ABSTRACT INTERPRETATION
TECHNIQUES FOR THE
VERIFICATION OF TIMED SYSTEMS

Dissertation submitted in partial fulfilment of the
requirements for the Degree of Doctor in Computer Science

by

ROBERT CLARISO VILADROSA

PhD Program in Software Barcelona
Dept. de Llenguatges i Sistemes Informatics June 2005
Universitat Politecnica de Catalunya

Contents

Acknowledgements iX
Abstract Xi
1 Introduction 1
1.1 Motivation 1
1.1.1 Formal Verification 1

1.1.2 Timed Circuits 2

1.1.3 Abstract Interpretation 2

1.2 Overview of the Contributions 3

1.3 Organization of the Thesis 4

2 Abstract Interpretation 7
2.1 Introduction 7
22 OVerview 8
221 Notation 8

222 Overall Strategy 9

2.3 Formal definition 11
2.3.1 General Framework 11

2.3.2 Galois Connection 11

2.3.3 Resolution of Fixpoints 13

2.3.4 Extrapolation: Widening and Narrowing 16

2.4 Numerical abstract domains 19
2.4.1 Description of a Numerical Abstract Domain 19

2.4.2 Classification of Numerical Abstract Domains. 21

243 ntervals. 23

2.4.4 Difference Bound Matrices (DBMs) 24

245 Octagons 25

24.6 ConvexPolyhedra 25

2.4.7 Two-variables per Inequality 28

2.4.8 Presburger Arithmetic 29

25 Conclusions 29

ii CONTENTS
3 \Verification of Timed Systems 31
3.1 Introduction 31
3.1.1 Timed and Parametric Timed Systems 31

3.1.2 Asynchronous and Timed Circuits 32

3.2 Timedsystems 33
3.2.1 Specification of Timed Systems 33

3.22 Temporal Logics 36
3.2.3 Analysis of Timed Systems. 38

3.2.4 Parametric Timed Systems 42

3.2.5 Analysis of Parametric Timed Systems 43

3.3 TimedCircuits 46
3.3.1 Introduction 46

332 MetricTiming 51

3.33 Relative Timing(RT) 52

334 ChainConstraints 53

3.3.5 Timed Circuits with Symbolic Delays 53

34 Conclusions 54
4 Verification with Symbolic Delays 55
4.1 Introduction 55
4.2 Formalization of the problem 57
421 BasicNotation, 57

4.2.2 Interaction with the Environment 58

4.2.3 Composing the Implementation and the Specification . . . 60
4.24 Correctness Criterion 62

425 DelayModel 63

4.2.6 Output of the Verification. 66

4.3 Computation of Timing Constraints 69
4.3.1 Overview of the Algorithm 69

4.3.2 Computation of the Untimed State Space 69
4.3.3 Timing Analysis by Abstract Interpretation 74

4.3.4 Propagation of Clock Values 76

4.4 Choice of Timing Constraints 77
45 Experimental Results 79
451 GasPFIFOController 80

4.5.2 Asynchronous Pipeline 81
453 OtherExamples. 81

454 EvaluationoftheResults 82

46 RelatedWork 84
4.7 Conclusions 87

CONTENTS iii
5 The Octahedron Abstract Domain 89
5.1 Introduction 89
5.2 Formal Description of Octahedra 91
5.2.1 Definitions and Properties 91

5.2.2 Computing the Canonical Form 94

5.2.3 Approximations of the Canonical Form 97

5.3 Decision-diagram Based Implementation 99
531 Overview 99

532 Notation 100

533 RelatedWork 103

5.3.4 Abstract Semantics of the Operations 104

5.3.5 ImplementationinOhDD 106

5.4 Bit-vector Based Implementation 108
541 OVerview 108

54.2 Notation 109

5.4.3 Abstract Semantics of the Operations 111

5,5 Experimental Results 115
55.1 Asynchronous Pipeline 115

5.5.2 Asynchronous Controllers 115

56 Conclusions 119

6 Future Work and Applications 121
6.1 Introduction 121
6.2 \Verification of Timed Circuits 122
6.3 The Octahedron Abstract Domain 123
6.3.1 FutureWork 123

6.3.2 Potential Areas of Application 123

6.4 Case Study: Analysis of Petri Net Models 125
6.4.1 Motivation 125

6.4.2 Choice of an Abstract Domain 126

6.4.3 Experiments 127

6.5 Conclusions 128

7 Conclusions 129
A OhDD Algorithms 147

CONTENTS

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8

41
4.2
4.3

4.4
45

4.6
4.7
4.8
4.9
4.10
411
412
413

4.14

Approximating the postcondition of the assignment X := y % 7.
Galois connections
Non-exhaustive hierarchy of numerical abstract domains
Approximating a set of values with several abstract domains
Example of the double description of a convex polyhedron
Operations on convex polyhedra

Modeling the railroad crossing problem with several temporal for-
malisms
A TA with a behavior that depends on the discrete/dense semantics
Representations of timed states
Decision diagrams for the analysis of timed systems
Decision diagrams for the analysis of parametric timed systems . .
Overview of a synchronous circuit.
Anexample of atimed circuit.
Trivial timed circuit example used to illustrate timing constraints. .

The D flip-flopexample
ExampleofaPetriNet.
Example of a STG using (a) the normal Petri Net notation or (b)
the compressed notation for STG.
Inputs of the verification problem
Some classes of errors studied in this chapter: hazards, lack of
conformance and short-circuits.
Effectof delaysinaPTTS
The nowick asynchronous controller
Back edges and reverse DFS postorder

Pseudocode of the algorithm that computes the untimed state space.

Reduction rules for PTTS.
Abstract interpretation algorithm
Clock transfer function
Example of the transfer function for an event e, with the postcon-
dition @) obtained from a precondition P.
The GasP FIFOcontroller

10
12
19
21
26
28

34
37
39
41
46
47
48
49

56
58

59
62

64
67
68
70
71
72
75
7

Vi LIST OF FIGURES
4.15 Asynchronous pipelineexample 82
5.1 Examples of (a) octahedra and (b) non-octahedra over two variables. 91
5.2 Anexample where AN B isnot in canonical form. 93
5.3 Two upper approximations of the union: convex hull (C-hull) and

octahedral hull (O-hull) 94
5.4 Unit inequalities and the system of generators. 95
5.5 Pseudocode to compute the canonical form of an octahedron. . . . 96
5.6 (a) Empty octahedron where the saturation algorithm does not ter-
minate and (b) Non-empty octahedron where the saturated form is
different from the canonical form. 99
57 Anexampleof OhRDD 101
5.8 ReductionrulesforOhDD 102
5.9 Comparison of reduction rulesof ODD. 103
5.10 Comparing DDC,HRDandOhDD 104
5.11 A graphical example of the semantics of a strongest common con-
straint 111
5.12 The desynch controller example 117
5.13 Reachable state space of the GasP FIFO controller considering
the timing constraints computed with (a) octahedra and (b) convex
polyhedra. 118
6.1 Petri Net model of an automated manufacturing system 127
A.1 Pseudocode for the methods that implement the reduction of zero
coefficients with non-negative variables. 150
A.2 Pseudocode for the saturation procedure in the OhDD implemen-
tation. 150
A.3 Pseudocode of one iteration of the saturation procedure in the OhDD
implementation. 151
A.4 Pseudocode of the intersection procedure in the OhDD implemen-

tation 152

List of Tables

2.1
2.2

3.1

41
4.2

51
52
5.3

54

Criteria to classify abstract interpretations 17
Description of several numerical abstract domains. 20
Comparison of several data structures for timing analysis 40
Experimental results 82
Quantifying the relevance of symbolic delays. 83
Summary of unit inequality operations and tests 112
Experimental results in the asynchronous pipeline example. 115
Characteristics of the asynchronous controllers 116

Experimental results for the asynchronous controllers 116

viii LIST OF TABLES

Acknowledgements

A thesis involves lots of work and time. The result cannot be attributed to a single
individual as it is enriched by many contributions from a number of people.

First, I would like to thank my PhD advisor Jordi Cortadella for his advice and
motivation throughout the thesis. | am very grateful to him for many things: for
introducing me to research, for the opportunities that he has provided, for all the
things he has taught me and for leading by example in terms of hard work and
enthusiasm.

I would also like to thank my colleagues of the research group in the Depar-
tament de Llenguatges i Sistemes Informatics at UPC: David Bafieres, Josep Car-
mona, Kyller Gorgonio, Jiangtao Meng, Nilesh Modi, Albert Oliveras and Enric
Rodriguez-Carbonell. It has been a pleasure working with them. They have been
a great source of motivation, ideas, research tips, IATEX tricks and programming
recipes. Even when performing more mundane tasks, such as moving tables around
campus, wearing red shirts with dignity or exploring Indian cuisine, they always
managed to keep their wonderful sense of humor.

During my research, | have had the opportunity to share an office with many
people with different backgrounds: Montserrat Civit, Elisabet Comelles, Gerard
Escudero, Juan Francisco Fernandez, Muntsa Padr6 and Francis Real. The kind-
ness of other people made me feel at home even outside my office: Victoria Arranz,
Jordi Atserias, Mauro Castillo, David Conejero, Montse Cuadros, Jesis Giménez,
Enrique Romero and Lluis Villarejo. | would like to thank all of them for sharing
many good moments and creating that nice and relaxed atmosphere where hard
work is not so hard.

My family deserves all my gratitude for the all their love, support and patience.
Thanks to my parents Ramon and Pilar, and to my brother Ramon. There are no
words to express my gratitude towards my girlfriend Diana: thanks for being there,
for all your love and for all that we share.

Finally, this research would not have been possible without the funding of
several entities. Among them, | would like to acknowledge: the Spanish Min-
istry of Education and Science through the doctoral FPU grant AP2002-3862 and
the CYCIT projects MAVERISH (T1C2001-2476) and GRAMMARS (TIN2004-
07925), Intel Corporation, the Working Group on Asynchronous Circuit Design
(ACID-WG, IST-1999-29119), and the DATE community and the EDA associa-
tion for a travel grant to attend ASPDAC 2004.

ACKNOWLEDGEMENTS

Abstract

In many systems, correctness can be established simply by comparing the re-
sponses to environment events with those described in the specification. However,
in some domains, correctness depends not only on what responses are produced,
but also on when. The specification of such systems, called real-time or simply
timed systems, should incorporate temporal information such as the delays of in-
ternal actions and external events. This concept can be generalized into parametric
timed systems, where the specification may keep part of the temporal information
as parameters of the system. Verifying a parametric timed system consists in deter-
mining the set of acceptable values for these parameters that ensure conformance
to the specification.

In some areas, the designer of a real-time system may have control over part of
its temporal characteristics. Formalizing the system as a parametric timed system
can defer the choice of delays until verification is performed. Then, delay values
can be selected according to the constraints discovered by verification, avoiding
conservative decisions made a priori. A suitable choice of delays may improve the
efficiency of the system, e.g. reducing the latency. An example of such an area of
application is the design of timed circuits, where the behavior may depend on the
delays of the gates and wires of the circuit. Techniques like gate sizing or delay
insertion can be used to control these delays.

The drawback of parametric timed systems is the complexity of the verifica-
tion problem, even harder than that in timed systems. Most formulations of the
verification problem are undecidable. Therefore, verification procedures are either
semi-decision procedures with no guarantee of termination or approximate meth-
ods which may produce inconclusive answers, e.g. ““yes”, “no’ or ““i don’t know”’.
Furthermore, most methods cannot handle problems with more than a few param-
eters.

This thesis addresses the verification of parametric timed systems, with a spe-
cial focus on the domain of timed circuits. The proposed methods are based on the
theory of abstract interpretation. Abstract interpretation is a general framework for
the static analysis of the dynamic behavior of systems, which is used in static anal-
ysis of programs, code optimization and verification among other areas. Using safe
approximation and an extrapolation technique called widening, abstract interpre-
tation manages to analyze infinite state systems with guaranteed termination and
providing conservative results. An important decision is the choice of the type of

Xii ABSTRACT

approximation, what is called the abstract domain. Each abstract domain offers a
trade-off between precision and efficiency. In the context of parametric timed sys-
tems, there are several abstract domains which can manipulate a significant number
of parameters with a reasonable precision. An example is the convex polyhedron
abstract domain, based on linear inequality properties, e.g. (>, ¢ - ; > k),
where ¢; and & are rational constants and x; are numerical variables.

The contributions of this thesis belong to two areas: the verification of timed
systems and the framework of abstract interpretation.

There are several approaches for the verification of timed circuits, using differ-
ent families of timing constraints like metric timing or relative timing. This thesis
presents a methodology based on another type of timing constraints, where gate
delays can be modeled as symbols, and the timing constraints describe restrictions
on the values of those symbols. The constraints discovered by this method offer
several advantages with respect to previous approaches, among others, technology
independence, improved precision and a simple validation procedure. The timing
analysis algorithm is based on linear relation analysis with convex polyhedra. The
entire verification flow has been automated: given a specification and an implemen-
tation of a timed circuit, the tool outputs the timing constraints without any need
for user intervention. Experimental results show the applicability of the technique
to the verification of asynchronous controllers.

Another contribution of this thesis is the description of a new abstract domain,
called octahedron, which can be used to represent and manipulate restricted linear
inequalities of the form (Z?Zl ¢i - x; > k), where z; are numerical variables, k
is a rational constant and the coefficients ¢; can only be {—1,0,+1}. This family
of properties captures accurately the timing constraints that arise in a timed circuit.
Furthermore, this class of constraints is adequate to describe relevant properties in
other static analysis problems.

This thesis characterizes the octahedron abstract domain, presents some the-
oretical results such as the existence of a canonical form, and describes two al-
ternative implementations: one based on decision diagrams, and another based on
bit-vectors. An advantage of these implementations is that they do not rely on
the double description method used in convex polyhedra. As a result, octahedra
achieve important memory gains with respect to convex polyhedra for the verifi-
cation of timed circuits. In the decision diagram implementation, this reduction
comes with a price: a large increase in the CPU time, used to minimize and reduce
the decision diagram. The implementation based on bit-vectors still shows a reduc-
tion of memory while keeping a better trade-off with execution time. In terms of
precision, results show that the precision achieved with octahedra is close to that
of convex polyhedra in the problem under study. All these evidences support the
convenience of using the octahedron abstract domain instead of convex polyhedra
in those problems where it is appropiate.

Chapter 1

Introduction

Let me explain what | do here. | don’t want to confuse you any more
than absolutely necessary.

—Eugene Ormandy

1.1 Motivation

1.1.1 Formal Verification

In the last 20 years, the common trend shared by software and hardware industries
has been an exponential increase in the complexity of designs. Even assuming
very low error rates, complex designs are more prone to errors, that should be
detected before the system is finally implemented. A single undetected error in a
safety-critical application such as a flight-control system, a medical system or a
military system can have catastrofic consequences. In some software systems, the
impact of errors may be reduced by issuing patches or new versions. However, in
many scenarios, such as embedded or hardware systems, correcting an error after
fabrication is costly and sometimes impractical.

Error detection is typically performed through testing and simulation. How-
ever, the main problem of testing is that it cannot cover all possible scenarios.
Typically, there are corner cases that are not covered by the test patterns. Quite
often, errors can happen precisely in those corner cases that were not considered
during the design. Clearly, there are applications for which testing and simulation
is not enough.

Verification is the formal procedure that checks that the behavior of a system
satisfies its specification. The benefits of a formal verification is that all possible
inputs described in the specification are covered in the analysis. In this way, a
system that is successfully verified can be assured to be 100% correct. However,
in order to perform verification one has to deal with a huge number of states that
appear when exploring the possible configurations of a system. Very often, the
number of states grows very quickly with respect to the size of the design. In some

2 CHAPTER 1. INTRODUCTION

cases, the state space may even be infinite. This substantial growth is known as the
state explosion problem. The majority of contributions in the area of verification
deal with theory, algorithms and data structures to overcome the state explosion
problem.

1.1.2 Timed Circuits

In logic synthesis, most circuits are based on a synchronous design style. In this
design style, a periodic signal called clock controls when the evolution of the state:
each period corresponds to a change in the state of the circuit. An advantage of
using a clock signal is that, as long as the period of the clock is long enough, the
behavior of the circuit is independent from the delays of the gates and wires. The
drive for continuous improvement in the field of logic synthesis has guided research
to more aggressive design styles. Goals like reduced power consumption or better
exploitation of concurrency have lead to relaxing the restrictions from synchronous
design. In some design styles, the price to be paid for these improvements is a
behavior that depends on the delays of the elements.

A circuit that relies on timing constraints to ensure its correct operation is called
a timed circuit. Such circuits may be correct or incorrect depending on the delays
of the gates, wires and environment events. The verification of a timed circuit may
consist in checking its correctness, given a complete description of the delays. An-
other version of the problem is the discovery of the necessary timing constraints
given a partial description of the delays. Several types of timing constraints have
been considered, leading to different verification approaches. In any case, the veri-
fication of a timed circuit is much more complex than the verification of an untimed
circuit.

This thesis will study a verification approach for timed circuits where delays
do not need to be fixed in the specification: the verification of timed systems with
symbolic delays. This approach is closely related to the field of verification of
timed and parametric timed systems.

1.1.3 Abstract Interpretation

There are several approaches for the automatic verification of a system. For in-
stance, model checking [56] is an automated technique that, given a model of a
system and a property, checks whether the property holds for a given initial state of
the model. Theorem proving [32] relies on defining the specification and the sys-
tem as logical formulas in a formal logic and checking whether the implementation
implies (or is logically equivalent to) the specification. Abstract interpretation [63]
models the dynamic behavior of a system as a system of equations. The equations
capture an abstraction of the state of system, which contains only the information
relevant to checking the specification.

Concurrent systems can have parameters, internal variables or other elements
whose value can be relevant to the verification. Furthermore, when time is taken

1.2 OVERVIEW OF THE CONTRIBUTIONS 3

into account, clocks, delays, response times and other temporal characteristics in-
fluence the correctness of the system. The verification process requires the study
of the complex numerical properties arising among these variables.

Many verification problems that involve the discovery of numerical properties
are either undecidable or have a very high computational complexity. A good can-
didate to solve this type of problems is the framework of abstract interpretation,
where numerical properties can be studied with different abstract domains. Each
domain encodes a family of properties with a trade-off among precision and effi-
ciency. For instance, the domain of intervals captures the constant lower and upper
bound of a variable, e.g. (—2 < x < 7), and provides operations like intersection
or union which are linear in terms of the number of variables. However, intervals
cannot represent a property like “x is even”. The level of precision can be selected
according to the problem by choosing an adequate abstract domain. Furthermore,
the framework can be extended with new abstract domains that are adapted to a
specific family of properties or problems. In this thesis, a suitable domain for the
verification of timed circuits will be presented.

1.2 Overview of the Contributions

The contributions of this thesis are included in two areas: the verification of timed
circuits and the abstract interpretation framework. Regarding the verification of
timed circuits, a new methodology that produces technology independent timing
constraints has been described. With respect to abstract interpretation, a new ab-
stract domain for the representation of numerical constraints is proposed and two
alternative implementations are described. The latter set of contributions has ap-
plications to the verification of timed circuits, but also to other static analysis prob-
lems involving numerical properties.
More precisely, the contributions of this thesis are the following:

1. A fully automatic methodology for the verification of gate-level timed
circuits, based on abstract interpretation. This methodology describes an
algorithm that automatically generates timing constraints that guarantee the
correctness of a timed circuit with respect to a safety property, e.g. confor-
mance to the specification. In this approach, designers do not need to define
lower and upper delay bounds for the elements of the circuit, something that
is required in most related methods. Instead, the delays of gates and envi-
ronment events are modeled using symbols. The output of our method is a
set of linear inequalities involving these symbolic delays that guarantee the
correctness of the timed circuit.

A summary of the advantages provided by this methodology, which will be
covered in detail within the thesis, is the following:

e The procedure is fully automated.

4 CHAPTER 1. INTRODUCTION

e The output timing constraints produced by the algorithm are technol-
ogy independent, and very easy to validate given specific constant val-
ues for the delays. Furthermore, the output constraints are meaningful,
producing a valuable feedback to the designer.

e The specification can use a mixture of known and symbolic delays. The
degree of parameterization can be chosen by the designer.

e The proposed method provides several benefits with respect to previous
approaches based on symbolic delays, such as the support for a larger
number of symbolic delays.

2. A new numerical abstract domain for abstract interpretation called oc-
tahedron. Octahedra have been specially designed to represent and manip-
ulate the timing constraints that appear in timed circuits. An octahedron is
defined as the intersection of a set of unit inequalities, a class of linear in-
equalities where coefficients are restricted to {—1, 0, +1}. The rationale be-
hind this definition is that most timing constraints are implicitly comparing
the delay of two paths within the circuit, e.g.

Ot 40) = (i1 + - +0n) 2k
delay(path;) delayéathg)

In addition to the description of the abstract domain, two alternative im-
plementations are presented: one based on decision diagrams, and another
based on bit vectors. These implementations show benefits with respect to
convex polyhedra.

The main strengths of this abstract domain are the following

e The octahedron abstract domain can express relational inequality prop-
erties over n variables. Few numerical abstract domains are able to
express properties about an arbitrary number of variables.

e Octahedra achieve important memory gains with respect to convex poly-
hedra for the verification of timed circuits.

e Octahedra can also be applied to other relevant static analysis prob-
lems. There are many analysis where most interesting properties can
be encoded as unit inequalities.

1.3 Organization of the Thesis

The state of the art is covered in Chapters 2 and 3. Chapter 2 introduces the theory
of abstract interpretation. The verification of timed systems, and more precisely, of
timed circuits is addressed in Chapter 3.

The main contributions of these thesis are presented in Chapters 4 and 5.

1.3 ORGANIZATION OF THE THESIS 5

Chapter 4 presents a methodology to verify timed systems where delays need
not be specified. Instead, each delay is represented as a symbol which is a pa-
rameter of the problem. Using abstract interpretation, a set of timing constraints
that guarantee the correctness of the circuit is computed completely automatically.
Each timing constraint is encoded as a linear inequality among symbolic delays.
This chapter proposes the method and shows experimental results.

Chapter 5 describes an efficient representation for the timing constraints that
arise in the analysis of timed systems: the octahedron abstract domain. Two alter-
native implementations of octahedra are described and compared to the previous
approach, based on convex polyhedra. Experimental results provide an evaluation
of the gains achieved with respect to the initially proposed methodology.

Then, Chapter 6 outlines further applications of the work presented in this the-
sis, which constitute future work in the area. The conclusions drawn from the
results of this thesis are considered in Chapter 7.

Additionally, Appendix A presents the algorithms used in the decision diagram
implementation of octahedra.

CHAPTER 1. INTRODUCTION

Chapter 2

Abstract Interpretation

There is no abstract art. You must always start with something. Later
you can remove all traces of reality.

— Pablo Picasso

This chapter presents the theory behind abstract interpretation, a generic ap-
proach for the static analysis of complex systems. Special attention is devoted to
the analysis of numerical properties because of their relevance in the verification of
timed systems and their relationship with the contributions presented in this thesis.

2.1 Introduction

The static analysis of software and hardware systems is usually very complex. Sys-
tems with a small specification may have a very sofisticated dynamic behavior that
is difficult to study. Furthermore, many problems in this context are undecidable,
i.e. no automated procedure with guaranteed termination can solve the problem
completely. In these undecidable problems, only two classes of methods can be
used: exact methods which may not terminate for some problem instances, or ap-
proximate methods which do not solve the problem completely but ensure termi-
nation.

A family of methods that belong to the second category, approximate methods,
is abstract interpretation [63]. Abstract interpretation has many applications in a
wide range of areas, most of them related to the verification and optimization of
software and hardware systems [60, 61]. It can be defined as a general framework
for the static analysis of the dynamic behavior of complex systems. The under-
lying notion in abstract interpretation is that of upper approximation: to provide
an abstraction of a complex behavior with less details. Upper approximations are
conservative in the sense that they can be used to prove safety properties, e.g. “no
errors in the abstraction” means “no errors in the system”. A property about a sys-
tem, such as an invariant, is in some sense an abstraction: it represents all the states

8 CHAPTER 2. ABSTRACT INTERPRETATION

of the system that satisfy the property.

Intuitively, abstract interpretation defines a procedure to compute an upper ap-
proximation for a given behavior of a system. This definition guarantees (a) the
termination of the procedure and (b) that the result is conservative. An important
decision is the choice of the type of upper approximation, what is called the ab-
stract domain. For a given problem, there are typically several abstract domains
available. Each abstract domain provides a different trade-off between precision
(proximity to the exact result) and efficiency.

Section 2.2 presents a quick outline of abstract interpretation with a small ex-
ample. Section 2.3 provides the theoretical background on abstract intepretation.
This background formalizes two important notions: approximation and extrapola-
tion. Approximation is defined through a Galois connection that guarantees con-
servative results, while extrapolation is expressed with a widening operator that
guarantees the termination of the analysis. Finally, Section 2.4 focuses on different
abstract domains that can be used in the analysis of numerical properties.

2.2 Overview

2.2.1 Notation

Abstract interpretation can be applied to the analysis of many types of systems with
different semantics. In the following, we will use a notation which is very close to
software systems.

Each characteristic of the system can be described by a variable. A variable
takes values from a given domain, e.g. a flag variable has values in B, a counter
values has values in N. It is posible to have variables with more complex domains,
e.g. a memory address, a stack of values, ... Variables that take values in N, Z, Q
or R are called numerical variables.

A state is a complete description of the configuration of the system in a given
point in time, i.e. an assignment of values to variables. The behavior of the system
can be described by several rules defining how the state may evolve. A rule may
be defined for example with a guard, the property required to apply the rule, and
several assignments to the variables. Each point of the system where the state is
relevant, i.e. before and after applying a rule, is called location. The location
before a rule is called the precondition, while the location after a rule is called the
postcondition.

A set of locations are labeled as the initial locations, which may have a set
of states called initial states. The evolution of the state of the system, is called
execution or operational semantics. An execution is described as a sequence of
locations beginning with the initial location, together with the state of the system
in each location.

Example 2.1 Let us consider the following program.

2.2 OVERVIEW 9

{Xa}
if (@<2)

{XQ} b:=a*2 {Xg}
else

{X4} b:=8 {X5}
endif
{ X6}

This program has two numerical integer variables, a and b. Each state is an as-
signment of values to these variables, i.e. a point in Z2. The rules defining the
behavior of the system are the statements of the program. There is a location X;
in all the points where the state of the system is relevant: before and after each
statement or guard. In this example, the goal of the analysis is the discovery of a
superset of the possible values of a and b in each location.

2.2.2 Overall Strategy

The analysis of a system often consists in the enumeration of all its possible exe-
cutions. An exact enumeration is difficult, because the set of reachable states may
be very large or even infinite. Instead of an exact analysis, in abstract interpreta-
tion the set of states in each location is abstracted as an upper approximation of
the exact set, i.e. a superset. An upper approximation may be more efficient to
manipulate than the exact set of values.

Example 2.2 Let us consider the postcondition of the following assignment.
X =y %7

Itis possible to represent the values of variable x in several ways. For instance,
the values of x can be approximated using the interval abstract domain [62] as
x € [0, 6]. Another option is the linear congruence equality abstract domain [86],
where the postcondition is approximated as (X —y = 0 mod 7). These represen-
tations are more compact than an explicit enumeration of the values of x, and each
one provides a trade-off between accuracy and efficiency. Figure 2.1 shows both
approximations graphically. The highlighted areas contain all the states described
by each approximation. Note that, while both methods describe upper approxima-
tions of the exact postcondition, each one contains additional states that do not
belong to the postcondition.

The relationship between the precondition and the postcondition of each rule
can be expressed in terms of the abstraction. To achieve this goal, each guard and
assignment is rewritten as a transformation in the abstract domain that preserves
the “upper approximation”.

Example 2.3 Let us recall the program from the Example 2.1. A possible system of
fixpoint equations that approximates the program in the interval abstract domain
is the following:

10 CHAPTER 2. ABSTRACT INTERPRETATION

Y @] y O ,y))
o (o P))
o O o))
O O | -0))
) O ! P))
0] () | ,)‘)))
! N))
e} (0]))))
O O)))
e} o |)))
O O !)))
O O |)))
O O !) O)
|) o)
@])))
@] O?)))
O (ORN)))
@] O 1)))
) O |)))
@] O 1)))
> — >) —_——
X X X
Exact postcondition Intervals Linear congruence equalities
0.0, (1,1), --. { xo [0,61} {x-y =0mod 7 }

©.7, (1.8), --.

Figure 2.1: Approximating the postcondition of the assignment x = y % 7.

(X1} X1 = {a€[-00,+x], b€ [-o00,+x]}
if (a<?2) X2 = X1nN {a€[-c0,2]}
{X2} b:=a*2 {X;} Xs = Xo[b—ax2]
else
{X4} b:=8 {X5} X4 = X1 N {ae[S,—l—oo}}
endif Xs = Xa[b—38]
{Xe} Xe = Xs U Xs

The system of equations describes the program in the abstract domain of in-
tervals. Each operation has a translation in the interval semantics. For instance,
conjunction and disjunction in tests are approximated using the intersection and
union of intervals. Assignments are approximated by establishing the lower and
upper bound of the expression being assigned. Finally, the convergence of execu-
tion paths, e.g. at the end of an if-then-else statement is approximated by the union
of intervals. The solution to this system of equations can be computed by setting
each non-initial location to the empty set of states and applying the equations it-
eratively until a fixpoint is reached, i.e. further applications of the equations do
not change the set of states in any location. This strategy, called increasing chain,
computes the following solution:

Location | Variablea | Variableb Location | Variablea | Variableb
X1 [—00,4+00] | [—o0, +00] X4 [3, +o0], [—o00, 4]
Xo [—00,2] [—00, +00] Xs [3, +o0], 8,8]
X3 [—0,2], [—o0,4] X6 [—o0, +00] [—00, 8]

Several aspects of the abstract interpretation framework have not been fully
covered by this small example. First, the resolution of the system of equations
may be more complex when there are loops. A special operator called widening
must be used in order to guarantee the termination of the algorithm that solves
the system of equations. Also, the system of equations may be written in different

2.3 FORMAL DEFINITION 11

ways, e.g. backward instead of forward equations. Finally, there are many different
abstract domains, which may be much more complex than the one presented in this
example. All these issues will be covered in detail in the remaining of this chapter.

2.3 Formal definition

2.3.1 General Framework

There are several elements to be defined in the abstract interpretation framework:
approximation, resolution of fixpoints and extrapolation.

The concept of approximation defines the relationship between the abstractions
and the states of the system. In abstract interpretation, approximation is defined as
a Galois connection. It is this notion what allows abstract interpretation analysis to
be conservative.

The behavior of the system will be modeled as a set of fixpoint equations.
Several strategies can be used to define and solve this system of equations, e.g.
forward or backward, increasing or decreasing, different orders of evaluation, ...
This approach is the “engine” behind all abstract interpretation analysis.

Extrapolation is required to ensure the termination of the fixpoint analysis in
cyclic systems. Two special operators called widening and narrowing are used to
extrapolate the cyclic behavior. Without them, the termination of abstract inter-
preation methods would not be guaranteeed.

2.3.2 Galois Connection

The states of a system can be considered as elements of a concrete domain C.
On the other hand, the approximate values that are obtained by our analysis are
elements of an abstract domain A. Approximation is defined by a pair of func-
tions, the abstraction function (o« : 2¢ — A) and the concretization function
(v : A — 29) which define the path from sets of concrete values to an abstract
value and vice versa. This pair of functions should ensure safety, i.e. that the
abstract value is always an overapproximation of the concrete values that it repre-
sents. This notion can be formalized as a Galois connection.

Definition 2.1 (Galois connection [65]) Let (C, <) and (A,C) be partially or-
dered domains, called the concrete domain and the abstract domain respectively. A
pair of functions o : 2¢ — A and v : A — 2¢ is a Galois connection if and only
if the following holds:

VX CCO yeA: (a(X)Cy) & (X <A(y))

In this case, « is called the abstraction function and ~ is called the concretization
function.

12 CHAPTER 2. ABSTRACT INTERPRETATION

@ ®)

Figure 2.2: (a) A Galois connection («,). (b) A pair of functions {(«, v) which is
not a Galois connection.

Example 2.4 Let us consider the abstraction («) and concretization (+) functions
used in the interval abstract domain [62]. This domain is used to approximate
the values of a numerical variable. Let us assume that the variable takes integer
values.

The concrete domain C' is the numerical domain Z. The abstract domain A
consists of intervals, pairs of the form [, u| where [is the lower bound and « the
upper bound, i.e. (ZU—o0) x (ZU+o0). There is also an empty interval, noted as
L. Intuitively, each interval abstracts all the values between the lower and upper
bound. The abstraction and concretization functions can be defined as:

Abstraction a@ = L
a(X) = [min X, max X]
Concretization ~(L) = 0
Vhul) = {zeZll<z<u}

The properties stated in the definition of a Galois connection can be stated
informally as “«(X) is the most precise approximation of X and “~(y) is the
set of elements from C that can be soundly approximated as y”. Any approxi-
mation satisfying these properties may lose precision when moving from one do-
main to the other, but it will preserve safety. Formally, this property is stated as
VX CC: X Cy(a(X)).

Example 2.5 Figure 2.2 describes two pairs of functions. The pair depicted in (a)
satisfies the definition of a Galois connection. Moving from the concrete domain
to the abstract domain loses some precision, as some states not included in X are
represented by the abstraction. But in any case, it is safe as all the values from the
original X are faithfully represented in the abstraction. To sum up, X # v(«a(X))
shows approximation while X C ~(a(X)) shows safety.

On the other hand, the pair shown in (b) is not a Galois connection, because
~v(a(X)) is not an overapproximation of X. An analysis that relies on these pairs
of functions will not be conservative, e.g. it may fail to compute all the reachable
states of a system.

2.3 FORMAL DEFINITION 13

2.3.3 Resolution of Fixpoints

The execution of the system can be rewritten as a system of equations defined in
the abstract domain. Abstract intepretation describes a procedure that solves the
system of equations iteratively until a fixpoint is reached [63]. This procedure
can be customized according to different criteria, which will be presented in this
section. Table 2.1 summarizes these criteria.

Direction of the Equations

The concept of forward and backward analysis will be familiar to the readers with
a background on compilers (data-flow analysis). The system of equations can be
written in two directions, forward and backward. Forward equations express the
postcondition of a rule in terms of the precondition. A forward analysis starts
from the initial locations and computes the reachable states iteratively. On the
other hand, backward equations describe the precondition of a rule in terms of the
postcondition. This analysis starts from the final locations and attempts to build a
path towards the initial locations.

Example 2.6 Let us consider a rule consisting on the following assignment:
x (=x + 1

Let us denote the values of x in the precondition as Pre(x) and in the postcondition
as Post(x). In the interval abstract domain, the forward equation and backward
equations for this rule will be:

Forward Post(x) := Pre(x) + [1,1]
Backward Pre(x) := Post(x) — [1,1]

Forward and backward equations may be very different. For example, consider the
forward and backward equations of the following assignment:

x = 3

Forward Post(x) := [3,3]
Backward Pre(x) := [—00,+00]

In the backward equation, the assigment to variable x erases all the information
about x available in the postcondition. This type of assignment is called non-
invertible.

Both systems of equations are somewhat dual, but in some cases they do not
yield the same amount of information, as it is shown in Example 2.6. Intuitively,
backward analysis might be more efficient in problems where a small set of final
states is known a priori and the set of states reachable from the initial set is very
large. An example can be a complex system where a set of errors to be avoided in
known in advance, and the problem consists on checking if the errors are reachable
from the initial states [60].

14 CHAPTER 2. ABSTRACT INTERPRETATION

Target Solution

When two execution paths of the system converge, e.g. after a conditional statement
in a program, the analysis might want to compute a property which covers both
executions (maximal or join solution) or the property which is satisfied by both
paths simultaneously (minimal or meet solution). Intuitively, maximal solutions
compute a property which is a disjunction of the properties satisfied in all paths,
e.g. the set of possible values of a variable. On the other hand, minimal solutions
compute a property which is a conjunction of the properties satisfied in all paths,
e.g. a program terminates only if all execution paths terminate.

Example 2.7 Let us consider a property used in compiler optimization. An assign-
ment is called dead if the value defined by the assignment is not read before being
overwritten by another assignment. For instance,

a:=x
b:=y
if (c#£17)
a:=14+b
b:=7
else
a:=2
b:=9
endif

The assignment (a := x) is dead, because its value is always overwritten before
being read. However, the assignment (b :=y) is not dead, because its value is read
in the statement (a := 14 + b). From this example, it is clear that an assignment is
dead if it is overwritten in all paths of execution after the assignment. An analysis
to discover this type of property requires a minimal (meet) solution.

Direction of the Chains

The system of equations, whether they are forward or backward, will be evaluated
in the same way. For the purpose of our presentation, we will assume a system of
forward equations.

The evaluation of a system of forward equations starts from the initial loca-
tions. Equations are applied iteratively until the fixpoint is reached. But there are
two possible ways in which the fixpoint can be reached, a increasing chain and a
decreasing chain.

An increasing chain initializes all locations except the initial ones with the
empty set of states. Each iteration will try to increase the set of reachable states in
each location. During the iterative resolution of the equations, the set of states in a
location forms an increasing chain:

Solution® C Solution' C ... C Solution® = Solution®t!

2.3 FORMAL DEFINITION 15

where Solution® is the abstract value assigned to a given location in the iterarion
i. The definition of decreasing chain is the dual. Decreasing chains assume that all
states are reachable in each location, except the initial ones. Each iteration will try
to decrease the set of unreachable states in each location, forming the decreasing
chain defined as:

Solution® 3 Solution' 2 ... 3 Solution® = Solution®t!

Again, both types of analysis may provide different results, and each one can be
used to complement the other. For example, an increasing chain can be used to
compute the reachable states, followed by a decreasing chain to remove unreach-
able states from the previous result. This combination may be more precise than
each of the analysis separately.

Example 2.8 Let us consider the following program with a single integer variable
i, which we assume is initialized to zero:

{X1} Y= 0.0

while {X>} (i<2) X, = X1 U Xy
(X3} 0 =i +1 {X4) X3 = X N [-00,2]

endwhile X, = X3 [Z <—i—|—1]

) X5 = Xo N [3,+00]

On the right, there is a system of forward equations that describes the program
in the interval abstract domain. The goal in this example is the study of the possible
values of the variable 7 in each location X 4. The computation that leads to the
fixpoint can be performed using the increasing or the decreasing chain as follows:

Increasing chain Decreasing chain
0 1 2 3 4 0 1 2
X1 || [0,0] | [0,0] | [0,0] | [0,0] | [0,0] [0, 0] [0, 0] [0, 0]
Xo 0 [0,0] | [0,1] | [0,2] | [0,3] || [—o0, 4] | [—00,+00] | [—00,3]
X3 0 [0,0] | [0,1] | [0,2] | [0,2] || [—o0,+0o0] [—00,2] [—o0, 2]
X4 0 [1,1] | [1,2] | [1,3] | [1,3] || [—o0, +00] [—o0, 3] [—00, 3]
X5 0 0 0 0 | [3,3] | [-oo,+o0] | [3,4] 3, 3]

In the first iteration (iteration 0), the initial location is set to the initial value [0, 0].
Other locations are set to the empty interval in the increasing chain, and the uni-
verse interval in the decreasing chain. Each iteration applies the equations se-
quentially, starting from X until X,. The abstract value given to a location X;
in iteration 4, noted as X; is computed using the equation for X ;: the location
on the right-hand side of the equation are replaced by the abstract value known in
the previous iteration, e.g. Xli‘l. After several iterations, the system of equations
converges. Note that each approach obtains a different solution, and also that each
approach requires a different number of iterations to reach the solution.

