by the ROC produces a spread spectrum
effect, reducing the peak amplitude in 2.8dB. For comparison, [33] reports a
13dB peak reduction for a ±3% spread in their design, which implies a 3%
performance degradation. It is important to bear in mind that these results
are not measured, but simulated. Also, the only source of variability analyzed
is the supply voltage, in a very simple and periodic current profile. Therefore,
the results shown in this section indicate that the EMI reduction can be larger
for real designs using ROCs, with both switching activity randomness and
variability increased. Furthermore, any EMI reduction produced by an ROC
comes for free, i.e., does not degrade performance and does not require any
explicit mechanism to address EMI.

5.5. Discussion 103

5.5.3 Benefits of multiple ROC domains
In a globally asynchronous locally synchronous (GALS) design methodology
with multiple ROC domains, the period of each ROC is defined based on
the critical path within the local clock domain, and not on the global worst-
case. Thus, EMI reduction benefits can be boosted [55], while side-channel
security is also improved. In addition, clock tree synthesis is simpler with
smaller clock domains, whereas power consumption can be minimized with
lower clock frequencies.

5.5.4 Disadvantages
ROCs can surf over deep voltage fluctuations while sustaining an average
performance. This comes at the expense of a clock period with high jitter and
potentially large frequency variations. Systems operating with ROCs must
tolerate these characteristics along the executing time of the applications.

It is difficult to design an ROC with a stable duty cycle, and the duty cycle
cannot be guaranteed. Therefore, this may be a limitation for applications
that require both clock edges, such as double data rate (DDR) memories.
However, a simple solution is to use multiple clock sources, e.g., a PLL with
50% duty cycle for the memory interface, and ROCs for the random logic.

The GALS methodology has an important characteristic: it requires
cross-domain crossing (CDC) techniques to be applied between the different
ROC regions. There are several known techniques that perform CDC [55].
Each technique has its pros and cons, but there is an overhead in area, power
and throughput, independently of the approach defined. Still, for multi-core
or very large chips, the use of multiple clocks is already required [107], and
the use of multiple ROC domains could be applied without additional costs.

104 Chapter 5. Robustness to Voltage Noise with Ring Oscillator Clocks

Chapter 6

Conclusions and Future Work

In this thesis, contributions were proposed for improving power, performance,
area, and cost (PPAC) using established integrated circuit (IC) manufac-
turing technologies. Advances in electronic design automation (EDA) were
investigated in three distinct topics: technology-independent area minimiza-
tion, decomposition and remapping methods for field-programmable gate ar-
rays (FPGAs) based on look-up tables (LUTs), and an adaptive clocking
scheme based on ROCs in order to improve performance and power consump-
tion of digital circuits, and costs on the PDN design. This chapter presents
a summary of the contributions, and provides ideas for future research that
can use the present thesis as basis.

6.1 Summary of the thesis contributions
The first contribution is a technology-independent method for area mini-
mization of combinational logic, based on a multi-output decomposition us-
ing two-literal divisors. An and-inverter graph (AIG) local optimization ap-
proach is implemented, applying multi-output Boolean division on KL-cuts.
The experiments show promising results, with an average node reduction of
7.8% in comparison with highly optimized AIGs. Similar reductions are ob-
served after technology mapping, with area improvements of 5.5% for FPGA
mapping, and 6.2% for standard cells.

The second contribution regards the proposition of two methods targeting
LUT-based FPGAs: a functional decomposition which uses the support size
as cost function, and a recursive remapping. The support-reducing decom-
position produces a subject graph with a structure more suitable to FPGA
mapping. The recursive remapping approach reduces the structural bias of
the circuit, using the actual FPGA mapping result as cost function. The

106 Chapter 6. Conclusions and Future Work

experiments show very promising results. The combination of the proposed
methods improve the FPGA mapping results of a commercial tool for the
MCNC benchmarks, with gains of 28% in delay plus 18% in area when tar-
geting delay, and 28% in area plus 14% in delay with area as cost function.
Average results after physical synthesis show 23% less area and 6% less delay
(or 20% less area and 9% less delay) by using the remapping results as in-
put to the commercial tool instead of the initial descriptions. In comparison
with BoolMap [61], a BDD-based method which takes advantage of another
support-reducing decomposition approach, the present work is able to obtain
18% fewer LUTs and 8% fewer logic levels. Moreover, 12 of the best known
results for delay (and 6 for area) of the EPFL benchmarks are updated.

