
Modern Clocking Strategies

Organisers:

Jordi Cortadella, Universitat Politècnica de Catalunya
Luciano Lavagno, Politecnico di Torino
Alex Yakovlev, University of Newcastle

Speakers:

Koen van Eijk, Synopsys
Alex Yakovlev, University of Newcastle
David M. Zar, Blendics
Jordi Cortadella, Universitat Politècnica de Catalunya

1 Overview

Clock network design and timing analysis are among the most challenging tasks in integrated
circuit design. The former also exhibits the broadest range of very different solutions, rang-
ing from classical zero-skew clocking, to multiple independent clock islands, each operating
at a different Dynamic Voltage and Frequency Scaling (DVFS) point, and to clocks that
dynamically adapt to the timing characteristics of the underlying logic. Of course, every
clocking strategy must be supported by a corresponding verification method on the static
timing analysis side. This can be particularly tricky when the clocks become less and less
synchronous, due to power management methods or to techniques that improve robustness
with respect to variability.

This tutorial is aimed at covering the full range of synthesis and verification tasks for
the clocks, starting from basic definitions and techniques, and then gradually expanding the
horizon.

Each talk will be offered by a leading industrial or academic expert, and will enable
designers to choose the best synchronization technique for the problem at hand.

Attendees are assumed to know about sequential logic design and basic single-phase zero-
skew clocking. They will gain knowledge about the following topics: (1) clock synthesis and
timing analysis, especially in conjunction with power management techniques such as clock
gating, power gating and DVFS; (2) reliability analysis in the presence of meta-stability for
clock domain crossing; (3) asynchronous synchronization techniques; (4) advanced adaptive
clocking strategies, where the clock latency or period adapts to the operating conditions of
the logic.

2 Lectures

The tutorial will be organized in four lectures, each one covering different aspects of clock
synthesis and timing. Next, an abstract of each lecture is presented.

Clock Synthesis and Chip Variability (Koen van Eijk, Synopsys)

One of the main challenges for clock synthesis is dealing with chip variability. With the
decreasing dimensions and lower voltages used by new generations of CMOS technology,
global and local variations are becoming more and more important. Clock synthesis needs
to take variation tolerance into account, to mitigate the impact of these variations.

Mainstream methods for clock tree synthesis typically work by building an initial clock
structure in a bottom-up fashion, and then optimizing this structure to improve insertion
delay, skew, power and area. These methods can consider variation tolerance by including
techniques such as multi-corner optimization, common path sharing and balancing of cell
and wire delays. For the global distribution of high-frequency clocks, a different approach
is commonly used, which is based on using clock structures that are robust by construction,
such as H-trees and clock meshes. Multisource clock synthesis combines these approaches, to

1

support a range of clock structures that provide good trade-offs between robustness, power
and area.

In this lecture we will first explain the basics of clock synthesis and timing closure for
synchronous circuits, and then describe in more detail techniques and design styles for high-
performance, variation tolerant clock structures.

Asynchronous timing (Alex Yakovlev, University of Newcastle)

Can we coordinate circuits in time without clock? The answer is yes, if we use asynchronous
circuits. These circuits, also called self-timed circuits, do not rely on a global clock signal
and operate using local synchronization mechanisms such as handshakes. This makes them
very different from widely adopted synchronous circuits and promises many benefits, such
as inherent resilience to process, voltage, temperature and aging variations, average rather
than worst-case operation in time and power domains, and better modularity and composi-
tionality. For example, asynchronous timing enables robust operation at near-threshold or
sub-threshold voltages (NTV and STV), where the optimum point for energy-per-operation
lies for many types of logic and memory. This capability allows asynchronous timing to fit
ideally for systems powered by energy harvesting, e.g. Internet-of-Things nodes.

Despite these benefits, asynchronous timing is not yet widely adopted by industry, mainly
because of the difficulties of integrating it into the standard EDA tool flows.

In this lecture we will provide a brief overview of the state-of-the-art of asynchronous
timing. We will focus on its two main design paradigms, bundled data and delay-insensitive
circuits, and compare their gains and penalties. We will demonstrate existing asynchronous
tool support for both paradigms.