16 CHAPTER 2. ABSTRACT INTERPRETATION

The computation shown in this example is simplified with respect to the real
algorithm to clarify the presentation. Section 2.3.3 will consider efficient orders
of evaluation of the equations, while Section 2.3.4 will focus on termination in the
presence of iterative behavior such as loops.

Order of Evaluation

The solution of a system of fixpoint equations can be achieved by evaluating the
equations iteratively until the system converges. A good order of evaluation can
accelerate the convergence. The best order of evaluation depends on the character-
istics of the system being studied.

For example, in simple structured functions without goto/break/continue state-
ments and without function calls, a very efficient evaluation strategy can be de-
fined: evaluate the statements of the program in sequence. Whenever a condition
if-then-else is reached, evaluate one branch of the conditional and then evaluate
the other one before continuing. Finally, whenever a loop is found, evaluate the
loop body until it converges before evaluating the following statements. In more
complex systems, such as programs with recursive functions, multi-threaded pro-
grams or programs with goto statements, establishing good evaluation orders is
more complex.

Several methods for choosing good evaluation strategies have been discussed
in the literature [30,44,64]. The basis behind these methods is the concept of topo-
logical order in directed acyclic graphs: an ordering of nodes in the graph such
that each node appears before each of its descendants. In the context of abstract
interpretation, this ordering is good because it propagates the effects of a statement
to its successors naturally. The evaluation orderings for abstract interpretation at-
tempt to find topological-like orderings for the systems of equations, which are
possibly cyclic.

2.3.4 Extrapolation: Widening and Narrowing

Solving the system of equations consists in applying the equations iteratively until
reaching a fixpoint. The fixpoint may be reached through an increasing chain or
a decreasing chain, according to the strategy. However, there is a problem that
may lead to non-termination: the abstract domain may have infinite chains. For
example, an infinite increasing chain is an infinite sequence S of abstract values
such that:

SOQSlgSQEESnQ where VZ':SZ'#SZ‘_;,_l

In the analysis of a system, this type of infinite chains can appear when there is
iterative behavior, e.g. a cycle in an automaton or a loop in a program. Each iter-
ation of this loop may transform the abstract states in such a way that it does not
stabilize.

2.3 FORMAL DEFINITION

17

EQUATIONS Forward equations Backward Equations
Meaning Posti™t = f (Pre?) Prettl = f (Post?)
Origin Initial states Final states
CHAIN Increasing chain Decreasing chain
Meaning “Start from the empty set, “Start from the full set, then
then add reachable states” remove unreachable states”
Initial state Solution® = a(0) Solution® = a(2°)
Invariant Solution’ C Solution'*! Solution'*! C Solution’
Extrapolation Widening (V) Narrowing (A)
GoAL Maximal solution Minimal solution
Meaning “Property holds in some path” | “Property holds in all paths”
Junction U N

Table 2.1: Criteria to classify abstract interpretations

Example 2.9 Let us consider the analysis of the following program using the in-
terval abstract domain. Initially, the value of variable i is known to be between 0

and 1.

{Xa1}

while {X»} (i >0)

{X3} i
endwhile

{Xs5}

+ 1 {X4}

X; = [0,1]

Xy = X1 U Xy
X3 = Xo N [1,400]
Xi = Xali—itl]
X5 = Xo N [00,0]

On the right, the system of equations that computes the forward maximal equa-
tion is described. Using the increasing chain strategy, the following solutions are
computed iteratively:

o | 1] 2 | 3 k
X1 00,1 | [0,1] | [0,1] [0,1] 0,1]
Xo| 0 |[0.1] 0,2 |[0,3] [0, &]
Xs| 0 |12 |3 1, &]
X! 0 |22 23|23 2,k + 1]
X5 0 [0,0] | [0,0] | [0,0] [0, 0]

It is clear that the set of states for the locations X5, X3 and X4 will not converge,
so the analysis will not terminate.

Abstract interpretation introduces an extrapolation operator in order to guaran-
tee termination. This extrapolation operator is called widening (V) for increasing

18 CHAPTER 2. ABSTRACT INTERPRETATION

chains and narrowing (A) for decreasing chains. Intuitively, this operator studies
the changes in the state after one iteration of the loop/cycle and attempts to ex-
trapolate the behavior of the loop from this information, assuming that the same
transformation may occur an infinite number of times. A side effect of the extrap-
olation is that widening accelerates the convergence for systems of equations that
require a large number of iterations to be solved, e.g. the program

for (i = 0;i < 1050 + +) { stmt; }

Definition 2.2 Widening operator [65] A widening operator V is a function V :
A x A — A such that

1. Ve,ye A:x Uy CE xVy

2. for all increasing chains z° T z! T ..., the increasing chain defined as
Y0 =2 ...yttt =iVt is not strictly increasing.

By property (2) of the definition, the widening operator can only be applied a
finite number of times before reaching convergence. Therefore, widening can guar-
antee the convergence of a system of equations. The definition of the narrowing
operator is equivalent, replacing the increasing chain by a decreasing chain.

Example 2.10 Let us reconsider the analysis of the program from Example 2.9,
this time using a widening operator. The widening operator for the interval ab-
stract domain can be defined as:
[a,b] V [c,d] = e, f] where
e = (¢c<a? -0 :a)
f = (d>b7 400 : b)

The system of equations using the widening operator and the abstract values
computed in each location are the following:

Xy = [0,1] 0 1 2 3
Xo = X, V(X1 U Xy) Xi | [0,3]][0,1] [0,1] [0, 1]
X; = Xo N [1,400] ;(2 g {0,1} P),%—oo} {O,—Foo%
. . 1,1 1,400 1,400
Xoo= Xgli—itl] %l oo |29 2 1o | 2t
X5 = Xp N [-00,0] Xs| 0 |00 | [0,0] [0,0]

Notice that this time the analysis terminates after only 3 iterations. The crucial
point of this computation is the location X5 in the second iteration. This location
is computed as:

X = X V(X1 U X))
U

I
5
+
8

2.4 NUMERICAL ABSTRACT DOMAINS 19

Signs
NON - RELATIONAL L
Intervals Simple congruences
DBMs Clocked Ellipsoid
WEAKLY RELATIONAL: \ /
2 VARIABLES ,/Octagoix Numerical powers
2-variables per inequality Octahedra Linear congruences
Convex polyhedra =———— Linear equalities Trapezoid congruences
RELATIONAL:
N VARIABLES
Presburger arithmetic Polynomial equalities

Figure 2.3: Non-exhaustive hierarchy of numerical abstract domains. An arrow
between two domains X — Y denotes that X is a subset of Y, i.e. Y is more
expressive.

Notice that the widening operator has detected that each iteration of the loop may
increase the value of i , and extrapolates that it could happen an infinite number of
times. This extrapolation may be too conservative, but it ensures the termination
of the analysis.

Widening operators may cause an important loss of precision in the analysis of
a system. There are several strategies to reduce this loss of precision. The first strat-
egy is the delayed widening [59]. This strategy uses the union operator U instead
of the widening V for a constant number of iterations. If the fixpoint is not reached
during these iterations, then the operator is switched to the widening. Another
strategy is the widening with thresholds [62, 89]: define a finite set of thresholds
that represent candidate properties that might hold after the widening. Instead of
extrapolating the bounds up to infinity directly, the widening extrapolates up to the
next threshold. When no more thresholds are available, the extrapolation proceeds
up to infinity. In the context of a specific abstract domain, convex polyhedra, there
is also additional work on more precise widening operators [16].

2.4 Numerical abstract domains

2.4.1 Description of a Numerical Abstract Domain

A very active field of study in abstract interpretation is the definition of efficient
abstract domains. Each problem requires discovering a different family of proper-
ties about a system, e.g. worst-case execution time, values of variables, ... Itis
possible to design customized abstract domains which are well-suited to discover

20 CHAPTER 2. ABSTRACT INTERPRETATION

Abstraction Citation Properties
Inequalities Signs [63] reEx
Intervals [62] 0<z<3
DBMs [72,113] r—y<4
Octagons [114] r+y <2
2-vars per inequality [144] 3r+2y<4
Octahedra Chapter 5 r+y—2z<7T
Convex polyhedra [66] 20 +9y +32 <6
Presburger arithmetic [38] Ve:(z+1<5)V(z>1)
Equalities Linear equalities [101] 3z +6y—2z=14
Polynomial equalities [117,137,141] 422 + 20y + 53 =7
Congruences Simple congruence [85] z = 2 mod 11
Linear congruence [86] dr —2y+32z = 4 mod 7
Trapezohedral congruence [109] Tr —y+ 2z € [2,3] mod 17

Table 2.2: Description of several numerical abstract domains.

the necessary properties in a given problem. The design of this abstract domain
must take into account the trade-off between precision and efficiency.

As abstract interpretation has been applied in many different areas and prob-
lems, there are many abstract domains in the literature. For instance, there are
abstract domains to represent properties as complex as type information, the con-
tents of a cache memory [1] or alias information [57, 69, 128], i.e. the addresses
stored in the pointers of a program. However, a field where abstract interpretation
is specially successful is the analysis of numerical properties. Numerical prop-
erties have been studied in a large group of problems such as the verification of
real-time systems [71,91], the verification of software programs [26, 29, 66, 114],
or the study of data-dependences in array accesses [85, 86, 109].

The description of a numerical abstract domain consists of a Galois connection,
a data structure and the abstract operators required to approximate the behavior of
the program. Some examples of the required abstract operators are intersection,
union, widening, and assignments.

The abstraction and concretization function that form the Galois connection
can be characterized intuitively as follows. The concrete values are the states of
the system. Each state of a system with n variables over the numerical domain
D (which can be N, Z, Q or R) can be seen as a point in D™. A set of states
S is a subset of D™, i.e. .S C D™. On the other hand, the abstract domain is a
family of properties P : D™ — {true, false}, e.g. intervals. Each abstract value
is a specific property P from the family F', e.g. = € [—1,4]. The meaning of the
abstraction («) and concretization (+) functions is therefore:

Abstraction a(0) = false
a(X) = “strongest property P € F satisfied by X”
Concretization ~(false) =
v(P) = {xze€D"|P(x)=true}

The ordering relation < used in the concrete domain is typically the inclusion (<),
ed. (X <Y) < (X CY). Meanwhile, the semantics of the ordering relation in

2.4 NUMERICAL ABSTRACT DOMAINS 21

y y y y
7777777 o} o o o)
o ! /o'/ Q/ ‘\\\ /,o// o
”T”]‘—>x . T T X - T T X o T T X < T T X
Interval Octagon Convex Polynomial equality Pol. equality
polyhedron of degree 2 of degree 3
Interval Octagon Convex Polynomial equalities | Polynomial equalities
polyhedron of degree < 2 of degree < 3
0<z<2| 0<z<2 y—x>0 y = x? y = z?
0<y<4|0<y—z<2|z—-2y>0 z-(x—=1)-(x—2)=0
3r—y <2

Figure 2.4: Approximating a set of values (top left) with several abstract domains.
With only two variables, octahedra are equivalent to octagons, and convex polyhe-
dra are equivalent to the two-variable per inequality domain.

the abstract domain (C) is usually based on the implication, (P C Q) < (P —
Q)

The definition of the data structures and the algorithms will be detailed in the
following sections. The presentation will emphasize previous work on the design
of numerical abstract domains based on inequality properties, in order to motivate
the contribution presented in Chapter 5: a numerical abstract domain that captures
properties of the form (£z; +... £z, < k), i.e. inequalities on the sum sum and
difference of an arbitrary number of variables.

2.4.2 Classification of Numerical Abstract Domains

Figure 2.3 shows a non-exhaustive classification of numerical abstract domains.
We have chosen three criteria to classify the differences among the abstract do-
mains. These criteria are the following:

e The family of properties encoded in the abstract domain, e.g. congruences
(x = 2mod9), equalities (x = 7) or inequalities (x < 9).

e The number of variables that appear in each property, €.g. at most one vari-
able (z € [7, 8]), at most two variables (x—y < 6) or any number of variables
(3z — 2y + z < 0). Domains which only encode properties about a variable
are called non-relational. Other domains that can encode properties about
any number of variables are called relational, while domains that can only
manipulate properties about a subset of variables at a time are called weakly
relational.

e The type of expressions that appear in the properties, e.g. only differences
(x —y = 2), sums and differences (x + y = 6), linear expressions (2z —

22 CHAPTER 2. ABSTRACT INTERPRETATION

3y = 4), polynomial expressions (322 — 2y = 4) or exponential expressions
(x = 2Y).

Each abstract domain has a different degree of expressiveness. Some abstract
domains are more expressive than others, e.g. a property stated in the domain A can
always be expressed in the domain B without loss of precision. This relationship
is depicted in Figure 2.3 producing a hierarchy. Domains which appear higher
in the hierarchy are less precise but potentially more efficient. Figure 2.4 depicts
graphically several abstract domains of this hierarchy. The shaded areas correspond
to the states represented by the abstract value. Notice that some abstractions are
strictly more precise than others.

Inequalities, Equalities and Congruences

Inequality abstract domains are based on computing bounds on the values of vari-
ables. Due to efficiency reasons, most of these domains compute envelopes which
are convey, i.e. any segment between a pair of internal points will also be contained
by the envelope. As the union of convex objects is not convex in general, there is
some degree of approximation in the union operation. The information provided
by inequality domains has been used to remove out-of-bound checks in arrays and
detect out-of-bound checks at compile-time; to detect arithmetic overflow or un-
derflow; to detect the outcome of loops or conditional statements at compile-time;
and also to detect arithmetic run-time errors such as “division by zero”.

Equality based abstract domains keep track of (and combine) the explicit infor-
mation that appears in the assignments and guards of the system. A trivial example
of application of this information is the constant propagation used in code op-
timization, i.e. detect when the value of a variable is constant in a point of the
program. However, more sofisticated analysis can produce invariants which can be
used to verify complex algorithms [117, 137].

Congruence abstractions provide information based on congruence relations.
There are several types of analysis, each providing a different level of granularity.
Information on congruence relations is used mainly for the analysis of memory
accesses and data dependencies. For example, congruence relations can be use to
decide whether two instructions are accessing the same position in an array. Then, a
compiler can use this information for scheduling, loop parallelization or reordering
of loops.

Non-Relational vs. Relational Domains

Regarding the number of variables appearing in each property, the different cate-
gories reflect clearly the trade-off between precision and efficiency. Non-relational
domains can only describe properties about individual variables, i.e. for each vari-
able a subset of D is characterized while the relationship with other variables is
ignored. For example, a non-relational domain may describe the upper and lower

2.4 NUMERICAL ABSTRACT DOMAINS 23

bound of the variable, or the value modulo a fixed constant. Notice that these ab-
stract domains cannot express that the value of variable depends on the value of
another variable. For instance, they cannot represent the fact that a variable x al-
ways has the same value as variable y. Conversely, relational domains can describe
relations between several variables, e.g. x is greater than .

The advantage of non-relational domains is their low computational complex-
ity. In general, their complexity is O(n), linear in the number of variables in the
worst case. On the other hand, relational domains have a higher complexity be-
cause they consider the relationships between variables. An important factor in
this complexity is the number of variables that can appear in each property relating
several variables. Domains that handle relations between pairs of variables may
potentially find O(n?) such properties, while handling triples of variables may dis-
cover O(n3) properties,and so on. It follows that domains where all the variables
can appear inside a property are likely to have exponential complexity. Thus, sev-
eral abstract domains limit the properties being represented to pairs of variables, in
order to achieve a good polynomial complexity. This domains are called weakly
relational.

Types of Expressions

In relational abstract domains, the type of expressions that are supported reflects
again the trade-off between precision and efficiency. Limiting the complexity of
the expressions can improve the efficiency of the analysis.

Allowing only differences of variables or sums and differences reduces the
number of coefficients that may appear in each variable. This sets an upper bound
on the number of possible expressions, something that may help in the definition
and implementation of the operations. On the other hand, linear expressions are
also popular due the frequency in which they appear and the availability of effi-
cient algorithms to deal with linear properties, e.g. linear programming. More
complex expressions such as polynomials are very expressive, but the mathematic
algorithms dealing with these properties quickly become prohibitive because of
their complexity.

Other abstract domains attempt to compute a very specialized family of prop-
erties which is relevant in a concrete class of problems or systems. Some examples
of these custom abstract domains are the clocked domain [26], the ellipsoid do-
main [26] or the numerical powers domain [110].

2.4.3 Intervals

Intervals are a representation for constraints on the upper or lower bound of a single
variable, e.g. x € [2,7]. Interval analysis is very popular due to its simplicity
and efficiency: an interval abstract domain for n variables requires at most O(n)
memory, and all operations require at most O(n) time. Efficient implementations

24 CHAPTER 2. ABSTRACT INTERPRETATION

of this abstract domain may share information among different locations to reduce
the complexity below 0(n) [26].

Another strength of interval analysis is the possibility to find precise overap-
proximations of complex operations such as divisions, products, modulos, ... For
example, the following approximations can be used:

[2,3] % [5,11] < [10,33]
[3,10] div [7,14] < 0,1]
[1,2] mod [3,4] < [1,2]

However, intervals cannot represent non-trivial symbolic relations. For exam-
ple, if z € [0,2] and y € [0, 2], « and y can be equal, but we do not know if they
are. On the other hand, sometimes trivial symbolic relations can be inferred from
the upper and lower bounds: if z € [5,7] and y € [2, 3] we know that =z > y for
any value of x and y.

2.4.4 Difference Bound Matrices (DBMs)

The Difference Bound Matrix (DBM) is a data structure proposed for the study of
timed systems [72]. However, it can also be used as an abstract domain [113].
A DBM stores a conjunction of lower and upper bounds on variables and the
difference between pairs of variables. The implementation of a DBM is a two-
dimensional matrix M where each cell M][i,j] = k represents the constraint
(x; —x; < k). The variable x encodes the constant 0, so the lower and up-
per bound of a variable (k; < x; < ky) are represented as (zg — x; < —ky) and
(x; — zp < ko) respectively.

Example 2.11 A constraint of the form (z1 < 7) A (x2 > 3) A (x1 — 22 < 4)
can be encoded as the following DBM:

xo x1 xo | Notice that the diagonal of the matrix is full of ze-

xo0| 0 oo —3| rosas (z; —x; < 0). Also, there are several un-
x1| 7 0 4 known bounds in the matrix, that are encoded as
o

o 0 (z; — x5 < 00).

X2

DBMs have a canonical form which can be obtained using Floyd’s all-pair
shortest path algorithm in O(n3) time for a DBM with n variables, or O(n?) if the
canonical form is computed incrementally. Regarding other operations, the empti-
ness test is O(n3) while the intersection, the union, the widening or the inclusion
test are O(n?). For example, the intersection of two DBMs M; and Mj is simply
another DBM where each cell contains the minimum from the two operands, i.e.
M[Zhj] = min(Ml[iij My [17.7])

The memory required by a DBM is at most O(n?). Furthermore, it is possible
to provide a minimal constraint representation [104] where redundant constraints

2.4 NUMERICAL ABSTRACT DOMAINS 25

are removed, e.g. constraints with a coefficient co. This representation can achieve
important memory savings with a small time overhead.

Even though this abstract domain is very efficient, it is not very precise. It
can represent some symbolic properties, e.g. (z = y), even if the value of the
variables is unknown. However, there is a loss of precision because there is no way
to express constraints on the sum of variables.

2.4.5 Octagons

The domain of octagons [114] is an extension of the DBM abstract domain. In
addition to the DBM constraints, octagons can encode bounds on the sum of pairs
of variables, i.e. (k1 <z <ko)and (ky1 <z —y <k9)and (k1 <z +y < ko).
The name “octagon” is chosen because in a system with two variables, octagons
can represent at most eight constraints.

Given a set of n variables, the implementation of an octagon is a DBM-like
matrix with 2n variables. Each original variable x; is divided into two variables,
z} and z, encoding the values of (+z) and (—z) respectively. In this context,
some constraints appear in two cells of the matrix, e.g. (z; + z2 < 8) can be
expressed as M [z}, x5] =8 or M[z],z]] = 8.

Example 2.12 A constraint like (z1 < 7) A (2 >3) A (x1—22<4) A (z1+
x9 < 8) can be encoded as the following octagon:

F o= ot e
- X01 };11 X42 X82 Again, the diagonal of the matrix is
X1 0 full of zeros. Also, notice the re-
X1 | °o 0 dundancy that appears because some
x5 | oo 8 0 o . .
2 constraints are encoded twice.
Xg |00 4 -6 0

Regarding complexity, the operations on octagons have the same asymptotic
complexity as in DBMs. The canonical form of octagons is computable in O(n?)
time, or O(n?) if it is computed incrementally. Operations are again between
O(n?) for the test of inclusion and O(n?) for other operations. The memory usage
has grown from (n + 1)2 to 4n2, but a clever encoding can avoid storing redundant
cells. The minimal constraint representation used in DBMs can also be used to
reduce the memory required to store an octagon.

Regarding precision, there is a loss of precision whenever there is an assign-
ment of the form (X := K xy) or (X := y+2z). Also, it is not possible to represent
symbolic constraints involving three or more variables. These problems are inher-
ent to the family of constraints that can be represented with this abstraction.

2.4.6 Convex Polyhedra

A linear inequality is an expression of the form (3. ¢; - #; < k), where ¢; and
k are constants in Q, e.g (3xz + 2y — z < 7). Convex polyhedra [66, 91] are

26 CHAPTER 2. ABSTRACT INTERPRETATION

an efficient representation for systems of linear inequalities. This abstract domain
is very popular due to the ability to express powerful constraints. However, this
precision comes with a very high complexity overhead.

Convex polyhedra can be represented as the set of solutions of a conjunction
of linear inequalities with rational coefficients. Let P be a polyhedron over Q",
then it can be represented as the solution to the system of m inequalities P =
{X]AX > B} where A € Q™*™ and B € Q™. Convex polyhedra can also be
represented in a polar representation, called the system of generators, as a linear
combination of a set of vertices V' (points) and a set of rays R (vectors). The fact
that there are two representations is important, because several of the operations
for convex polyhedra are computed very efficiently when the proper representation
of polyhedra is available. Figure 2.5 shows an example of a convex polyhedron
and its double description.

There is a procedure that translates from one representation into the other. This
procedure was described in [45], and further improved in [79, 152]. Given a sys-
tem of ¢ constraints over Q", the computation of the dual representation requires
O(cl31) time. The size of the representation can also grow exponentially with this
translation, e.g. an hypercube in n-dimensions is defined by 2n constraints but it
has 2™ vertices. The worst case is achieved by cyclic polytopes, which have up to
O(ct2]) vertices with a system of inequalities with ¢ constraints.

As any operation on convex polyhedra may require a conversion from one rep-
resentation to the other, all operations have a cost which is exponential with respect
to the number of variables n, both in terms of time and memory. Although there
is no known way of avoiding the exponential complexity, several strategies can be
used to improve the efficiency of the double-description method. A usual technique
is lazy conversion, a strategy performed in some libraries such as in [17,99] that
attempts to minimize the number of conversions between representations. In lazy
conversion, a dual representation is not computed unless it is required to perform an
operation. Therefore, a sequence of operations that require the same representation
does not need to perform any conversion at all. Another approach, called cartesian
factoring [90], consists in partitioning the set of variables 1 of the polyhedra into
disjoint subsets of variables V7, ... , Vj, such that there are no constraints among
variables of different subsets. A polyhedron P is encoded as a set of polyhedra

System of generators

y
) P={\-(3,3)+X-(3,2) +p1-(1,1) + o - (1,0) |
o P A >0,A2>0,01 > 0,0 >0,A1 + Ay =1}
(3:2)
.0 X System of constraints

>

T T T TT

P={(z,y)[(y=2)N(z=3)A(z—-y=0)}

Figure 2.5: An example of a convex polyhedron (shaded area) and its double de-
scription

2.4 NUMERICAL ABSTRACT DOMAINS 27

Py, ..., P, where each P; is a convex polyhedra over the variables in V;. For
instance, in a convex polyhedron (z + 2y < 3) A (3z — 4t < 5), the sets
{z,y} and {z,t} are unrelated. Therefore, the original polyhedra over the vari-
ables {z,y, z, t} can be encoded by the pair of polyhedra (x4 2y < 3) over {z,y}
and (z + 4t < 5) over {z,¢}. This approach can reduce the number of variables
in each polyhedron, therefore reducing the impact of the exponential complexity.
However, its effectiveness depends on the existence of unrelated sets of variables.

The set of operations on convex polyhedra that are required for abstract inter-
pretation are the following:

e Test for inclusion (P C @Q): Inclusion is an exact operation. P is included
in @ only if the generators of P satisfy the constraints of), that is, Vv €
V:Av>BandVr € R: Ar > 0.

e Union (P U Q)): The union of convex polyhedra is not necessarily convex,
and therefore an upper approximation is used. This approximation is called
convex hull, the least convex polyhedron that includes P and Q. P U Q is
defined as the polyhedron with a system of generators that is the union of
those in P and Q.

e Intersection (PN @Q): The intersection of two convex polyhedra is necessar-
ily convex. P N @ can be defined as the polyhedron with a system of linear
inequalities that contains all the inequalities in P and Q.

e Widening (PV(Q): Widening is the approximate operator used to guaran-
tee termination in loops. The widening operator must ensure that there are
no infinite ascending chains. PV can be defined as the system of linear
inequalities which are satisfied both by P and Q. As the number of inequal-
ities in P and @ is finite and this operator can only reduce or maintain the
number of inequalities, termination in a finite number of steps is ensured.
More complex definitions of the widening operator may achieve a greater
degree of precision [16,59, 89].

e Quantifier elimination (P[abstract x]): this operation removes all the con-
straints about a given variable of the polyhedron, while keeping all the im-
plicit constraints about the rest of variables intact. This operation is imple-
mented with the Fourier-Motzkin elimination [67] method, i.e. we update
the system of inequalities as follows: First, we add all the possible linear
combinations of inequalities with non-zero coefficient in x so the coefficient
in 2 becomes zero. For m inequalities, at most (1m,/2)? linear combinations
will be added to the system of inequalities. Then, inequalities where dimen-
sion d has non-zero coefficient are removed.

Figure 2.6 shows some examples of these operations on convex polyhedra.
It should be noted that the convex hull and the widening operator are the only
operators that lose precision. All other operators are exact. Non-linear guards and

28 CHAPTER 2. ABSTRACT INTERPRETATION

y y

PUQ

Y

(@ (b)

y y P[abstract x]

X Ply:=0] X

\J
\

(c) (d)

Figure 2.6: Several operations on convex polyhedra: (a) intersection of polyhe-
dra, (b) union of polyhedra as the convex hull, (c) widening of polyhedra and (d)
assignment of a linear expression and quantifier elimination.

assignments such as x := y * z are another source of approximation. Typically,
non-linear properties are abstracted in some form that can be represented in the
convex polyhedra domain such as intervals, e.g. = := y x y becomes z « [0, +00].

2.4.7 Two-variables per Inequality

The domain of two-variables per linear inequality was proposed [144] to improve
the precision provided by octagons without the complexity of convex polyhedra.
This abstract domain encodes a conjunction of linear inequalities with at most two
variables, e.g. (2z + 3y < 3). Instead of working with a single polyhedra of n di-

mensions, this abstract domain works with the w projections of the polyhedra
onto each pair of dimensions.

The advantage of the two-variable limit with respect to convex polyhedra lies
in the convex hull operation. The convex hull of m two-dimensional points can
be solved in O(mlogm) time, contrary to the exponential complexity of the same
problem in n dimensions, O(m!2J*1). Moreover, the widening operation sets
a constant limit in the number of inequalities that can be stored simultaneously
about each pair of dimensions. As a result, there are polynomial time algorithms to
perform the operations in this abstract domain. For instance, the closure algorithm
that propagates constraints among two-dimension pairs (equivalent to the canonical
form computation in DBMs) has a complexity O(n?log? n).

2.5 CONCLUSIONS 29

2.4.8 Presburger Arithmetic

Presburger arithmetic is the first-order theory of the integers with addition. A
Presburger formula may include conjunctions, disjunctions and negations of linear
inequalities over quantified and free variables, e.g. 3z : (3z4+y = 7)V(z—y < 8).
Nevertheless, it cannot include expressions involving products among variables,
e.g (z%y = 4), or any related operators, e.g. division, modulo and power. Due to
this restriction, the validity of Presburger formulas is decidable.

Presburger arithmetic has been used extensively to analyze infinite-state sys-
tems outside the abstract interpretation framework, e.g. the Omega library [130,
136]. Its use within the framework has also been proposed with the definition of a
widening operator [38, 39].

Contrary to most abstract domains that can manipulate inequalities, Presburger
arithmetic can represent non-convex regions without a loss of precision. Therefore,
the union operator is exact in this abstract domain. The drawback to this expressive
power is the worst-case complexity of the satisfiability algorithm. For a formula
of length n, this complexity can be characterized as O(222n) [131] or 22" for
some constant ¢ [80]. Even though the worst-case complexity is prohibitive, the
complexity in practical examples appears to be tolerable [11, 38].

2.5 Conclusions

Abstract interpretation is a framework for the static analysis of complex systems.
In this framework, undecidibility is addressed using abstraction. As a result, the
analysis is guaranteed to terminate while the discovered properties are approximate
but conservative.

The problems studied in this thesis, the verification of timed systems and infinite-
state concurrent systems, are suitable for abstract interpretation analysis. Some
reasons why abstract interpretation is appropiate are the following:

e Theory: there is a strong theory behind abstract interpretation which ensures
the validity of the results obtained with abstract interpretation techniques.

e Automation: Analysis based on abstract interpretation are guaranteed to ter-
minate by the underlying theory. Therefore, abstract interpretation analysis
can be fully automated.

e Analysis of numerical constraints: Abstract interpretation is well-suited for
the discovery of properties on numerical variables. In the area of static anal-
ysis, there are several known techniques based on abstract interpretation that
analyze numerical properties of the variables of a program (see Section 2.4).

o Trade-off between precision and efficiency: Abstract interpretation provides
a generic framework of analysis. Many different abstract domains can be
used to represent the states of a system, each of which provides a different

30 CHAPTER 2. ABSTRACT INTERPRETATION

trade-off between precision and efficiency. For a specific problem, one can
select the abstraction with the best trade-off, i.e. the most efficient abstrac-
tion with the sufficient precision.

e Extensibility: New abstract domains can be “plugged” into the framework of
abstract interpretation very easily. Hence, it is possible to build customized
abstract domains which are very efficient for a specific problem or a specific
class of systems.

The definitions provided in this chapter will be used throughout the rest of
the thesis. Precisely, Chapter 4 presents a methodology for the analysis of timed
systems with symbolic delays which is based on abstract interpretation. Chapter 5
presents another contribution of the thesis, a new numerical abstract domain called
octahedra.

Chapter 3

Verification of Timed Systems

It is possible to fail in many ways, while to succeed is possible in only
one way.

—Avristotle

This chapter presents related work on the verification of timed systems. The
first section is devoted to the modeling and verification of timed systems in general.
The second section is devoted to the verification of a special class of timed systems:
timed circuits. This previous work is closely related to the contributions presented
in Chapter 4.

3.1 Introduction

The correctness of a system can be studied in terms of its inputs, outputs and in-
ternal events. In many domains, correctness depends on what events occur and the
relationship between them, e.g. “input X should only occur in state Y**, “internal
event X should not occur”. However, in real-time applications, correctness also
depends on when each event happens. Such applications may have constraints on
latency (““event X should last no more than 10 seconds™), throughput (“‘event X
should happen every 2 seconds’), separation of events (“‘event X should happen at
least 3 seconds after Y**) or other temporal properties.

3.1.1 Timed and Parametric Timed Systems

A system whose correctness depends on its temporal behavior is called a timed
system. There are many formalisms that can be used to describe a timed system.
In these models, time may appear in different ways: as a delay associated with
an event, as a explicit transition that represents time elapsing or as a clock whose
value can be read or modified. The properties in these models can be defined and
studied using diffent varieties of temporal logics. In general, the verification of

32 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

a temporal property in a timed system has a high computational complexity. In
the same way that concurrent systems suffer an state space explosion problem, the
temporal behavior of a simple timed system can be very complex. To make matters
worse, many interesting timed systems are also highly concurrent.

The description of a timed system or a temporal formula may involve values
that characterize the temporal behavior. Such values may define the duration of
an event, the initial value of a clock or a similar property. To limit the complexity
of the analysis, most models define these values as constants, e.g. “do X until
the clock Y reaches 9 time units. However, there is a more generic approach
which consists on using parameters instead of constant values, e.g. ““do X until
the clock Y reaches p time units”. Methods that describe a temporal behavior that
depends on parameters are called parametric methods. Obviously, the complexity
of parametric methods is higher than its timed counterparts. On the bright side,
parametric methods can answer very interesting questions which cannot be solved
with timed methods. For instance, given a property and a parametric timed system,
it is possible not only to check whether the property holds, but also to compute for
which values of the parameters the property holds.

Section 3.2 is devoted to the description of timed formalisms and temporal
logics, together with the complexity results, algorithms and data structures used
in their verification. This description includes the methods used in the analysis of
parametric timed systems.

3.1.2 Asynchronous and Timed Circuits

Digital circuits can be seen a special case of timed systems. In the real world, logic
gates do not produce an output instantly: they need some time to charge/discharge
the output signal. The delay of a gate is not constant, as it may vary due to defects
in the fabrication, changes in the temperature or the power supply, Also, the
propagation of a signal in a wire is not instantaneous. Therefore, the timed behavior
of a circuit can be very complex and it might have an impact on its correctness.

Timing issues are addressed differently in several design styles. Synchronous
circuits, for instance, use a global periodic signal called clock to control the be-
havior of the circuit. Each clock cycle represents the computation of the next state.
Even if the computation has been completed before the end of the cycle, next states
are not evaluated until the clock allows it. This simplicity makes the behavior very
predictable and very easy to verify: if the logic that computes the next state is
correct and the clock cycle is longer than its worst-case delay, the circuit will be
correct. There cannot be interactions among the computation of different states of
the circuit.

On the other hand, asynchronous circuits do not use clock signals. Instead,
the state of the circuit is only controled by the changes in the input signals and
the internal events. The synchronization with the environment is achieved using
handshakes, which can be implemented using delay paddings or additional com-
pletion detection logic. The verification of asynchronous circuits is complex, as

3.2 TIMED SYSTEMS 33

the computation of several states can be interleaved.

Several classes of asynchronous circuits have been defined in the literature. The
main difference is the class of delays that the circuit is supposed to accept. Cat-
egories like speed-independent (Sl), delay-insensitive (DI) circuit or quasi-delay-
insensitive (QDI) describe circuits which operate correctly for any delay of the
elements, under a specific delay model. A different approach is taken by timed
circuits [122], which are designed to operate correctly only if a set of timing con-
straints is met. The complexities of the verification of timed circuits are similar to
those found in any timed system.

Section 3.3 describes the state of the art in the verification of timed circuits,
discussing several types of timing constraints used in the verification process.

3.2 Timed systems

3.2.1 Specification of Timed Systems

There are many formalisms used to specify timed systems. Most of these for-
malisms are extensions of untimed models used to describe finite-state and concur-
rent systems. The semantics of the extensions varies. In some cases, the formalism
establishes that each event has some delay, either defined by a fixed constant or
within an interval of constants. Firing an event may depend on these delay con-
straints, and may imply a passage of time. In other cases, a new class of transition
is added to the system, one which does not alter the discrete state, but advances
time. The passage of time may be recorded by a set of clock variables whose value
can be read by the system. Other temporal semantics are also possible.

The following is a non-exhaustive review of some popular formalisms from the
literature. The choice of formalisms is oriented towards the models that are more
closely related to the analysis of timed circuits. A more exhaustive survey can be
found in [156].

In order to present the different formalisms, we will model several versions
of the classic railroad crossing problem. In this problem, a train approaches a
railroad crossing whose gate is controlled automatically. Several sensors detect
the presence of the train as it approaches the gate and also as it leaves the railroad
crossing. The controller of the gate should take into account the information from
the sensors and open/close the gate at the crossing accordingly. Obviously, the
rising and falling of the gate takes some time, and there is some delay between the
detection of the proximity of the train and the arrival of the train to the crossing.
This information should be taken into account in order to guarantee two properties:

o Safety property: “whenever the train is at the crossing, the gate is closed”.

e Liveness property: “if there is no train in the crossing, the gate will eventu-
ally become open”

34 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

far +open =

approach
[0, +oo]

enter
inside + open <=———— near + open

[4.6]

lower

1,3)
(L3 raise

—= near + closed [4,7]
enter
[4.6]
approach inside + closed
[0 +co] exit
[1.3]

far + closed

approach?
y:=0

(@)

GATE rising
0<y<k
2k
y ; -1 exit?
y:=0
closed
exit? approach?
y:=0 y:=0 true
y=1
5 approach? falling y 2 k
y:=0 0<y<k
y=1

(©)

Figure 3.1: The railroad crossing problem modeled in several temporal formalisms:
(a) Timed Transition Systems, (b) Timed Automata, (c) Hybrid Automata

3.2 TIMED SYSTEMS 35

Figure 3.1 describes several versions of the railroad crossing problem using dif-
ferent temporal formalisms: Timed Transitions Systems (TTS), Timed Automata
(TA) and Linear Hybrid Automata (LHA).

Figure 3.1(a) shows the TTS model. TTS were introduced in [92] as a means
to model the timed execution of a set of concurrent processes. Timed transition
systems are a extension of the basic computational model of transition systems
[14]. In atimed transition system, there is a set of states, and in each state, there can
be several enabled events. In the example, each state describes the position of the
train (far/near/inside) and the gate (open/closed). There are three events related
to the train (approach the crossing, enter the crossing, and exit the crossing) and
two describing the gate commands (raise or lower the gate). Whenever an event is
fired, the state is changed according to a transition relation, described graphically
in the example. The event to be fired is chosen non-deterministically among the
enabled events. Each event e has an associated interval of positive real numbers,
noted as [d.,D.]. The lower bound of an event e represents the minimum amount
of time that must elapse between the moment that e became last enabled and e
was fired. Conversely, the upper bound of e represents the maximum amount of
time that can elapse between the last enabling of e and the firing of e. It should be
noted that the amount of time is counted since the event became enabled, even if it
happened in a previous state. For instance, after firing the event lower, the event
enter only takes between 1 and 5 time units to fire, as it has already been enabled
between 1 and 3 time units in the previous state.