Power integrity is a major concern due to low supply voltages and high
power density in high-performance circuits. The third contribution consists
of an extensive analysis on the dynamic variability mitigation and simpli-
fication of PDNs using an adaptive clocking scheme based on ROCs. The
analysis shows that ROCs provide a robust clock scheme that tolerates large
fluctuations in the supply voltages. ROCs are a competitive alternative to
the rigid clocks generated by PLLs, with reductions of up to 83% in perfor-
mance margins and up to 27% in leakage power. Notice that the design of
a PDN is an arduous task that must consider the circuit characteristics in
order to deliver high-quality supply voltages. It was shown that the PDN
design constraints can be relaxed, without performance loss, by using an
ROC as the clock source. Tolerance to voltage noise and related benefits
can also be increased with multiple ROC domains. Additionally, with the
increasing importance of the internet of things (IoT), we are facing a future
in which many devices will have to operate in environments with scarce en-
ergy in which scavenging mechanisms will be essential to survive. Providing
reliable supply voltages under these scenarios may be difficult and costly.
ROCs emerge as a potential solution to operate robustly in hostile environ-
ments with low-cost PDNs. Furthermore, considering the use of integrated
circuits in safety-critical applications, the ROCs characteristic of adapting
to undesirable operating conditions may be crucial to support situations of
limited energy or large voltage noise.

6.2 Future work
Scalability is one of the aspects that requires more investigation in the first
contribution. We envision a synthesis system in which smart oracles could
guide the search for divisors based on simple correlation metrics between
functions and divisors. As future work, different types of cuts and combina-

6.2. Future work 107

tions of divisors could be studied. Using other models of flexibility (Boolean
relations) could also be considered. Delay is another important aspect that
is not considered in this work, but could be incorporated by controlling the
number of levels and reducing the resulting circuit delay.

Regarding the second contribution, there are some directions that could
be explored. A partial collapsing approach that uses the FPGA mapping
result as cost function could be investigated. Additional support-reducing
techniques could be incorporated, such as the bi-decomposition methods pro-
posed in [87, 25, 60]. For the recursive collapsing approach, the propagation
of the don’t care conditions could potentially improve the results. Also,
keeping track of the critical paths may allow further area reduction while
obtaining similar delay results.

For the third contribution, actual measurements on an implementation
in FPGA or application specific integrated circuit (ASIC) would be an in-
teresting future research. In that sense, the result of voltage measurements
varying the location and number of ROCs would provide more precise timing
margins, indicating if our simulation-based model analysis is too conservative
or not. Moreover, the analysis of EMI reduction could be performed with
different benchmarks, likely presenting better results.

108 Chapter 6. Conclusions and Future Work

Bibliography

[1] ITRS: International Technology Roadmap for Semiconductors, 2015.
Available at http://www.itrs2.net/itrs-reports.html.

[2] K. Agarwal and S. Nassif. Characterizing process variation in nanome-
ter CMOS. In Proceedings of the Design Automation Conference, pages
396–399. ACM, 2007.

[3] S. B. Akers. Binary decision diagrams. IEEE Transactions on Com-
puters, C-27(6):509–516, 1978.

[4] C. Albrecht. IWLS 2005 benchmarks, 2005. Available at http://iwls.
org/iwls2005/benchmarks.html.

[5] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar. Handbook of algo-
rithms for physical design automation. CRC Press, Boca Raton, FL,
USA, 2008.

[6] L. Amarú, P.-E. Gaillardon, and G. De Micheli. The EPFL combi-
national benchmark suite. In Proceedings of the International Work-
shop on Logic & Synthesis, pages 57–61, 2015. Available at https:
//github.com/lsils/benchmarks.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud
computing. Communications of the ACM, 53(4):50–58, 2010.

[8] R. L. Ashenhurst. The decomposition of switching functions. In Pro-
ceedings of the International Symposium on the Theory of Switching,
pages 74–116, 1957.