The TA model is depicted in Figure 3.1(b). Timed automata were introduced
in [4] as a formal notation to model the behavior of real-time systems. A TA
is an automaton extended with a set of clock variables (in the example x and y)
and clock constraints, comparisons of clocks with constant values. Each state of
the automaton, called a location, defines an interval that should be satisfied by
the clocks while they are in the state. The system may evolve by spending some
time in a location or by taking a switch, a transition to another location with a
guard to be satisfied and a set of clock variables to be reset. In the example, the
railroad crossing is modeled using communicating TA: a set of timed automata that
synchronize using synchronous communication. A switch may receive a message,
noted as msg?, and it can also send a message, noted as msg!. A switch which
sends a message can only be taken if another switch is receiving that message
simultaneously.

Finally, a LHA model appears in Figure 3.1(c). Linear hybrid automata are a
more powerful formalism for the specification of temporal properties [3,4]. Like
TA, the passage of time is controlled with clock variables. Each location has an
invariant which controls the possible values of clocks. Also, each switch has a
guard that defines the valid values for clocks and a set of clocks to be reset. But
there are important differences with respect to timed automata. First, the guards
and invariants may include parameters. In the example, the gate requires k time
units to be raised or lowered. Also, the set of clock constraints is larger than in
TA: any linear inequality over clocks and parameters can be used in the guards

36 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

and invariants. The last difference is the possibility of describing clocks that run
at different rates. For example, the timer for the train may move twice as fast as
the timer for the gate. This can model, for instance, the fact that the trains going
through the gate may travel at different speeds, with some trains traveling twice as
fast as the others. Clock rates can be specified on a per clock and per state basis,
providing a large degree of flexibility in the specification.

3.2.2 Temporal Logics

A temporal logic is a formalism used to describe properties that involve time. Time
may appear in a formula in many different ways. For instance, as a relative order
among atoms (Y happens after X*’), as a bounded interval (““X happens between 2
and 4 time units™) or as a reference to a clock variable (*“X happens while b < 27),
to cite a few.

In non-temporal logics, a crucial problem is the satisfiability of a formula.
Meanwhile, a more relevant problem in temporal logics is model-checking: ““given
a timed system and a temporal formula, check if a model of the system satisfies the
formula””. The “model” and, therefore, the criterion to decide the correctness of
formulas in a logic has multiple definitions.

All the previously mentioned choices, combined with several possible combi-
nations of temporal and non-temporal operators, lead to a huge number of temporal
logics. Each logic provides different advantages according to expressiveness, de-
cidability and efficiency of the model-checking procedure. The discussion of all
these logics is outside of the scope of this thesis, and the interested reader is re-
ferred to [6, 76, 156] for a survey. The rest of the section will briefly mention some
important classes of temporal logics in order to facilitate the description of the
verification techniques.

Linear vs. Branching Time

There are two ways in which a formula can express a property about a timed sys-
tem. First, the formula might consider the dynamic behavior of the system during a
single run, and establish properties which hold in this run. This is known as linear
time logic, such as Linear-Time Propositional Logics (LPTL) [135]. On the other
hand, formulas might attempt to describe the dynamic behavior of the system fo-
cusing on the possible runs, e.g. “for all runs X’ or “there is a run where X”’. This
alternative is called branching time logic, and an example is Computational Tree
Logic (CTL) [77].

Discrete vs. Dense Time Semantics

Some logics can only describe qualitative properties, such as the relative order
among atoms (““X happens before Y**) or the inevitability of an atom (““X will even-
tually happen™), e.g. LPTL and CTL. On the other hand, other logics can describe

3.2 TIMED SYSTEMS 37

Figure 3.2: A TA with a behavior that depends on the discrete/dense semantics

guantitative properties such as duration (““X happens for 2 time units™), like Metric
Temporal Logic (MTL) [6]. An advantage of the qualitative temporal logics is that
time is discrete, i.e. a formula must be checked at some discrete instants of time
with no need to study what happens between them.

Quantitative methods may also use a discrete semantics, where the smallest
possible time elapse is defined and becomes the time unit. The duration of an event
or any change in a clock will be described as integer multiples of this time unit.
Meanwhile, there is an alternative dense semantics where time advances continu-
ously and it is not possible to discretize it. As a result, clock readings and delays
may have rational or real values in addition to the integer values from the discrete
model.

Example 3.1 Let us consider the TA in Figure 3.2. Remarkably, the semantics of
this TA is different in discrete time and dense time.

The TA contains three locations A, B and C, with B being the initial location.
The location A can only be visited from location B when the clock y is not zero,
and clock y is reset afterwards. In the discrete semantics, this can happen only a
finite number of times, e.g. is the time unit is 1, location A will be visited at most
5 times. On the other hand, in dense time location A can be reached an infinite
number of times. Therefore, the distinction between discrete and dense semantics
has an impact on the behavior of the system, and should be chosen carefully.

The relationship between discrete and dense time is a complex issue. The prob-
lem is whether there exists a procedure, called discretization, which can transform
a dense time specification into a semantically equivalent discrete time model. Of
course, the existence of a discretization procedure depends on the notion of “equiv-
alence” being used. Early theoretical results discovered that discretization is possi-
ble on timed transition systems [93] (equivalence = same qualitative behavior) and
timed automata [84] (equivalence = same untimed language). Several restricted
classes of hybrid systems can also be discretized [7]. Further work established
that discretization of timed automata keeping the same qualitative behavior is only
possible for acyclic automata [15]. This result can also be applied to the analysis
of asynchronous timed circuits: cyclic (sequential) circuits must be analyzed with
a dense-time semantics. More results establishing decidability and complexity of
several temporal logics in discrete and dense time semantics can be found in [6].

38 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

3.2.3 Analysis of Timed Systems

The following is a brief summary of techniques used in the verification of timed
systems. The presentation will focus on the techniques used in the verification,
rather than covering the specific temporal logic being used or the properties being
verified. Many of these techniques will be mentioned again in the context of timed
circuits.

Discrete Time Methods

The analysis of a discrete time model has a big advantage over dense time: between
two points in time, the number of instants to be studied is finite. This finite nature
of the timed state space is well suited for the use of untimed model-checking tech-
niques [100]. As the timed state space is potentially very large, efficient methods
are required to represent it. A common technique is based on decision diagrams,
the so called symbolic representation®.

Decision diagram techniques have been applied successfully to several prob-
lems in different application domains. Binary Decision Diagrams (BDD) [37]
provide an efficient mechanism to represent boolean functions. Some strengths
of BDDs are the ability to manipulate sets of values symbolically due to its re-
cursive nature, and the canonicity of the representation. In the context of dis-
crete time systems, many verification approaches based on BDDs have been de-
scribed [25, 34, 75]. However, the size of the state space and thus, performance,
depends largely on the magnitude of constant values used in the delays and clock
readings. Large values may multiply the size of this state space. These problems
can be addressed by using techniques for the dense time semantics in a discrete
time model [35].

DBM-based Methods for Dense Time

The study of the dense time model is slightly more complex. According to the
dense semantics, there is an infinite number of time instants between two points in
time. As a result, the first problem in dense time is the definition of a finite model
which encodes these infinite sets of values. The basic element used in this encoding
is the region or unit-cube [2]. A region is a set of clock valuations such that (a) the
integer part of all clocks is equal and (b) the order between the fractional parts of
the clocks is the same. A compact way to represent regions is using zones: a zone
is a convex set of regions?. Figure 3.3 compares how a set of clock valuations is
encoded in the discrete semantics and in the dense semantics as a set of regions or
as a single zone.

1The term symbolic is misleading, as it is used with two senses in the literature. In most refer-
ences, symbolic denotes the use of a decision diagram data structure, while in other cases it refers to
the verification of a parametric system (a system with symbolic delays).

2Some references use the term geometric region to describe a zone

3.2 TIMED SYSTEMS 39

/

@) (b) (©)

\

Figure 3.3: Representations of timed states: (a) discrete semantics, (b) dense se-
mantics encoded with regions, and (c) dense semantics encoded with zones

Zones have a very efficient implementation called Difference Bound Matrix
(DBM) [72]. A DBM is a two-dimensional matrix that encodes a lower and upper
bound on each clock and on the difference between each pair of clocks: a zone.
The concept of a DBM, together with an example, has been already been presented
in Section 2.4.4.

Zone-based methods can use DBMs to compute the timed state space of a dense
time specification [23, 33]. However, an important drawback of DBMs is their in-
ability to represent non-convex sets of regions. A direct consequence is the need to
store a set of DBMs for each untimed state, instead of a single DBM. As a result,
the large amount of storage space used by DBMs quickly becomes prohibitive and
limits the scalability of these methods. Several strategies can be used to reduce
this memory usage. For example, variable-dimension DBMs reduce space by rep-
resenting only non-redundant clocks whose value will be read before the clock is
reset [68]. Another approach, the minimal constraint representation avoids encod-
ing redundant constraints like (clk; — clk; < oo) in the DBM [104]. Also, the
information stored in a set of DBMs can be approximated using the convex hull
like it is done in abstract interpretation [71]. Additional clever implementation de-
cisions [18] can be employed to improve the memory usage even further, but the
problem of scalability of DBM analysis still remains. In addition, attempts to rep-
resent non-convex sets of regions explicitly exhibit a prohibitive complexity, e.g.
timed polyhedra [31] have a space complexity above O(n!).

Decision Diagram Methods for Dense Time

The success of decision diagrams in concurrent and discrete time systems has mo-
tivated a lot of research in the application of symbolic methods to the dense time
semantics. To perform this verification, there are other decision diagrams than
BDDs. For example, Multi-Terminal Decision Diagrams (MTBDD) [82] represent
functions from boolean variables to reals, f : B® — R. This kind of functions
can be used to encode numerical matrices, so a MTBDDcan be used to store many
DBMs [150], even though the DBMs must be reconstructed in order to operate
with them.

Several approaches attempt to perform a fully symbolic timing verification,

40 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

Property DBM | DDD | CDD | RED | CRD | NDD
Dense model of time? yes yes yes yes yes no
Convex set of clock valuations? yes yes yes yes yes yes
Non-convex set of clock valuations? no yes yes yes yes yes
Fully canonical representation? yes no no yes yes yes
Independent of the magnitude of constants? yes yes yes no yes no
Improves memory usage w.r.t. DBM? - n/a* yes yes yes n/a*
Improves CPU time w.r.t. DBM? - nfa* no no no n/a*

* Data not available or very few experiments available.

Table 3.1: Comparison of several data structures for timing analysis

i.e. the zones are stored as some kind of decision diagram where all the required
operations can be performed without building a DBM. But there are three problems
that must be faced by all these techniques. First, zones can be characterized as
constraints on the difference of two variables, while decision diagrams are well
suited to represent properties one variable at a time. Then, a set of difference of
pairs of clocks may imply new constraints on other clocks. In DBMs, these implicit
constraints are discovered through a closure step which implies a traversal of the
entire DBM. However, decision diagrams are well suited for operations that can
be defined as a recursive traversal that operates on one variable at a time. In order
to remain efficient, some of these data structures perform only local or restricted
closures, while others perform full closure even though it is an expensive operation.
Finally, the complexity of DBM algorithms depends only on the number of clocks,
while in some decision diagram techniques, the complexity will also depend on the
magnitude of the delay constants that appear in the timed system.

Table 3.1 compares several decision diagram approaches with DBMs. These
approaches are the following:

Difference Decision Diagrams (DDD) [115] are a special kind of interpreted
BDDs. Instead of being a boolean variable, each node encodes an inequality
of the form (clock; — clock; < k). The then and else arcs going out of each
node describe the state space according to the truth value of the inequality.

Clock Difference Diagrams (CDD) [18,19] encode a difference of clocks of the
form (clock; — clock;) in each node. There can be several outgoing arcs in
a node, each labeled with an interval, with the only condition that all arcs
of a node must have disjoint intervals. Each arc is taken if the upper bound
of the difference of clocks lies in the specified interval. The terminal nodes,
true or false, specify whether a given valuation belongs or not to the decision
diagram.

Clock Restriction Diagrams (CRD) [155] are also similar to CDDs, as they also
encode a difference of clocks in each node, and each node can have several
outgoing arcs. However, instead of labelling each node with a disjoint inter-
val, each node is labeled only with an upper-bound. In some systems, this

3.2 TIMED SYSTEMS 41

Timed state space:

(x—2<2)V ((z—2z<4)AN(x—y<4))

(-oa 2]

DDD CDD CRD

Figure 3.4: ADDD, a CDD and a CRD encoding a timed state space.

improves the performance with respect to CDDs.

Region Encoding Diagrams (RED) [153] encodes one clock in each node. The
order of the fractional parts of clock readings is encoded in the ordering of
the variables in the decision diagram, while the value of the integer part is
encoded in intervals labeled in the edges, like CDDs. The performance of
this data structure is very dependent on the value of the constants appearing
in the timed system.

Numerical Decision Diagrams (NDD) 2 [75] encode the valuations of clocks as
sets of numbers. Each node of the decision diagram considers a bit of a
number, and the then or else branch is chosen depending on the value of the
bit. Thus, the efficiency of this approach depends on the magnitude of the
constants used in the timed automata, which determines the number of bits
used to represent a number.

Even though the experimental results with these approaches provide large sav-
ings in terms of memory usage, these savings come at the cost of more CPU
time managing the data structures. In examples with very regular/symmetric state
spaces, the reductions in memory usage may be huge, and some examples may
even exhibit a reduction in CPU time.

Example 3.2 Figure 3.4 presents several decision diagrams used in the analysis
of timed systems. The state space represented by these decision diagrams is not

SNDDs can only be used in the discrete time semantics. They are included in this list to allow a
comparison with the other symbolic data structures.

42 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

convex, i.e. it cannot be represented by a single DBM. Therefore, using these meth-
ods leads to a reduction in memory usage. This reduction is even larger when we
consider that several decision diagrams can share information among themselves,
i.e. a common subgraph is only stored once.

3.2.4 Parametric Timed Systems

In the timed models discussed so far, the delays of the events and the clock read-
ings are a part of the model. Even when the exact delay is unknown, an interval
describing a conservative upper and lower bound must be provided, e.g. in timed
transition systems. But a system that satisfies a property with some values of the
delays may not satisfy the same property with different delays. This fact points out
two important shortcomings of timing analysis. First, it is not possible to check
whether a property holds regardless of the value a delay. Also, whenever the de-
lays of the model are modified, timing analysis must be rerun to make sure that the
properties hold with the new delays.

Parametric timed systems [5, 8, 78, 154] are an extension of timed systems
where some delays, called parameters or symbolic delays, are not specified in the
model. Parametric extensions of the systems described in Section 3.2.1 can be de-
fined trivially. For instance, parametric timed automata may contain parameters
instead of constants in the guards and invariants, while parametric timed transi-
tion systems may have parametric lower and upper bound for delays. Also, linear
hybrid automata allow parameters in the specification. The analysis of these para-
metric timed system studies how the properties about the model depend on the
value of the parameters, e.g. “property P holds for any value of the parameters”
or “property P is satisfied if (p1 > 3) A (p2 < p4)”. Some examples of problems
that formalize this analysis are:

Emptiness (decisional): “Given a parametric timed system and a property, is the
property satisfied for some value of the parameters?”

Parametric verification (decisional): “Given a parametric timed system, a prop-
erty and a (possible infinite) set of values of the parameters, is the property
satisfied for all values of the parameters?”

Parametric synthesis: “Given a parametric timed system and a property, find all
values of the parameters for which the system satisfies the property”.

Regarding these problems, several decidability results have been established
for parametric timed automata (PTA). In general, the emptiness problem is unde-
cidable [8], although for some restricted classes of PTAs the problem is decidable.
For instance, the number of clocks that are compared to a parameter in some guard
or invariant of the PTA is important. The emptiness problem is decidable in PTAs
with only one parametrically constrained clock, it is undecidable for automata with
three or more parametrically constrained clocks, and decidability is unknown for

3.2 TIMED SYSTEMS 43

PTAs with two such clocks [8]. Another class of PTAs where the emptiness prob-
lem is decidable is lower-bound/upper-bound automata (L/U automata) [97], where
a L/U automaton is defined as a PTA where all the parameters appear only as lower
or upper bounds of the clocks, but not both, in every guard and invariant of the
automaton. As a consequence of these decidability results, most analysis of non-
trivial parametric timed systems are undecidable.

3.2.5 Analysis of Parametric Timed Systems

Like in timed systems, techniques that verify parametric timed systems emphasize
the representation of the clock values, exactly as in timed systems. These clocks
can be compared to a parameter, reset to a parameter, or incremented by a parame-
ter or a constant, so the core of parametric timing analysis techniques is an efficient
computer representation of constraints among clocks, parameters and constant de-
lays. Contrary to non-parametric timed systems, these constraints may involve
more than two variables, e.g. two clocks and three parameters. Therefore, the data
structures used to represent zones efficiently in conventional timing analysis cannot
be used directly in parametric timing analysis.

Some methods have been proposed to study several decidable problems in
parametric timed systems, e.g. model-checking of TCTL formulas with param-
eters over a timed automaton without parameters [154]. However, most interesting
problems are undecidable. In order to face undecidability, two kinds of approaches
are used in this area. On one hand, exact approaches whose termination is not
guaranteed in general, called semi-decision procedures. The advantage of this ex-
act procedures is that they can be used to analyze liveness properties [28]. On
the other hand, other approaches use approximate methods whose result may be
inexact while being conservative, e.g. like abstract interpretation. These methods
are more efficient, but they can only be used to study safety properties. It should
be noted that the all these techniques have a very high computational complexity.
A very important factor that determines this complexity, besides the size of the
system, is the number of parameters used in the model.

Some related methods which also deal with symbolic delays will be presented
in Section 4.6, as they are closely related to the contributions of Chapter 4.

Parametric DBM Methods

Two parametric extensions of DBMs have been proposed [12, 97] to study para-
metric timed automata. Both approaches are exact, but provide only semi-decision
algorithms that might not terminate in general. In these extensions, constraints like
(clk; — clk; < E), where E is an expression over the parameters, can be encoded.
Additional constraints over the parameters are attached to the DBM-like matrix,
e.g. (p1 < p2). Each approach supports a different family of expressions.

The technique presented in [12,13] allows non-linear constraints on the param-
eters, e.g. (clk; —clk; < p? —2po). The constraints on the parameters are encoded

44 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

as a first-order arithmetic formula. Instead of using a widening operator to extrapo-
late the behavior in loops, additional counter variables are added to the parametric
DBMs. These variables keep track of the number of iterations in a loop, so the
value of clocks after a loop can be encoded as an expression over the parameters
and the counter variables. Although this approach is more exact than widening,
it is unclear whether it can be widely applied. Furthermore, the complex polyno-
mial properties arising in this extrapolation can only be solved with mathematical
decision procedures that have an extremely high complexity [73].

In contrast, the approach presented in [97] only deals with linear constraints
on the parameters. The linear constraints allow the use of a linear programming
solver (LPMC) [147] which is more efficient than non-linear solvers. Even then,
this method exhibits a very high complexity.

Convex Polyhedra Methods for Parametric Analysis

Linear hybrid automata can be analyzed using convex polyhedra [3, 91]. This
method is directly inspired by the linear relation analysis [66] described in the
context of abstract interpretation (see Section 2.4.6). As such, undecidability is
addressed through approximation.

The contribution presented in Chapter 4 is closely related to these approaches.
Convex polyhedra are used to analyze the behavior of a timed system with symbolic
delays. The difference is the underlying timed model, a parametric timed transition
system instead of a linear hybrid automata.

Decision Diagram Methods for Parametric Analysis

The success of symbolic techniques for the verification of real-time systems (see
3.2.3) has motivated the study of these methods for parametric timed systems. The
desired goal is a decision diagram where the constraints on clocks and parameters
can be represented and manipulated together with the discrete state.

However, the definition of this data structure is not so simple. First of all, the
problems being studied are undecidable in general, so the decision diagram should
somehow avoid undecidability. Also, region constraints are not limited to two
variables like in non-parametric models. Many of the decision diagrams presented
in Section 3.2.3, i.e. DDDs, CRDs and CDDs, took advantage of the two variable
limit, so they cannot be used.

The splitting-trees used in partition refinement methods [147] are binary trees
that encode regions in the leaves, and each level defines a split, i.e. a division of
the state space according to the truth value of a linear constraint. In some sense,
these methods are similar to decision diagrams, but the data structure is a tree
instead of a directed acyclic graph (no reduction rules) and the timing information
is mostly encoded in the leaves as DBMs. The first proposal of a decision diagram
to deal with parametric systems was described in [111]. The data structure was
called Decision Diagrams with Constraints (DDC), and the aim was the analysis

3.2 TIMED SYSTEMS 45

of interpreted automata, a class of parametric counter automata®. Each node of a
DDC has two children, true and false, like in BDDs. However, the nodes of a DDC
can be either a boolean variable or a linear inequality, whose truth value declares
whether the inequality holds or not.

Another proposal is Hybrid Restriction Diagrams (HRD) [157], a data structure
for the analysis of linear hybrid automata. HRDs expand the concept of CRDs
for non-parametric timing analysis. Each node is a either a boolean variable with
two children or a linear expression (not a linear inequality) with several children;
the children of a linear inequality E are labeled with a rational % that defines the
inequality (£ < k).

Both techniques allow a symbolic analysis of parametric systems, i.e. all the
analysis is performed on the decision diagram. Also, both approaches can describe
non-convex sets of values of parameters and clocks/counters. Undecidability is
addressed through approximation: several operations like the emptiness test are not
exact, but conservative. However, there are several drawbacks to these techniques.

First, there is no canonical form for these decision diagrams. Furthermore,
these techniques do not describe a systematic procedure to combine the linear in-
equalities constraints that appear in the decision diagram. Instead, heuristic algo-
rithms that combine properties that lie close in the decision diagram are used, e.g.
check if a constraints in a node NV implies the constraints in the direct descendants
and ancestors of V. Another disadvantage is that the set of linear inequalities over
a finite set of variables is infinite. As a result, the depth of these decision dia-
grams is not bounded in general, while BDDs, DDDs, CDDs and CRDs all have a
bounded depth. Finally, another problem faced by these techniques is the lack of
a systematic criterion to establish the ordering among the nodes. There are only
some heuristics available to decide which ordering is better [111, 157]. Variable
ordering is a crucial factor in the efficiency of decision diagrams [139].

Example 3.3 The decision diagrams in Figure 3.5 encode the state space of a
system defined by the property:

((x—2y+42<2) AN Bz —4y<3)) V ((zr—2y+42>2) A3z —4y <9))

Note that DDC and HRD use a different strategy to encode the linear inequali-
ties. On one hand, a DDC benefits from properties where one linear inequality
and its complementary appear. On the other hand, HRD can reuse information in
properties where several linear inequalities appear with the same coefficients but
a different constant term.

An important aspect of this example is the ordering of the nodes. For example,
the DDC in the Figure would be larger if the top node was not (z — 2y + 4z < 2).
Another important aspect these decision diagrams is canonicity. It is not possible

4This class of automata is not a timed system, but it is closely related and the techniques used in
their analysis are similar.

46 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

State space:

((x —2y4+42<2)ABx—4y<3)) V (z —2y+42>2) A (3z — 4y <9))

DDC HRD

Figure 3.5: A DDC and a HRD encoding a parametric state space defined by a
linear assertion.

to obtain a canonical representation in the decision diagrams. For instance, the
property that describes the state space can be simplified as:

(w—2y+42<2) A Br—dy<3)) Vv ((3z -4y <9))

This means, for instance, that the HRD in the example could be simplified. There is
no systematic procedure to perform these reductions, as well as there is no system-
atic procedure to choose the optimal ordering. However several heuristics can help
to obtain good orders and remove unnecessary nodes from the decision diagrams.

3.3 Timed Circuits

3.3.1 Introduction

In the physical implementation of a circuit, the propagation of signals through
wires and the computation performed by logics gate is not instantaneous. Each el-
ement has an associated delay that should be considered during the design process.
These timing issues are addressed differently in each design style. In synchronous
design, a clock signal divides the computation in cycles, such that the results from
the current cycle are not propagated until the end of the cycle. Figure 3.6 shows
an overview of this design style. A circuit can be seen as a state machine. At a
given point in time, the output of the circuit depends on the inputs and, possibly,
on the previous sequence of inputs which defines the current state. Thus, the logic
of the circuit performs two tasks: computing the outputs and the next state. The
output and state signals are stable until the end of the cycle, when the new values
are loaded into the registers. There is no early completion: even if the result is

3.3 TIMED CIRCUITS 47

clock ‘
n m m
inputs , —“—= outputs
LOGIC K REGISTER K
next state current

state

Figure 3.6: Overview of a synchronous circuit.

available before the end of the cycle, it does not propagate forward. This separa-
tion avoids potential problems in the feedback loops within a circuit. In terms of
correctness, the only challenge is setting the period of the clock in such a way that
the length of each cycle is longer than the worst-case delay of the circuit.

In asynchronous design, the lack of a global clock signal for synchronization
makes the correctness of the circuits more dependent on the delays of internal
and external events. Several classes of asynchronous circuits attempt to deal with
delays in the more generic way possible: designing circuits which behave correctly
regardless of the delay. Speed-independent (SI), delay-insensitive (DI) circuit and
quasi-delay-insensitive (QDI) approaches use different assumptions to generate a
circuit which works correctly for any delay. However, this genericity can restrict
the set of synthesizable functions, and leads to implementations with more area
and delay.

A more aggressive design style is that of timed circuits [122], which embrace
the dependency between correctness and delay. The goal of timed circuits is ob-
taining a design which operates correctly under a set of delay assumptions called
timing constraints. These timing assumptions are used to simplify and optimize
the logic that implements the circuit. In this way, an implementation with a lower
area and delay can be achieved [58, 123], although its behavior is undefined when
the timing constraints are not satisfied. Counteracting the improved performance,
verification is required to check that the circuit operates correctly under the timing
constraints.

Example 3.4 Let us consider the circuit presented in Figure 3.7, where the shaded
area highlights a feedback loop. In synchronous terms, this feedback loop is com-
puting the next state information. Due to the lack of clock signals, this loop may
cause undesired behaviors. For instance, the feedback loop may be too fast, over-
writing the current state with the next state before the outputs can be produced.
Conversely, the feedback loop may be too slow, so that the circuit produces an out-
put that leads to a change in the inputs change before the computation of the next
state is completed. It is necessary to impose timing constraints that ensure that
these scenarios cannot occur.

The problem of verification of a timed circuit can be formulated in two ver-
sions: a decisional version and a synthesis version. The decisional version is

48 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

L

bii

Figure 3.7: An example of a timed circuit.

““given a timed circuit, a specification, and a set of timing constraints, decide if the
circuit satisfies the specification when the timing constraints are satisfied”. This
version is useful when timing constraints are discovered during the design process
or when timing constraints are studied manually. Meanwhile, the synthesis version
of the problem can be stated as ““given a timed circuit and a specification, discover
the timing constraints required to satisfy the specification. Finally, a problem re-
lated to verification is the validation of timing constraints: ““check, after placement
and routing, that the real delays of the circuit fulfill the timing constraints™.

There are several strategies to employ verification during the design of a timed
circuit. The main difference between the methods is: (a) whether the timing con-
straints are available during logic synthesis and (b) the type of timing constraints
that are supported.

There is a chicken-egg problem between logic synthesis and verification. On
one hand, the timing information is generally not available until logic synthesis is
performed. However, at that point, verification can only guarantee a correct op-
eration by modifying the circuit adding extra delay paddings. On the other hand,
logic synthesis could use the information from the timing constraints to optimize
the circuit [58,123]. Nevertheless, timing constraints can only be available initially
if they are somehow described on the specification, can be derived using conserva-
tive estimation or can be manually discovered by the designers. This process might
be too conservative or it might be difficult to automate.

In the literature, several families of timing constraints are described. Each fam-
ily provides different advantages: precision of the constraints, available methods
to solve the decisional/synthesis verification problem, or simple validation of the
timing constraints.

Metric timing constraints [21,42,106] specify a lower and upper bound for the
duration of an event or the time between two events, e.g. “the delay of event
A is within [2, 7] time units”.

Relative timing (RT) constraints [58,102,133,148] enforce a relative order among

3.3 TIMED CIRCUITS 49

[d1,D1]

DQ r [d4,D4]
ot 0!

[d2,D2] [d3,D3]

rg/\F\M
S

J

X

t

y

Figure 3.8: Trivial timed circuit used to illustrate different families of timing con-
straints. On the bottom, a timing diagram highlighting an incorrect behavior.

concurrent events, e.g. ““event A should occur before event B”.

Chain constraints [125] establish the relative delay between two sequences of
events that are triggered by an initial event, e.g. “after event A, the ordered
sequence of events BC should be faster than the ordered sequence DEF™.

Example 3.5 Let us consider the trivial circuit depicted in Figure 3.8. We will
use it to illustrate the different types of timing constraints. Let us assume that the
property to be proved is that “the output y is always set to false”. To simplify the
example even further, let us consider that wires have negligible delay and that the
input signal (x) will not change before the circuit becomes stable, i.e. all gates
have a correct output according to its inputs. The delay of each gate is unknown,
but lower (d) and upper (D) bounds can be established.

Intuitively, the circuit behaves correctly as long as the two branches have a
comparable speed. If one branch is significantly slower than the other, then the
output might temporarily fluctuate to one. This scenario is depicted in the timing
diagram in Figure 3.8: if the pair of inverters and the AND gate are faster than the
other inverter, the output might be set temporarily to one. The following sections
will discuss different examples of timing constraints that forbid this behavior.

The approach presented in this thesis models the delays using parameters and
discovers the timing constraints on these parameters that are required for correct-
ness. These constraints are defined as linear inequalities that should be satisfied
by the parameters. Abstract interpretation is the underlying method used in the

50 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

verification algorithm. Stated briefly, this method addresses the synthesis verifi-
cation problem of sequential timed systems with bounded symbolic delays. This
methodology has the following advantages with respect to the previously presented
methods:

e The choice of delay bounds required in metric timing methods is typically
made conservatively. This is required to guarantee that the delays of the
design can be satisfied by the implementation of the circuit. Instead, our
approach avoids conservative choices of gate delays before the verification
by putting off the selection of gate delays until the timing constraints are
known. Moreover, if some delay information is known, it can be used to
accelerate the analysis.

e Metric timing methods provide results which are only valid for the particular
delays chosen in the circuit. Instead, the results of our method are valid for
any delay of the gates. This effectively means that each circuit must only be
verified once compared to once per each delay assignment.

e Linear inequality timing constraints have several advantages with respect
to the timing constraints computed by other methods. For example, linear
inequalities are more precise than metric timing constraints, leading to more
freedom in the choice of delays. Unlike relative timing constraints, it is
very easy to check if a circuit satisfies them: just check if the delays of the
implementation satisfy the inequalities.

e Linear inequality timing constraints provide the guidelines to choose delays
for the gates, but allow some degree of freedom. As long as the constraints
are satisfied, any delay of the gates will guarantee a correct operation. There-
fore, designers can use these timing constraints in order to select the gate de-
lays that achieve a good performance, while still making sure that the circuit
will be correct.

e Previous methods using symbolic delays had several limitations. Either the
circuits were limited to combinational circuits (no feedback loops allowed)
or only the decisional verification problem was addressed (the synthesis
problem was not automatic).

e Finally, linear inequality constraints have a very intuitive meaning: a path in
circuit that should be faster than another path. This information can provide
useful feedback to the designers of the circuit.

The main shortcoming of the method proposed in this thesis is its high compu-
tational complexity, which is higher than metric timing constraint methods. As a
result, the method is applicable to small or moderately sized timed circuits.

3.3 TIMED CIRCUITS 51

3.3.2 Metric Timing

Metric timing constraints characterize delays with an interval of constant values
denoting a lower and upper bound, e.g. “the delay of event A is within [2, 3] time
units”. In order to use metric timing constraints, a description of the timed be-
havior of the circuit with bounded delays is required. This description requires
knowledge of the delays of the internal gates, wires (if the wire delay model is
used) and external events. As mentioned previously, these delays may be known as
conservative estimates or may be available after the logic synthesis phase. Several
techniques work directly on the network of gates annotated with delay information.
However, other gate-level techniques model the circuit using a different timed for-
malism. Some examples of such formalisms are timed Petri nets [94, 121], timed
automata [108], timed event/level structures [21] and process graphs [96].

The verification of a timed circuit with metric timing constraints is studied
by different techniques. First, time separation of events computes a lower and
upper bound for the time elapsing between two events [41,96]. Another technique,
min-max timing simulation, determines a lower and upper bound for the signal
propagation delays [40, 70]. The verification problem in its most general version
is called timing verification or timing analysis: given a timed circuit and a set of
metric timing constraints, check if the circuit is correct for these constraints.

Timing verification can be addressed by computing the timed state space of the
timed circuit. Each event with a bounded delay has an associated clock that keeps
track of the amount of time that the event has been enabled. The sets of values of
these clocks are stored as geometric zones, like it is done for timed automata. The
problem lies in the complexity of the approach which can be doubly exponential:
once due to the state explosion problem from the concurrency in the circuit, and
again due to the complexity of representing time. Several approaches can be used to
alleviate this complexity: partial order reductions [20, 159], representations based
on decision diagrams [95] or abstractions of the internal nodes of the circuit [127,
160, 161].

Regarding the relationship between verification and synthesis, some techniques
can guarantee hazard-freedom after synthesis by adding delay paddings to some
signals in the circuit [105]. Other approaches can use metric timing information,
obtained from the specification or conservative estimations, to guide the synthesis
and optimize the timed circuit [120].

The main drawbacks of these techniques are computational complexity and the
need to specify lower and upper delay bounds, which may be overly conservative
in some cases.

Example 3.6 Let us consider the timed circuit in Figure 3.8. In order to use metric
timing methods, we need to define constant lower and upper bounds for the delays
of the gates. Then, the correctness of the circuit can be checked for these specific
delays, like for instance:

52 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

[d1,D1] | [d2, D2] | [d3, D3] | [d4,D4] || Correct?

1, 3] [1,3] 1, 3] 2, 5] No
1, 3] [1,3] 1,3] [7,8] Yes
[4, 6] [1,1] [1,2] [1,4] No

In this case, the second delay assignment ensures that the output is the constant
zero, as the AND gate is slow enough to guarantee that the inverters stabilize before
changing the output. The other two delay assignments may temporarily set the
output to one.

Verifying the circuit with a set of delays does not reveal whether the circuit is
correct with different delays. To check that, a new verification should be performed
starting from scratch.

3.3.3 Relative Timing (RT)

Relative timing (RT) constraints enforce a relative order among two concurrent
events in a timed circuit. A RT constraint is of the form A < B, which means that
“A should occur before B”. Contrary to metric timing methods, RT constraints
can be used with an unbounded delay model so several drawbacks of metric timing
constraints (need of conservative estimations, complexity) are addressed.

Relative timing was introduced in the design of the RAPPID asynchronous
instruction decoder [138]. The generation of RT timing constraints, initially done
manually, was automated into a metric timing analysis tool [148]. Other approaches
have also been able to compute a sufficient set of RT constraints that guarantees the
correct operation of a timed circuit [102,133]. Finally, a methodology that uses RT
constraints during logic synthesis to optimize the circuit has been described [58].

Nevertheless, RT cannot replace metric timing. First, there are timing con-
straints that cannot be represented as RT constraints, such as any metric timing
constraint. Also, at some point after placement and routing the RT constraints
should be validated. This validation can be performed using simulations, but a
complete validation requires using metric timing techniques. Therefore, the vali-
dation of RT constraints does not scale to the same extent as the verification.

Example 3.7 Let us revisit the timed circuit in Figure 3.8. In order to ensure that
the output of the circuit in Figure 3.8 is always zero, the inputs of the AND gate
should stabilize before the AND gate changes its output to zero. If we denote with
s+ the transition of a signal s from 0 to 1 and with s— the transition from 1 to 0,
the following timing constraints are sufficient to ensure the correctness:

r— < y+ ““signal » should fall before y rises”

t— < y+ ““signal ¢ should fall before y rises”
This verification can be performed without having to assign lower and upper bounds
to the delays of the gates. When specific delays are given the gates, we will have

to validate that these delays satisfy the timing constraints, which requires using
metric timing methods.

3.3 TIMED CIRCUITS 53

3.3.4 Chain Constraints

Chain timing constraints compare the delay of two competing sequences of events.
Chain constraints have the form “after A, the ordered sequence B ... B, is faster
than the ordered sequence C ... C,”. In some sense, chain constraints are closely
related to RT constraints because they are expressing “after A, B,, < C.,,”. How-
ever, note that a chain constraint only restricts traces where the sequences occur in
the specified order and no event outside the sequences occurs.

Like the RT approach, chain constraint analysis does not require metric tim-
ing information. Instead, timed circuits and chain timing constraints are repre-
sented using a formalism called process spaces [125]. Available methods are able
to check whether a set of chain constraints guarantee the correct operation of a
circuit [124-126]. The generation of chain constraints is not fully automated, but
counterexample traces useful to select new chain constraints can be provided.

Regarding performance, chain constraint methods are only compared to tools
applicable to speed-independent designs. Compared to metric timing methods,
it appears that chain constraints have a big advantage as they can represent states
symbolically (BDDs) and they don’t have to represent the timing regions necessary
in metric timing. Nevertheless, metric timing constraints cannot be represented as
a chain constraint. Regarding RT methods, there is no available data comparing
the performance of RT and chain constraint methods.

Compared to the method presented in this thesis, chain constraint analysis is
more efficient but has several drawbacks. First, this method only addresses the
decisional verification problem (the synthesis problem is not solved automatically).
Also, redundant constraints are not detected and simplified automatically. Finally,
it cannot take advantage of metric timing information in the analysis, even if this
information is available in the specification.

Example 3.8 The following chain constraints are sufficient to ensure that the out-
put of the circuit in Figure 3.8 is the constant zero:

After z—, delay(r+,y+) > delay(s+,t—)
After z+, delay(s—,t+,y+) > delay(r—)

These constraints ensure that the output of the circuit is the constant zero.

3.3.5 Timed Circuits with Symbolic Delays

There are several methods which have incorporated symbolic delays in the verifica-
tion of a timed circuit. These methods will be described in detail in the Section 4.6
because of their direct connection to the contributions presented in the following
chapter.

As a short summary, the techniques used in this domain are similar to the ones
used to verify parametric timed systems (see Section 3.2.5), such as linear pro-
gramming or Presburger arithmetics. Again, the complexity of the methods is

54 CHAPTER 3. VERIFICATION OF TIMED SYSTEMS

heavily dependent on the number of symbolic delays that appear in the model.
Some methods attempt to reduce this complexity by assigning constant values for
some parameters, or studying acyclic circuits. Even then, the efficiency of these
methods is below metric and relative timing, and the size of timed circuits that can
be analyzed with them is significantly smaller.

Example 3.9 Let us consider again the timed circuit in Figure 3.8. If the consider
the delays d1, ... ,d4 and D1, ... , D4 as parameters of the problem, the correct-
ness of the circuit can be established if the following constraints on the parameters
hold:

dl+d4 > D2+ D3
d2+d3+d4 > D1

These constraints provide a generic description of the requirements for a correct
operation.

3.4 Conclusions

This chapter has presented the modeling and verification of timed systems, with a
special emphasis on asynchronous timed circuits.

Timed systems can be modeled with many different formalisms, like timed
Petri Nets, timed transition systems, timed automata or hybrid automata. Temporal
properties can be represented using a temporal logics, and model-checking algo-
rithms can test whether a property is satisfied by a timed system. The verification
of timed systems is more complex than in untimed concurrent systems due to the
complexities of dealing with time. There are may different semantics describing
time, e.g. dense/discrete, and therefore many different approaches for verification.
Some techniques use Difference Bound Matrices (DBMs) or decision diagrams
inspired by DBMs to explore the timed state space efficiently.

A special class of timed systems, parametric timed systems, allow the existence
of undefined symbols in the specification. Verification in this context can test the
values of the parameters which make the timed system satisfy the property. How-
ever, this kind of verification problems is undecidable in general. Semi-decision
procedures and approximation techniques can be used to cope with undecidability.
Several methods based on convex polyhedra, linear programming and parametric
DBMs have been proposed, but all with a high computational complexity.

Regarding the verification of timed circuits, several approaches have been pro-
posed to deal with the complexity of verification, among others, metric timing and
relative timing. However, timing constraints which are meaningful, more useful
and easy to validate can be derived if the circuit is studied with parametric delays.
The next chapter will present one of the contributions of this thesis: a method for
the analysis of timed circuits with symbolic delays.

Chapter 4

Verification with Symbolic Delays

If time be of all things the most precious, wasting time must be the
greatest prodigality.

—Benjamin Franklin

This chapter describes a new methodology for the verification of timed circuits
which uses a more general class of timing constraints. In addition to a bounded in-
terval, the delay of an event can be modeled with an interval of parameters called
symbolic delays. We present a verification algorithm capable of automatically gen-
erating a set of timing constraints on the symbolic delays sufficient to guarantee
correctness. These timing constraints are defined as a system of linear inequalities
on the symbolic delays.

The work presented in this chapter is based on the results published in [48, 49,
52].

4.1 Introduction

Timed circuits have been introduced in Section 3.3 as as a family of circuits whose
correctness depends on timing constraints. Several approaches, such as metric
timing or relative timing, can be used to verify the correct operation of a timed
circuit. An analysis can also be made in a parametric way, without making any
assumption on the delays of the elements.

This chapter describes an algorithm for the verification of gate-level timed cir-
cuits using symbolic delays. The goal of this analysis is the fully automatic discov-
ery of timing constraints, represented as linear constraints on the symbolic delays,
that guarantee the correct operation of the circuit. The timing analysis algorithm
is based on the linear relation analysis performed in abstract interpretation (see
Section 2.4.6).

The remaining of this chapter will focus on the formalization of the problem,
the description of the analysis algorithm and the experimental results obtained on

56 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

D gl g4 o D
— —
Tsetup © Tholg
K | Th ‘
» | /=
® g cK->Q |
CK g2 Q
(@) (b)
Texk—wqg < D2+ D3+ Dy
Tsetup > D1+ Dy —d> Tok—qg < 3+ D3+ D,
Thold > D2 + D3 Tsetup > 9
Tar > Do+ D3+ Dy Thoa > 0
Tur > Thotd Tyr > 3+ D3+ Dy
Tro > Tsetup Tro > Tsetup
d1 > DQ)

(©)

Figure 4.1: (a) Implementation of a D flip-flop [134], (b) description of variables
that characterize any D flip-flop and (c) characterization of the flip-flop for any
delay of the gates, (d) characterization of the flip-flop if some delays are known:
gl =1[4,7) and g2 = [1, 3].

real timed circuits.

Example 4.1 We illustrate the power of the verification with symbolic delays by
means of an example. Let us take the D flip-flop depicted in Fig. 4.1(a) [134].
Each gate g; has a symbolic delay in the interval [d;, D;]. We call Tsctyp, Thotd
and T'cx — ¢ the setup, hold and clock-to-output times, respectively. 7,0 and Tgy
define the behavior of the clock. Our goal is to symbolically characterize the latch
behavior in terms of the internal gate delays.

The method presented in this chapter is capable of deriving a set of sufficient
linear constraints that guarantee the correctness of the latch’s behavior. The veri-
fied property is the following:

The value of @ after a delay T'cx—. ¢ from CK’s rising edge must be
equal to the value of D at C'K’s rising edge.

Any behavior not fulfilling this property is considered to be a failure. Fig. 4.1(c)
reports the set of sufficient timing constraints derived by the algorithm. The most
interesting aspect of this characterization is that it is technology independent.

As an example, let us focus on two constraints. First, d; > Ds is necessary
to prevent the cross-coupled gates g1 and g2 read the wrong value of D or enter

4.2 FORMALIZATION OF THE PROBLEM 57

metastability. Second, Tserp > D1+ Do — do defines the setup time that, interest-
ingly, depends on the variability of the delay of g2. In case of no variability on the
delays, the constraint is reduced to Ty, > D1, Which is the time required for g1
to capture the value of D.

The degree of parametrization can be chosen at the designer’s will. If some
delays are known, they can be used during the verification. As an example, let us
assume that the delay of g; and g5 are in the intervals [4, 7] and [1, 3], respectively.
The sufficient constraints with these assumptions are reported in Fig. 4.1(d).

4.2 Formalization of the problem

4.2.1 Basic Notation

The implementation of a timed circuit can be described as network of gates G
connected by a set of signals 1. Signals will also be called wires.

Regarding the gates of the circuit, we will study the circuit at the gate-level:
we assume that the circuit is decomposed into simple logical gates. However, the
technique can also be applied to a complex-gate level analysis.

Regarding the signals of the circuit, each signal = can have two truth values:
true, noted as x, and false, noted as z. Some signals will be labeled as input and
output signals. In some technologies, a signal can be used both as an input and as
an output, e.g. [149], but frequently input and output signals are distinct.

A state of the circuit is an assignment of truth values to all the signals of the
circuit, i.e. a mapping ¢ : 2° — B. The term event will be used to denote a
change in the value of a signal. Depending on the location of the signal, events
will receive a different name. Changes in the value of an input signal will be called
input events or environment events. If the signal is an output of the circuit, the event
will be called an output event. Finally, changes of internal signals will be called
internal events.

Events can also be classified according to the value of the signal. A transition
from 0 to 1 is called a rising event, while a transition from 1 to 0 is a falling event.
Given a signal z, a rising event will be denoted* as =+, while a falling event will
be denoted as z—.

Each logic gate has one or more inputs and a single output whose value is
defined a boolean function of the inputs. The operation of a gate takes some delay
due to technological constraints: the truth values 0 and 1 are encoded as different
voltages in a wire, and changing the voltage in a wire requires some time while it
charges or decharges. For that reason, in a given state it is possible that the output
of a gate does not match the expected value of the function for the current inputs.
In this scenario, the gate is said to be enabled in the current state. We say that the
gate is fired when the output finally changes to match the expected result. If a gate
does not need to modify its output in a given state, we say that it is disabled in

L An alternative notation used in the literature is « 1 for rising events and = | for falling events.

58 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

Figure 4.2: Example of a Petri Net.

that state. Firing a gate implies a change in the value of the wire, i.e. a rising or
falling event in the output signal. The terms enabled, disabled and firing will also
be applied to these events in connection with a gate, e.g. if a gate is disabled, the
rising and falling events of its output signal will be disabled.

4.2.2 Interaction with the Environment

The timed circuit does not operate in isolation: an environment is interacting with
the circuit through the input and output signals. We assume that a specification of
the expected interaction between the circuit and the environment is available. This
specification should describe the initial value of the inputs and outputs, the valid
changes in the inputs, and how the outputs should be changed in response to the
inputs.

A possible formalism to describe this specification is that of Signal Transition
Graphs (STG) [47], a Petri Net model [119]. In order to describe this formalism,
some brief notions on Petri Net theory will be introduced.

Definition 4.1 (Petri Net) A Petri Net is a 4-tuple PN = (P, T, F, M) where
P =pq,...,pyisafinite set of places, T' = t1,... , t,, isafinite set of transitions,
F:(PxT)U(T x P) — Nis the flow relation and M, : P — N is the initial
marking. A marking M is defined as another function M : P — N, where M [p]
denotes the number of tokens at p in M. M is the initial marking.

A Petri Net can be represented by a directed bipartite graph, where an edge
[u, v] exists if F'(u,v) is positive, which is called the weight of the edge. Graphi-
cally, transitions are typically represented by bars or boxes, while places are repre-
sented by circles. The tokens inside a place in a given marking are drawn as dots
inside the circle for that place.

Example 4.2 Figure 4.2 depicts the graphical notation of Petri Nets. This example
has four places, p1, p2, p3 and p4, and three transitions, ¢y, t3 and ¢3. The initial
marking is p; = 2,ps = 1 and p3 = py = 0. In this marking, transitions ¢; and ¢y
are enabled, while transition ¢3 is disabled. If transition ¢; fires, the new marking
will be py = 1,p2 =2and p3 = ps = 0.

4.2 FORMALIZATION OF THE PROBLEM 59

O O]
b- —» x- —» a-
O s }
X+ <«— a+ <«— b+

0 o]

(b)

Figure 4.3: Example of a STG using (a) the normal Petri Net notation or (b) the
compressed notation for STG.

A transition ¢ is said to be enabled at a marking M if M[p] > F(p,t) for
all p € P. In this case, one may fire the transition at the marking, which yields
a marking M’ given by M'[p] = M|p| — F(p,t) + F(p,t) foreachp € P. A
marking M’ is said to be reachable from M if there is a sequence of transitions
fireable from M that leads to M’. The state of a Petri net evolves from the initial
marking by firing enabled transitions.

Definition 4.2 (Signal Transition Graph (STG) [47]) A Signal Transition Graph
isatriple (N, X, A) where N = (P, T, F, My) is a Petri Net, S is the set of signals
and A : T — S x {+, —} is the labeling function that assigns one rising or falling
event to each transition.

This formalism captures the expected interaction between the circuit and the
environment. A marking of the STG assigns a value to the signals, i.e. the initial
marking defines the initial value of the signals. If a transition labeled with an input
event I is enabled in a marking M, then it means that the environment may produce
event I. On the other hand, if a transition labeled with an output event O is enabled
in a marking M, then the environment expects the output event O to be produced
by the circuit.

The graphical convention used to depict an STG is slightly different from that
of regular Petri Nets. Transitions are not depicted as bars of boxes, but as the event
with which they are labeled. Places with a single successor and predecessor not
displayed. Instead, they are compacted as a single edge over which the tokens may
be drawn.

Example 4.3 Figure 4.3 shows an example of a STG using the typical graphical
notation for Petri Nets (a) and the more compressed version used in graphical
notation. In this STG, there are three signals, a, b and x. Let us consider « and b
as input signals and x as an output signal.

The initial marking establishes the initial value for the signals: abz. In this
initial state, the environment may only change the value of the input b. Then, it
expects the output signal x to fall. After that, it can modify the input signals « and
b, and again q, in that order. Finally, the environment expects signal x to rise in
order to return to the initial state.

60 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

Although it is not illustrated by this example, a STG can also describe more
complex interactions such as concurrent behavior, e.g. events a+ and b+ in any
relative order, and non-deterministic choices, e.g. either event a+ or event b+.

4.2.3 Composing the Implementation and the Specification

The behavior of the circuit can be described as a composition of (a) the implemen-
tation of the circuit as a network of gates and (b) the description of the interaction
with the environment. This composition defines a transition system that relates the
states and events of the circuit.

Definition 4.3 (Transition system [14]) A transition system (TS) is a quadruple
A= (S,%,T, s;,), where S is a non-empty set of states, 3 is a non-empty alphabet
of events, T C S x ¥ x S is a transition relation, and s;, is the initial state.
Transitions are denoted by s - s’. An event e is enabled at state s if 3s = s’ € T'.
We will denote the set of events enabled at state s by £(s).

Intuitively, in this underlying TS a state describes both the values of the signals
of the circuit and the marking of the STG. An internal or output event is enabled in
a given state if the corresponding gate is enabled in the circuit. Meanwhile, input
events are enabled in a state if they are enabled in the STG.

Formally, the composition of specification and implementation can be described
as follows. Each state s of the transition system corresponds to a pair of the form
s = (¢, m) where c is a state of the circuit, i.e. an assignment of truth values to all
the signals of the circuit, and m is a marking of the STG. The values of the input
and output signals defined by ¢ should be consistent with those established by the
marking m.

Some of the states of this composition deserve additional comments: the initial
state and the error state. The initial state, s,,, is defined by the pair (co, mq) where
co defines the initial value of the wires in the circuit and my is the initial marking of
the STG. The error state, s.,-, is a dummy state used to denote incorrect behaviors
in the composition.

In a given state s = (¢, m) of the transition system, the set of enabled events
can be defined as follows:

e Input events: An input event e is enabled iff a transition labeled with e is
enabled in the STG for the marking m.

¢ Internal events: An internal event e is enabled if the corresponding gate is
enabled according to the truth values in c.

e Output events: An output event e is enabled if the corresponding gate is
enabled according to the truth values in c. If there is a transition in the STG
labeled with e which is enabled in the marking m, the output event will be
expected by the environment, otherwise, it will be considered unexpected.

4.2 FORMALIZATION OF THE PROBLEM 61

An important aspect of this definition is the interaction between internal and
environment events: the environment may respond to the outputs of the circuit at
any possible time, even if some internal signals of the circuit have not stabilized.
In this context, the circuit is said to operate in input/output mode. An alternative
definition which is not used in this thesis is the fundamental mode, where environ-
ment events are only considered enabled when no internal events are enabled, i.e.
the environment is assumed to be much slower than the circuit. In this thesis, if
such timing constraints are required, they will be discovered automatically by the
timing analysis.

The transition relation can be characterized very intuitively from the previous
definitions. A transition from a state may only fire an event if it is enabled. Tran-
sitions may affect the value of the signals, the marking of the STG or both. Also,
some of these transitions may denote errors in the interaction between the circuit
and the environment.

Formally, given a pair of states, s; = (c1,m1) and so = (c2, mo) and an event
e, there is a transition s; — s in the transition relation if and only if:

e ¢ is an internal event enabled in s1, m1 = mq and ¢y differs from ¢; in the
value of the internal signal changed by event e.

e ¢ is an output event enabled in s; and unexpected by the environment, and
52 = Sepr:

e cis an output event enabled in s, and expected by the environment, and:

— ¢ differs from ¢y in the value of the output signal modified by e.
— my is the marking of the STG reached when e is fired from marking
mi.

e cisan input event enabled in s; and

— ¢1 and ¢y, differ only in the value of the input signal modified by e.

— my is the marking of the STG reached when e is fired from marking
ma.

The evolution of the circuit and the environment is defined by a sequence of
firings of the underlying transition system, i.e. a run of the transition system.

Definition 4.4 (RunofaTS) Let A = (S, X, T,s;,) bea TS. Arunof Aisa
sequence s; = sy <3 ... such that s; = s;, and s; = s,,1 € T forall i > 1.

Example 4.4 Figure 4.4 shows a sample input of the verification problem studied
in this chapter. In Fig. 4.4(a), the implementation of the circuit is described as
a network of gates. The interaction with the environment is described in the STG
in Fig. 4.4(b). Composing the STG with the implementation produces the TS on

62 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

_ X— _
abtx —® abtx

z B R

i

@ X*T t_/ \‘m

abt x abt x abtx
b— —®» x- —» a-

! | Ay

abtx <——— abtx
a+

x+ <%— a+ <— b+

(b) (©)

Figure 4.4: Example of the inputs of the verification problem: (a) Implementation
of the circuit, (b) STG, (c) Composition as a TS.

Fig. 4.4(c). The enveloped state is the initial state. Note that in this TS there is
one transition going to the error state, marked with a shaded area. This transition
corresponds to a sequence of firings that is not satisfied by the specification: =+
after b+ is not allowed in the STG. This lack of conformance with the specification
can be avoided with timing constraints. For example, if the event t— always occurs
before xz+ in the state abtz, the circuit behaves conformant to the specification.

4.2.4 Correctness Criterion

In untimed design styles, the goal is to derive a TS that does not contain any erro-
neous behavior. Timed circuits accept errors in the TS as long as they are avoided
by the temporal characteristics of the circuit and the environment.

One of the elements of our problem is a correctness criterion that identifies
which states and transitions represent an incorrect behavior. The correctness cri-
terion used in each example depends on the specific problem being studied. Er-
rors in this context include both physical malfunctions and inconsistency with the
specifications. Some examples of correctness criteria used in this chapter are the
following:

e Conformance: Each output produced by the circuit is expected by the envi-
ronment in the specification, i.e. the output event is enabled in the STG any
time that it happens.

e Hazard freedom: Any non-input event that becomes enabled must be fired
before it becomes disabled, i.e. events do not become disabled when another
event is fired. Informally, a hazard occurs when a gate becomes enabled,
and then disabled before firing. The output signal of this gate may contain a

4.2 FORMALIZATION OF THE PROBLEM 63

glitch, an unwanted spurious transition which may mislead the gates that are
using the value of the signal.

e Absence of short-circuits: There should never be a path between “power”
and “ground” in the circuit.

In the transition system defined by composing the circuit and environment,
some states and transitions may violate the correctness criterion. In order to sim-
plify the analysis, the transition system will be modified in the following way:

o |f a state does not satisfy the correctness criterion, it will be replaced by the
error state s,

o |f atransition does not satisfy the correctness criterion, we will consider that
the target state of the transition is the error state s.;...

Thus, timing analysis should discover a set of timing constraints that ensures
that the error state is unreachable, i.e. no transition to the error state can be taken.
Each transition to the error state represents a different error in the circuit.

Example 4.5 Let us consider the three circuits depicted in Figure 4.5 together with
the STG describing the interaction with the environment. Each circuit describes a
different type of error.

The topmost example depicts a hazard. Signal y may exhibit a glitch as the
AND gate has becomes enabled (after x+) and disabled (after t—) without firing.
An element using the value of this signal would observe a spike, which can be inter-
preted both as a zero or as a one. In the example in the middle, the circuit does not
conform with the specification: the circuit does not interact with the environment
as it is defined in the STG. An output z+ should not occur before an input 4.
Finally, in the example in the bottom there may be a short-circuit if both transis-
tors are open simultaneously. This situation may occur with the sequence of events
depicted on the right.

4.2.5 Delay Model

There are several ways to describe the delay characteristics of a timed circuit, what
is called the delay model. We will use the following delay model.

Each gate and environment event is assumed to have a non-negligible delay,
while wires are assumed to have zero delay, i.e. a gate delay model. These delays
are considered to be bounded. However, the lower and upper bound of these inter-
vals may be defined using a symbolic delay as well as by a constant. The symbolic
delay represents an undetermined non-negative delay which is a variable of our
problem. Intervals of symbolic delays are often noted as [d, D].

For instance, the delay of a gate can be modeled as [0, 5], [0, o0}, [2, D1], [d2, 4]
or [ds, Ds]. Each interval should satisfy two basic restrictions: the lower bound

64 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

— X+ -t
- s X Xyt ——= xyt —= xyt
X y ~__ v
t Hazardinsignal vy N
X+
7N — x+ — 7+

S N

Output z+ unexpected

X= y+
IR
po= Xyz ——*= Xxyz ——*=
z 7+ 7—
— Shortcircuit
r— .
X+ y—

Figure 4.5: Some classes of errors studied in this chapter: hazards, lack of confor-
mance and short-circuits.

should be greater or equal than 0, and the upper bound should be greater or equal
than the lower bound. These restrictions may impose constraints on the symbolic
delays that appear in the intervals. For example, the previous intervals impose the
constraints (D > 2), (0 < dy <4)and (0 < ds < Ds).

In addition to considering bi-bounded delays, we assume that all delays follow
an inertial model: any change in the inputs which lasts less than the minimum
delay of the gate will be ignored. If the input reverts to the previous value before
that time, the output signal will remain unchanged. In contrast, other methods
assume an ideal or pure delay model, where any change in the input signals that
enables a gate causes an update of the output signal after [d, D] time units.

These delays are modeling the amount of time since an event becomes enabled
until it fires. Intuitively, there is a clock for each event keeping track of this amount
of time. The clock is reset to zero whenever the event is fired or it becomes disabled
by other event firings. The delay bounds are establishing limits on the values of
this clock: an event e with delay [d., D.] means that e can only be fired when
(de < clocke < D). Informally stated, the event cannot be fired before the lower

4.2 FORMALIZATION OF THE PROBLEM 65

delay bound has elapsed or after the delay bound has elapsed.

A formalism that captures all this information is a timed extension of TS:
Timed transition systems (TTS), discussed briefly in Section 3.2.1. TTS annotate
each event with a delay interval characterizing the lower and upper delay bound.
The original definition of of TTS [92] does not include parameters?, but an exten-
sion to parametric TTS (PTTS) is trivial as follows.

Definition 4.5 (Parametric timed transition system) A parametric timed transi-
tion system (PTTS) isa 5-tuple A = (A=, P, Ip,d, D) where A~ = (S, %, T, sip)
is a TS called the underlying transition system, P is the set of parameters, Ip
is a satisfiable conjunction of linear inequalities over P called invariant, and
d:X—RtuUPand D : ¥ — R" UP U {oco} respectively associate a mini-
mal and a maximal delay bounds to each event such that I implies that Ve € X :
(0 < d. < D,).

The definition of PTTS has introduced a new element: an invariant, defined
as a set of linear inequalities on the symbolic delays. This invariant describes
two types of information. First, it describes information appearing implicitly in
the delay bounds of the circuit. For instance, if there is a delay interval of the
form [d, D], the constraint (0 < d < D) will appear in the invariant. Also, these
initial invariant can contain information about timing constraints which are known
before the verification starts. These constraints can specify design constraints (e.g.
“any input-to-output path in the circuit should be within [20,30]”") or reasonable
assumptions (e.g. “‘the environment will not be faster than an inverter”) that can
facilitate the verification process. In all the examples studied in this thesis, the
invariant only contains implicit information. No additional information is provided
to the algorithm to simplify the analysis.

For the formal definition of the semantics of a PTTS, it is useful to describe a
concrete PTTS where each parameter has a specific value. A concretization is an
assignment of specific values to each parameter of a PTTS such that the assigned
values satisfy the invariant. When the temporal behavior of a concrete PTTS is
being studied, the symbolic delay bounds can be replaced by the concrete value
given by the assignment, while the constant delay bounds remain untouched.

Definition 4.6 (Concretization of a PTTS) A concretization of aPTTS A = (A,
P,Ip,d,D) is a mapping of the form f : P — R* such that Iypy is true.
The delay bounds assigned to each event in the system can also be concretized
asd’ : ¥ — Rt and Df : ¥ — R U {oo} such that:

oy | flde) ifd.eP iy | f(De) ifD.e€P
d’(e) _{ de otherwise Di(e) = D, otherwise

2In the remaining of this thesis, the terms “parameter” and “symbolic delay” will be used inter-
changeably

66 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

Definition 4.7 (Timed state sequence [92]) A timed state sequence is a pair p =
(o, t) such that o is a sequence of states and ¢ is a sequence of time stamps in R,
t1, ta, t3, ... suchthat t; <ty <t3 < ... (monotonic) and Vk € R : Jit; > k

(progress).

Definition 4.8 (Runof a PTTS) Let A = (A~, P, Ip,d,D) be a PTTS. A run
of A is a timed state sequence p = (o, t) such that o is a run of the underlying
transition system A~ and there exist a concretization f : P — R such that:

e The lower delay bound is satisfied: Ve € ¥,0 > 0,5 > i :t; < t; + dl
(s = sj+1 € 0) = (e € E(s4)) -

e The upper delay bound is satisfied: Ve € ¥,i > 0:3j >i:t; <t; + D -
e ¢ E(si)V(sj = sj41 €0).

Example 4.6 Let us recall the circuit defined in Figure 4.4. The implementation
composed with the STG produces a TS that characterizes the possible circuit be-
haviors. Delay bounds can be included in this TS in several ways. In some cases,
some delays are known constants that are fixed by the problem under study. When
the delay of a component is random or simply uncontrollable, the interval [0, o]
can be used to establish the delay bounds. For all other events, the lower and upper
delay bounds are modeled with a parameter. The transition system with this delay
model is described in Figure 4.6(a).

In this example, we assume that the rising and falling transitions of a gate have
the same lower and upper delay bounds, but more complex delay models are also
possible. For example, it is possible to assign a different delay to the falling event
and the rising event of the same gate. However, the complexity of the verification
is dependent on the number of symbolic delays that appear in the PTTS.

The lower and upper delay bounds may forbid some runs which are valid in the
underlying TS. Figures 4.6(b-e) capture this effect in the PTTS: several states and
transitions which were previously reachable become unreachable when the delays
are taken into account. Different concretizations of the symbolic delays have been
used in these examples. For example, in Fig. 4.6(b-c) the error transition due to
lack of conformance with the specification is avoided. Meanwhile, in Fig. 4.6(d)
the error may still appear in some runs of the TS. Finally, in Fig 4.6(e) the error is
unavoidable.

4.2.6 Output of the Verification

The goal of the verification is the automatic discovery of linear constraints on the
symbolic delays that guarantee the correct operation of the circuit, i.e. the con-
straints that make the errors unreachable in the PTTS. The output of the verifica-
tion is a set of timing constraints represented as a set linear inequalities over the
symbolic delays which is consistent with the invariant. For example, in the PTTS

4.2 FORMALIZATION OF THE PROBLEM 67

_ X— _
abtx ———® abtx
P ={dA, DA, dB, DB, dX, DX, dT, DT }

b—T La‘ lb={ 0< dA

bix (0< dX

b+ o4 - b =
X+T t—’/ \‘ do. =d, =dA D, =D, =DA

B o dy- =dp, =dB D, =Dy, =DB
abt x abt x abt x d,. =d,, =dX D,_ =D,, =DX

. T b+\ ’/t_ \X+ d. =d, =dT D =Dy, =DT

(@

DA) A (0< dB < DB)
DX) A (0< dT < DT) }

IN N

abtx <+——— abtx
at+

_ X— _ _ X= o
abtx ——® abtx abtx ——® abtx

! |- A Jo
. [dA,DA] = [3,4] . [dA,DA] = [3,4]
abtx [dB.DB] = [6,8] abt x [dB,DB] = [1,2]

T - ’/ [dX,DX] = [4,4] T \‘b+ [dX,DX] = [9,17]
X+ X+
[dT,DT] =[1,2]

B B o [dT,DT] = [4,5]
abt x abt x (b) abt x abt x ©
t+T b+\ t+T /I—
abtx <4——— abtx abtx <——— abtx
a+ a+
_ X— o _ X= _
abtx ——® abtx abtx ——® abtx

[dADA] = [3,4] [dA,DA] = [3,4]

abtx [dB,DB] = [1,2] abtx [dB,DB] = [1,2]

bt [dX,DX] = [1,3] bt [dX,DX] =[1,2]

X+ [dT,DT] = [2,9] [dT,DT] = [8,9]
abtx abtx (d) abtx G

A e\ e

abtx <———
at

Figure 4.6: An example of the effect of delays in a PTTS: (a) TS from Figure
4.4 extended with symbolic delays as a PTTS, (b-e) Reachable state space with
different values for the symbolic delays.

68 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

described in Figure 4.6(a), the error can be avoided if the following inequality
holds:

dB +dX < DT

Any choice of bounded delays for the gates and environment events which is con-
sistent with this timing constraint will guarantee that the circuit is correct according
to the correctness criterion, which in this case is conformance.

Another example of verification is shown in Figure 4.7. In this circuit, two tim-
ing constraints are required to guarantee conformance and hazard-freedom. Note
that each constraint is implicitly comparing the delay of two paths in the circuit:
one path should be faster than another path of the circuit. This comparison is high-
lighted in the Figure 4.7 for the first timing constraint.

If the verification algorithm cannot find a set of timing constraint that is suffi-
cient to guarantee correctness, it will return false as the timing constraint. Remem-
ber that the analysis using abstract interpretation is approximate but conservative.
By conservative we mean that the set of timing constraints provided by the algo-
rithm is always a guarantee of correctness: there are no false positives. On the
other hand, as the algorithm is approximate, it may not find the least restrictive set
of timing constraints. It is also possible that the algorithm fails to find a sufficient
set of timing constraints, even if it exists: there can be false negatives. However,
the experimental results show that false negatives do not occur often enough to be
of concern.

[d5,D5] y- a-

[dc,DC] [d4,D4] :: b\b+ X/_‘ \
y+

¢ {d6,D6] i,><\i \ /

[dA,DA] ﬂ[dlm} ooy b~
a - [d7.D7] \‘C+’/ X{ \y_

[d2,D2] y ¢ \\ /4

X_4>C_

[dB,DB]
b — [d3,D3]

|(D4+D5 < dA+d1+d6)| A (D1 < dC + d2+ d7)

Figure 4.7: The nowick asynchronous controller. Left, the network of gates.
Right, the STG describing the interaction with the environment. Bottom, timing
constraints required for correctness. The first timing constraint is highlighted as
the shaded area in the implementation.

4.3 COMPUTATION OF TIMING CONSTRAINTS 69

4.3 Computation of Timing Constraints

4.3.1 Overview of the Algorithm

The input to our algorithm is an implementation of a timed circuit as a network of
gates, an specification of the interaction with the environment as a STG, a correct-
ness criterion and the description of the delays of each event. The output should be
the set of timing constraints that ensure that all errors identified by the correctness
criterion are unreachable.

The first step is the computation of the untimed state space as a composition of
the circuit (network of gates) with the environment (STG). The result is a PTTS
where several transitions and states are labeled as errors. Several simplifications
are performed on this PTTS before the timing analysis begins.

Timing analysis is the core of our algorithm. In this phase, we assign a clock
variable to each event of the transition system. Using abstract interpretation tech-
niques, we track the possible values of clocks and symbolic delays in each state of
the system. These possible values are encoded as linear inequalities among clocks
and symbolic delays. The timing constraints will be derived from the inequalities
that appear in the error transitions.

4.3.2 Computation of the Untimed State Space

In the input, the circuit is described as a network of logic gates. Meanwhile, the in-
teraction with the environment is modeled as a STG. The composition of both ele-
ments yields the untimed state space, the set of states that are reachable when event
delays are not considered. The initial state is defined by the initial values of the sig-
nals in the circuit and the initial marking of the STG. The generation of the state
space can be performed using a depth-first (DFS) or breadth-first (BFS)traversal
starting from that initial state.

In our tool, we have used a simple DFS algorithm to compute the untimed state
space. During the DFS traversal, two additional computations are performed: the
detection of cycles in the TS and the annotation of each state with its number in
reverse DFS postorder.

Cycle information is required by the timing analysis algorithm, as it is based on
abstract interpretation. In Section 2.3.4, it was shown that a special operation called
widening must be used in each cycle to guarantee the termination of the analysis.
The detection of cycles in a graph during a DFS traversal can be performed as
follows: whenever a new state is found, it is marked as visited. This mark is
removed when all successors of the state have been visited by the DFS traversal.
While visiting a state, any transition to a state with the visited mark is called a back
edge. Back edges are the transitions that close a cycle in the TS. Figure 4.8 (a)
shows an example of a graph with the set of back edges. Note that different DFS
traversals may choose a different set of back edges, but they will always detect one
back edge in each cycle.

70 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

@

(b)

Figure 4.8: (a) Computation of back edges in two different DFS traversals of the
same PTTS. Back edges are highlighted with a dashed line. (b) Comparison of the
DFS order (left) with the reverse DFS postorder (right).

The computation of the reverse DFS postorder is simple: a number is given to
a node when all its successors in DFS order have been numbered. The first node
to be numbered gets the highest number n, while the next node to be numbered
gets n — 1, ... Reverse DFS postorder is used during timing analysis to choose
the order of evaluation of the equations. As it was discussed in Section 2.3.3, a
good evaluation ordering can accelerate an abstract interpretation analysis. Figure
4.8(b) shows an example of reverse DFS order compared to DFS order. The DFS
order correspond to the order in which states are visited in the DFS traversal. With
the same order of traversal, reverse DFS postorder achieves an ordering which
is much better for abstract interpretation analysis. Intuitively, the reverse DFS
postorder seeks to analyze all the predecessors of a node before studying that node,
something which propagates changes and avoids recomputations. For instance,
using the DFS ordering the equation for node y would be evaluated before the
equation for node x. Any change in node = would not be propagated to node y
until all the other equations were applied. This does not happen in the reverse DFS
postorder, as node z is evaluated before node .

During the computation of the untimed state space, we will identify several
states and transitions that do not satisfy the correctness criterion. We will denote
an error transition as a transition ¢ of the TS such that (a) ¢ does not satisfy the
correctness criterion or (b) the target state of ¢ does not satisfy the correctness
criterion.

4.3 COMPUTATION OF TIMING CONSTRAINTS 71

Algorithm Untimed_State_Space(ng, stg, c)

Input: A network of gates ng, a STG stg and a correctness criterion c.

Output: The untimed state space defined by the composition of ng and stg, with the
following additional information. Each transition has two labels stating whether it is back
edge and whether it is an error transition. Each state is labeled with its number in reverse
DFS postorder.

init_state := Init_Marking(stg) x Init_Signals(ng)

order := maxint { Largest integer in the representation }
R:=0

DFS_Traversal(initState)

return R

Algorithm DFS_Traversal(current)

Input: The state to be visited current. Several global variables used by this method are the
network of gates ng, the STG stg, the correctness criterion ¢, the set of reachable states R
and the reverse DFS postorder order.

Output: A boolean stating whether this state is an error. Moreover, this method updates
the set of reachable states R, the reverse DFS postorder and the back-edge label for transi-
tions.

if current does not satisfy the criterion ¢ then return true
elseif current € R then return false
endif
R =R U current
visited[current] := true
{ Compute the set of enabled events }
E(current) = Enabled_Gates(ng) U Enabled_Transitions(stg)
no_correct_successors := (€(current) # 0)
{ Recursive traversal of successors }
for each enabled evente € &(current) do
next := Fire_Event(current, e) { current 5 next }
if current 5 next satisfies the criterion ¢ then
successor_is_error := DFS_Traversal(next)
No_correct_successors := NO_correct_successors A SUCCESSOr_is_error
back_edge[current < next] := visited[next] A —successor_is_error
else
back_edge[current 5 next] := false
endif
endfor
visited[current] := false
{ Assign the reverse DFS postorder after recursively visiting the successors }
reverse_DFS_postorder[current] := order
order := order - 1
return no_correct_successors

Figure 4.9: Pseudocode of the algorithm that computes the untimed state space.

72 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

Detection of inevitable errors Post—error pruning

— - ® O

Transition Error transition State Error state

Figure 4.10: Reduction rules for PTTS.

Reductions of the State Space

Abstract interpretation using convex polyhedra has a very high computational com-
plexity, as it was discussed in Section 2.4.6. Therefore, any simplification of the
PTTS before timing analysis will reduce significantly the required execution time
and memory. The goal of timing analysis is the computation of timing constraints
in the errors. As long as the timing constraints for these errors are unaffected, it
is possible to eliminate states and transitions of the PTTS that do not contribute to
those timing constraints.
For instance, the following reductions have been used:

e Detection of inevitable errors: Whenever all the outgoing transitions of a
state are errors, mark all the incoming transitions of the state as errors. The
meaning of this reduction is that whenever the state is reached, an error is
inevitable. Hence, the system should avoid reaching this state as if itself was
an error. Due to the high level of concurrency of the circuits under study this
is possible if, for instance, an error will occur due to a previous event but
there are concurrent enabled events that could be fired before the error.

e Post-error pruning: Whenever a transition is only reachable from the initial
state through an error, remove the transition.

Example 4.7 Figure 4.10 shows a graphical example of these reduction rules. On
the TS on the left, once states x or y are reached, an error is inevitable. Therefore,
any transition leading to = or y can be considered an error. The TS on the right
shows that state z is only reachable through an error transition. Therefore, all
the transitions and state that can only be reached through z do not need to be
considered.

Additional reduction rules can be defined in order to minimize the TS before
the timing analysis. For instance, if reaching an error from a set of states X is

4.3 COMPUTATION OF TIMING CONSTRAINTS 73

impossible, then the set X can be abstracted from the analysis. However, the high
concurrency in the circuits under study causes that the pattern described by most
reduction rules rarely occurs except in simple examples. The generalization of
reduction rules and their potential application will be discussed as future work in
Section 6.2.

Explicit vs. Implicit Computation

The algorithm described so far generates the untimed state space explicitly, i.e.
each state and transition is represented individually. In contrast, implicit or sym-
bolic representations encode and manipulate sets of states using decision diagrams.
In this way, systems with larger state spaces can be successfully analyzed [100].
However, for this specific problem an implicit representation has several draw-
backs.

First, timing analysis is computationally much more expensive than the untimed
reachability analysis. Therefore, even if an implicit representation can be used to
generate the untimed state space in a system where explicit methods fail, it is likely
than timing analysis is impractical due to the size of problem.

Also, an implicit representation typically encodes the states of the state space,
but it does not represent transitions among states explicitly. Instead, transitions
are implicitly defined as a post-image (pre-image) function that computes the set
of successors (predecessors) of a given set of states. This implicit encoding of
transitions complicates the analysis with abstract interpretation for several reasons.
The first one is the inability to perform some of the reductions described previously.
However, the most important factor is the difficulty to detect cycles in the TS.
Abstract interpretation needs to apply a special operation called widening in every
cycle in order to guarantee termination, as it was explained in Section 2.3.4. Using
an implicit representation would lead to either losing the guarantee of termination
or sacrificing precision to ensure termination.

Another problem with an implicit representation is the complexity of an im-
plicit timing analysis algorithm. A decision diagram representing states only needs
to encode boolean variables. Several classes of diagrams, such as BDDs and ZDDs,
can store this type of information. However, each state of the system is labelled
with a set of timing constraints defined as linear inequalities on the symbolic delays
and clocks. Timing analysis can only be performed implicitly if the linear timing
constraints are also encoded in the decision diagram. Few diagrams support this
type inequalities, e.g. the DDC and HRD introduced in Section 3.2.5 which have a
very high computational complexity. Section 5.3 will also introduce another class
of decision diagrams able to encode linear inequalities, but again the reduction in
memory usage is traded for a large increase in the execution time of the analysis.

74 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

4.3.3 Timing Analysis by Abstract Interpretation

The events of the PTTS can only be fired if their lower and upper bound restrictions
are satisfied. Intuitively, each event has an associated event clock that stores the
amount of time elapsed since the transition became enabled. Each time an event
is fired, event clocks have to be modified accordingly. An analysis of the values
of event clocks can reveal whether an event can be fired or not in a given state,
and what values of the symbolic delays allow the firing. This section presents
an algorithm based on abstract interpretation that computes a conservative upper
approximation of the values of event clocks.