[9] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Computer networks, 54(15):2787–2805, 2010.

http://www.itrs2.net/itrs-reports.html
http://iwls.org/iwls2005/benchmarks.html
http://iwls.org/iwls2005/benchmarks.html
https://github.com/lsils/benchmarks
https://github.com/lsils/benchmarks

110 Bibliography

[10] D. Baneres, J. Cortadella, and M. Kishinevsky. Timing-driven N-way
decomposition. In Proceedings of the Great Lakes Symposium on VLSI,
pages 363–368. ACM, 2009.

[11] V. Bertacco and M. Damiani. The disjunctive decomposition of logic
functions. In Proceedings of the International Conference on Computer-
Aided Design, pages 78–82. IEEE Computer Society, 1997.

[12] K. A. Bowman, C. Tokunaga, T. Karnik, V. K. De, and J. W. Tschanz.
A 22 nm all-digital dynamically adaptive clock distribution for sup-
ply voltage droop tolerance. IEEE Journal of Solid-State Circuits,
48(4):907–916, 2013.

[13] R. Brayton and C. McMullen. The decomposition and factorization of
Boolean expressions. In Proceedings of the International Symposium
on Circuits and Systems, pages 49–54, 1982.

[14] R. Brayton and A. Mishchenko. ABC: An academic industrial-strength
verification tool. In Proceedings of the International Conference on
Computer-Aided Verification, pages 24–40, 2010. Available at https:
//github.com/berkeley-abc/abc.

[15] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and
G. D. Hachtel. Logic minimization algorithms for VLSI synthesis.
Kluwer, Norwell, MA, USA, 1984.

[16] F. M. Brown. Boolean reasoning: the logic of Boolean equations.
Springer, New York, NY, USA, 2012.

[17] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, 100(8):677–691, 1986.

[18] V. Callegaro, F. S. Marranghello, M. G. Martins, R. P. Ribas, and A. I.
Reis. Bottom-up disjoint-support decomposition based on cofactor and
Boolean difference analysis. In Proceedings of the IEEE International
Conference on Computer Design, pages 680–687. IEEE, 2015.

[19] R. K. Cavin, P. Lugli, and V. V. Zhirnov. Science and engineering
beyond Moore’s law. Proceedings of the IEEE, 100:1720–1749, 2012.

[20] S. Chatterjee, A. Mishchenko, and R. Brayton. Factor cuts. In Pro-
ceedings of the International Conference on Computer-Aided Design,
pages 143–150. IEEE, 2006.

https://github.com/berkeley-abc/abc
https://github.com/berkeley-abc/abc

Bibliography 111

[21] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam.
Reducing structural bias in technology mapping. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
25(12):2894–2903, 2006.

[22] D. Chen and J. Cong. DAOmap: A depth-optimal area optimization
mapping algorithm for FPGA designs. In Proceedings of the Interna-
tional Conference on Computer-Aided Design, pages 752–759, 2004.

[23] L. Cheng, D. Chen, and M. D. Wong. DDBDD: Delay-driven BDD
synthesis for FPGAs. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 27(7):1203–1213, 2008.

[24] Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei. A quan-
titative analysis on microarchitectures of modern CPU-FPGA plat-
forms. In Proceedings of the Design Automation Conference, pages
109:1–109:6. ACM, 2016.

[25] M. Choudhury and K. Mohanram. Bi-decomposition of large Boolean
functions using blocking edge graphs. In Proceedings of the Interna-
tional Conference on Computer-Aided Design, pages 586–591. IEEE,
2010.

[26] J. Cong and Y. Ding. FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 13(1):1–12, 1994.

[27] J. Cortadella. Timing-driven logic bi-decomposition. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
22(6):675–685, 2003.

[28] J. Cortadella, L. Lavagno, P. López, M. Lupon, A. Moreno, A. Roca,
and S. S. Sapatnekar. Reactive clocks with variability-tracking jitter.
In Proceedings of the International Conference on Computer Design,
pages 511–518. IEEE, 2015.

[29] J. Cortadella, M. Lupon, A. Moreno, A. Roca, and S. S. Sapatnekar.
Ring oscillator clocks and margins. In Proceedings of the International
Symposium on Asynchronous Circuits and Systemshesis, pages 19–26,
2016.