Timing analysis uses the convex polyhedron abstract domain to capture the
timing information. Each state is attached a convex polyhedron with the follow-
ing variables: the set of event clocks, the set of symbolic delays and a temporary
variable called step. The step variable is used to model the evolution of time. The
convex polyhedron attached to a state s is denoted as Time(s). This abstraction
describes the values of clocks when a state is reached, as well as the values of
symbolic delays that allow the state to be reached, i.e. the precondition of the state.

The system of forward equations in the abstract interpretation framework is
easy to define. The locations of interest, as we have said previously, are the precon-
ditions of each state of the PTTS. The equations should capture how time elapses as
the events are fired. hen an state is reached, several events become enabled while
other events that were enabled previously continue to be enabled. These events
have to be fired according to its lower and upper delay bound, taking into account
that some events have already been enabled for some time. We have defined a
symbolic function called transfer (explained in detail the following section) that
advances the clock values while satisfying all upper and lower bounds. The output
of this function is the value of clocks after firing an event, i.e. the postcondition of
the transition being taken. Using this function, the abstractions for states can be
defined as the following system of equations:

Yme S,n->meT : Time(m) = Utransfer(n, e,m)

This definition has been simplified to simplify the presentation, as, for instance, the
widening operator should be used for the incoming transitions that are back edges.

Example 4.8 For example, let us consider the circuit defined previously in Fig-
ure 4.4. If Time(S) denote the set of possible clock valuations in a state S and
(Time(S) %) denotes the possible clock valuations after firing an event 2 from an
state S, the following system of equations can be defined.

4.3 COMPUTATION OF TIMING CONSTRAINTS 75

Algorithm Abstractinterpretation (R)
Input: A parametric timed transition system R = ((S, %, T, sin), P, Ip,d, D).
Output: The abstraction Time for all states.

for each state s € S do Time(s) := () endfor
Time(sin) =Ip A (Ve € E(sin): {clocke = 01})
changed := {8;n}
do
n := state in changed with lowest reverse DFS postorder number
changed := changed \ {n}
for each transition n % m € T do
newTime :=transfer(n,e, m)
if (newTime C Time(m)) then continue endif
newTime := newTime U Time(m)
if back_edge[n = m] then
Time(m) := (Time(m) V newTime) N Ip
else
Time(m) := newTime N Ip
endif
changed := changed U {m}
while (changed # ()

Figure 4.11: Abstract interpretation algorithm

Time(abtx) = InitValues U (Time(abtx) ~)

Time(abtx) = (Time(abtx) =) U (Time(abtx) ——)
Time(abtx) = (Time(abtx) ~=) Time(abtX) = (Time(abtx) ——)
Time(abtx) = (Time(abtX) —) Time(abtx) = (Time(abtx) ——)
Time(abtx) = (Time(abtx) -5) Time(abtx) = (Time(abtx) -5)

Time(abtX) = (Time(abtx) i»)
Intuitively, each equation defines the clock values in a state as the union of clock
values after its incoming transitions. In the initial state, the enabled clocks are set

to zero, while the delays can have any value that satisfies invariant. In the example
from Figure 4.4 the values for clocks and delays in the initial state are:

InitValues = { InitClocks N Invariant }
InitClocks = { clock,— =0 }
Invariant ={ (0 < dgr < Dgy) N0 <dg— < Do) A
(0 <dpy < DbJr) A (0 <dp- < Dp_) A
(0 <danp < Danp) A (0 < dor < Dor) }

Figure 4.11 describes an algorithm that computes a solution for the system of
equations using a increasing fixpoint. Each location except the initial one starts
with an empty set of valid assignments to clocks and values, i.e. an empty abstrac-
tion. Meanwhile, the initial location begins the analysis with the invariant, and

76 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

the clocks of all enabled events set to zero. The algorithm applies the equations
iteratively as long as they add new valid assignments. The solution is reached
when there is a fixpoint, i.e.applying all equations another time does not yield new
assignments in any location.

4.3.4 Propagation of Clock Values

The core of the analysis is the clock transfer function that computes symbolically
the changes in clock values after firing an event. Clock values are represented by
a convex polyhedron, with one dimension per event clock and one dimension per
symbolic delay. The restrictions of this polyhedron represent the restrictions on the
clock values in a given state. Intuitively, the purpose of the transfer function is to
make sure that whenever an event e is fired, its delay bounds d. and D, are taken
into account and added to the restrictions on the clock values.

Event clocks for enabled events store the amount of time elapsed since the
event became enabled, while disabled clocks are undefined. After firing an event,
event clocks should be updated to reflect the time elapsed between the firing of the
last event to the firing of current event. This time spent in the state is called clock
step, and it should satisfy the following properties:

e Step should be > 0, i.e. no negative time increments

e If the event being fired is x, then its lower and upper delay bounds should be
fulfilled: (d, < clock, + step < D,,).

e The upper delay bound of the other enabled events should not be exceeded:
(Vy : yisenabled : clock, + step < D).

When an event e is fired, the clocks of other events have to be updated. The
change in their clocks depends on whether they are enabled or disabled before and
after firing e. Events that become newly enabled have their clock reset to zero,
while events that become disabled have their clock undefined. If an event remains
enabled before and after e, its clock is increased by the clock step. Finally, if an
event remains disabled, its clock does not change.

Fig.4.12 describes the algorithm that computes the transfer function using con-
vex polyhedra operators. Fig.4.13 shows an example of the computation that would
be performed by the algorithm. Events that are enabled before and after firing event
e have been increased by an amount in the interval [d., D.], i.e. the unknown clock
step. Also, notice that some constraints among the symbolic delays of different
events have been discovered. These constraints were imposed over the clock step
during the transfer, and implied several restrictions on the delays that are made ex-
plicit when variable step is undefined. For example, the restriction D, > d. means
that event e can be fired only if a is not faster than e. Otherwise, the postcondi-
tion of this transition would be empty, i.e. no assignment to clock and symbolic
delays is consistent with the firing of the event. This restriction is implied by the
constraints clock, + step < D, clock. + step > d., clock, = 0, clock, = 0.

4.4 CHOICE OF TIMING CONSTRAINTS 77

Algorithm transfer(src, e, dst)
Input: An event src = dst.
Output: The postcondition of src = dst.

P :=Time(src)

P =P A (step > 0)

P := P A (clock. + step > d.)

P := P A (clock. + step < D.)

for each evente’ # e: ¢’ € E(src) do P =P A (clocke + step < D)
for eachevente’ # e: ¢ € {E(src) NE(dst)} do Plclockes := clocke + step]
for eachevente’ # e: ¢ € E(dst) AN e’ ¢ E(sre) do Plclocke := 0]

for eachevente’ # e: ¢’ € E(src) Ae' ¢ E(dst) do P[abstract clocke:]

if e € &(dst) then Plclock, := 0]

else P[abstract clock,]

endif

P[abstract step]

return P

Figure 4.12: Clock transfer function

4.4 Choice of Timing Constraints

The goal of timing analysis is the computation of timing constraints on the sym-
bolic delays that guarantee the correct operation of the timed circuit. However,
timing analysis computes the complementary constraints: the restrictions required
to reach each state and transition of the state space. Furthermore, these invariants
computed by abstract interpretation may include clock variables, that are irrelevant
as we are trying to characterize correctness in terms of the symbolic delays.

The first step towards choosing timing constraints is focusing on the error tran-
sitions. In each error transition we seek, only the constraints among symbolic
delays. Thus, we will existentially abstract all the clock variables from the con-
vex polyhedra using Fourier-Motzkin elimination (see the subsection on convex
polyhedra within Section 2.4.6). For instance, let us consider that the following
polyhedron represents the postcondition of an error transitions:

o < clockg, < D, + N (clocky < Dy) N (clock, = clocky
d lock D.+ Dy lock D lock lock

After removing the clock variables, the following constraints on symbolic delays
remain:

(da §D0+Df) A\ (da SDb)

The timing constraints that avoid the error transitions are the complement of these
inequalities. In our example,

(do > De+ Dy) V (dq > Dy)

78 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

transfer(sl, e,s2) =
P := Time (s1)

=P\ (step 20)
=P A (clock g+ step
P A\ (clock ¢+ step
P A\ (clock 4+ step
P =P A (clock ,+ step
P [clock 5= clock 4+ step]
P [abstract clock]
P [clock pi= ?]
P [clock .= 0]
P [abstract step]
{P} = {(clock. = 0) A (clock, = 0) A (0 < clocky, < 1)}
{Q} = {(clock. = 0) A (D, > clocky > d.)A

(Dg > clocky > de) N (de +1 < Dy)}

P
P
P
P

AT
IN NN
O 0O 0 2o
o ® ® o
—

Figure 4.13: Example of the transfer function for an event e, with the postcondition
(Q obtained from a precondition P.

Therefore, the output of the verification will be a conjunction of formulas, one
for each error transition. Each subformula will be a disjunction of strict linear
inequalities representing all the possible restrictions on the symbolic delays that
avoid the error.

((mineql) V (—ineq2)) A ((—ineqd) V (—inegd) V (—inegb))
er;;}l error2

For some applications, this formula can be used directly as the timing con-
straint. For instance, let us assume that the goal is checking whether a set of known
bounded delays satisfies the timing constraints. This check can be done directly us-
ing this formula: replace each symbol by the given constant value and check if the
timing constraint is satisfied.

However, this formula is complex because it contains disjunctions. Other ap-
plications may require that the timing constraint is simplified so that it is presented
as a conjunction of linear inequalities. This type of formula is much more infor-
mative as it highlights the potential races in the circuit explicitly. Also, it opens
the possibility to answer efficiently question like “which delays should be chosen
in order to minimize the delay of a path o while ensuring correctness?”. Tech-
niques such as linear programming or constraint satisfaction can be employed to
solve these queries, using the timing constraints computed by the timing analysis
as a guarantee of correctness.

The simplification of the output formula is not trivial. The formula consists
of a conjunction of several disjunctions of inequalities. In the simplified result, at
least one inequality of each disjunction should be satisfied. A brute force strategy
such as computing the disjunctive normal form (DNF) of the formula is not an
option, due to the exponential growth in the size. Simplifying the formula with a
Presburger arithmetic tool like Omega [130] is again too inefficient except in the

4.5 EXPERIMENTAL RESULTS 79

smallest examples. A more practical strategy would be selecting one inequality
from each disjunction. This selection should attempt to produce a conjunction
of inequalities which is (a) non-contradictory, (b) compatible with the invariant
satisfied by symbolic delays and (c) the least restrictive possible. Again, simply
trying all possible combinations is not feasible as there are too many of them.

The simplification of the formula has been fully automated using a backtrack-
ing algorithm guided with several heuristics. This algorithm proceeds by selecting,
one inequality at a time, the most promising inequality among all candidates to
timing constraints appearing in the formula. At all times, the current set of timing
constraints should be both satisfiable and compatible with the invariant, otherwise
the procedure should backtrack and reconsider the last choice. An error transition
may be avoided by the current selection of timing constraints because an inequal-
ity of the disjunction appears in the selection. However, it may also be avoided
if the current selection implies an inequality from the disjunction, e.g. the timing
constraints (d, > Dy + D.) A (Dy > Dg) imply the inequality (d, > D. + Dy).
If the error transition is avoided by the current choice of timing constraints, the
constraints from its disjunction are no longer considered as candidates.

Several heuristics are used to select the best timing constraints among the can-
didates. These heuristics favor the following kinds of constraints:

e Constraints where a long sequence of delays must be slower than a much
shorter path, e.9. (d, + dy + d. > D).

e Constraints where environment delays must be slower than a path inside the
circuit, e.9. (dp > dyor + danD)-

e Constraints that appear in several failure transitions of the circuit. Due to
the concurrency in the circuit, a single error might be the cause of different
failure transitions. For instance, if a transition where “a+ happens before
b+ is an error, there can be several failure transitions derived from this
single conceptual error. Thus, a constraint that avoids several failures is
preferred to constraints that avoid a single failure.

Currently, the timing constraints are selected automatically by a backtracking
procedure based on these heuristics. This procedure computes the best % sets of
consistent timing constraints according to the heuristics. Computing all the pos-
sible combinations would also be possible but very inefficient. This procedure is
executed after the timing analysis, and it does not require repeating the timing anal-
ysis phase. In contrast, some related approaches [158] select one timing constraint
at a time and repeat the timing analysis phase to detect new timing constraints.

4.5 Experimental Results

We have implemented the algorithms presented in this chapter in a verification
tool. For the convex polyhedron abstract domain, we have used the the New Polka

80 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

|
-+ : Right
| environment

Left
environment

@ Pulse signal
to data latch

dy-+da > Dp+Da
dey +dp +dp > Dy + Dy +Da
dyy > DA+ Dp+ Dpot
dnot +dp +dp > Dy
dp +2dan > Dy_+Ds+ Dg
dan > Dpot +Dc
dp +da > Dy
dyey +dp > Dp+2Da
dy+ > Dg
d.— > Dgp

Figure 4.14: GasP FIFO controller. Each shaded area has been modeled with a
different symbolic delay. On the bottom, the discovered timing constraints that are
sufficient to guarantee the correct operation of the circuit.

convex polyhedra library [99], implementing integers as fixed precision long inte-
gers. In this section, we show some examples that have been verified using this tool,
from the domain of asynchronous controllers. These experimental results have
been collected on a Pentium 4 2Ghz machine with 512Mb RAM running Linux.
CPU time and memory have been measured using the utility memtime [22].

45.1 GasP FIFO Controller

We have formally verified a GasP FIFO controller from Sun Microsystems [149].
This circuit handles the flow of data between stages of a pipeline: whenever the
previous stage is FULL and the next stage is EMPTY, the control circuit (a) pro-
duces a pulse to the data latch in order to make it transparent, (b) declares that the
next stage is FULL and (c) declares that the previous stage is EMPTY. The state

4.5 EXPERIMENTAL RESULTS 81

of a stage is encoded in a single wire, where EMPTY (FULL) is encoded as HI
(LO). Fig.4.14 shows the controller of one stage of a pipeline. The environment of
this controller corresponds to the previous and next stages of the pipeline. Notice
that wire [e corresponds to the wire re in the previous stage of the pipeline, i.e. the
signal le is both an input and an output in this type of circuit.

This asynchronous controller is designed to achieve a very high throughput, so
it depends on timing constraints for its correct operation. In [102], this circuit is
verified and sufficient relative timing constraints to ensure correctness are derived.
The GasP circuit has also been verified using generalized relative timing [142].
Furthermore, pipelines based on GasP units have been verified hierarchically using
chain timing constraints [103]. However, it is hard to translate these constraints
into restrictions on the gate and transistor delays.

The correctness of the circuit has been verified with respect to three criteria:
absence of short-circuits, absence of hazards, and conformance. These criteria can
be satisfied with the timing constraints that appear in Fig.4.14.

4.5.2 Asynchronous Pipeline

We have also verified an asynchronous pipeline with different number of stages
and an environment running at a fixed frequency. The processing time required by
each stage has different min and max symbolic delays. The safety property being
verified in this case was “the environment will never have to wait before sending
new data to the pipeline”. Fig.4.15 shows the pipeline, with an example of a correct
and incorrect behavior. The tool discovered that correct behavior can be ensured if
the following holds:

din>D1 AN ... Ndiy > Dn N diny > Doyt

where D; is the delay of stage ¢, and d;y and Doy refer to environment delays.
This property is equivalent to:

d[N > maa:(Dl, . 7DN7DOUT)

Therefore, the pipeline is correct if the environment is slower than the slowest stage
of the pipeline.

This pipeline example is interesting due to the high degree of concurrency that
it exhibits. Increasing the length of the pipeline by one stage makes the verification
problem more complex, adding two clock variables, two new symbolic delays, and
multiplying the size of the state space by a factor of 3. CPU time for pipelines of a
different length can be found in Fig.4.15.

4.5.3 Other Examples

Several asynchronous controllers from the literature have also been verified with
our timing analysis algorithm. Some of these control circuits have been previously

82 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

IN req req req ouT
@ — —
ack ack ack
0 @ L Jim==i Jj===i Jiems
© @@ ® —
of PTTS # of CPU Time
stages || States | Trans | symbols || (seconds)
2 36 88 8 0.6
3 108 312 10 2
4 324 1080 12 135
5 972 | 3672 14 259.2

Figure 4.15: (a) Asynchronous pipeline with N=4 stages, (b) correct behavior of the
pipeline and (c) incorrect behavior. Dots represent data elements. On the bottom,
the CPU times required to verify pipelines with different number of stages.

Table 4.1: Experimental results

Example Circuit STG PTTS Sym | TC || CPU
Wires | Gates | Places | Trans | States | Trans
nowick 10 7 19 14 60 119 10 2 0.5s
gasp-fifo 9 7 10 8 66 209 12 10 8.1s
sbuf-read-ctl 13 10 19 16 74 157 14 4 1.2s
rcv-setup 9 6 14 15 72 187 12 8 2.1s
alloc-outbound 15 11 21 22 82 161 19 3 1.3s
ebergen 11 9 16 14 83 188 13 5 1.3s
D flip-flop 6 4 16 22 146 448 8 7 5.8s
mp-fwd-pkt 13 10 24 16 194 574 12 6 1.9s
chul33 12 9 17 14 288 1082 7 3 1.3s
converta 14 12 16 14 396 1341 14 13 20.4s

verified in [133] using a Relative Timing approach. In these circuits, correctness
has been defined as absence of hazards and conformance conformance. Table 4.1
shows shows the size of the circuits, STGs and the computed PTTS, the number
of parameters used as symbolic delays (Sym), the number of linear inequality
timing constraints required for correctness 7'C', and the CPU time (in seconds) used
for the verification. Intuitively, the number of timing constraints required for the
correctness of a circuit can be interpreted as a measure of its internal complexity. In
general, a circuit which is mostly combinatorial will require less timing constraints
than a circuit with many feedback loops and internal race conditions.

45.4 Evaluation of the Results

The timing analysis algorithm uses the convex polyhedron abstract domain, which
has an exponential complexity with respect to the number of variables. Therefore,

4.5 EXPERIMENTAL RESULTS 83

Table 4.2: Quantifying the relevance of symbolic delays.

of TTS All stages symbolic Only 1 stage symbolic
stages || States | Trans || Sym | CPU Mem || Sym | CPU | Mem
2 36 88 8 0.6s 64Mb 4 0.5s | 62Mb

3 108 312 10 2s 67Mb 4 1.9s | 65Mb

4 324 1080 12 13.5s | 79Mb 4 3.3s | 70Mb

5 972 | 3672 14 | 259.2s | 147Mb 4 9.8s | 102Mb

6 2916 | 12312 16 Oo/M Oo/M 4 43.6s | 187Mb

O/M = out of memory (>1.5Gb)

the number of symbolic delays in a circuit plays an important role in the overall
complexity of the method. Table 4.2 shows some data that quantify the impor-
tance of symbolic delays in the asynchronous pipeline example. Two instances of
the problem have been verified: one where each state of the pipeline has symbolic
lower and upper delay bounds, and another where all stages except one have con-
stant delay bounds. The number of symbolic delays in each case is described in the
column Sym. The results show that defining less symbolic delays allows the study
of much larger systems: the complexity is not significantly affected by the size of
the state space, when compared to the effect of the number of symbolic delays.
Therefore, it is convenient to minimize the amount of parametric delays to ensure
an efficient analysis. On a related note, most verification algorithms for parametric
timed systems can only deal with a small number of parameters (for instance < 10
or < 4, see Sections 3.2.5 and 4.6 for specific details). Therefore, the analysis
of circuits with up to 20 symbolic delays reflects an improvement with respect to
these methods.

The examples that could not be verified failed due to running out of memory.
More precisely, the part of the algorithm where it happens is the procedure that
computes the dual representations of a convex polyhedron. As we discussed in
Section 2.4.6, the conversion among dual representations can increase the size of
the polyhedron exponentially. A detailed inspection of our examples has shown
that some polyhedra have a large number of inequalities, because in each state we
keep track of a large number of competing paths in the circuit. For instance, in
all the examples, the average number of constraints in each polyhedron is between
13 and 27, but some polyhedra have more than 50 inequalities. This factor, com-
bined with the possibility of exponential blowup in every conversion, limits the
scalability of the algorithm.

Another aspect of these results should be mentioned. In many applications
of convex polyhedra, a large amount of time is spent simplifying the coefficients
of the linear inequalities. Instead of working with rationals, the coefficients are
simplified to become integers. For instance, the following inequality with rational

84 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

coefficient

2 4 S)

37 TV 2 3
can be simplified to use only integer coefficients as (28z — 24y > 105). This sim-
plification requires the computation of the greatest common divisors among several
coefficients and performing several integer products and divisions. Furthermore,
in some domains these computations increase the magnitude of the integer coeffi-
cients in the inequalities, forcing the use of arbitrary precision integers instead of
machine fixed precision integers to encode the coefficients. Using arbitrary preci-
sion adds a large time and memory overhead. Nevertheless, this does not happen
in our examples as most coefficients of the inequalities are unit, i.e. either 0 or +-1.
To quantify this observation consider that in all the examples, the percentage of in-
equalities that contain only unit coefficient is between 77 — 99%. If we exclude the
GasP FIFO example, a circuit with a very complex internal behavior which creates
a large number of invariants, this percentage grows to 95 —99%. The abundance of
unit coefficients is explained because most inequalities compare the delay of two
paths in the circuit, and these paths do not tend to contain cycles, therefore each
symbolic delay appears at most once.

4.6 Related Work

There are several previous methods which have incorporated symbolic delays in
the verification of a timed circuit. After describing our methodology in detail, we
are in condition to summarize these methods and discuss their relationship with
this thesis.

Symbolic Timing Verification

The term symbolic timing verification has been used with two different meanings
in the literature. In some papers, symbolic refers to the use of representations
based on decision diagrams, e.g. [34,95], even though the system is described with
metric timing constraints. However, in [9,87], symbolic timing verification is used
to denote the verification of a timed system with symbolic delays.

In [9], an approach for symbolic timing verification based on constraint pro-
gramming is presented, even though the class of circuits that can be analyzed is
very restricted, e.g. no feedback loops. Also, the tool MTV [87] performs symbolic
timing verification of microprocessor-based designs. Note that these designs are
not asynchronous, as there is a clock signal. This tool can handle timing constraints
that span through more than one clock cycle (multi-cycle constraints). However, it
suffers from the same weakness as the previous technique: it cannot handle feed-
back loops without latches. Therefore, it cannot be used to analyze sequential
asynchronous circuits.

4.6 RELATED WORK 85

Time-Symbolic Simulation

An approach which is closely related to the symbolic delay verification presented in
this thesis is time-symbolic simulation [98]. Time-symbolic simulation deals with
the verification of combinatorial asynchronous circuits, modeling each gate and
environment delay using a single symbolic variable. The verification enumerates
all possible event traces, recording the delay assumptions for each trace as a set
of linear inequalities. The timing constraints produced by this method are very
similar to those computed with our method.

However, time-symbolic simulations shows several shortcomings with respect
to the work presented in this thesis. First, it can only deal with combinatorial
circuits: there cannot be feedback loops in the circuit. This assumption is not rea-
sonable in the domain of asynchronous controllers. For instance, all the circuits
that appear in this thesis are sequential circuits that contain loops. Moreover, time-
symbolic simulation only deals with a single input pattern at a time, verifying the
expected output and the absence of hazards. As a result, it cannot accurately verify
complex environments specified with a STG. In a STG, sequences of inputs are
possible, and the timing information carried from the previous input can influence
the evaluation of the next input. Obviously, encoding all the input traces repre-
sented in a STG is not practical so this method is limited to simple environments.
Finally, delays are modeled using a fixed delay model, i.e. the delay of a gate is
modeled as a single symbol. The fixed delay model is usually not realistic, as the
delay of a gate can be altered slightly by factors like temperature, power supply, . ..
Representing bounded delays is possible, but it requires using a different variable
for each occurrence of the same event, something which again limits the applica-
bility of the technique. To sum up, time-symbolic simulation uses less realistic
assumptions than those used in this thesis.

Coded-Time Symbolic Simulation

Another related approach is coded-time symbolic simulation [129]. The concept
behind this method is the following: each delay is assumed to be fixed, but only
a lower and upper bound of its value is known. A discrete notion of time is used,
so the number of possible values within this interval is finite and can be enumer-
ated. Again, the method works by enumerating all event traces and recording the
delay of each trace. The possible values of this delay are encoded using a BDD,
as the values of each delay can be enumerated. Contrary to time-symbolic simula-
tion, this method can be used even when the circuit has feedback loops. Still, this
method cannot generate the powerful linear symbolic constraints achieved with the
previous approach.

The are two main drawbacks to this method. First, the “uncertain but constant”
delay model is again less realistic than the bounded delay model. Also, the effi-
ciency of the method depends not only on the size of the circuit, but in the range of
the delay intervals and the size of the discrete time units: intervals with more values

86 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

require more boolean variables to encode the delay. Consequently, the work pre-
sented in this thesis uses a more realistic delay model, provides more meaningful
constraints and is more efficient in general than coded-time symbolic simulation.

Symbolic Time Separation of Events

The problem of time separation of events, studied with metric timing constraints,
can also be analyzed in a circuit with bounded symbolic delays. In [11,95], an al-
gorithm to compute the symbolic time separation between events is presented. The
delays in the circuit are modeled as bounded symbolic delays, and the time sepa-
ration is represented as min/max expressions in Presburger arithmetics. This tech-
nique has a very high computational complexity which severely limits the number
of symbolic delays that can be used in the circuit (at most 4 symbolic delays ap-
pear in the examples). Finally, even though this approach uses bounded symbolic
delays, it does not address the problem of verification of a timed circuit.

Symbolic Verification of Timing Diagrams

A timing diagram is a graphical representation of the waveforms of the signals
that can describe the relative order among events in a circuit. Some of these re-
lationships define properties enforced by the environment while others establish
necessary constraints for correctness. In [10], the verification of these necessary
condition is addressed. The expressiveness of these diagrams is extended by adding
can be increased by adding bounded delay intervals that describe the time elaps-
ing between different events in the diagram. Also, these intervals can be defined
with symbolic delays. The result of the verification is a quantifier-free Presburger
arithmetic formula which describes the necessary constraints that ensure a correct
operation. This formula contains linear inequalities among the symbolic delays
that, in addition to intersections, can be combined using unions. In this sense, the
constraints generated by this approach are more general than the timing constraints
studied in this thesis. However, the size of the timing diagrams is much smaller
than the asynchronous controllers. In addition, similar to the symbolic time sepa-
ration of events, the computational complexity of this approach is very dependent
on the number of symbolic delays. At most, 12 symbolic delays are used in the
examples.

Verification Based on Parametric Timed Automata

Previous work proved that the verification of a timed circuit can be expressed as
an equivalent verification of a timed automata [108]. Also, methods for the ver-
ification of parametric timed automated have been described (see Section 3.2.5).
Combining these two contributions, the verification of timed circuits with symbolic
delays using parametric timed automata was introduced in [43]. This contribution
appeared after the approach presented in thesis was described [48,49,52]. No ex-
perimental results are provided, and the example circuits are very small. Given the

4.7 CONCLUSIONS 87

high complexity of the methods dealing with parametric timed automata [97], it is
unlikely that they this method will be able to scale to the size of circuits analyzable
in this thesis.

Derivation of Constraints by Failure Analysis

A hybrid approach between metric timing and symbolic delays is presented in
[158]. The problem to be solved is the verification of a timed circuit with sym-
bolic delays. Instead of using symbolic delays during the analysis, this method
uses Integer Linear Programming (ILP) to select sufficiently large constant inter-
vals. The analysis of the circuit is performed using metric timing techniques until
an erroneous trace is found. Then, the analysis discovers and chooses a linear in-
equality among the symbolic delays that is sufficient to avoid that trace. Another
round of ILP selects new intervals of constant bounds for the delays that also sat-
isfy this new constraint. When the analysis cannot find an erroneous trace, the
linear inequalities and the constant bounds used in the last metric timing analysis
pass are the constraints required for correctness.

A weakness of this technique is the necessity to include these constant bounds
in the set of timing constraints. After all, there might be an erroneous trace that
satisfies all the linear inequality constraints and is only avoided by the specific
constant bounds select by ILP. In contrast, the approach presented in this thesis
finds a set of sufficient linear inequality constraints: no additional metric timing
constraints are available.

Summary

There have been several attempts to apply the techniques from parametric timed
systems in the analysis of circuits with symbolic delays. However, these attempts
exhibit several weaknesses that limit their applicability: lack of full automation,
extremely high computational complexity, problems to deal with a bounded de-
lay model, dependence on metric timing constraints at some level or inability to
deal with sequential (cyclic) circuits. These problems have been addressed by the
methodology presented in this chapter.

4.7 Conclusions

An automatic method for the verification of timed circuits has been presented. The
output of the algorithm is a conservative approximation of the values of clocks and
symbolic delays in the reachable states of the system. An application has been
shown by computing the constraints of gate and input delays in an asynchronous
circuit that guarantee correct behavior. Remarkably, the approach works for more
than 15 symbolic delays within a reasonable time, significantly better than alterna-
tive methods presented in Section 4.6.

88 CHAPTER 4. VERIFICATION WITH SYMBOLIC DELAYS

The proposed methodology studies the circuit without specifying delays for
each component, even though known delays can be used in the analysis. The tim-
ing constraints provided by this methods are a system of linear inequalities over
the symbolic delays. The proposed methodology offers several advantages with
respect to the alternative methods for the verification of timed systems presented
in Section 3.3, achieved at the cost of higher computational complexity. Some of
these advantages are the following:

e The discovered timing constraints are independent of the technology and
the delays of the environment. Known bounds can be used to simplify the
analysis.

e The computed timing constraints are easy to validate. Validation consists on
evaluating the linear with the specific constant delay bounds.

e Linear timing constraints provide meaningful information about the system:
each constraint is implicitly comparing the delay of two competing paths
inside the circuit.

The proposed methodology also has several shortcomings. Due to its roots
in abstract interpretation, approximation may appear in the analysis causing false
negatives. However, this does not seem to a problem in practical examples. The
most relevant drawback is the high complexity of the method, which grows expo-
nentially with the number of symbolic delays in the circuit. The following chapter
will address several strategies that reduce the CPU time and memory usage. Never-
theless, exponential complexity continues to be a barrier towards scalability of the
method for large circuits, as it happens in all known techniques for the verification
of parametric timed systems.

In any case, the complexity of the analysis may be tuned by balancing the
following factors. First, having known constant delay bounds instead of parameters
reduces the genericity and precision of the timing constraints, but improves the
computational cost. Also, the level of abstraction where the circuit is studied affects
the analysis. The asynchronous controllers presented in this chapter have been
studied at the gate-level. However, the technique is also applicable to any level of
granularity. For example, one could verify RTL specifications with delays at the
level of functional blocks (ALUs, counters, controllers, etc).

Chapter 5

The Octahedron Abstract
Domain

Where there is matter, there is geometry.
—Johannes Kepler

This chapter presents a new numerical abstract domain for abstract interpreta-
tion called octahedron. This abstract domain encodes conjunctions of constraints
of the form (>, ¢; - #; > k) where ¢; € {—1,0,+1} and £k € Q. These class
of constraints, called unit constraints, are well suited for the analysis of timed cir-
cuits with symbolic delays. Theory, implementation and experimental results are
covered in this chapter.

The work presented in this chapter is based on the results published in [50, 51,
53].

5.1 Introduction

In many asynchronous circuits implementing control logic, the timing constraints
that arise are unit inequalities. Intuitively, they correspond to constraints of the

type
(14 4+6)— (Oip1+-+6,) 2k
delay(path;) delay(paths)

indicating that certain paths in the circuit must be slower than other paths. In very
rare occasions, coefficients different from £1 are necessary. A typical counterex-
ample would be a circuit where one path must be ¢ times longer than another one,
e.g. a fast counter.

In the previous chapter, these timing constraints have been analyzed using con-
vex polyhedra. However, as it was discussed in Section 2.4, many different ab-
stract domains can be used to represent the states of a system, each with a different

90 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

trade-off between precision and efficiency. Several simplifications of convex poly-
hedra exist, such as octagons or the two variable per inequality abstract domain.
Nevertheless, these domains are based on restricting the number of variables that
appear in each constraint, while the timing constraints may be arbitrarily long. Re-
stricting the set of possible coefficients of the variables in a convex polyhedron
reduces precision, but it improves the efficiency. Such an abstract domain encodes
conjunctions of a finite number of these linear inequalities with unit coefficients
({—1,0,+1}), called unit inequalities throughout this thesis. The precision of this
abstract domain, between octagons and convex polyhedra, motivated the choice of
the term octahedron abstract domain®.

Two implementations of this abstract domain are proposed. The main objec-
tive behind them is representing a system of unit inequalities without requiring
the double description method used for convex polyhedra. Although exponential
complexity cannot be avoided, as there is an exponential number of possible unit
inequalities, these implementations offer reductions in CPU time and memory us-
age which allow the analysis of larger examples. An additional assumption which
is valid in many problems, the non-negativity of the variables appearing in the unit
inequalities, can be used to optimize the implementations even further. The imple-
mentations of octahedra can be described as follows:

Decision diagram version: The first implementation attempts to keep a maximal
representation, encoding all the inequalities implied by the system of con-
straints. As this set of inequalities may be large, a special type of decision
diagram called Octahedron Decision Diagram (OhDD) is used to reduce the
memory usage. As it is usual with decision diagram approaches, the reduc-
tion in memory usage is balanced by an increase in execution time. This data
structure allows the definition of a fully symbolic version of the verification
procedure described in the previous chapter.

Bit-vector version: The second implementation uses the complementary strategy:
keeping a minimal representation, where all the redundant inequalities have
been removed from the system of constraints. Assuming that all variables are
non-negative, as it happens in timing analysis and many other verification
problems, allows an efficient implementation of the operations using bit-
vectors. Although the reduction in memory used is not as large as with
decision diagrams, the CPU time used by this method is more practical.

The remaining of this chapter will focus on describing the octahedron abstract
domain, both implementations, and the different trade-offs between precision and
efficiency. Experimental results will illustrate the benefits of both approaches and
compare them with the previously described method based on convex polyhedra.
We will also discuss other possible applications of the octahedron abstract domain
in problems where unit inequalities may arise frequently.

1The term octahedron is used in geometry to describe a 3-dimensional polyhedron with 8 faces.

5.2 FORMAL DESCRIPTION OF OCTAHEDRA 91

-1 e aly
'l e 4

Figure 5.1: Examples of (a) octahedra and (b) non-octahedra over two variables.

5.2 Formal Description of Octahedra

5.2.1 Definitions and Properties

The octahedron abstract domain is now introduced. In the same way as convex
polyhedra, an octahedron abstracts a set of vectors in Q™ as a system of linear
inequalities satisfied by all these vectors. The difference between convex polyhedra
and octahedra is the family of constraints that are supported.

Definition 5.1 (Unit linear inequality) A linear inequality is a constraint of the
form (¢; - z1+ ...+ ¢y - &, > k) where the constant term k£ isin Q U {—oo} and
the coefficients ¢; are in Q, e.g. (3z + 2y — z > —7). A linear inequality will be
called unit if all coefficients are in {—1,0,+1},suchas (z +y — z > —7).

Definition 5.2 (Octahedron) An octahedron O over Q" is the set of solutions to
the system of m unit inequalities O = {X | AX > B },with B € (QU {—o0})™
and A € {—1,0,+1}"*™. Octahedra satisfy the following properties:

1. Convexity: An octahedron is a convex set, i.e. any segment between two
points of the octahedron is fully within the octahedron.

2. Closed for intersection: The intersection of two octahedra is also an octahe-
dron.

3. Non-closed for union: In general, the union of two octahedra might not be
an octahedron.

Figure 5.1(a) shows some examples of octahedra in two-dimensional space.
In Fig. 5.1(b) there are several regions of space which are not octahedra, either
because they are not connected (1), they are not convex (2), they cannot be repre-
sented by a finite system of linear inequalities (3), or because they can be repre-
sented as system of linear inequalities, but not unit linear inequalities (4). Notice

92 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

that in two-dimensional space all octahedra are octagons; octahedra can only show
a better precision than octagons in higher-dimensional spaces.

During the remaining of this chapter, we will use C to denote a vector in
{=1,0,4+1}"™ where n is the number of variables. Intuitively, C' defines the co-
efficients of a unit inequality. Therefore, given a set of variables X, the expression
(CTX > k) denotes the unit linear inequality (c1 - 1 + ... + ¢, - 7 > k).

Lemma 5.1 An octahedron over n variables can be represented by at most 3" — 1
non-redundant inequalities.

PROOF Each variable can have at most three different coefficients in a unit linear
inequality. For n variables, there at most 3™ possible combinations of unit coeffi-
cients, where one of them is an irrelevant unit inequality with 0 in all coefficients.
This means that if an octahedron has more than 3™ — 1 unit inequalities, some of
them will only differ in the constant term, e.g. (CTX > k1) and (CTX > ko).
Only one of these inequalities is non-redundant, the one with the tightest bound
(the largest constant), i.e. (CTX > max(k1, k2)). O

A problem when dealing with convex polyhedra and octahedra is the lack of
canonicity of the systems of linear inequalities: the same polyhedron/octahedron
can be represented with different systems of inequalities. For example, both sys-
tems of inequalities (x = 3) A (y > 5) and (x = 3) A (x + y > 8) define the same
octahedron with different inequalities. Given a convex polyhedron, there are al-
gorithms to minimize the number of constraints in a system of inequalities, i.e.
removing all constraints that can be derived as linear combinations. However, in
the previous example both representations are minimal and even then, they are
different. Given that the number of possible linear inequalities in a convex poly-
hedron is infinite, the definition of a canonical form for convex polyhedra seems a
difficult problem. However, a canonical form for octahedra can be defined using
the result of lemma 5.1. Even though the number of inequalities of this canonical
form makes an explicit representation impractical, symbolic representations based
on decision diagrams can manipulate sets of unit inequalities efficiently.

Definition 5.3 (Canonical form of octahedra) The canonical form of an octahe-
dron O C Q" is either (i) the empty octahedron or (ii) a system of 3™ — 1 unit
linear inequalities, where in each inequality (CT X > k), k is the tightest bound
satisfied by O.

Theorem 5.1 Two octahedra O; and O, represent the same subset of Q" if and
only if they both have the same canonical form.

PROOF (Implication —) Given a constraint (CTX > k), there is a single
tightest bound to that constraint. Therefore, if two octahedra are equal, they will
have the same bound for each possible linear constraint, and therefore, the same
canonical form. O

5.2 FORMAL DESCRIPTION OF OCTAHEDRA 93

A = {(—o<z<40) A (—o0 <y < +00)
A(—oo<z—y<+00) A (-oo<z+y<6)}
B = {(—o<z<40) A (-0 <y < 40)
ANO<z—y<+400) A (moo<z+y<400)}
ANB = {(-c0o<z<400) A (—00 <y < 400)
ANO<z—y<+o00) A (—oo<z+y<6)}
canonical(ANB) = {(—o<z<+00) A (—o0<y<3)

ANO<z—y<+400) A (—oo<z+y<6)}

Figure 5.2: An example where A N B is not in canonical form.