[30] R. Courtland. Gordon Moore: The man whose name means progress.
IEEE Spectrum, 30, 2015.

112 Bibliography

[31] H. A. Curtis. A New Approach to the Design of Switching Circuits. D.
Van Nostrand, Boston, MA, USA, 1962.

[32] M. Damiani and G. De Micheli. Don’t care set specifications in
combinational and synchronous logic circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 12(3):365–
388, 1993.

[33] S. Damphousse, K. Ouici, A. Rizki, and M. Mallinson. All digital
spread spectrum clock generator for EMI reduction. IEEE Journal of
Solid-State Circuits, 42(1):145–150, 2007.

[34] G. De Micheli. Synthesis and optimization of digital circuits. McGraw-
Hill, Inc., New York, NY, USA, 1994.

[35] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. In Pro-
ceedings of International Symposium on Computer Architecture, pages
365–376. IEEE, 2011.

[36] I. Ferain, C. A. Colinge, and J.-P. Colinge. Multigate transistors as the
future of classical metal–oxide–semiconductor field-effect transistors.
Nature, 479:310–316, 2011.

[37] P. Fišer and J. Schmidt. Improving the iterative power of resynthesis.
In Proceedings of the IEEE International Symposium on Design and
Diagnostics of Electronic Circuits & Systems, pages 30–33. IEEE, 2012.

[38] P. Fišer, J. Schmidt, and J. Balcárek. Sources of bias in EDA tools and
its influence. In Proceedings of the International Symposium on Design
and Diagnostics of Electronic Circuits & Systems, pages 258–261, 2014.

[39] A. Fontanelli. System-in-package technology: opportunities and chal-
lenges. In Proceedings of the International Symposium on Quality Elec-
tronic Design, pages 589–593. IEEE, 2008.

[40] M. Fujita, Y. Matsunaga, Y. Tamiya, and K.-C. Chen. Multi-level logic
minimization of large combinational circuits by partitioning. In Logic
Synthesis and Optimization, pages 109–126. Springer, 1993.

[41] M. S. Gupta, J. L. Oatley, R. Joseph, G.-Y. Wei, and D. M. Brooks.
Understanding voltage variations in chip multiprocessors using a dis-
tributed power-delivery network. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 624–629, 2007.

Bibliography 113

[42] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei, and D. Brooks.
Towards a software approach to mitigate voltage emergencies. In Pro-
ceedings of the International Symposium on Low Power Electronics and
Design, pages 123–128, 2007.

[43] M. S. Gupta, V. J. Reddi, G. Holloway, G.-Y. Wei, and D. M. Brooks.
An event-guided approach to reducing voltage noise in processors. In
Proceedings of the Conference on Design, Automation and Test in Eu-
rope, pages 160–165, 2009.

[44] K. B. Hardin, J. T. Fessler, and D. R. Bush. Spread spectrum clock
generation for the reduction of radiated emissions. In Proceedings of
the IEEE International Symposium on Electromagnetic Compatibility,
pages 227–231, 1994.

[45] U. Hinsberger and R. Kolla. Boolean matching for large libraries.
In Proceedings of the Design Automation Conference, pages 206–211.
ACM, 1998.

[46] Y. Hong, P. A. Beerel, J. R. Burch, and K. L. McMillan. Safe BDD
minimization using don’t cares. In Proceedings of the Design Automa-
tion Conference, pages 208–213. ACM, 1997.

[47] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and
T. Prodromakis. Integration of nanoscale memristor synapses in neu-
romorphic computing architectures. Nanotechnology, 24(38):384010,
2013.

[48] Intel Corp. Stratix 10 GX/SX device overview, 2017. Avail-
able at https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf.

[49] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to elim-
inate voltage emergencies in high performance processors. In Proceed-
ings of the International Symposium on High Performance Computer
Architecture, pages 79–90. IEEE, 2003.

[50] D. A. Kamakshi, M. Fojtik, B. Khailany, S. Kudva, Y. Zhou, and B. H.
Calhoun. Modeling and analysis of power supply noise tolerance with
fine-grained gals adaptive clocks. In Proceedings of the International
Symposium on Asynchronous Circuits and Systemshesis, pages 75–82,
2016.