PROOF (Implication <) From its definition, an octahedron is completely char-
acterized by its system of inequalities. If two octahedra O, and O, have the same
canonical form, then they satisfy exactly the same system of inequalities and there-
fore are equal. O

Theorem 5.2 Let A and B be two non-empty octahedra represented by systems of
inequalities of the form (CTX > k,) and (CTX > k) for all C € {—1,0,+1}",
The intersection AN B is defined by the system of inequalities (C7 X > max(kq, ks)),
which might be in non-canonical form even if the input systems were canonical.

PROOF Any point P € Q" that satisfies (CTP > max(k,, kp)) will also
satisfy (CTP > k,) and (CT P > k;). Therefore, any point P satisfying the new
system of inequalities will also appear in both A and B. O

Figure 5.2 shows an example where the intersection of two octahedra is not
in canonical form, even when the original octahedra were in canonical form. The
intersection of A = { z > y } and B = { = + y < 6 } satisfies the inequality
(y < 3). However, this constraint does not appear simply by taking the maximum
constant for all the constraints of A and B. Instead, this implicit constraint is
implied by the other constraints of the intersection, i.e. it computed as a linear
combination of other constraints of AN B.

Lemma5.2 An octahedron B is an upper approximation of an octahedron A,
noted A C B, iff (i) A is empty or (ii) for any constraint (CTX > k,) in the
canonical form of A, the equivalent constraint (CTX > ky) in the canonical form
of B has a constant term k; such that (k, > k).

PROOF By definition, A C B iff A = AN B. This lemma is a direct conse-
guence of this property and Theorem 5.2. O

Definition 5.4 (Convex and octahedral hull) The convex hull (C-hull) of two con-
vex polyhedra A and B is the intersection of all convex polyhedra that include both

A and B. The octahedral hull (O-hull) of two octahedra A and B is the intersection

of all octahedra that include both A and B.

94 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

A = {4z2>2)A(T>y>4)}
BN B = {(6z2>1)AB>y>1)
e Chul = {6>z>1)AT>y>1)A
N (4o —y =) A~z —y > —23)}
D | D - O-hul = (522> 1)A(T2y>1)A
’ylil\ |:| (l'_yz 5)/\(—$—y2 _11)}
C-hull(A,B) g O-hull(A,B) g

Figure 5.3: Two upper approximations of the union: convex hull (C-hull) and
octahedral hull (O-hull)

Figure 5.3 shows an example of the convex and octahedral hulls of two octa-
hedra A and B. Notice that the convex hull is always an upper approximation of
the union, and the octahedral hull is always an upper approximation of the convex
hull, i.e. AU B C C-hull(A, B) C O-hull(A, B).

Theorem 5.3 Let A and B be two non-empty octahedra whose canonical form
are respectively (CTX > k,) and (CTX > k) for all C € {—1,0,+1}". Then,
the octahedral hull O-hull(A, B) is defined by the system of inequalities (C7X >
min(kq, kp))

PROOF Given a bound % for one inequality (C7X > k) of O-hull(A, B), the
proof can be split into two parts: proving that & < min(k,, k) and proving that
k > min(kg, k).

As the octahedral hull includes A and B, all points P € A and P € B should
also be in O-hull(A, B). Therefore, any point in A or B should satisfy the con-
straints of O-hull(4, B). Given a constraint (C7 X > k), itis known that points in
A satisfy (CT X > k,) and points in B satisfy (CT X > k). If both sets of points
must satisfy the constraint in O-hull(A, B), then k£ must satisfy & < min(k, ks).

On the other side, the octahedral hull is the least octahedron that includes A
and B. Therefore, the bounds of each constraint should be as tight as possible, i.e.
as large as possible. If we know that & < min(k,, ks) should hold for a given unit
inequality, the tightest bound for that inequality is precisely ¥ = min(k,, k). As
a corollary, the octahedral hull computed in this way is in canonical form. O

5.2.2 Computing the Canonical Form

The computation of the canonical form of octahedra will be based on the double
description method used in convex polyhedra (see Section 2.4.6). More precisely,
it is based on the generator representation of the octahedron. The pseudocode for

5.2 FORMAL DESCRIPTION OF OCTAHEDRA 95

y y
/ . / .
e —t
‘ X ‘ ‘ _ X
rr 1T 7117 17T 1T 177 1T 1T 71 17 17T 1T 177
z > 3 z < 00
y = 2 y < o0
r+y > 5 z+y < o0
z—y = 0 r—y < o0
(@) (b)

Figure 5.4: (a) Bounded unit inequalities, (b) unbounded unit inequalities.

a possible algorithm is presented in Figure 5.5. The output of the algorithm should
be either the empty octahedron or the bounds for each of the 3¢ — 1 unit inequalities
of the canonical form.

The algorithm is based on the two following observations. First, a ray is a
vector that represents a direction of unbounded growth in the octahedron, i.e. no
constraint can impose a bound that “crosses” the ray. Therefore, a unit inequality
will be unbounded in an octahedron O if it crosses one of the rays of O. And
second, if a unit inequality is bounded, its tightest bound will occur in one of the
vertices of the octahedron. Figure 5.4 shows an example of these observations
in the system of generators of an octahedron with vertices V- = {(3,3),(3,2)}
and rays R = {(1,1),(1,0)}. All the unit inequalities that cross the rays are
unbounded as shown in Fig. 5.4(b). On the other hand, all the bounded inequalities
achieve the tightest bound in one of the vertices of the octahedron, as shown in Fig.
5.4(a).

If a unit inequality is defined as (C” X > k), itis possible to determine whether
it crosses a ray r using the scalar product: if (CT - r < 0), then the unit inequality
crosses the ray. For example, the ray (1, 0) is crossed by the inequality (—z +y >
k) because (—1,1)7 - (1,0) = (=1) -1 +1-0 = —1. Also, given a vertex v, the
tightest bound % achieved by a unit inequality (C”X > k) can be computed as
k = CT .. For instance, the bound of the inequality (z — y > k) in a vertex
(3,2)is (1,-1)T-(3,2) =1-3+(-1)-2=1.

For an octahedron over Q¢ with v vertices and r rays, the algorithm requires
O(d - (v + r) - 3%) time. The space requirements are O(d - (v + r + 3%)) in the
worst case. In addition to this complexity, the cost of computing the generator
representation should be also considered, i.e. O(CL%J), where c is the size of the
system of constraints (c < 3%).

96 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

Function Canonical_form(O)

Input: An octahedron O defined as a system of inequalities over d variables.

Output: The canonical form of O, which is either the empty octahedron (if O is empty) or
the canonical system of 3¢ — 1 unit inequalities for O.

Compute the system of generators of O: the set of vertices V' and rays R
if V. = (then
return empty
endif
{ Compute the bound of each inequality in the canonical form }
for each unit inequality C € {-1,0,+1}¢in O do
{ Evaluate the rays for this inequality }
unbounded := false
for eachrayr € Rdo
unbounded := (CT - r < 0)?
if unbounded then
break
endif
endfor
if unbounded then
tightest_bound := —co
else
{ Evaluate all the vertices for this inequality }
{ Keep the tightest bound satisfied by all vertices }
tightest_bound := +o0
for each vertex v € V do
new_bound := CT - v
{(CT - X > new_bound) holds for this vertex }
tightest_bound := min (new_bound, tightest_bound)
{(CT - X > tightest_bound) holds for all vertices visited so far }
endfor
endif
bounds[C'] = tightest_bound
{ bounds[C'] =k means (CT - X > k) }
endfor
return bounds

Figure 5.5: Pseudocode to compute the canonical form of an octahedron.

5.2 FORMAL DESCRIPTION OF OCTAHEDRA 97

The complexity of these algorithms makes the computation of the canonical
form impractical. Even though the canonical form is useful to define the semantics
of the operations, it is not practical for the implementation. Instead of the canon-
ical form, we will define a relaxed version called the saturated form. Operations
performed using the saturated form may lose some precision, while always being
an upper approximation of the exact result.

5.2.3 Approximations of the Canonical Form

As it was shown in the previous section, the canonical form of an octahedron pro-
vides a useful mechanism to define operations such as the test for inclusion, the
intersection or the octahedral hull. However, it is not convenient to implement the
operations using the canonical form.

On the other hand, octahedra are defined in the context of abstract interpreta-
tion of numerical properties. In this context, the problem is the abstraction of a set
of values in @, and the main concern is ensuring that the abstraction is an upper
approximation of the concrete set of values. Thus, as long as an upper approxi-
mation can be guaranteed, an exact representation of octahedra is not required, as
octahedra are already abstractions of more complex sets. Keeping this fact in mind,
efficient algorithms that operate with upper approximations of the canonical form
can be designed.

The first step is the definition of a relaxed version of the canonical form, which
is called saturated form. While the canonical form has the tightest bound in each
of its inequalities, the bounds in the saturated form may be more relaxed. A system
of unit inequalities is in saturated form as long as the bounds imposed by the sum
of any pair of constraints in the system appear explicitly. For example, a saturated
form of the octahedron (a > 3)A(b>0)A(c>0)A(b—c>T)A(a+b>8)A
(a + ¢ > 6) can be defined by the following system of inequalities:

(@>3)ANDO>T)AN(c>0)A(a+b>10)A(a+c>6)A(b+c>T7)
ANb—=c>T)AN(a+b—c>10)A(a+b+c>13)

where the constraints with a bound of —oo have been removed for brevity. In this
example, saturation has exposed explicitly that (e + b > 10). This inequality is the
linear combination of (a > 3), (b —c¢ > 7) and (¢ > 0).

A saturated form O* of an octahedron O = { X | AX > B } can be computed
using an iterative procedure called saturation. At each step of this procedure, a
linear combination between two unit inequalities is computed. If this linear com-
bination has a tighter bound than the one already known, the bound is updated,
and so on until a fixpoint is reached. The formal description of saturation is the
following:

1. Initialize the system of 3™ — 1 unit inequalities for all possible values of
the coefficients C € {—1,0,4+1}™. The bound k of a given inequality

98 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

(CTX > k) is chosen as:

b — b if CTX > bappearsin AX > Band C % 0".
~ 1 —oo otherwise

2. Select two inequalities C7 X > ky and C7 X > ks such that k; > —oo and
ko > —oo. Let us define C, = C1 + Cq and k, = kq + ko.

3. IfC, ¢ {—1,0,+1}" return to step 2.

4. 1f CTX > k appears in the system of inequalities with k& > k., return to
step 2.

5. Replace the inequality CT X > k by CTX > k,.
6. Repeat steps 2-5 until:

e A fixpoint is reached or

e An inequality C*TX > kwith C = 0™ and k£ > 0 is found. In this case,
the octahedron is empty.

Theorem5.4 LetO = {X | AX > B A X > 0"} be a non-empty octahedron.
The saturation algorithm applied to O terminates.

PrRoOOF Each step of the saturation algorithm defines a tighter bound for an
inequality of the octahedron. The new inequality (C X > k%) is obtained from
two previously known inequalities (C7 X > k;) and (C7 X > k»), so that C3 =
C1 + Cy and k% = ky + ko, and k5 > ks, where k3 is the previously known bound
for the inequality. If inequalities 1 and 2 were computed in previous rounds of the
saturation algorithm, this dependency chain can be expanded, e.g. if inequality 2
comes from inequalities 4 and 5, then C's = Cy + Cy + Cs and k5 = ky + kg + ks.
Non-termination of the saturation algorithm implies that there will be infinitely
many sums of pairs of inequalities. Ignoring the bound &, there are only finitely
many inequalities over n variables. Therefore, it is always possible to find a step
that computes a bound k; that depends on a previously known bound &, i.e. C; =
Cj—l-z C; and k; = k?j—i-z k. As Cj—Cj = ZC; = 0" and ké»—k?j = Z/{?l > 0,
the linear combination ((3>-C))TX > (3. k;)) is equivalent to (0 > 0), which
implies that O is empty. O

The fixpoint in saturation may not be reached if the octahedron is empty. For
example, the octahedron in Fig. 5.6(a) is empty because the sum of the last four in-
equalities is (0 > 4). The saturation algorithm applied to this octahedron does not
terminate. Adding the constraints in bottom-down order allows the saturation algo-
rithm to produce (z2 — x4 > 5), which can again be used to produce (zo — x4 > 9)
and so on. Even then, the saturation algorithm is used to perform the emptiness test
because of three reasons. First, there are special types of octahedra where termi-
nation is guaranteed. For instance, if all inequalities describe constraints between

5.3 DECISION-DIAGRAM BASED IMPLEMENTATION 99

+ x2 — X4

—X1 — X2+ T3+ T4+ Ts — Xe

41 —T2—z3+T4 > 1
+r1 — X2 — T3+ x4 — T5+ T —T1—Tot+ T3 4+T5 > 2
+T1+ 22+ T3 — Ty — Ts — Te Y1+ zotas+as > 3

vV IV IV IV IV
e

—Z1+ T2 — T3~ T4+ T5+ To
@) (b)

Figure 5.6: (a) Empty octahedron where the saturation algorithm does not termi-
nate and (b) Non-empty octahedron where the saturated form is different from the
canonical form.

symbols (all constant terms are zero), saturation is guaranteed to terminate. This
occurs because any linear combination among unit constraints will either leave a
constant as 0, or replace a —oco constant by a 0. Second, the conditions required
to build an octahedron for which the saturation algorithm does not terminate are
complex and artificial, and therefore we expect them to occur rarely in practical
examples. Note that non-termination may arise only for some systems of unit in-
equalities that define an empty octahedron. A final reason is the good behavior
of the saturation procedure in practical examples. If the input is an octahedron
obtained by performing minor changes to previously saturated octahedra, e.g. the
intersection of two saturated octahedra, typically very few iterations are required
to reach the fixpoint. This makes the prediction of non-termination possible in
practice.

Even if the saturation algorithm terminates, in some cases it might fail to dis-
cover the tightest bound for an inequality. For example, in the octahedron in Fig.
5.6(b), saturation will fail to discover the constraint (z; —z9+x3+ 4+ x5+ 26 >
6), as any sum of two inequalities will yield a non-unit linear inequality. There-
fore, given a constraint (CTX > k,) in the saturated form, the bound k. for the
same inequality in the canonical form may be different, k. < k. But k. > k;
always holds, as k. is the tightest bound for that inequality. Using this property,
operations like the union or intersection that have been defined for the canonical
form can also be used for the saturated form. The result will always be an upper
approximation of the exact canonical result, as k. > k; is the exact definition for
upper approximation of octahedra (Lemma 5.2).

5.3 Decision-diagram Based Implementation

5.3.1 Overview

The constraints of an octahedron can be represented compactly using a specially
devised decision diagram representation. This representation is called Octahedron
Decision Diagram (OhDD). Intuitively, it can be described as a Multi-Terminal
Zero-Suppressed Ternary Decision Diagram:

100 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

e Ternary: Each non-terminal node represents a variable x; and has three out-
put arcs, labelled as {—1, 0, +1}. Each arc represents a coefficient of z; in a
linear constraint.

e Multi-Terminal [82]: Terminal nodes can be constants in R U {—oo}. The
semantics of a path o from the root to a terminal node % is the linear con-
straint (¢c1 - x1 + c2 - x2 + ... + ¢ -y, > k), Where ¢; is the coefficient of
the arc taken from the variable z; in the path o.

e Zero-Suppressed [112]: If a variable does not appear in any linear constraint,
it also does not appear in the OhDD. This is achieved by using special re-
duction rules as it is done in Zero-Suppressed Decision Diagrams.

The reduction rules of decision diagrams have an essential role: ensuring that
the representation is canonical. In the context of octahedra, canonicity means that
saturated octahedra with the same system of inequalities are encoded by the same
OhDD. Another aspect of the reduction rules is that they may have a large impact
in the efficiency of the representation. A careful choice of reduction rules may
decrease the size of the decision diagram, improving both memory and CPU time
for all operations. In the case of OhDD, two reduction rules are defined: one
for octahedra with unbounded variables and another specially tuned for octahedra
with non-negative variables. In both case, the overall manipulation of OhDD will
be the same, with only subtle changes in the implementation. These issues will be
described in detail in the following section.

Figure 5.7 shows an example of a OhDD and the octahedron it represents on
the right, using reduction rules for non-negative variables. The shadowed path
highlights one constraint of the octahedron, (x+y—z > 2). All constraints that end
in a terminal node with —oo represent constraints with an unknown bound, such
as (xr —y > —o0). As the OhDD represents the saturated form of the octahedron,
some redundant constraints such as (z + y + z > 3) appear explicitly.

This representation based on decision diagrams provides three main advan-
tages. First, decision diagrams provide many opportunities for reuse. For example,
nodes in a OhDD can be shared. Furthermore, different OhDD can share internal
nodes, leading to a greater reduction in the memory usage. Second, the reduction
rules avoid representing the zero coefficients of the linear inequalities. Finally,
symbolic algorithms on OhDD can deal with sets of inequalities instead of one in-
equality at a time. All these factors combined improve the efficiency of operations
with octahedra.

5.3.2 Notation

Definition 5.5 (Octahedron Decision Diagram - OhDD) An Octahedron Decision
Diagram is a tuple (V, G) where V' is a finite set of positive real-valued variables,
and G = (N U K, E) is a labeled single rooted directed acyclic graph with the
following properties. Each node in K, the set of terminal nodes, is labeled with a

5.3 DECISION-DIAGRAM BASED IMPLEMENTATION 101

rx > 2

> 0

> 0

r+y = 3
r—z > 2
rT+y—z > 2
z+y+z > 3

Figure 5.7: An example of a OhDD. On the right, the constraints of the octahedron.

constant in QU {—oco}, and has an out-degree of zero. Each node n € N is labeled
with a variable v(n) € V, and it has three outgoing arcs, labeled —, 0 and +.

By establishing an order among the variables of the OhDD, the notion of or-
dered OhDD can be defined. The intuitive meaning of ordered is the same as in
BDDs, that is, in every path from the root to the terminal nodes, the variables of
the decision diagram always appear in the same order. For example, the OhDD in
Fig. 5.7 is an ordered OhDD.

Definition 5.6 (Ordered OhDD) Let > be a total order on the variables V' of a
OhDD. The OhDD is ordered if, for any node n € IV, all of its descendants d € N
satisfy v(d) > v(n).

In the same way, the notion of a reduced OhDD can be introduced. However,
the reduction rules will be different in order to take advantage of the structure of the
constraints. In an octahedron, most variables will not appear in all the constraints.
Avoiding the representation of these variables with a zero coefficient would im-
prove the efficiency of OhDD. This can be achieved as in ZDDs by using a special
reduction rule.

Let us consider an octahedron like (x — y > 4). Other variables, e.g. z, do not
affect the bound of the constraint. For example, as there is no information about z,
constraints that involve z, y and z will have a bound like —oo, like (z —y + z >
—oo) or (x —y — z > —o0). This scenario can be described as follows: there is
a node n in the OhDD with a variable z, where the outgoing arcs — and + point
towards —oo, and the 0 arc points to a node m. In this case, the node n can be
replaced by node m to avoid encoding the irrelevant variable z. This reduction rule
is displayed in Figure 5.8(a).

If the variables are known to be non-negative, the reduction rule can be refined.
For example, in the case of a constraint like (z — y > 4) and an irrelevant variable
z, the constraints where the variable = appears are (zr —y +z > 4) and (x — y —
z > —o0). Contrary to the previous case with arbitrary variables, the constraint
(x —y + z > 4) has now a known bound as (z > 0). Therefore, the reduction

102 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

isomorphic subgraph
_— Y =

zero coefficient
reduction

@

reduction

b 04/ \- zerocoeficient i}
() reduction

isomorphic subgraph
- -

reduction

Figure 5.8: Reduction rules for OhDD: (a) Unconstrained variables, (b) non-
negative variables

rule should be rephrased to take into account this information: there should be a
node n in the OhDD with a variable z, where the outgoing arc — points to co and
both the 0 and + arcs point to a node m. Then, the node n can be replaced by
m. Figure 5.8(b) depicts this alternative reduction rule. Remarkably, using this
reduction rule, the set of constraints stating that “any sum of variables is greater or
equal to zero” is represented only as the terminal node 0.

Figure 5.8 shows an example of the two alternatives, together with the other
reduction rule, which merges isomorphic subgraphs of the decision diagram. No-
tice that contrary to BDDs, nodes where all arcs have the same target will not be
reduced.

Definition 5.7 (Reduced OhDD) A reduced OhDD is an ordered OhDD where
none of the following rules can be applied:

1. Reduction of isomorphic subgraphs: Let D and D5 be two isomorphic sub-
graphs of the OhDD. Merge D, and D-.

2. Reduction of zero coefficients (with unconstrained variables): Letn € N be
a node with the — and + arcs going to the terminal —oo, and with the arc 0
pointing to a node m. Replace n by m or

3. Reduction of zero coefficients (with non-negative variables): Let n € N be
a node with the — arc going to the terminal —oco, and with the arcs 0 and +
point to a node m. Replace n by m.

Figure 5.9 shows the effect of the different reduction rules on a OhDD. In
this case, the octahedron being represented is (z > 0) A (y > 0) A (z>0) A
(x+y>3)A(x+ 2z >3). The detection of isomorphic subgraphs is illustrated
in Figure 5.9(a). As all the variables in this example are non-negative, the two
alternative reduction rules 2 and 3 can be compared, as shown in Figures 5.9(b)
and (c). Notice that the reduction that assumes non-negative variables produces a
more compact representation. Therefore, whenever all the variables in a problem
are known to be non-negative, reduction rule number 3 should be used instead of
reduction rule number 2.

5.3 DECISION-DIAGRAM BASED IMPLEMENTATION 103

@>0)AYy>0)A(z>0)A(z+y>3)A(x+2z>3)

(b) (©

Figure 5.9: Comparison of reduction rules. On the top, the octahedron being en-
coded. On the bottom, (a) OhDD with reduction rule 1 - isomorphic subgraphs, (b)
OhDD with reduction rule 2 - unconstrained variables and (c) OhDD with reduc-
tion rule 3 - non-negative variables.

5.3.3 Related Work

Several classes of decision diagrams have been proposed to encode and manipulate
numerical properties. For instance, the decision diagrams presented in Section
3.2.3 can be used to analyze timed systems. However, only constraints with at
most two variables can be encoded in these diagrams. The diagrams presented in
Section 3.2.5 for the analysis of parametric timed systems can encode an arbitrary
number of variables per constraint. This section will recall their characteristics and
compare them to OhDD.

Example 5.1 Figure 5.10 compares the three types of decision diagrams for a
given octahedron. Notice that in both DDC and HRD, the nodes of the decision di-
agram are inequalities of the octahedron. The encoding used in OhDD is radically

104 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

<=-3
-0 -0
[1] -
DDC HRD OhDD

Figure 5.10: Comparison of DDC, HRD and OhDD encoding the octahedron with
inequalities (zr —y+2z >4) A (x —z > 3). The constraints (x > 0), (y > 0)
and (z > 0) are not encoded in the DDC and HRD for brevity.

different: each node encodes a variable of the decision diagram, while the output
edges model the possible coefficients of the variable. Another important difference
is that ability of OhDD to captures many implicit inequalities in the diagram. For
instance, the inequality (z > 3) is stored in the OhDD.

DDC and HRD have two advantages with respect to OhDD: they can encode
linear inequalities in addition to unit inequalities, and they can encode non-convex
regions, while OhDD can only store octahedra, which are convex by definition. On
the other hand, OhDD have a bounded depth: each path from the top to the bottom
of the OhDD will traverse at most one node per variable in the system. In con-
trast, the depth of a DDC and HRD may grow with the number of inequalities in a
system, e.g. consider an octahedron defined as the intersection of 100 inequalities.
Furthermore, OhDD has a systematic procedure to combine the inequalities stored
in the diagram, in order to discover all the implicit information: saturation. Mean-
while, DDC and HRD employ heuristics to combine information in inequalities
which are close within the diagram. Moreover, in OhDD the order of the nodes in
the diagram has a clearer definition than in DDC or HRD. A very simple heuristic
can be used to define a good ordering in the OhDD: “keep the variables that ap-
pear in many constraints close to the top of the diagram™. Such a clear ordering is
difficult to establish in diagrams like DDC and HRD.

5.3.4 Abstract Semantics of the Operations

In order to characterize the octahedron abstract domain, the abstract semantics
of the abstract interpretation operators must be defined. Intuitively, this abstract
semantics is defined as simple manipulations of the saturated form of octahedra.
All operations are guaranteed to produce upper approximations of the exact result,
as it was justified in section 5.2.3. Some operations like the intersection can deal

5.3 DECISION-DIAGRAM BASED IMPLEMENTATION 105

with non-saturated forms without any loss of precision, while others like the union
can only do so at the cost of additional over-approximation.

In the definition of the semantics, A and B will denote octahedra, whose sat-
urated forms contain inequalities of the form (CTX > k,) and (CTX > k),
respectively.

Intersection ANB is represented by a system of inequalities where (CT X >
max(kq, kp)), which might be in non-saturated form.

Union AU B is approximated by the saturated form (C7 X > min(kq, ks)).

Inclusion Let A and B be two octahedra. If k£, > k; for all inequalities in
their saturated form, then A C B. Notice that the implication does not work
in the other direction, i.e. if k, # k; then we don’t know whether A C B or
A ¢ B.

Widening AV B is defined as the octahedron with inequalities (CT X > k)
such that :

b — —00 if ke >k
N otherwise

As established in [114], the result should not be saturated in order to guar-
antee convergence in a finite number of steps.

Extension An octahedron O can be extended with a new variable y by modi-
fying the constraints of its saturated form O*. Let (¢1-z1+...+¢p 2y > k)
be a constraint of O*, the inequalities that will appear in the saturated form
of the extension are:

-c-x1+...+eprp—1-y>—00
—cr1+...+ep T, +0-y>k
-c-x1+...teprp+1-y>—00

If the new variable is known to be non-negative, the last constraint can be

changed to a more precise (¢; -1 + ...+ ¢y -2 + 1 -y > k) as the known
bound & cannot be decreased by adding a non-negative value.

Projection A projection of an octahedron O removing a dimension z; can

be performed by removing from its saturated form O* all inequalities where

x; has a coefficient that is not zero.

Unit linear assignment A unit linear assignment [z; := 7" | ¢; - ;] with

coefficients ¢; € {—1,0,+1} can be defined using the following steps:
— Extend the octahedron with a new variable ¢.

— Intersect the octahedron with the octahedron (t = > 7", ¢; - ;)

106 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

— Project the variable z;.
— Rename t as z;.

Impact of the conservative inclusion test on abstract interpretation: Using
these operations, upper approximations of the concrete values will be computed in
abstract interpretation. A special mention is the case of test of inclusion, where the
result is only definite if the answer is true. Intuitively, this lack of accuracy appears
from the impossibility to discover the tightest bound with saturation. In abstract
interpretation, the analysis is performed until a fixpoint is reached, and the fixpoint
is detected using the test for inclusion. The inaccurate test of inclusion might lead
to additional iterations in the abstract interpretation loop. Each iteration will add
new constraints to our octahedra that were not being discovered by saturation, until
the test for inclusion is able to detect the fixpoint. However, in practical examples,
this theoretical scenario does not seem to arise, as constraints tend to be generated
in a structured way that allows saturation to obtain good approximations of the
exact canonical form.

5.3.5 Implementation in OhDD

The octahedra abstract domain and its operations have been implemented as OhDD
on top of the CUDD decision diagram package [146]. Each operation on octahedra
performs simple manipulations such as computing the maximum or the minimum
between two systems of inequalities, where each inequality is encoded as a path in
a OhDD.

Two concepts from BDDs are used to present the implementation of the opera-
tions. First, the top variable of a OhDD is the variable that appears in the root of the
OhDD. Two OhDD may have different top variables, because some variables are
not encoded when the reduction rules are applied. Given several ordered OhDD,
the top variable among all of them is the one which appears before in the ordering.
The other concept is the term cofactor from Boolean algebra. The two cofactors
of a Boolean formula f(z1,...,z,) : B* — B are the pair of formulas obtained
by replacing variable x; by constants 0 and 1 respectively inside f. In a BDD, the
cofactors of a node f with respect to the top variable are the two children of f.
In the context of OhDD, the term cofactor is also used to denote the children of a
node. Each node f of the decision diagram has three cofactors f—, f°and f* with
respect to a variable z. Each cofactor denotes the set of inequalities in f where
the variable = has a given coefficient, i.e. f° contains all the inequalities where z
does not appear. The cofactors of a OhDD f with respect to the top variable are
the targets of the three arcs —, 0 and +, while the cofactors for the other variables
are defined by the chosen reduction rule.

The operations on octahedra can be implemented as recursive procedures on
a OhDD. The algorithm may take as arguments one or more decision diagrams,
depending of the operation. Appendix A presents some algorithms that perform
operations on OhDD, such as the reduction rules, intersection and saturation. For

5.3 DECISION-DIAGRAM BASED IMPLEMENTATION 107

the sake of brevity, in this section we will simplify discuss the overall structure of
these procedures, which is common to all of them:

1. Check if the call is a base case, e.g. all arguments are constant decision
diagrams. In that case, the result can be computed directly.

2. Look up the cache to see if the result of this call was computed previously
and is available. In that case, return the precomputed result.

3. Select the top variable ¢ in all the arguments according to the ordering. The
algorithm will only consider this variable during this call, leaving the rest of
the variables to be handled by the subsequent recursive calls.

4. Obtain the cofactors of ¢ in each of the arguments of the call.
5. Perform recursive calls on the cofactors of ¢.

6. Combine the results of the different calls into the new top node for variable
t.

7. Store the result of this recursive call in the cache. Future calls to this method
with the same arguments will use the cached result instead of repeating the
computation.

8. Return the result to the caller.

The saturation algorithm is a special case: all sums of pairs of constraints are
computed by a single traversal; but if new inequalities have been discovered, the
traversal must be repeated. The process continues until a fixpoint is reached. Even
though this fixpoint might not be reached, as seen in Fig. 5.6, the number of itera-
tions required to saturate an octahedron tends to be very low (1-4 iterations) if it is
derived from saturated octahedra, e.g. the intersection of two saturated octahedra.

These traversals might have to visit 3™ inequalities/paths in the OhDD in the
worst case. However, as OhDD are directed graphs, many paths share nodes so
many recursive calls will have been computed previously, and the results will be
reused without the need to recompute. The efficiency of the operations on decision
diagrams depends upon on two very important factors. The first one is the order
of the variables in the decision diagram. Intuitively, each call should perform as
much work as possible. Therefore, the variables that appear early in the decision
diagram should discriminate the result as much as possible. A second factor in the
performance of these algorithms is the effectivity of the cache to reuse previously
computed results.

108 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

5.4 Bit-vector Based Implementation

5.4.1 Overview

The decision diagram implementation of octahedra manipulates the system of unit
inequalities considering also all implicit inequalities. The large number of poten-
tial inequalities requires an efficient data structure to manipulate them effectively.
Another approach consists in considering a minimal system of constraints where
all redundant inequalities are removed. In convex polyhedra, an exact method to
minimize the system of constraints is described, based on the double description
method. A problem of this method is that one representation may have a size which
is exponential in terms of the other. In contrast, the implementation of octahedra
presented in this section relies only on the system of constraints to perform all the
operations. This difference produces a loss of precision but improves the efficiency
of the method.

Each constraint is implemented with a pair of bit-vectors: one that stores the set
of variables with a coefficient +1 and another for the variables with a coefficient
—1. Assuming that the variables involved in the inequality are non-negative, there
is an efficient implementation for many operations over unit constraints using only
bit-wise set operations.

Let us consider an architecture with B bits per word. Typical values of B
are 16, 32 or 64 in the current technology. An inequality will use 2[] words
plus the size of the constant. In contrast, linear inequalities are represented as a
vector of integers, with one integer per variable and one for the constant term. This
requires (n + 1) integers for each constraint, much more than the memory used by
bit-vectors.

Also, bit-vectors are more efficient in terms of time. All the operations on unit
constraints require only 2[5 | bit-wise operations. On the other side, the manipula-
tions of linear constraints require at least n integer operations, potentially including
integer sums, products, divisions and computations of the greatest common divisor.

Furthermore, some convex polyhedra packages represent integers with arbi-
trary precision [17,99]. Operating with arbitrary precision integers may require
more than one CPU cycle and use more memory, so in terms of efficiency the
comparison is even more favorable to the bit-vector implementation.

Instead of the vector definition of unit inequalities that were useful to describe
the canonical form and the semantics for the OhDD implementation, the bit-vector
implementation will use a set-based definition. The following sections will intro-
duce this notation and all the theory required to describe the bit-vector implementa-
tion, together with a description of the abstract semantics of the operations. Special
focus will be devoted to the potential sources of loss of precision.

5.4 BIT-VECTOR BASED IMPLEMENTATION 109

5.4.2 Notation

Definition 5.8 (Unit inequality) A unit inequality over a set of variables X is a
constraint of the form

S Yz

zeP yeN

where P and N are sets of variables (P C X, N C X) and k is the constant term
(k € Q). Any unit inequality can be characterized by the triple (P, N, k).

Example 5.2 The constraint (x + z —y > 2) is a unit inequality than can be char-
acterized as the triple ({z, z},{y},2). Only well-formed unit inequalities where
the sets P and N are disjoint will be considered. For instance, (a+b—b—d > 3)
can be rewritten into the equivalent (a — d > 3).

Many of the following definitions will only consider unit inequalities over non-
negative values (Vx; € X : x; > 0). This restriction can be imposed in the prob-
lem of the analysis of timed systems, and several other analysis problems. Using
this restriction will allow convenient definitions and an efficient implementation of
the underlying operations.

Definition 5.9 (Implication) A unit inequality A = (P4, N4, k4) implies a unit
inequality B = (Pp, Np,kp), noted A — B, if B is true whenever A is true. If
both inequalities are defined over non-negative variables, then A implies B if and
onlyif P C Pg, Ng C Nqand ks > kp.

Example 5.3 The inequality (x —y—z > 7) implies the inequality (x+t—y > 0)
because

(x—y—2>T7)N(z>0) — (x—y>0)

(x—y>0)A({t>0) — (z+t—y>0)
However, the inequality (x 4+ ¢ — y > 0) does not imply (y > 3), for example.

Definition 5.10 (Trivial and infeasible inequalities) Aunitinequality I = (Py, Ny, kr)
over a set of non-negative variables is trivial (always true) if and only if Ny =

and & < 0. Conversely, it is infeasible (always false) if and only if P; = () and

k> 0.

Example 5.4 The unit inequality (—z > 2) is infeasible because (z > 0). On the
other side, a unit inequality like (z +y > —1) will always be true as (z > 0) and
(y = 0) imply (z +y = 0).

110 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

Definition 5.11 (Unit combination) The unit combination of two unit inequalities
A and B (noted A & B) is the inequality obtained by adding the left-hand sides
and the right-hand sides of A and B, e.g.

Zw—zy > ka

zEP4 yEN4
® Z T — Z y > kg
z€Pp yENB
ZgH—Z:U— Zy— Zy > ka+kp
TEP, rE€Pp yEN yENB

A @ B will be a unit inequality iff (P4 N Pg = () and (N4 N Np = (). However,
if A and B are defined over non-negative values, the restriction (N4 N N =)
is not required (see the example below). If A @ B is a unit inequality, then it can
be characterized as the following triple:

(PA\NB)U(Pp\ Na),(Na\ Pp)U(Ng\ Pa),ka + kpg)

Example 5.5 The unit combination is a restricted version of the widely used lin-
ear combination of inequalities. For instance, the unit combination of inequal-
ities (x +w—t >2)and t—y—2z >4)is(z+w—-y—2z > 6). In
some cases, the unit combination will lead to non-unit inequalities. For exam-
ple, the unit combination of (x + y > 2) and (x — z > 0) is the inequality
(2 + y — =z > 2), which is not a unit inequality. When the non-unit coefficient
is negative, the non-negativity of the variables can be used to remove the non-unit
coefficient. For example, the unit combination of (x —y > 2)and (t+w —y > 7)
is the inequality (z + ¢ + w — 2y > 9) which is not unit. However, as (y > 0):

z+t+w—-2y > 9
2] y > 0
z+i+tw—-—y > 9

a unit inequality can be obtained. Notice that this strategy cannot be used when
the non-unit coefficient is positive, as a constraint of the form (—y > 0) is not
available.

Definition 5.12 (Strongest common constraint) The strongest common constraint
of two unit inequalities A and B (noted as A LI B) is another inequality C such
that:

e (A—-C) N (B—C)
e For any inequality D, (A - DA B — D) = (C — D).

If the two unit inequalities A = (P4,Na,k4) and B = (Pp, Np,kp) are de-
fined over non-negative variables, then the strongest common constraint C' can be
defined as C = (P4 U Pg, No N Np,min(k4, kp)).

5.4 BIT-VECTOR BASED IMPLEMENTATION 111

yfy///) A =y22
’330000 % N B = x>3

Z ‘Qgt [] AuB=x+y>2
EDNEANN

XV\\XXN

X+yz 2

Figure 5.11: A graphical example of the semantics of a strongest common con-
straint

Example 5.6 Given (z > 3) and (y > 2), the strongest common constraint is
(x+y>2),as:

(23)A(y=0) — (z+y=2)
y22)A(x=20) — (z+y=2)

The values represented by these constraints can be seen graphically in Figure 5.11.
Notice that A LI B does not compute a exact union of the inequalities, but an upper
approximation of that union similar to a convex hull. Contrary to a convex hull,
the resulting area can be described using only unit inequalities. This notion will
be extended in the following section as the octahedral hull. Another small example
is(x+z—y—t>9)and (y+z —t > 5), whose strongest common constraint is
(x+y+z—t>05).

5.4.3 Abstract Semantics of the Operations

An octahedron will be implemented as a finite list of unit inequalities, where each
inequality (P, N, k) is represented by two bit-vectors (encoding P and N respec-
tively) plus the constant term. All transformations and tests that operate with in-
equalities will use the set-based definitions from Table 5.1. These definitions allow
an efficient implementation using the bit-wise operations of bit-vectors.

The operations required in the timing analysis algorithm are: union (U), in-
tersection (M), test for inclusion (<), widening (V), unit assignment of a variable
and existential quantification of a variable. All these operations can be defined in
octahedra as transformations of the system of unit inequalities.