[51] J. S. Kilby. Miniaturized electronic circuits, 1964. US Patent 3,138,743.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf

114 Bibliography

[52] J. Kim, D. G. Kam, P. J. Jun, and J. Kim. Spread spectrum clock
generator with delay cell array to reduce electromagnetic interference.
IEEE Transactions on Electromagnetic Compatibility, 47(4):908–920,
2005.

[53] V. N. Kravets and P. Kudva. Implicit enumeration of structural changes
in circuit optimization. In Proceedings of the Design Automation Con-
ference, pages 438–441. ACM, 2004.

[54] V. N. Kravets and K. A. Sakallah. Constructive library-aware syn-
thesis using symmetries. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 208–215. ACM, 2000.

[55] M. Krstic, E. Grass, F. K. Gürkaynak, and P. Vivet. Globally asyn-
chronous, locally synchronous circuits: Overview and outlook. IEEE
Design & Test of Computers, 24(5):430–441, 2007.

[56] M. Kubica, A. Opara, and D. Kania. Logic synthesis for FPGAs based
on cutting of BDD. Microprocessors and Microsystems, 52:173–187,
2017.

[57] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 26(2):203–215, 2007.

[58] N. Kurd, P. Mosalikanti, M. Neidengard, J. Douglas, and R. Kumar.
Next generation Intel coreTM micro-architecture clocking. IEEE Jour-
nal of Solid-State Circuits, 44(4):1121–1129, 2009.

[59] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436, 2015.

[60] R.-R. Lee, J.-H. R. Jiang, and W.-L. Hung. Bi-decomposing large
Boolean functions via interpolation and satisfiability solving. In Pro-
ceedings of the Design Automation Conference, pages 636–641, 2008.

[61] C. Legl, B. Wurth, and K. Eckl. A Boolean approach to performance-
directed technology mapping for LUT-based FPGA designs. In Pro-
ceedings of the Design Automation Conference, pages 730–733, 1996.

[62] C. Legl, B. Wurth, and K. Eckl. An implicit algorithm for support
minimization during functional decomposition. In Proceedings of the
European conference on Design and Test, pages 412–417. IEEE, 1996.

Bibliography 115

[63] Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric, Y. Sun,
Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, et al. Wafer-scale
graphene integrated circuit. Science, 332(6035):1294–1297, 2011.

[64] M. Litochevski and L. Dongjun. High throughput and low area
AES, 2012. Available at https://opencores.org/project/aes_
highthroughput_lowarea.

[65] G. Liu and Z. Zhang. A parallelized iterative improvement approach to
area optimization for LUT-based technology mapping. In Proceedings
of the International Symposium on Field-Programmable Gate Arrays,
pages 147–156. ACM, 2017.

[66] L. Machado and J. Cortadella. Boolean decomposition for aig opti-
mization. In Proceedings of the Great Lakes Symposium on VLSI, pages
143–148. ACM, 2017.

[67] L. Machado and J. Cortadella. Support-reducing decomposition for
FPGA mapping. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2018.

[68] L. Machado and J. Cortadella. Support-reducing functional decomposi-
tion for FPGA technology mapping. In Proceedings of the International
Workshop on Logic and Synthesis, pages 79–86, 2018.

[69] L. Machado, M. G. A. Martins, V. Callegaro, R. P. Ribas, and A. I.
Reis. KL-cut based digital circuit remapping. In Proceedings of the
IEEE Nordic Microelectronics Event, pages 1–4. IEEE, 2012.

[70] L. Machado, M. G. A. Martins, V. Callegaro, R. P. Ribas, and A. I.
Reis. Iterative remapping respecting timing constraints. In Proceedings
of IEEE Computer Society Annual Symposium on VLSI, pages 236–
241. IEEE, 2013.

[71] L. Machado, A. Roca, and J. Cortadella. Increasing the robustness
of digital circuits with ring oscillator clocks. In Proceedings of the
International Workshop on Resiliency in Embedded Electronic Systems,
pages 29–34, 2017.