Most of these operations require a satisfiability test: given a unit inequality 7 =
(Pr, N1, kr) and an octahedron O, does O satisfy I? A possible implementation
of this test is the following:

112 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

Table 5.1: Summary of unit inequality operations and tests

Yow= > yzka Y a—) y>kp

TEPY yEN 4 zEPp yENB
A= (Pa,Na,ka) B = (Pp,Np,kp)
Operation Result
Is A trivial? true iff Ny =0A ks <0
Is A infeasible? true iff P4 =0Akyg >0
Does A imply B? true iff P4 C P AN C Ny ANkg > kg
Is A ® B unit? true iff PANPp =10
AUB Al_lB:<PAUPB,NAﬂNB,min(/€A,kB)>
A® B A® B = ((Pa\Np)U(Pp\Njy),
(Na\ Pp)U (Np\ Pa) ka+kp)

1. If I is trivial, then O satisfies I.
2. If I is infeasible, then O does not satisfy 1.

3. Let No be the union of all the sets V from the inequalities in O. If N & No
then O does not satisfy 1.

4. If the inequality I is implied by any inequality from O, then O satisfies 1.

5. If the inequality 7 is implied by a unit combination of up to »n inequalities
from O, then O satisfies 1.

The intuitive meaning of step 3 is that a constraint with a variable that does not
appear in any inequality of O will not be satisfied by O. For instance, (z —y — 2z >
4) cannot be satisfied by (xz > 4) A (¢ > 4) as there are no restrictions on y or
z. However, this shortcut can only be used for variables appearing with a negative
coefficient (V) in the inequality. The non-negativity of variables allows us to add
new variables with a positive coefficient. For example, (z + y > 4) is satisfied
by (y > 8) even though the variable x does not appear explicitly. The implicit
constraint (x > 0) allows us to add = to the inequality.

Step 5 also deserves additional comments. If all the combinations of constraints
in O are considered, then the satisfiability test is exact. However, considering
all possible unit combinations is too computationally expensive. Instead, a good
trade-off between precision and efficiency is achieved when n = 2, i.e. only the
combinations of pairs of inequalities of O are considered. As a consequence, the
satisfiability test will be approximate, while still being conservative: some satisfied
constraints might be reported as unsatisfied, but not the other way around. In the
timing analysis algorithm, this approximation may cause false negatives (inability

5.4 BIT-VECTOR BASED IMPLEMENTATION 113

to find sufficient timing constraints, even if they exist) but it will never cause false
positives (timing constraints will always avoid all errors).

Intersection

The intersection of two octahedra A = BN C' is defined by the system of unit
inequalities with all the inequalities from A and all the inequalities from B. This
is the only exact operation on octahedra.

Union

The union of two octahedra A U B can be approximated as a system of unit in-
equalities that contains:

e The inequalities from A satisfied by B.
e The inequalities from B satisfied by A.

e The strongest common constraint of all pairs of inequalities from A and B.

Test of inclusion

An octahedra A is included in an octahedron B, noted as A C B, if all the inequal-
ities of B are satisfied by A. Notice that the approximation in the satisfiability test
might lead to false negatives in the test of inclusion.

Widening

Widening is the extrapolation operator used to guarantee the termination of the
analysis in the presence of loops [63]. The widening of two octahedra AV B, where
A is the initial property and B is the property after one iteration, extrapolates the
result of future iterations based on A and B. The widening AV B for octahedra
can be defined as:

o If all the constraints in A and B have a constant term &£ = 0, then AU B isa
widening operator.

e Otherwise, AV B contains all the inequalities from A that are also satisfied
by B.

This definition of widening is also the one used for convex polyhedra in [66].

Unit assignment

Assignments of the form z’ := z + y are required in order to perform the timing
analysis. After the assignment, we know that (x > y) and we also know that the
old value of z can be characterized as =’ —y. Therefore, the assignment should add

114 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

the constraint (z > y) to the system of inequalities of O, and replace each instance
of z in the system of inequalities by = — y. This replacement is implemented in the
following way:

e Inequalities where z ¢ P and = ¢ N are not modified.

e The unit combinations of all pairs of inequalities A & B of O such that
x € Pyand x € Np are added to the system of linear inequalities. This step
attempts to minimize the loss of precision: some inequalities might already
contain x and y so replacing x by x — y could produce a non-unit inequality.
Considering these unit combinations reduces the amount of lost information.

e The inequalities I = (P, Ny, kr) where = € Py are transformed according
to y:

- Ify € Py, then PI, =Py \ {y}
— If y € Ny, then I is not modified.
— Otherwise, N; = Ny U {y}.

e The inequalities I = (Py, N1, k;) where x € Ny are transformed according
to y:

— If y € Py, then I is not modified.
- |f’y € Ny, then N} = N; \ {y}
— Otherwise, P; = Pr U{y}.

After these changes, the constraint (z > y) can be added to the system of inequal-
ities.

Existential quantification

The quantification of a variable will attempt to remove all the known restrictions
on z while keeping as much information as possible on the rest of variables. This
procedure is implemented using a process called Fourier-Motzkin elimination [67].

Inequalities where ¢ P and = ¢ N are unaffected by this procedure. Re-
garding the remaining inequalities, Fourier-Motzkin proceeds by selecting one con-
straint where = € P and one constraint where = € N. The unit combination of
these constraints will not contain variable z; if the combination is a unit inequality,
it is added to the system of inequalities of O. The final step is the removal of the
inequalities of O that do not hold after the quantification. All inequalities where
x € P must be removed, while those with z € N can be just modified so that
N’ = N\ {z}. Again, the different behavior of P and N appears from the implicit
constraint (x > 0) in O.

5.5 EXPERIMENTAL RESULTS 115

Table 5.2: Experimental results in the asynchronous pipeline example.

Pipeline example Polyhedra OhDD Bit-vectors
Stages | |P| S T CPU | Mem CPU Mem CPU Mem
2 8 36 88 0Os 64Mb 1s 5Mb 0Os 1Mb
10 108 312 2s 67Mb 17s 8Mb 2s 3Mb
12 324 1080 13s 79Mb 249s 39Mb 12s 9Mb

14 972 3672 | 259s | 147Mb 1h5min 57Mb 123s 48Mb
16 | 2916 | 12312 | O/M Oo/M 39h44min | 83Mb | 18min 245Mb
18 | 8748 | 40824 | O/M oM T/O T/O | 2h6min | 1183Mb

~No o bh w

|P| = number of symbolic delays S = number of states 7" = number of transitions
O/M = out of memory (> 1.5Gb) T/O =timeout (> 48h)

5.5 Experimental Results

5.5.1 Asynchronous Pipeline

The asynchronous pipeline example introduced in Section 4.5.2 will be used again
to illustrate the complexity of the approaches presented in this chapter. Table 5.2
compares the results obtained with the bit-vector representation of octahedra, the
decision diagram representation (OhDD) and convex polyhedra. Precision is equal
for all three approaches as the property to be discovered is formed by unit inequali-
ties. Therefore, the comparison will focus on the execution time and memory usage
of the timing verification procedure.

Regarding memory, both OhDD and the bit-vector implementation show im-
provements with respect to convex polyhedra. The reduction is sufficient to verify
longer pipelines, where not only there are more symbols but also the state space is
larger. Remarkably, octahedra represented with bit-vectors can be used to analyze
pipelines with state spaces one order of magnitude larger than those analyzable
with convex polyhedra. The comparison among OhDD and bit-vectors reveals that
although OhDD are worse for smaller examples, the memory usage for bit-vectors
grows faster as the size of the examples increase. The reason behind this slower
growth is that decision diagrams offer many opportunities for reuse, e.g. many
nodes within the directed acyclic graphs are shared by several ancestors.

With respect to the CPU time, OhDD exhibit a large increase with respect to
convex polyhedra. As it was mentioned in Section 3.2.3, in the context of timed
systems decision diagram methods reduce the memory usage at the expense of
additional CPU time. The increment in CPU time may make this approach imprac-
tical in larger examples. On the other hand, bit-vectors exhibit lower CPU times
than convex polyhedra, with a good time vs. memory trade-off.

5.5.2 Asynchronous Controllers

Table 5.3 recalls the characteristics of the asynchronous controllers studied in the
previous chapter: the size of the circuit (number of signals and gates), the size of

116 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

Table 5.3: Characteristics of the asynchronous controllers

Example Circuit STG PTTS |P|
Wires | Gates | Places | Trans | States | Trans
nowick 10 7 19 14 60 119 10
gasp-fifo 9 7 10 8 66 209 12
shuf-read-ctl 13 10 19 16 74 157 14
rcv-setup 9 6 14 15 72 187 12
alloc-outbound 15 11 21 22 82 161 19
ebergen 11 9 16 14 83 188 13
D flip-flop 6 4 16 22 146 448 8
mp-fwd-pkt 13 10 24 16 194 574 12
chu133 12 9 17 14 288 1082 7
desynch 11 8 12 8 304 934 13
converta 14 12 16 14 396 1341 14

Table 5.4: Experimental results for the asynchronous controllers

Example Convex Polyhedra
TC Sat CPU | Mem

nowick 2 45 0.5s | 83Mb

gasp-fifo 10 28 8.1s | 87Mb

sbuf-read-ctl 4 52 1.2s | 83Mb

rcv-setup 8 49 2.1s | 83Mb

alloc-outbound 3 62 1.3s | 83Mb

ebergen 5 61 1,3s | 83Mb

D flip-flop 7 112 5.8s | 85Mb

mp-fwd-pkt 6 89 19s | 85Mb

chul33 3 61 1.3s | 85Mb

desynch O/M | O/M | O/M | O/M

converta 13 188 | 20.4s | 92Mb
Example OhDD Bit-vectors

TC Sat | CPU Mem TC | Sat | CPU Mem
nowick = = 0.1s 8.9Mb = = 0.0s 2.6Mb
gasp-fifo T/O | T/IO | T/O T/O 11 | 22 | 41s | 3.9Mb
sbuf-read-ctl = = 14s | 9.9 Mb = = 0.1s 2.9Mb
rcv-setup = = 8.3s | 21.5Mb = = 0.4s | 3.0Mb
alloc-outbound 4 61 0.2s | 10.2Mb 4 61 | 0.1s | 2.9Mb
ebergen = = 1.7s | 11.8Mb = = 0.1s | 2.9Mb
D flip-flop = = 68.9s | 33.5Mb = = 16s | 4.4Mb
mp-fwd-pkt = = 3.8s | 20.0Mb 8 82 | 0.3s | 3.8Mb
chu133 = = 1.0s | 12.9Mb 5 56 | 1.3s | 5.5Mb
desynch 6 50 | 981s 75Mb 6 50 | 8.0s | 4.4Mb
converta T/O | TIO | T/O T/O 13 | 180 | 138s | 15.0Mb

T'C =timing constraints Sat = states satisfying the TC Mem = memory usage in Mb
O/M = out of memory (> 1.5Gb) T/O = timeout (> 1h)

5.5 EXPERIMENTAL RESULTS 117

—Ri-— E+ —Ro-

:

Ao Ai- Ao-
g ! ¢ |

Ri+— E-—>Ro+

}

—Ai+ Ao+ —

Initial state: E=A0=1, Ri=Ai=Ro=0

| (Ri+ > Nots + ANs) | A (6% + Notd + AN; > Nots) and

(Nots + Ri— > Noty + AN3 + Ao—) A (Ao+ > Nots) A
(Ao— > Not3) A (Nota + AN3 > Nands)

Figure 5.12: The desynch example from Table 5.4, implementing a semi-decoupled
controller [27]. The delay § is asymmetric: 5T after Ri+, and 5~ after Ri—. The
highlighted areas correspond to the first timing constraint. The symbolic delay
Ri+ models the time spent by the environment from the output event Ai— until
the input event Ri+ occurs. This causality is imposed by the highlighted area of
the STG.

the STG that describes the interaction with the environment, the size of the untimed
state space and the number of different symbolic delays (| P|) used in the example.
A new example, desynch is introduced in this table. This circuit is shown in the
Figure 5.12.

Table 4.1 shows the experimental results for the verification of these con-
trollers. Convex polyhedra and the two implementations of octahedra are compared
using two criteria: precision and efficiency. The first two columns refer to the pre-
cision of the timing constraints achieved with each method, while the following
two characterize the resources used by the verification algorithm.

In terms of efficiency, the comparison is clearly favorable to octahedra in terms
of memory usage. Both bit-vectors and decision diagrams are effective mecha-
nisms to reduce the memory consumption. In terms execution time, the compari-
son is not so clear. The bit-vector implementation is faster in all case except the last
entry converta. In this specific circuit, timing constraints with non-unit coefficients
are very useful, as some failures are reached when a specific path in the circuit is
traversed more than once. Even in this scenario, sufficient unit timing constraints
can be found. Moreover, the analysis with convex polyhedra must use additional
approximations for this example, as it generates too many constraints and runs out
of memory (as it happens in the desynch example), while the bit-vector implemen-
tation does not have this problem. On the other hand, OhDD sometimes have worse
execution time than convex polyhedra. As it is mentioned in the evaluation of the

118 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

(b)

Figure 5.13: Reachable state space of the GasP FIFO controller considering the
timing constraints computed with (a) octahedra and (b) convex polyhedra.

asynchronous pipeline example, decision diagrams often trade-off execution time
for a reduction in memory. In this case, two circuits could not be verified in less
than one hour using OhDD. It should be noted that these circuits are precisely the
most complex circuits of the benchmark: converta and the GasP FIFO controller.

Quantifying the precision of octahedra versus convex polyhedra is not simple.
Obviously, the timing constraints computed by convex polyhedra will be more pre-
cise and, therefore, less restrictive. Two indicators have been measured to quantify
the difference of precision: the number of timing constraints required for correct-
ness (TC) and the number of states that satisfy these timing constraints (Sat). Intu-
itively, the second value indicates the degree of restriction imposed by each set of
constraints.

Example 5.7 Let us consider the GasP FIFO controller presented in Figure 4.14.
This circuit can be verified using convex polyhedra, but some of the discovered
timing constraints are not unit inequalities. Even then, it can also be verified using
octahedra. This analysis computes a different set of sufficient timing constraints
where all inequalities are unit. However, this set of timing constraints is more
restrictive than the one discovered by convex polyhedra. This difference is graphi-
cally depicted in Figure 5.13, that shows two subsets of the state space of the GasP
FIFO controller. These subsets correspond to the states that satisfy the timing con-
straints discovered using (a) octahedra and (b) convex polyhedra, i.e. the set of

5.6 CONCLUSIONS 119

acceptable behaviors.

Notice that some events that may occur concurrently in (b) are forced to occur
sequentially in (a) due to the timing constraints. For instance, in (a) y-+ should
occur before le— while in (b) they can occur in any relative order. The difference
between both sets of states reflects the quality of the two solution, and therefore, it
can be used as an indicator of the precision of both abstract domains. This is the
meaning of the Sat column in the Table 5.4.

In several examples, both approaches compute exactly the same constraints
(noted as = in the Table). For the other examples, the constraints computed by octa-
hedra are more restrictive. However, the collected data point out that the quality of
the constraints computed by both methods is comparable: there are not many addi-
tional constraints, nor they are overly restrictive. Note that the precision of OhDD
is in some cases better than the precision of bit-vectors, although the difference
is not significant. This difference in precision can be explained by the following
observation. When performing a union, the bit-vector implementation considers
linear combinations of up to 2 inequalities from the system of constraints. Mean-
while, in a OhDD saturation computes all the linear combinations of unit inequali-
ties, exposing more implicit information that can be used to improve the precision
of the analysis.

5.6 Conclusions

We have presented the octahedron numerical abstract domain, a restricted version
of convex polyhedra where all the coefficient of linear inequalities are unitary. This
definition provides several benefits, such as a canonical form, which does not exist
in convex polyhedra, and efficient implementations. Implementations can be fur-
ther optimized if the variables in the octahedron are known to be non-negative, as
it happens in the analysis of timed systems and many other domains.

The precision of octahedra is between octagons and convex polyhedra. Re-
garding octagons, octahedra allow constraints with an arbitrary number of vari-
ables compared to at most two variables per inequality. With respect to convex
polyhedra, there are two sources of loss of precision. First, there is a loss of preci-
sion inherent in the restriction of the possible coefficient of linear inequalities. The
difference between the octahedral hull and the convex hull exemplify this loss of
precision. Furthermore, manipulations outside of the canonical form and avoiding
the use of the double description method cause an additional approximation in the
results. In spite of this potential loss of precision, octahedra have been sufficient to
verify all the examples from the timed circuit domain.

Regarding efficiency, operations on octahedra have a worst-case exponential
complexity with respect to the number of variables, like convex polyhedra. In con-
trast, octagons have a polynomial complexity, due to having at most n? inequalities
compared to the 3™ inequalities of octahedra. Hence, exponential complexity is in-
herent to this type of relational numerical abstract domains.

120 CHAPTER 5. THE OCTAHEDRON ABSTRACT DOMAIN

Experimental results have shown the different trade-offs between CPU time
and memory in octahedra, and compared them to a convex polyhedron implemen-
tation. The decision diagram implementation (OhDD) exhibits a large reduction in
memory usage, balanced by an increase in CPU time. Meanwhile, the bit-vector
implementation has better CPU time and memory usage than convex polyhedra,
while in the largest examples it uses more memory than the OhDD version. The
experimental results point to the following conclusion: whenever the precision of
octahedra is sufficient (e.g. few non-unit constraints), octahedra should be used
instead of convex polyhedra.

Chapter 6

Future Work and Applications

I never think of the future. It comes soon enough.

—Albert Einstein

This chapter presents the future research directions after the work presented in
this thesis. Related problems where the verification relies on the analysis of numer-
ical properties will be presented and discussed in connection with the contributions
of this thesis.

6.1 Introduction

Previous chapters have shown the application of abstract interpretation to the anal-
ysis of a special type of concurrent timed systems: timed circuits. The challenges
faced in this verification are common to a larger class of problems.

In many types of systems, a part of the state is described by non-discrete vari-
ables, e.g. the values of clocks. Other examples are formalisms that contain some
form of counters or variables, like software programs, Petri Nets [119] or automata
with counters [12]. As the state space is potentially infinite, abstract interpretation
is a suitable approach to approximate the state space. The discovery, representation
and manipulation of numerical properties among the state variables is instrumental
in this analysis.

This chapter discusses some potential applications of the work described in
this thesis, together with possible future extensions and research directions. A
case study involving the analysis of Petri Net models is briefly presented, together
with preliminary results. This study has been a joint work with Enric Rodriguez-
Carbonell, and it has been presented in [54].

122 CHAPTER 6. FUTURE WORK AND APPLICATIONS

6.2 Verification of Timed Circuits

The work described on the verification of timed circuits with symbolic delays has
a high computational complexity which limits the size of the circuits that can be
studied. Therefore, the main directions of future research focus on improvements
in the efficiency and scalability of the approach.

Reductions of the untimed state space: Timing analysis with symbolic delays has
a very high complexity. Therefore, simplifying the state space before timing
analysis is cost-effective even if we use complex techniques. It is important
to guarantee that the constraints discovered by timing analysis are unaffected
by these simplifications. Some reductions have been described in Section 4.3
based on the error transitions. Two more concepts can be used to simplify
the state space before timing analysis: nodal points and dominators.

A nodal point is a state of a transition system where all the enabled events
were disabled in the predecessor states. As a consequence, all event clocks
are reset to zero when the state is reached, meaning that there is no residual
information stored in the clocks of a nodal point. Meanwhile, the concept of
dominators and post-dominators [88, 107] is widely used in compiler theory
for the analysis of control-flow graphs. A node x of a directed graph domi-
nates a node y if any path from the initial node to y must go through z. In a
similar way, a definition of post-dominator can be proposed. These concepts
provide useful information about the structure of the state space that can be
used in the simplification.

For instance, we can perform a fusion of sequential events if there are no
other events enabled during the sequence. This transformation does not af-
fect the timing constraints discovered by the verification algorithm, as con-
straints arise when there is a choice among several enabled events. Fur-
thermore, concurrency diamonds of the form “either x and then y, or y and
then x** can be reduced if there are no enabled events in the intermediate
states. Again, the reduction does not alter the timing constraints as the er-
ror is reached regardless of whether z is fired before y or vice versa. Nodal
points and dominator information can be used to detect these patterns and
generalize the scenarios where reductions can be applied.

Automatic abstraction: The proposed method for the verification of timed cir-
cuits works at the gate level. However, it is also applicable for a verification
at a higher level of abstraction, e.g. each event corresponds to a complex
gate. It would be desirable to have an automatic procedure that automates
the abstraction process, identifying blocks of combinational logic that are
suitable for being abstracted.

Compositional verification: A useful strategy to scale complex verification tech-
niques is compositional verification. When a system is too large to be veri-
fied, it is partitioned into smaller elements. Several methods can be used to

6.3 THE OCTAHEDRON ABSTRACT DOMAIN 123

reason about the correctness of the global system using only local informa-
tion about the subsystems and their composition. In this context, methods
like the assume-guarantee paradigm [55] will be explored to improve the
scalability of the proposed verification algorithm.

6.3 The Octahedron Abstract Domain

6.3.1 Future Work

Several open problems regarding the octahedron abstract domain are the following:

Efficient algorithms to compute the canonical form: The proposed algorithm for
octahedra is based on the double-description method, like convex polyhedra.
However, due to its high complexity, it is not practical for being used in
the implementation of octahedra operations. Finding efficient algorithms for
the computation of the canonical form would improve the precision of the
operations, and potentially the efficiency as well. Stronger versions of the
saturation procedure provide a starting point for this research direction.

Exact algorithms for octahedral operations: Several operations on octahedra ex-
hibit a loss in precision which is not caused by the shift from linear to unit
inequalities. For example, in the bit-vector implementation, the test that
checks whether a unit inequality is satisfied by an octahedron is an approx-
imate operation. An exact version of this test would lead to an increase in
precision in the operations that use it, even though it is unclear whether the
efficiency of such a test would make the implementation practical. A possi-
ble approach that we are considering to implement this test is transforming
it into an instance of the Boolean satisfiability problem, for which very effi-
cient techniques are available [116].

Study of the double-description of octahedra: In this direction, our goal will be
establishing tighter upper bounds for the possible humber of vertices and
lines in octahedra. The best known upper bound on the number of vertices
of a convex polyhedron is O(clz!), where ¢ is the number of constraints
and n is the number of dimensions. In the context of octahedra, this pro-

n

vides a worst-case bound of O(B”M). However, given that the only unit
inequalities are allowed in octahedra, it is likely that a tighter bound may be
defined, even something closer to 3™. Knowledge of this bound may lead to
alternative algorithms to implement octahedra operations.

6.3.2 Potential Areas of Application

The examples presented so far in this thesis have studied the application of oc-
tahedra to the verification of parametric timed systems. However, the octahedron

124 CHAPTER 6. FUTURE WORK AND APPLICATIONS

abstract domain has also applications in other problems. In general, the octahedron
abstract domain may be interesting in any analysis problem where convex polyhe-
dra can be used. Many times, the precision obtained with convex polyhedra is very
good, but the efficiency of the analysis limits the applicability. In these scenarios,
using octahedra might be adequate as long as unit linear inequalities provide suffi-
cient information for the specific problem. It may also be interesting to ensure that
the variables involved in the analysis are non-negative in order to take advantage
of the available improvements for the non-negative case. Some examples of areas
of applications are the following:

e Static discovery of bounds in the size of asynchronous communication chan-
nels: Many systems communicate using a non-blocking semantics, where
the sender does not wait until the receiver is ready to read the message. In
these systems, each channel requires a buffer to store the pending messages.
Allocating these buffers statically would improve performance but it is not
possible, as the amount of pending messages during execution is not known
in advance. Analysis with octahedra could discover these bounds statically.
The analysis of the bounds of these channels can be performed using octahe-
dra, as the size of channels is positive. This problem is related to the problem
of structural boundedness of a Petri Net [118], where an upper bound on the
number of tokens that can be in each place of the Petri Net must be found.

e Performance analysis of timed systems: Clocks and delays are restricted to
positive values in many types of models. Octahedra can be used to analyze
these values and discover complex properties such as timing constraints or
worst-case execution time (WCET).

e Analysis of string length in programs [74]: Checking the absence of buffer
overflows is important in many scenarios, specially in the applications where
security is critical, e.g. an operating system. C programs are prone to er-
rors related to the manipulation of strings. Several useful constraints on the
length of strings can be represented with octahedra. For instance, a constraint
on the concatenation of two strings can be the following:

strlen(strcat(sy, s2)) = strlen(s;) + strlen(ss)

e Analysis of term size in logic programs [151], which can be used among
other things to prove termination of logic programs [145].

e Proof of mutual exclusion and other synchronization properties among con-
current processes: many high-level synchronization constraints can be ex-
pressed easily as properties on counter (semaphore) variables [83]. For in-
stance, mutual exclusion among n processes can be represented with con-
straints like (z1 + ...+ x, < 1), where x; = 1 if the process i is inside the
critical section, and z; = 0 otherwise.

6.4 CASE STUDY:. ANALYSIS OF PETRI NET MODELS 125

6.4 Case Study: Analysis of Petri Net Models

6.4.1 Motivation

Petri Nets [119] are a widely used formalism for the specification of concurrent
systems. In Section 4.2.3, Petri Nets were used to model the interaction between
an asynchronous circuit and the environment. However, there are many other areas
of application of this formalism, as it able to specify interesting properties like
sequential composition, parallel composition, non-deterministic choice or mutual
exclusion among others. Moreover, there are formal methods available to study
many interesting properties about Petri Nets, e.g. deadlock freedom.

Let us briefly recall the basic notions presented previously in Section 4.2.3. A
Petri Net can be briefly described as a directed bipartite graph. The nodes of the
graph are of two classes, places or transitions, and the edges among them have an
integer label called weight. Each place can contain a number of tokens. The state of
a Petri Net, called marking, is an assignment of a number of tokens to each place.
The initial count of tokens is called the initial marking. From that marking, the
state can evolve by firing transitions. Firing a transition ¢ consumes tokens from
the places with edges that end in ¢, while it also produces tokens in the places with
an edge coming from t. The number of tokens being produced or consumed is
specified by the weight of the edges. A transition can only be fired if it is enabled,
i.e. if there are enough tokens to be consumed in the input places of the transition.
Firing a transition may enable or disable other transitions.

The reachability problem pursues the characterization of the set of markings
that can be generated by firing enabled transitions from the initial marking. Petri
Nets suffer from the state explosion problem, thus the size of the state space can be
very large even for moderately-sized specifications. Furthermore, the number of
tokens in each place is not bounded in general, so potentially the set of reachable
markings may be infinite. There are special classes of nets, called k-bounded,
where the number of tokens in each place is less or equal to k. However, we will
focus on potentially unbounded nets, as the verification of bounded Petri Nets is
already addressed by implicit methods based on decision diagrams, e.g. [132].

Several techniques can be used to address the reachability problem in addi-
tion to an strict enumeration. For instance, structural analysis reveals properties
about the underlying Petri Net structure which are independent of the initial mark-
ing [143]. Other approaches avoid computing the state space and, instead, discover
invariants satisfied in all the reachable markings. These invariants may be suffi-
cient to prove several properties about the system, e.g. boundedness of some places,
mutual exclusion or deadlock freedom. Some techniques used in this context are
the exact analysis using Presburger arithmetics [81] or real arithmetic [24], and
inductive invariants generated using Farka’s lemma [140]. Abstract interpretation
also seems a suitable technique to study this problem, provided that an adequate
numerical abstract domain can be defined.

126

CHAPTER 6. FUTURE WORK AND APPLICATIONS

6.4.2 Choice of an Abstract Domain

The characteristics of a Petri Net have an impact on the selection of the best abstract
domain for the analysis. The following is a list of observations relevant to the

choice:

e The number of tokens in a place is a non-negative integer value. In general,
this value may be unbounded.

e The number of tokens in a place can only be incremented by a constant,
decremented by a constant or compared with a constant value. No more
types of abstract assignments and abstract test functions are required.

e Among others, the type of invariants that are discovered during the analysis
describe the following properties:

Traps: The number of tokens in a set of places does not decrease from
the initial marking, e.g. (z1 + ... +z, > k).

Siphons: The number of tokens in a set of places does not increase
from the initial marking, e.9. (z1 + ...+ z, < k).

Boundedness: A place or set of places contains a number of tokens
within a constant lower and upper bound, e.g. (k1 < = < k2).

Circuits: The number of tokens in a set of places remains constant in
any marking, e.g. (1 + ... + x, = k).

Disjunctions: Several properties can only proved by invariants that cap-
ture a choice within the Petri Net, e.g.

(.%'1:2/\.T2=3) V (ac1:3/\362:2)

Mutual exclusion: This is a special case of disjunction of properties. A
set of places P contains tokens if and only if another set of places @@
does not contain any token, e.g. when P = {z;} and Q = {z2}:

(r1=0Ax2=1) V (11 =1A22=0)= (21 + 22 < 1)

e The number of places involved in each invariant cannot be bounded a priori.
In some Petri nets, all variables may participate in the generated invariants.

e The transitions of the Petri Net may consume and produce a number of to-
kens which is greater than one. In the nets where this happens, invariants
tend to contain non-unit coefficients.

Intuitively, individual invariants can be encoded accurately as linear inequali-
ties and equalities. As a set of invariants may include conjunctions and disjunctions
of these individual invariants, Presburger arithmetics seems the right choice for this
class of problems. However, using Presburger in this problem is difficult because
of the high complexity, e.g. [81]. Defining a customized abstract domain which is
specially adapted to this problem seems to be a more promising approach.

6.4 CASE STUDY:. ANALYSIS OF PETRI NET MODELS 127

ko]
T " <Y
N

Figure 6.1: Petri Net model of an automated manufacturing system

6.4.3 Experiments

We have evaluated the use of two abstract domains in this problem: convex poly-
hedra and polynomial equalities [137]. We will briefly report our experiences in
one example using the convex polyhedron abstract domain.

Figure 6.1 shows a Petri Net model of an automated manufacturing system
[162]. This manufacturing system consists of several elements: four machines
(M; — My), two robots (R; — Rs), two buffers with capacity 3 (B; — Bs) and
an assembly cell. The place x; models the entry point for raw material, while
the place z1¢ (x15) represents the availability of the buffer B, (B5). The place x1
(z13) models the availability of the robot Ry (R2), whereas the place x5 represents
the delivery point for the final product. Finally, the places x4, x7, £16 and x19
model the availability of the machines M to My.

The initial marking of this Petri Net is as follows. The entry point x1 has an
undetermined number of tokens p, as we want to study the behavior of the system
depending on the quantity of available raw materials. The capacities of the buffers,
x10 and x5, have 3 tokens as the buffers have size 3. Finally, places xs, x4, x7,
Z12, T13, T16, £19 and xo4 have one token, and the rest of places have no tokens in
the initial marking.

Some relevant properties in this system are boundedness and liveness, i.e.
deadlock freedom. In previous work, these properties have been studied in detail.
In [162], it was proven that the system is bounded, and that it is live only for some
values of p, namely 2 < p < 4. A different approach based on integer program-
ming [46] managed to prove liveness for a wider interval of values, 1 < p < 8.
Also, a sequence of firings leading to a deadlock when p > 8 was shown. Later
work has revisited these results using other techniques such as Presburger arith-
metics [81], real arithmetics [24] and inductive linear inequalities based on Farkas’
lemma [140]. Compared to these methods, abstract interpretation analysis provides

128 CHAPTER 6. FUTURE WORK AND APPLICATIONS

several advantages: the guarantee of termination provided by the widening opera-
tor, the acceleration of the converge also due to the widening, and the extensibility
with new abstract domains adapted to the particular problem.

An analysis based on convex polyhedra reveals the following set of invariants.
Equality and inequality invariants are listed separately:

T18 +x19 =1 To+ax3 =1
Z'8+£L‘12+£L‘20:1 £ZJ4+£L‘5:1
To2 + X23 + Tog + w25 =1 xg+ax7 =1
g + T13 + X21 + To3 + 25 =1 T10 + 11 =3
19 + 217 + 15 + 13 + T11 +T7 + X5 + T2 — Tag — T12 =5 T14 + 215 =3
T+ x17 + 215+ T3+ T+ 7+ 25 — Tog — T12 — T3 =4 T16 + 117 =1
T19+ 15+ T3+ T2+ Tr+Pp—T17r — T —T5 — w1 =7

Tos + Tog + 223 < 1 z7 <1

Tos5 + 23 + 121 + 713 <1 T15 <3

T19 + T15 +T13 + T7 — T2g —x1 <5 T19 <1

19 + 217 + 215 + @13 + T11 + T7 + 5 — 24 —T12 > 4 T0 +x12 <1

These invariants are sufficient to prove that the system is bounded. Neverthe-
less, these invariants are incapable of proving deadlock freedom, although it can be
proven with the polynomial equality abstract domain. The reason is the inability to
capture disjunctions of invariants in convex polyhedra. The same problem can be
observed in other Petri Net models. Further work is required to find an abstract do-
main which is fully appropriate for the reachability problem. A promising research
direction is a customized version of the finite power-set of convex polyhedra, i.e.
an abstract domain defined as a disjunction of several convex polyhedra. The gen-
eral definition of this domain fails to take full advantage of the characteristics of
the problem, so additional work is required to adapt the domain for this specific
problem.

6.5 Conclusions

We have described a set of future research directions arising from the work pre-
sented in this thesis. Improving the scalability of the proposed method, together
with establishing new properties and abstract operators for the octahedron abstract
domain seem the most promising at this point. Direct applications of octahedra to
static analysis problems with numerical constraints are also possible.

Finally, other problems of a similar nature to the verification of timed circuits
will also be approached with abstract interpretation techniques. A case study for
the analysis of the reachable markings in Petri Nets has been described. Prelim-
inary results highlight the potential of abstract interpretation in this problem, and
point out the necessity of relational numerical abstract domains which are more
efficient than convex polyhedra for more specific problems.

Chapter 7

Conclusions

This thesis has presented a set of contributions in two areas: the verification of
timed circuits and the framework of abstract interpretation. This chapter analyzes
the work contained in the previous chapters, and draws several conclusions derived
from the results.

Timed Circuits and the Verification Problem

The verification of a timed system is a complex problem. Encoding time, which is
an integral magnitude with potentially an infinite number of values, is more difficult
than encoding boolean or discrete variables. An interesting class of timed systems
to be considered is that of timed circuits. In these circuits, the dynamic behavior
can be described with two types of transitions: discrete and timed. The discrete
transitions describe the logic function implemented by the gates, the connection
among the different gates of the netlist, and the interaction with the environment.
Meanwhile, the timed transitions model the delay of gates, wires and environment
events. As these circuits are typically highly concurrent, verification combines the
complexities of concurrency and time.

A collection of verification techniques called metric timing use techniques
adapted from those in timed systems. Scalability is an issue in metric timing,
because the number of clocks in the model increases quickly with the size of the
circuit. Another strategy consists in studying the untimed behavior of the system,
limiting the timing information to constraints on the relative order of events. These
approaches, such as relative timing and chain constraints, can take advantage of
the efficient BDD methods available for manipulating untimed state spaces. In
principle, this allows a better scalability to relative timing methods versus metric
timing.

Adding Parameters to the Picture

In regular timed systems, the temporal characteristics of the system, such as delays
and the bounds for clocks, are metric: they are defined with a constant value or

130 CHAPTER 7. CONCLUSIONS

an interval of constants. It is also possible to study a parametric version of the
same problem, where some of the values are symbols that become parameters of
the problem. The verification of parametric timed systems is more complex than
their metric counterparts. For instance, many problems are undecidable to begin
with. The parametric regions cannot be encoded using efficient data structures such
as difference bound matrices (DBM), with a worst-case polynomial complexity on
the number of clocks. Instead, methods with exponential complexity like convex
polyhedra or Presburger arithmetic, or methods without a guarantee of termination
must be employed. In all these cases, complexity is extremely sensitive to the
number of parameters that appear in the problem, in addition to the number of
clocks.

A parametric version of the verification of timed circuits can also be defined.
Abstract interpretation is an adequate technique to study this problem because of
several reasons. First, the termination of the analysis is guaranteed. Also, ab-
stract interpretation is well-suited for the discovery of numerical properties. There
are several numerical abstract domains which provide different trade-offs between
precision and efficiency. Moreover, it is possible to define abstract domains which
are targeted at solving a specific problem very efficiently.

Verification of Timed Circuits with Symbolic Delays

The presented work describes a methodology for the verification of timed circuits
using symbolic delays. In this method, the output timing constraints are a system
of linear inequalities over the parameters. In terms of execution time and memory
usage, other methods based on metric timing, relative timing and chain constraints
are more efficient than the verification with symbolic delays. This means that these
methods can scale up to larger circuits. Even then, the benefits of parametric timing
constraints balance this problem.

With respect to metric constraints, parametric timing constraints offer several
advantages. First, this class of timing constraints is technology independent: it is
characterizing the behavior of the circuit for any possible delay of the elements.
In this sense, it is superior to metric timing techniques, where the analysis can
only check the correctness for the specific set of delays used as input. Further-
more, parametric timing constraints can be used as the guidelines to select delays,
e.g. aiding to reduce the latency of a circuit while ensuring correctness. Another
advantage is the simple and efficient procedure to validate the timing constraints:
if the inequality evaluates to true with the chosen constant delay, then the con-
straint is satisfied. In this respect, these constraints are superior to relative timing
constraints, where validation is not trivial. Finally, parametric timing constraints
provide a meaningful feedback to the designer as they identify competing delay
paths within the circuit.

Other advantages are related to the method used to compute the parametric
timing constraints. Firstly, known delays can be included in the formulation of the
problem, such as delays defined by a standard or by the specification. Replacing

131

parameters by known constants reduces the complexity of the verification. More-
over, the algorithm is fully automatic, with no user interaction required to obtain
the timing constraints. Also, as the timing constraints are encoded using convex
polyhedra, it is simple to detect redundant constraints or unsatisfiable sets of con-
straints. These observations favor the method presented in this thesis with respect
to the chain constraint approach.

The proposed methodology also exhibits several favorable traits in comparison
with previous methods based on parametric timing constraints. Drawbacks such as
the lack of full automation, the dependence on metric timing constraints at some
level or the inability to analyze sequential circuits are solved by the methods de-
scribed in Chapter 4. Furthermore, our approach is able to verify circuits with more
symbolic delays than previous methods.

Given all these considerations, the verification with symbolic delays offers rel-
evant benefits in the analysis of small controllers, either designed by hand or by
sophisticated synthesis tools, whose behavior depends on the timing characteristics
of the components. Several asynchronous controllers have been used to illustrate
this point. Regarding the scalability of the approach, extensions such as composi-
tional verification methods or automatic abstraction techniques can be explored to
improve the scalability of the approach.

Numerical Abstract Domains

Another strategy to improve the efficiency of the verification procedure relies on
adopting a more efficient numerical abstract domain to represent the timing con-
straints. A study of the type of numerical properties captured as timing constraints
reveals that most constraints are unit inequalities, i.e. all coefficients of the lin-
ear inequalities are —1, 0 or +1. This information allows more efficient abstract
domains for this specific problem. The fact that all the variables involved in the
constraints are non-negative permits further optimizations.

Thinking purely in terms of complexity, this restriction does not improve the
situation drastically. Given a system with n variables, there is still an exponential
number of possible unit inequalities (3™ — 1). Therefore, the operations will have
a worst-case exponential cost, even if it is an exponential of a lower order than that
of convex polyhedra operations. However, experimental results have shown that
the improvement is noticeable and worthwhile.