[72] L. Machado, A. Roca, and J. Cortadella. Voltage noise analysis with
ring oscillator clocks. In Proceedings of the IEEE Computer Society
Annual Symposium on VLSI, pages 1–6. IEEE, 2017.

https://opencores.org/project/aes_highthroughput_lowarea
https://opencores.org/project/aes_highthroughput_lowarea

116 Bibliography

[73] L. Machado, A. Roca, and J. Cortadella. Robustness to voltage noise
with ring oscillator clocks. IEEE Transactions on Nanotechnology,
2018. (Submitted).

[74] D. MacMillen, R. Camposano, D. Hill, and T. W. Williams. An
industrial view of electronic design automation. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
19(12):1428–1448, 2000.

[75] O. Martinello Jr, F. S. Marques, R. P. Ribas, and A. I. Reis. KL-cuts:
a new approach for logic synthesis targeting multiple output blocks.
In Proceedings of the Conference on Design, Automation and Test in
Europe, pages 777–782. EDAA, 2010.

[76] M. G. Martins, L. Rosa, A. B. Rasmussen, R. P. Ribas, and A. I. Reis.
Boolean factoring with multi-objective goals. In Proceedings of the
International Conference on Computer Design, pages 229–234. IEEE,
2010.

[77] A. Mishchenko. An approach to disjoint-support decomposition of logic
functions, 2001. Technical Report. Portland State University.

[78] A. Mishchenko. Enumeration of irredundant circuit structures. In Pro-
ceedings of the International Workshop on Logic and Synthesis, pages
1–7, 2014.

[79] A. Mishchenko and R. Brayton. Scalable logic synthesis using a simple
circuit structure. In Proceedings of the International Workshop on Logic
and Synthesis, pages 15–22, 2006.

[80] A. Mishchenko, R. Brayton, and S. Chatterjee. Boolean factoring and
decomposition of logic networks. In Proceedings of the International
Conference on Computer-Aided Design, pages 38–44. IEEE, 2008.

[81] A. Mishchenko, R. Brayton, S. Jang, and V. Kravets. Delay opti-
mization using SOP balancing. In Proceedings of the International
Conference on Computer-Aided Design, pages 375–382. IEEE, 2011.

[82] A. Mishchenko, R. Brayton, J. R. Jiang, and S. Jang. Scalable don’t-
care-based logic optimization and resynthesis. ACM Transactions on
Reconfigurable Technology and Systems, 4(4):34, 2011.

Bibliography 117

[83] A. Mishchenko and R. K. Brayton. SAT-based complete don’t-care
computation for network optimization. In Proceedings of the Confer-
ence on Design, Automation and Test in Europe, pages 412–417. IEEE
Computer Society, 2005.

[84] A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-aware AIG rewrit-
ing a fresh look at combinational logic synthesis. In Proceedings of the
Design Automation Conference, pages 532–535. ACM, 2006.

[85] A. Mishchenko, S. Chatterjee, and R. K. Brayton. Improvements to
technology mapping for LUT-based FPGAs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 26(2):240–
253, 2007.

[86] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton. Combinational
and sequential mapping with priority cuts. In Proceedings of the Inter-
national Conference on Computer-Aided Design, pages 354–361, 2007.

[87] A. Mishchenko, B. Steinbach, and M. Perkowski. An algorithm for
bi-decomposition of logic functions. In Proceedings of the Design Au-
tomation Conference, pages 103–108. ACM, 2001.

[88] A. Mishchenko, X. Wang, and T. Kam. A new enhanced constructive
decomposition and mapping algorithm. In Proceedings of the Design
Automation Conference, pages 143–148. ACM, 2003.

[89] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. Brayton, and
M. Chrzanowska-Jeske. Using simulation and satisfiability to compute
flexibilities in boolean networks. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 25(5):743–755, 2006.

[90] N. Modi and J. Cortadella. Boolean decomposition using two-literal di-
visors. In Proceedings of the International Conference on VLSI Design,
pages 765–768. IEEE, 2004.

[91] G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114–117, 1965.

[92] G. E. Moore. Progress in digital integrated electronics. In International
Electron Devices Meeting, pages 11–13, 1975.