We have proposed two implementations for this abstract domain named oc-
tahedron. These implementations take advantage of the fact that coefficients are
discrete by applying techniques from discrete domains, such as decision diagrams
and bit-vectors. The major benefit of both approaches is an important reduction in
memory usage with respect to convex polyhedra. In the case of decision diagrams,
the cost of this reduction is an increase in execution time, which is spent mini-
mizing the representation. On the other hand, bit-vectors improve both memory
and execution time, although the reduction in terms of memory is smaller in large
examples than that of decision diagrams. Regarding precision, the experimental

132 CHAPTER 7. CONCLUSIONS

results have shown that the difference in precision between convex polyhedra and
octahedra is negligible in the problem of verifying a timed circuit.

These techniques allow the verification of larger systems than what is possible
with convex polyhedra. Remarkably, the assumptions used to define octahedra also
occur in several static analysis problems. Therefore, the improvements achieved in
this area may be exported to other analysis problems.

There are several directions of future research in this field. On one hand, a
more efficient algorithm for the computation of the canonical form of octahedra
would improve the precision of the OhDD implementation, and potentially also
accelerate the operations. Another focus of future research is the definition of exact
versions of the operators of octahedra which are approximate, like in the bit-vector
implementation. Finally, other numerical abstract domains which are appropriate
for the timing verification problem can be explored.

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behavior predic-
tion by abstract interpretation. In Proc. International Symposium on Static
Analysis, pages 52—-66. Springer-Verlag, 1996.

R. Alur. Techniques for automatic verification of real-time systems. PhD
thesis, Stanford University, Aug. 1991.

R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. Theoretical Computer Science, pages 3—-34, 1995.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994.

R. Alur, K. Etessami, S. L. Torre, and D. Peled. Parametric temporal logic
for “model measuring”. ACM Trans. Comput. Logic, 2(3):388-407, 2001.

R. Alur and T. Henzinger. Logics and Models of Real-Time: A Survey. In
Real Time: Theory in Practice, volume 600, pages 74-106. Springer-Verlag,
1992.

R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstrac-
tions of hybrid systems. Proceedings of the IEEE, 88:971-984, 2000.

R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning.
In ACM Symposium on Theory of Computing, pages 592-601, 1993.

T. Amon and G. Borriello. An approach to symbolic timing verification.
In Proc. ACM/IEEE Design Automation Conference, pages 410-413. IEEE
Computer Society Press, 1992.

T. Amon, G. Borriello, T. Hu, and J. Liu. Symbolic timing verification of
timing diagrams using Presburger formulas. In Proc. ACM/IEEE Design
Automation Conference, pages 226-231, jun 1997.

T. Amon and H. Hulgaard. Symbolic time separation of events. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 83-93, 1999.

134

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for para-
metric reasoning about counter and clock systems. In Proc. International
Conference on Computer Aided Verification, pages 419-434, 2000.

A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reacha-
bility analysis of complex systems. In Computer Aided Verification, pages
368-372, 2001.

A. Arnold. Finite Transition Systems. Prentice-Hall, Englewood Cliffs, NJ,
1994.

E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed
automata and digital circuits. In International Conference on Concurrency
Theory, volume 1466 of Lecture Notes in Computer Science, pages 470-
484. Springer-Verlag, 1998.

R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening opera-
tors for convex polyhedra. In R. Cousot, editor, Proc. International Sympo-
sium on Static Analysis, volume 2694 of Lecture Notes in Computer Science,
pages 337-354. Springer-Verlag, 2003.

R. Bagnara, P. M. Hill, E. Ricci, E. Zaffanella, C. Medori, and A. Za-
ccagnini. PPL: The Parma Polyhedra Library. http://www.cs.unipr.it/ppl/.

G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, and
W. Yi. UpPaAL implementation secrets. In Proc. of 7th International
Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems,
pages 3-22, 2002.

G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Efficient timed
reachability analysis using Clock Difference Diagrams. In Proc. Interna-
tional Conference on Computer Aided Verification, pages 341-353, 1999.

W. Belluomini and C. Myers. Timed state space exploration using POSETS.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 19(5), 2000.

W. J. Belluomini and C. J. Myers. Timed circuit verification using TEL
structures. |IEEE Transactions on Computers, 20(1):129-146, 2001.

J. Bengtsson. memtime - utility for the collection of mem-
ory and CPU time usage information. Available online at
www . update.uu.se/~ jJohanb/memtime/.

J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL -
a tool suite for automatic verification of real-time systems. In Proc. Hybrid
Systems, volume 1066 of Lecture Notes in Computer Science, pages 232—
243. Springer-Verlag, 1995.

BIBLIOGRAPHY 135

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

B. Bérard and L. Fribourg. Reachability analysis of (timed) Petri nets using
real arithmetic. In Proc.Int. Conf. on Concurrency Theory, volume 1664,
pages 178-193. Lecture Notes in Computer Science, Aug. 1999.

D. Beyer. Improvements in BDD-based reachability analysis of timed au-
tomata. In Proc. International Symposium of Formal Methods Europe, vol-
ume 2021 of Lecture Notes in Computer Science, pages 318-343. Springer-
Verlag, 2001.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Ming,
D. Monniaux, and X. Rival. Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded software, in-
vited chapter. In The Essence of Computation: Complexity, Analysis, Trans-
formation, LNCS 2566, pages 85-108. Springer-Verlag, Oct. 2002.

I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and
C. Sotiriu. Handshake protocols for desynchronization. In Proc. Inter-
national Symposium on Advanced Research in Asynchronous Circuits and
Systems, 2004.

A. Bouajjani, A. Collomb-Annichini, Y. Lakhnech, and M. Sighireanu. An-
alyzing fair parametric extended automata. In Proc. International Sympo-
sium on Static Analysis, volume 2126 of Lecture Notes in Computer Science,
pages 335-355, 2001.

F. Bourdoncle. Interprocedural abstract interpretation of block structured
languages with nested procedures, aliasing and recursivity. In Proc. of the
International Workshop on Programming Languages Implementation and
Logic Programming PLILP’90, volume 456, pages 307-323. Lecture Notes
in Computer Science, 1990.

F. Bourdoncle. Efficient chaotic iteration strategies with widenings. Lecture
Notes in Computer Science, 735:128-141, 1993.

O. Bournez and O. Maler. On the representation of timed polyhedra. In
Automata, Languages and Programming, pages 793-807, 2000.

R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic
Press, 1998.

M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kro-
nos: A model-checking tool for real-time systems. In Proc. International
Conference on Computer Aided Verification, volume 1427, pages 546-550.
Springer-Verlag, 1998.

M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the
symbolic verification of timed automata. In Proceedings of the 9th In-

136

BIBLIOGRAPHY

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

ternational Conference on Computer Aided Verification, pages 179-190.
Springer-Verlag, 1997.

M. Bozga, O. Maler, and S. Tripakis. Efficient verification of timed automata
using dense and discrete time semantics. In Proc. Conference on Correct
Hardware Design and Verification Methods, volume 1703 of Lecture Notes
in Computer Science, pages 125-141, 1999.

K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a
BDD package. In Proc. ACM/IEEE Design Automation Conference, pages
40-45. ACM Press, 1990.

R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677-691, 1986.

T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite
state systems using Presburger arithmetic. In Proc. International Conference
on Computer Aided Verification, pages 400-411, 1997.

T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems
with unbounded integer variables: Symbolic representations, approxima-
tions, and experimental results. ACM Transactions on Programming Lan-
guages and Systems, 21(4):747-789, 1999.

S. Chakraborty. Polynomial-Time Techniques for Approximate Timing Anal-
ysis of Asynchronous Systems. PhD thesis, Stanford University, Aug. 1998.

S. Chakraborty and D. L. Dill. Approximate algorithms for time separation
of events. In Proc. International Conf. Computer-Aided Design (ICCAD).
IEEE Computer Society Press, 1997.

S. Chakraborty, D. L. Dill, and K. Y. Yun. Min-max timing analysis and an
application to asynchronous circuits. Proceedings of the IEEE, 87(2):332-
346, 1999.

C. Chen, T. Lin, and H. Yen. Modelling and analysis of asynchronous cir-
cuits and timing diagrams using parametric timed automata. In Proc. In-
ternational Conf. on Modelling, Identification and Control, pages 500-505,
Feb. 2004.

L. Chen, L. Harrison, and K. Yi. Efficient computation of fixpoints that
arise in complex program analysis. Journal of Programming Languages,
3(1):31-68, 1995.

N. Chernikova. Algoritm for discovering the set of all solutions of a linear
programming problem. U.S.S.R. Computational Mathematics and Mathe-
matical Physics, 6(8):282-293, 1964.

BIBLIOGRAPHY 137

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

F. Chu and X.-L. Xie. Deadlock analysis of Petri nets using siphons and
mathematical programming. |IEEE Transactions on Robotics and Automa-
tion, 13(6):793-804, Dec. 1997.

T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic speci-
fications. PhD thesis, MIT, June 1987.

R. Claris6 and J. Cortadella. Symbolic timing analysis for the verification
of asynchronous circuits. In Handouts of the Asynchronous Circuit Design
(ACID) Workshop, Jan. 2003.

R. Claris6 and J. Cortadella. Verification of timed circuits with symbolic
delays. In International Workshop on Logic Synthesis (IWLS), pages 310-
317, May 2003.

R. Clarisé and J. Cortadella. The octahedron abstract domain. In Proc.
International Symposium on Static Analysis, volume 3148 of Lecture Notes
in Computer Science, pages 312-327. Springer-Verlag, Aug. 2004.

R. Claris6 and J. Cortadella. Verification of parametric timed circuits using
octahedra. In Proc. Int. Workshop on Designing Correct Circuits (DCC’05),
Mar. 2004.

R. Claris6 and J. Cortadella. Verification of timed circuits with symbolic
delays. In Proc. of Asia and South Pacific Design Automation Conference,
pages 628-633, Jan. 2004.

R. Clarisé and J. Cortadella. \erification of concurrent systems with para-
metric delays using octahedra. In Proc. Int. Conf. on Application of Concur-
rency to System Design, pages 122-131, 2005.

R. Claris6, E. Rodriguez-Carbonell, and J. Cortadella. Derivation of non-
structural invariants of Petri nets using abstract interpretation. In Proc. Int.
Conf. On Application and Theory of Petri Nets and Other Models of Concur-
rency, volume 3536 of Lecture Notes in Computer Science, pages 188-207.
Springer-Verlag, 2005.

E. Clarke, D. Long, and K. McMillan. Compositional model checking. In
Proc. of the 4th Annual Symposium on Logic in computer science, pages
353-362. IEEE Press, 1989.

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and ab-
straction. ACM Transactions on Programming Languages and Systems,
16(5):1512-1542, September 1994,

C. Colby. Determining storage properties of sequential and concurrent pro-
grams with assignment and structured data. In Proc. International Sympo-
sium on Static Analysis, pages 64-81, 1995.

138

BIBLIOGRAPHY

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

J. Cortadella, M. Kishinevsky, S. M. Burns, A. Kondratyev, L. Lavagno,
K. S. Stevens, A. Taubin, and A. Yakovlev. Lazy transition systems and
asynchronous circuit synthesis with relative timing assumptions. IEEE
Transactions on Computer-Aided Design, 21(2):109-130, Feb. 2002.

P. Cousot. Semantic foundations of program analysis. In S. Muchnick and
N. Jones, editors, Program Flow Analysis: Theory and Applications, chap-
ter 10, pages 303-342. Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1981.

P. Cousot. Abstract interpretation: Achievements and perspectives. In Pro-
ceedings of the SSGRR 2000 Computer & eBusiness International Confer-
ence. Scuola Superiore G. Reiss Romoli, July 2000.

P. Cousot. Abstract interpretation based formal methods and future chal-
lenges, invited paper. In R. Wilhelm, editor, Informatics — 10 Years Back,
10 Years Ahead, volume 2000 of Lecture Notes in Computer Science, pages
138-156. Springer-Verlag, Berlin, Germany, 2001.

P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proceedings of the Second International Symposium on Pro-
gramming, pages 106-130. Dunod, Paris, France, 1976.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In Proc. of the ACM Symposium on Principles of Programming Languages,
pages 238-252. ACM Press, 1977.

P. Cousot and R. Cousot. Static determination of dynamic properties of re-
cursive procedures. In E. Neuhold, editor, IFIP Conf. on Formal Description
of Programming Concepts, St-Andrews, N.B., CA, pages 237-277. North-
Holland, 1977.

P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation, invited paper. In
M. Bruynooghe and M. Wirsing, editors, Proceedings of the International
Workshop Programming Language Implementation and Logic Program-
ming, PLILP ’92,, Leuven, Belgium, 13-17 August 1992, Lecture Notes in
Computer Science 631, pages 269-295, Berlin, Germany, 1992. Springer-
Verlag.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. of the ACM Symposium on Principles of
Programming Languages, pages 84-97. ACM Press, New York, 1978.

G. Dantzig and B. Eaves. Fourier-Motzkin elimination and its dual. Journal
of combinatorial theory, 14:288-297, 1973.

BIBLIOGRAPHY 139

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

C. Daws and S. Yovine. Reducing the number of clock variables of timed
automata. In Proc. IEEE Real-Time Systems Symposium, pages 73-81. IEEE
Computer Society Press, Dec. 1996.

A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-
limiting. ACM SIGPLAN Notices, 29(6):230-241, 1994,

S. Devadas, K. Keutzer, S. Malik, and A. Wang. Verification of asyn-
chronous interface circuits with bounded wire delays. Journal of VLSI Sig-
nal Processing, 7(1/2):161-182, Feb. 1994,

D. Dill and H. Wong-Toi. Verification of real-time systems by succes-
sive over and under approximation. In Proc. International Conference on
Computer Aided Verification, Lecture Notes in Computer Science. Springer-
Verlag, 1995.

D. L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In Automatic Verification Methods for Finite State Systems, LNCS
407, pages 197-212. Springer-Verlag, 1989.

A. Dolzmann, T. Sturm, and V. Weispfenning. A new approach for auto-
matic theorem proving in real geometry. Journal of Automated Reasoning,
21(3):357-380, 1998.

N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for statically
detecting all buffer overflows in C. In Proceedings of the ACM SIGPLAN
2003 conference on Programming lan guage design and implementation,
pages 155-167. ACM Press, 2003.

E. Asarin, M. Bozga, A. Kerbrat, O. Maler, M. Pnueli, and A. Rasse. Data
structures for the verification of timed automata. In O. Maler, editor, Hybrid
and Real-Time Systems, pages 346-360, Grenoble, France, 1997. Springer
Verlag, LNCS 1201.

E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 995-1072.
Elsevier Science Publishers, 1990.

E. A. Emerson and E. M. Clarke. Using branching-time temporal logic to
synthesize synchronization skeletons. Science of Computer Programming,
2(3):241-266, 1982.

E. A. Emerson and R. J. Trefler. Parametric quantitative temporal reasoning.
In Logic in Computer Science, pages 336-343, 1999.

F. Fernandez and P. Quinton. Extension of Chernikova’s algorithm for solv-
ing general mixed linear programming problems. Technical Report 437,
IRISA, Rennes, France, 1988.

140

BIBLIOGRAPHY

(80]

[81]

(82]

[83]

[84]

[85]

(86]

[87]

(88]

(89]

[90]

[91]

M. J. Fisher and M. O. Rabin. Super-exponential complexity of Presburger
arithmetic. In Proc. SIAM-AMS, volume 7, pages 27-41, 1974.

L. Fribourg and H. Olsén. Proving safety properties of infinite state systems
by compilation into Presburger arithmetics. In Proc.Int. Conf. on Concur-
rency Theory, volume 1243, pages 213-227. Lecture Notes in Computer
Science, July 1997.

M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary deci-
sion diagrams: An efficient data structure for matrix representation. Formal
Methods in System Design, 10(2/3):149-169, 1997.

A. J. Gerber. Process synchronization by counter variables. SIGOPS Oper-
ating Systems Review, 11(4):6-17, 1977.

A. Gollu, A. Puri, and P. Varaiya. Discretization of timed automata. In Proc.
IEEE Conference on Decision and Control, pages 957-958, 1994,

P. Granger. Static analysis of arithmetical congruences. International Jour-
nal of Computer Mathematics, 30:165-190, 1989.

P. Granger. Static analysis of linear congruence equalities among variables
of a program. In Proc. of the Fourth International Joint Conference on the
Theory and Practice of Software Development (TAPSOFT ’91), volume 493,
pages 169-192. Springer-Verlag, apr 1991.

A. P. Gupta and D. P. Siewiorek. Automated multi-cycle symbolic timing
verification of microprocessor-based designs. In Proc. ACM/IEEE Design
Automation Conference, pages 113-119. ACM Press, 1994.

R. Gupta. Generalized dominators and post-dominators. In Proc. of the ACM
Symposium on Principles of Programming Languages, volume 19, pages
246-257, Jan. 1992.

N. Halbwachs. Delay analysis in synchronous programs. In C. Courcou-
betis, editor, Proc. International Conference on Computer Aided Verifica-
tion, volume 697 of Lecture Notes in Computer Science, pages 333-346,
Elounda, Greece, 1993. Springer-Verlag.

N. Halbwachs, D. Merchat, and C. Parent-Vigouroux. Cartesian factoring of
polyhedra in linear relation analysis. In Proc. International Symposium on
Static Analysis, pages 355-365. LNCS 2694, Springer Verlag, June 2003.

N. Halbwachs, Y.-E. Proy, and P. Roumanoff. \rification of real-time
systems using linear relation analysis. Formal Methods in System Design,
11(2):157-185, 1997.

BIBLIOGRAPHY 141

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

T. A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In
Proc. REX Workshop Real-Time: Theory in Practice, volume 600, pages
226-251. LNCS, New York, 1992.

T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
Proc. Int. Colloguium on Automata, Languages and Programming, volume
623 of Lecture Notes in Computer Science, pages 545-558. Springer-\erlag,
1992,

H. Hulgaard. Timing Analysis and Verification of Timed Asynchronous Cir-
cuits. PhD thesis, Department of Computer Science, University of Wash-
ington, 1995.

H. Hulgaard and T. Amon. Symbolic timing analysis of asynchronous sys-
tems. IEEE Transactions on Computer-Aided Design, 19(10):1093-1104,
Oct. 2000.

H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello. An algorithm for
exact bounds on the time separation of events in concurrent systems. IEEE
Transactions on Computers, 44(11):1306-1317, Nov. 1995.

T. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager. Linear parametric
model checking of timed automata. In Tools and Algorithms for Construc-
tion and Analysis of Systems, pages 189-203, 2001.

N. Ishiura, M. Takahashi, and S. Yajim. Time-symbolic simulation for accu-
rate timing verification of asynchronous behavior of logic circuits. In Proc.
ACM/IEEE Design Automation Conference, pages 497-502, 1989.

B. Jeannet. New Polka: Convex Polyhedra Library. Available online at
http://www.irisa.fr/prive/bjeannet/newpolka.html.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic model checking: 102° states and beyond. In Proc. of the IEEE Sympo-
sium on Logic in Computer Science, pages 1-33, Washington, D.C., 1990.
IEEE Computer Society Press.

M. Karr. Affine relationships among variables of a program. Acta Informat-
ica, pages 133-151, 1976.

H. Kim, P. A. Beerel, and K. Stevens. Relative timing based verification of
timed circuits and systems. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 115-124, Apr. 2002.

X. Kong and R. Negulescu. Bolstering faith in GasP circuits through formal
verification. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 113-124. IEEE Computer Soci-
ety Press, Apr. 2004.

142

BIBLIOGRAPHY

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of
real-time systems: Compact data structure and state space reduction. In
Proc. IEEE Real-Time Systems Symposium, pages 14-24. IEEE Computer
Society Press, Dec. 1997.

L. Lavagno, K. Keutzer, and A. L. Sangiovanni-Vincentelli. Synthesis of
hazard-free asynchronous circuits with bounded wire delays. |IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 14(1),
1995.

L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-Vincentelli.
An efficient heuristic procedure for solving the state assignment problem for
event-based specifications. IEEE Transactions on Computer-Aided Design,
14(1):45-60, Jan. 1995.

T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in
a flowgraph. ACM Transactions on Programming Languages and Systems,
1(1):121-141, July 1979.

O. Maler and A. Pnueli. Timing analysis of asynchronous circuits using
timed automata. In Proc. Correct Hardware Design and Verification Meth-
ods (CHARME), pages 189-205, Oct. 1995.

F. Masdupuy. Array operations abstraction using semantic analysis of trape-
zoid congruences. In Proc. ACM Int. Conf. on Supercomuting, pages 226—
235, 1992.

I. Mastroeni. Numerical power analysis. In Proc. Symposium on Programs
as Data Objects, volume 2053 of Lecture Notes in Computer Science, pages
117-137. Springer-Verlag, 2001.

C. Mauras. Symbolic simulation of interpreted automata. In 3rd Workshop
on Synchronous Programming, Dec. 1996.

S. Minato. Zero-supressed BDDs for set manipulation in combinatorial
problems. In Proc. ACM/IEEE Design Automation Conference, pages 272—
277, 1993.

A. Miné. A new numerical abstract domain based on Difference-Bound
Matrices. In Programs as Data Objects II, volume 2053 of LNCS, pages
155-172. Springer-Verlag, May 2001.

A. Miné. The octagon abstract domain. In Analysis, Slicing and Tran-
formation (in Working Conference on Reverse Engineering), IEEE, pages
310-319. IEEE CS Press, Oct. 2001.

J. Mgller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference De-
cision Diagrams. In Proceedings 13th International Workshop on Computer

BIBLIOGRAPHY 143

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Science Logic, volume 1683 of Lecture Notes in Computer Science, pages
111-125, Sept. 1999.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient SAT solver. In Proc. ACM/IEEE Design Automation
Conference, pages 530-535, June 2001.

M. Miiller-Olm and H. Seidl. Computing polynomial program invariants.
Information Processing Letters (IPL), 91(5):233-244, 2004.

T. Murata. State equation, controllability and maximal matchings of Petri
nets. IEEE Transactions on Automatic Control, AC-22(3):412-416, 1977.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4), 1989.

C. Myers and T. H.-Y. Meng. Synthesis of timed asynchronous circuits. In
Proc. International Conf. Computer Design (ICCD), pages 279-282. IEEE
Computer Society Press, Oct. 1992.

C. J. Myers. Computer-Aided Synthesis and Verification of Gate-Level
Timed Circuits. PhD thesis, Dept. of Electrical Engineering, Stanford Uni-
versity, Oct. 1995.

C. J. Myers, W. Belluomini, K. Killpack, E. M. er, E. Peskin, and H. Zheng.
Timed circuits: A new paradigm for high-speed design. In Proc. of Asia and
South Pacific Design Automation Conference, pages 335-340, 2001.

C. J. Myers and T. H.-Y. Meng. Synthesis of timed asynchronous circuits.
IEEE Transactions on VLSI Systems, 1(2):106-119, June 1993.

R. Negulescu. A technique for finding and verifying speed-dependences in
gate circuits. Research Report CS-97-28, Department of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada, Aug. 1997.

R. Negulescu. Process Spaces and Formal Verification of Asynchronous Cir-
cuits. PhD thesis, Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, Aug. 1998.

R. Negulescu and A. Peeters. Verification of speed-dependences in single-
rail handshake circuits. In Proc. International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages 159-170, 1998.

C. A. Nelson, C. J. Myers, and T. Yoneda. Efficient verification of hazard-
freedom in gate-level timed asynchronous circuits. In Proc. International
Conf. Computer-Aided Design (ICCAD), pages 424-431, Nov. 2003.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

144

BIBLIOGRAPHY

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

N.Ishiura, Y.Deguchi, and S.Yajima. Coded time-symbolic simulation using
shared binary decision diagram. In Proc. ACM/IEEE Design Automation
Conference, pages 130-135, 1990.

The Omega project: Frameworks and algorithms for the analy-
sis and transformation of scientific programs. Available online at
http://www.cs.umd.edu/projects/omega/omega.html.

D. Oppen. A 92*"" upper bound on the complexity of Presburger arithmetic.
Journal of Computer and System Sciences, July 1978.

E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri net analysis using
boolean manipulation. In R. Valette, editor, Proc. Int. Conf. on Application
and Theory of Petri Nets, volume 815 of Lecture Notes in Computer Science,
pages 416-435. Springer-Verlag, June 1994,

M. A. Pefia, J. Cortadella, A. Kondratyev, and E. Pastor. Formal verification
of safety properties in timed circuits. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages 2-11.
IEEE Computer Society Press, Apr. 2000.

C. Piguet et al. Memory element of the Master-Slave latch type, constructed
by CMOS technology. US Patent 5,748,522, 1998.

A. Pnueli. The temporal logic of programs. In Proc. IEEE Symposium on
Foundations of Computer Science, pages 45-57, 1977.

W. Pugh. The Omega test: a fast and practical integer programming algo-
rithm for dependence analysis. Communications of the ACM, (8):102-104,
Aug. 1992.

E. Rodriguez-Carbonell and D. Kapur. An abstract interpretation approach
for automatic generation of polynomial invariants. In Proc. International
Symposium on Static Analysis, pages 280-295. Springer-Verlag, Aug. 2004.

S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kaol,
C. Dike, M. Roncken, and B. Agapiev. RAPPID: An asynchronous in-
struction length decoder. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 60-70, Apr. 1999.

R. Rudell. Dynamic variable ordering for ordered binary decision diagrams.
In Proc. International Conf. Computer-Aided Design (ICCAD), pages 42—
47, 1993.

S. Sankaranarayanan, H. Sipma, and Z. Manna. Petri net analysis using
invariant generation. In Verification: Theory and Practice, pages 682-701.
Springer-Verlag, 2003.

BIBLIOGRAPHY 145

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear loop invari-
ant generation using Grébner bases. In Proc. ACM SIGPLAN Principles of
Programming Languages, pages 318-329, 2004.

S. A. Seshia, R. E. Bryant, and K. S. Stevens. Modeling and verifying cir-
cuits using Generalized Relative Timing. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages 98-
108. IEEE Computer Society Press, 2005.

M. Silva, E. Teruel, and J. M. Colom. Linear algebraic and linear pro-
gramming techniques for the analysis of place/transition net systems. Lec-
ture Notes in Computer Science: Lectures on Petri Nets I: Basic Models,
1491:309-373, 1998.

A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequal-
ity as an Abstract Domain. In M. Leuschel, editor, Proceedings of Logic
Based Program Development and Transformation, LNCS 2664, pages 71—
89. Springer-Verlag, 2002.

K. Sohn and A. Van Gelder. Termination detection in logic programs us-
ing argument sizes (extended abstract). In Proceedings of the tenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
pages 216-226. ACM Press, 1991.

F. Somenzi. CUDD: Colorado university decision diagram package. Avail-
able online at http://visi.colorado.edu/ fabio/CUDD.

R. F. L. Spelberg and W. Toetenel. Real-time model checkin based on split-
ting. In Proc. International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems, pages 143-157, 1998.

K. Stevens, R. Ginosar, and S. Rotem. Relative timing. In Proc. Inter-
national Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 208-218, Apr. 1999.

I. Sutherland and S. Fairbanks. GasP: A minimal FIFO control. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 46-53, 2001.

R. Thacker, W. Belluomini, and C. J. Myers. Timed circuit synthesis using
implicit methods. In Proc. International Conference on VLSI Design, pages
181-188, 1999.

A. van Gelder. Deriving constraints among argument sizes in logic programs
(extended abstract). In Proceedings of the ninth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 47-60. ACM
Press, 1990.

146

BIBLIOGRAPHY

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

H. L. Verge. A note on Chernikova’s algorithm. Technical Report 635,
IRISA, Rennes, France, 1992.

F. Wang. Efficient data structure for fully symbolic verification of real-time
software systems. In Tools and Algorithms for Construction and Analysis of
Systems, pages 157-171, 2000.

F. Wang. Parametric analysis of computer systems. Formal Methods in
System Design, 17:39-60, 2000.

F. Wang. Symbolic verification of complex real-time systems with Clock-
Restriction Diagrams. In Proceedings of the International Conference on
Formal Techniques for Networked and Distributed Systems, pages 232-250.
Kluwer Academic Publishers, 2001.

F. Wang. Formal verification of timed systems: A survey and perspective.
Proceedings of the IEEE, 92(8):1283-1305, Aug. 2004.

F. Wang. Symbolic parametric safety analysis of linear hybrid systems with
BDD-like data-structures. In Proc. International Conference on Computer
Aided Verification. Springer-Verlag, July 2004.

T. Yoneda, T. Kitai, and C. Myers. Automatic derivation of timing con-
straints by failure analysis. In Proc. International Conference on Computer
Aided Verification, pages 195-208, 2002.

T. Yoneda and H. Ryu. Timed trace theoretic verification using partial or-
der reduction. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 108-121, Apr. 1999.

H. Zheng. Modular Synthesis and Verification of Timed Circuits Using Au-
tomatic Abstraction. PhD thesis, The University of Utah, Aug. 2001.

H. Zheng, C. J. Myers, D. Walter, S. Little, and T. Yoneda. Verification of
timed circuits with failure directed abstractions. In Proc. International Conf.
Computer-Aided Design (ICCAD), pages 28-35, Nov. 2003.

M. Zhou, F. DiCesare, and A. Desrochers. A hybrid methodology for syn-
thesis of Petri net models for manufacturing systems. IEEE Transactions on
Robotics and Automation, 8(3):350-361, June 1992.

Appendix A

OhDD Algorithms

This Appendix presents the decision diagram implementation of several operators
of the octahedron abstract domain. It is provided to better illustrate the concepts
described in Section 5.3.

Decision Diagram Packages

The following is a brief description of the internal structure of a decision diagram
package. Only the minimum details required to understand the algorithms are dis-
cussed. The interested reader can find additional information in [36, 146].

A decision diagram is a directed acyclic graph (DAG). The basic data structure
of this graph is the node, which can be a constant node or a decision node. Constant
nodes store the possible values of the function encoded in the decision diagram. On
the other hand, each decision node is labelled with a decision atom, e.g. a boolean
variable, and the children nodes are chosen according to the values of the atom.
Throughout this thesis, several classes of decision diagrams have been presented,
with different types of decision atoms, such as differences of pairs of expressions
(DDD) or or linear inequalities (DDC). In any case, it is important that there exists
a total order among the atoms. This order defines the position of each atom in the
path from the root node to the constant nodes at the bottom of the diagram. In other
words, the order ensures that all the nodes at the same level are labeled with the
same decision atom.

The ordering of atoms has a large impact in the size of the decision diagram,
and therefore, in the effectivity of the algorithms. A strategy called dynamic re-
ordering [139] can be used to choose the ordering that minimizes a decision dia-
gram at a given point of the execution. However, this technique is outside the scope
of this description, and thus we will assume a static order.

Several decision diagrams can be stored at once in the same package. As each
decision diagram is a DAG with a single root, it can be identified by the root node.

The canonicity of the decision diagrams is ensured by a set of reduction rules.
Although each diagram has different rules, a typical rule is the merging of iso-
morphic subgraphs. This reduction rule is usually implemented using a hash-table

148 APPENDIX A. OHDD ALGORITHMS

known as the unique table. Whenever a node needs to be created, the creation is
implemented by a call to:

DD_UniqueNode(atom , childrenlist)

which returns a new node if an isomorphic node does not exist, or the isomorphic
node if it is already allocated inside the package. The implementation of this pro-
cedure takes advantage of the fact that each children in the childrenlist is also
canonical. Using this method, it is possible to guarantee that any pair of atom + list
of children is encoded by a single node.

All the operations, such as the intersection of the union, can be implemented
as recursive procedures. These procedures receive as arguments the root nodes
of the decision diagrams. A divide and conquer approach is used to implement
the operations: the current call performs the operation on the top atom, leaving
the remaining work (applying the operation to the children) to recursive calls on
the children. However, as decision diagrams are DAGsS, it is possible that many
recursive calls have the same arguments. In order to avoid repeated work, decision
diagram packages implement a cache memory that stores recent operations. A call
of the form

DD_CacheLookup(operation , argumentlist)

checks whether the operation is already available in the cache memory and there-
fore, does not need to be recomputed. Similarly, after any call, the procedure
should store the result in the cache memory with a method like:

DD _Cachelnsert(operation , argumentlist , result)

In addition to the methods described so far, decision diagram packages provide
several methods to manipulate nodes. At least the following methods should be
provided (the names used in the pseudocode appear between parenthesis)

e Testing whether a node is a constant or a decision node (DD _IsConstant).
This method is used by recursive procedures to detect when they have reached
the bottom of the diagram.

e Getting the children of a given node (DD _NegArc, DD _ZeroArc, DD PosArc).
e Choosing the top atom of several decision diagrams according to the order
(DD_TopVariable). In each recursive call, only the top atom is processed.
Reduction rules

In order to implement the reduction rules, two basic operations should be defined.
First, how to obtain the OhDD for the three cofactors (coefficients) of a given
variable. And second, how to build a new OhDD from the three cofactors of a

149

given variable. Figure A.1 shows the pseudocode for these two procedures, called
DD_GetCofactors and DD_CombineCofactors.

The only remarkable aspect of DD _GetCofactors is how to compute the cofac-
tors of a variable that does not appear in a OhDD. If a variable is missing, it means
that it has been reduced. In a OhDD with non-negative variables, this means that
its negative cofactor is —oo while its positive and zero cofactor are equal to the
OhDD (the reduction rule is described in Figure 5.8). A similar implementation
produces the reduction rules for unconstrained variables.

Saturation

The saturation procedure can be implemented symbolically. Instead of choosing
two constraints and computing its linear combination, the linear combination of a
whole set of constraints is computed in one step. Figures A.2 and A.3 show the
pseudocode that performs this saturation.

The recursive saturation algorithm SaturateRecur computes the linear combi-
nation of its two parameters. Intuitively, the computation is split according to the
top variable of the decision diagram. The only cases relevant to our computation
are those where the top variable has a coefficient in {—1,0,+1}. For example, the
linear combination has a coefficient +1 if one of the arguments has coefficient 0
and the other has coefficient 1. The remaining variables of the linear combination
are computed recursively using the same algorithm.

Saturation is performed by computing these linear combinations and adding
them to the system of inequalities until a fixpoint is reached. This computation
is described in the procedure Saturate in Figure A.2. Notice that after computing
each set of linear combinations, they are added to the OhDD using the maximum
operator, which in saturated OhDD corresponds to the intersection.

Other operations

The intersection of two octahedra has been defined as the union of the sets of
constraints of both octahedra, choosing the maximum constant for those constraints
that appear in both octahedra. In a OhDD, constraints that do not appear in an
octahedron are represented by the terminal —oo, e.9. (z+y—2z > —o0). Therefore,
the intersection of OhDD can be implemented by taking the maximum of the two
arguments for each path between the root and the terminal nodes. The pseudocode
that computes this maximum is shown in Fig. A.4. The result of this operation is
not necessarily saturated.

The same concept can be applied to the union of octahedra. The union can be
computed as the minimum of the two arguments for each path between the root and
the terminal nodes.

150 APPENDIX A. OHDD ALGORITHMS

Function DD_GetCofactors(f, var)

Input: An OhDD f over non-negative variables and a variable var. If var appears in the
decision diagram f, it must appear as the top variable.

Output: The 3 cofactors of f for variable var, < f=, f°, fT >.

if DD_IsConstant(f) v DD_TopVariable(f) # var then
<[f0 ft>=< —o0, f, f>
else
< f=,f% f* > := < DD_NegArc(f), DD_ZeroArc(f), DD_PosArc(f) >
endif
return < f=, fO, ft >

Function DD_CombineCofactors(var, f~, f°, f1)

Input: The three cofactors of a OhDD for a given variable var. Any variable in the
cofactors must appear after var in the ordering.

Output: A OhDD where < f—, fO, f+ > are the three cofactors for variable var.

if fO= f+ A f~ = —oothen

return f°
else

return DD_UniqueNode(var, f—, f°, f1)
endif

Figure A.1: Pseudocode for the methods that implement the reduction of zero co-
efficients with non-negative variables.

Function Saturate(f)
Input: A OhDD f.
Output: The saturation of the OhDD f.

do

old:= f

res := SaturateRecur(f, f)

f = MaximumRecur(f, res)
while f # old
return res

Figure A.2: Pseudocode for the saturation procedure in the OhDD implementation.

151

Function SaturateRecur(f, g)

Input: Two OhDD called f and g.

Output: The OhDD describing the linear combination of f and g, ignoring constraints
with a coefficient outside {—1,0, +1}.

{ Terminal cases }

if DD_IsConstant(f) A DD_IsConstant(g) then
return DD_Sum(f, g)

endif

if f=+00 V g=+0c0 then return +oco endif

if f=—-00 V g=—0c0 then return —co endif

{ Lookup the result in the cache }

res := DD_CacheLookup(SaturateRecur, f, g)
if res # null then returnres endif

top := DD _TopVariable(f, g)

< f~,f° ft > := DD_GetCofactors(top, f)
<g7,¢° gt > := DD_GetCofactors(top, ¢)

{ Recursive calls for top coefficient =0 }

calll := SaturateRecur(f°, %)

call2 := SaturateRecur(f ™, g7)

call3 := SaturateRecur(f~, g™)

res® := MaximumRecur(call1, MaximumRecur(call2, call3))

{ Recursive calls for top coefficient = 41 }
call4 := SaturateRecur(f*, g%)

call5 := SaturateRecur(f°, g7)

res™ := MaximumRecur(call4, call5)

{ Recursive calls for top coefficient = —1 }
call6 := SaturateRecur(f—, g*)

call7 := SaturateRecur(f°, g~)

rest := MaximumRecur(call6, call7)

{ Combine the cofactors and update the cache }
res := DD_CombineCofactors(top, res—, res®, res™)
DD_Cachelnsert(SaturateRecur, f, g, res)

return res

Figure A.3: Pseudocode of one iteration of the saturation procedure in the OhDD
implementation.

152 APPENDIX A. OHDD ALGORITHMS

Function MaximumRecur(f, g)

Input: Two OhDD called f and g.

Output: An OhDD that has, at the bottom of each path from the root to the terminal nodes,
the maximum terminal found in the same path in f and g.

{ Terminal cases }

if f =g then return f endif

if f=+400 V g=—oo then return f endif

if f=—00 V g=+o0 then returng endif

if DD_IsConstant(f) A DD_IsConstant(g) then
return DD_Max(f, g)

endif

{ Lookup the result in the cache }
res := DD_CacheLookup(MaximumRecur, f, g)
if (res # null) then returnres endif

{ Recursive calls for each cofactor }

top := DD_TopVariable(f, g)

< f=, f° f* > := DD_GetCofactors(top, f)
<g7,¢%g" > := DD_GetCofactors(top, g)
res— := MaximumRecur(f~, g7)

res® := MaximumRecur(f°, ¢°)

rest := MaximumRecur(f*,)

{ Combine the cofactors and update the cache }
res := DD_CombineCofactors(top, res—, res®, rest)
DD_Cachelnsert(MaximumRecur, f, g, res)
return res

Function Intersection(f, g)

Input: Two OhDD called f and g.

Output: The intersection of f and g.
res := MaximumRecur(f, g)

return Saturate(res)

Figure A.4: Pseudocode of the intersection procedure in the OhDD implementation