[93] S. B. Nasir, S. Gangopadhyay, and A. Raychowdhury. All-digital low-
dropout regulator with adaptive control and reduced dynamic stabil-
ity for digital load circuits. IEEE Transactions on Power Electronics,
31(12):8293–8302, 2016.

118 Bibliography

[94] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, New York, NY, USA, 2010.

[95] P. Pan and C. Lin. A new retiming-based technology mapping al-
gorithm for LUT-based FPGAs. In Proceedings of the International
Symposium on Field-Programmable Gate Arrays, pages 35–42. ACM,
1998.

[96] M. D. Pant, P. Pant, and D. S. Wills. On-chip decoupling capacitor
optimization using architectural level prediction. IEEE Transactions
on VLSI Systems, 10(3):319–326, 2002.

[97] S. Pant and E. Chiprout. Power grid physics and implications for CAD.
In Proceedings of the Design Automation Conference, pages 199–204.
ACM, 2006.

[98] T. Pialis and K. Phang. Analysis of timing jitter in ring oscillators due
to power supply noise. In Proceedings of the International Symposium
on Circuits and Systems, pages 685–688. IEEE, 2003.

[99] M. Popovich, A. V. Mezhiba, and E. G. Friedman. Power Distribution
Networks with On-Chip Decoupling Capacitors. Springer, New York,
NY, USA, 1st edition, 2008.

[100] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, et al.
A reconfigurable fabric for accelerating large-scale datacenter services.
ACM SIGARCH Computer Architecture News, 42(3):13–24, 2014.

[101] V. J. Reddi, M. S. Gupta, G. Holloway, G.-Y. Wei, M. D. Smith, and
D. Brooks. Voltage emergency prediction: Using signatures to reduce
operating margins. In Proceedings of the International Symposium on
High Performance Computer Architecture, pages 18–29, 2009.

[102] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y.
Wei, and D. Brooks. Voltage smoothing: Characterizing and mitigat-
ing voltage noise in production processors via software-guided thread
scheduling. In Proceedings of the International Symposium on Microar-
chitecture, pages 77–88, 2010.

[103] T. Sakurai. A JSSC classic paper: the simple model of CMOS drain
current. IEEE Solid State Circuits Society Newsletter, 9(4):4–5, 2004.

Bibliography 119

[104] H. Savoj and R. Brayton. The use of observability and external don’t
cares for the simplification of multi-level networks. In Proceedings of
the Design Automation Conference, pages 297–301. IEEE, 1990.

[105] H. Sawada, T. Suyama, and A. Nagoya. Logic synthesis for look-up
table based FPGAs using functional decomposition and support mini-
mization. In Proceedings of the International Conference on Computer-
Aided Design, pages 353–358. IEEE, 1995.

[106] C. Scholl. Multi-output functional decomposition with exploitation of
don’t cares. In Proceedings of the Conference on Design, Automation
and Test in Europe, pages 743–748. IEEE, 1998.

[107] K.-D. Schubert, W. Roesner, J. M. Ludden, J. Jackson, J. Buchert,
V. Paruthi, M. Behm, A. Ziv, J. Schumann, C. Meissner, et al. Func-
tional verification of the IBM POWER7 microprocessor and POWER7
multiprocessor systems. IBM Journal of Research and Development,
55(3):10–1, 2011.

[108] W. Shockley. The theory of p-n junctions in semiconductors and p-
n junction transistors. Bell System Technical Journal, 28(3):435–489,
1949.

[109] F. Somenzi. CUDD: CU decision diagram package release 3.0.0. Uni-
versity of Colorado at Boulder, 2015. Available at http://vlsi.
colorado.edu/~fabio/CUDD/.

[110] T. Stanion and C. Sechen. A method for finding good ashenhurst
decompositions and its application to FPGA synthesis. In Proceedings
of the Design Automation Conference, pages 60–64. ACM, 1995.

[111] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel. Capi: A coherent
accelerator processor interface. IBM Journal of Research and Develop-
ment, 59(1):7–1, 2015.

[112] S. M. Sze and K. K. Ng. Physics of semiconductor devices. John Wiley
& Sons, Hoboken, NJ, USA, 3rd edition, 2006.

[113] J. Tschanz, N. S. Kim, S. Dighe, J. Howard, G. Ruhl, S. Vangal,
S. Narendra, Y. Hoskote, H. Wilson, C. Lam, et al. Adaptive frequency
and biasing techniques for tolerance to dynamic temperature-voltage
variations and aging. In Proceedings of the IEEE International Con-
ference on Solid-State Circuits, pages 292–604, 2007.

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

120 Bibliography

[114] N. Vemuri, P. Kalla, and R. Tessier. BDD-based logic synthesis for
LUT-based FPGAs. ACM Transactions on Design Automation of Elec-
tronic Systems, 7(4):501–525, 2002. Available at http://www.ecs.
umass.edu/ece/tessier/rcg/bds-pga-2.0/.

[115] M. M. Waldrop. More than Moore. Nature, 530(7589):144–148, 2016.

[116] L. Wang and A. Almaini. Multilevel logic simplification based on a con-
tainment recursive paradigm. IEE Proceedings Computers and Digital
Techniques, 150(4):218–226, 2003.

[117] K. Wilcox, R. Cole, H. R. Fair III, K. Gillespie, A. Grenat, C. Henrion,
R. Jotwani, S. Kosonocky, B. Munger, S. Naffziger, et al. Steamroller
module and adaptive clocking system in 28 nm CMOS. IEEE Journal
of Solid-State Circuits, 50(1):24–34, 2015.

[118] S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. Von Molnar,
M. Roukes, A. Y. Chtchelkanova, and D. Treger. Spintronics: a spin-
based electronics vision for the future. Science, 294(5546):1488–1495,
2001.

[119] K. L. Wong, T. Rahal-Arabi, M. Ma, and G. Taylor. Enhancing mi-
croprocessor immunity to power supply noise with clock-data compen-
sation. IEEE Journal of Solid-State Circuits, 41(4):749–758, 2006.

[120] Z. Zeng, X. Ye, Z. Feng, and P. Li. Tradeoff analysis and optimization of
power delivery networks with on-chip voltage regulation. In Proceedings
of the Design Automation Conference, pages 831–836. ACM, 2010.

http://www.ecs.umass.edu/ece/tessier/rcg/bds-pga-2.0/
http://www.ecs.umass.edu/ece/tessier/rcg/bds-pga-2.0/

	Abstract
	Acknowledgments
	Contents
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Research motivation and goal
	Contributions of this thesis
	Boolean decomposition using two-literal divisors
	Support-reducing logic decomposition and remapping
	Voltage noise mitigation using ROCs

	Manuscript organization

	Background
	Logic synthesis
	Boolean functions
	Representation of Boolean functions
	Logic decomposition
	Local optimization
	Collapsing
	AIG transformations
	FPGA technology mapping

	Adaptive clocking
	Power Integrity
	Voltage noise
	Ring Oscillator Clocks

	AIG Optimization via Boolean Decomposition
	Motivation
	Overview
	Multi-output Boolean decomposition
	AIG optimization example
	Results obtained via AIG transformations

	AIG optimization approach
	Local optimization using KL-cuts
	Boolean decomposition
	Filters to reduce runtime

	Experimental results

	Support-reducing Decomposition for FPGA Mapping
	Motivation
	Motivating Example
	Support-reducing decomposition
	Cost function
	Essential literals
	One-variable decompositions
	Two-variable decompositions
	Abstraction-based bi-decompositions

	Recursive remapping
	Experimental results
	BDD-based FPGA mapping tools
	20 largest MCNC benchmarks
	EPFL benchmarks
	Remapping of the results from a commercial tool
	SR-map result as input to the commercial tool
	Scalability analysis

	Robustness to Voltage Noise with Ring Oscillator Clocks
	Motivation
	Models and metrics
	PDN model
	Delay model
	Performance Metric

	Voltage locality analysis
	Typical voltage noise
	Worst-case voltage noise

	Relaxing PDN parameters
	On-chip decoupling capacitance
	Power interconnections
	Package decoupling capacitance parasitics

	Discussion
	Simpler voltage/frequency scaling
	EMI reduction
	Benefits of multiple ROC domains
	Disadvantages

	Conclusions and Future Work
	Summary of the thesis contributions
	Future work

	Bibliography