We will also highlight recent success stories, in particular, industrially adopted design
flow for little digital hardware components asynchronous circuits providing flexible timing
for analog/mixed-signal circuits such a power converters and AD converters.

Finally, we will discuss how these tools can be used for the design of elastic data-flow
pipelines, as well as fully self-timed SRAMs, which allows creating systems where processors
and memory can seamlessly operate at NVT/SVT. We will conclude by posing future research
and development challenges that are currently on the agenda of the asynchronous community.

Metastability and Clock Domain Crossing (David M. Zar, Blendics)

Multiple-clock system-on-chip (SOC) designs require synchronization when transferring sig-
nals and data among clock domains and when receiving asynchronous inputs. Such synchro-
nizations are often susceptible to metastability effects that may propagate into the receiving
circuit and may cause malfunctions. To mitigate the nondeterministic effects associated with
metastability, latches and flip-flops are often used to synchronize the data. Common struc-
tures for this purpose include pipelined flip-flops and FIFOs. There is, however, a probability
that these circuits will not resolve from a metastable state within the allowed time. The
probabilities are becoming a concern as technology nodes get smaller and as the intrinsic

2

parameters of the devices become increasingly variable and problematic; scaling does not
help us, anymore!

For multiple-clock SOC designs it is important to understand how synchronizer circuits
may fail, and to be able to design reliability as measured by a particular allowable proba-
bility of failure, or level of failures in time (FIT). This lecture will present some common
synchronization structures, where they may be used and how to evaluate their reliability
for both an individual synchronizer and for a system with many synchronizers. Parameters
that govern synchronizer reliability are contained in the process transistor-model and in the
application of the synchronizer. These two different sources of parameters often involve two
different designers and who may work in two different companies. Methods to unite these
sources will be discussed.

Some of the latest research in this area will be presented along with models, examples of
good synchronizer circuits and a discussion of why data flip-flops make terrible synchronizing
devices.

Advanced Clocking (Jordi Cortadella, Universitat Politècnica de
Catalunya)

Clock frequency is one of the most important parameters in system design and typically is a
pre-defined target before synthesis. The time uncertainties in nanoelectronics circuits due to
process, voltage, temperature and aging (PVTA) variations demand safe guardband margins
that result in conservative clock frequencies. These margins imply a high cost in energy and
performance.

In the last few years, several techniques for adaptive clocking have emerged with the aim
of dynamically adapting the frequency of the clock to the dynamic variations (VTA) of the
system. These techniques may contribute to reduce energy consumption up to 40%. Among
all the sources of variations, the most challenging problem is the safe adaptation to voltage
droops. This lecture will review some of the most recent advances in adaptive clocking.

Few companies have proposed different schemes based on anticipating voltage droops and
quickly adapting the clock frequency to the delays of the system while the droop is active.
Various approaches around this idea will be presented and discussed.

Techniques based on resilient circuits proposed by ARM and Intel will be also covered.
These techniques are based on pushing clock frequency to the limits in a way that timing
errors may be detected and corrected at runtime. These techniques require sophisticated
mechanisms for error detection/correction not always available in conventional systems.

Finally, a technique based on substituting the PLL by a ring oscillator will be presented.
The design and power/performance benefits of this technique will be analyzed.

3

3 Biographies

Jordi Cortadella is Professor and Head of the Computer Science Department at the Uni-
versitat Politcnica de Catalunya. He is a Fellow of the IEEE and member of the Academia
Europaea. He holds a M.S. and a Ph.D. degree in Computer Science (Universitat Politc-
nica de Catalunya, 1985 and 1987). In 1988, he was a Visiting Scholar at the University
of California, Berkeley. His research interests include formal methods and computer-aided
design of VLSI systems with special emphasis on asynchronous circuits, concurrent systems
and logic synthesis. He has co-authored numerous research papers and has been invited to
present tutorials at various conferences.

Prof. Cortadella has served on the technical committees of several international confer-
ences in the field of Design Automation and Concurrent Systems and is associate editor of
the IEEE Transactions on CAD of Integrated Circuits and Systems. He received best paper
awards at DAC 2004, ASYNC 2004 and ACSD 2009. In 2003, he was the recipient of a
Distinction for the Promotion of the University Research by the Generalitat de Catalunya.

Luciano Lavagno received his Ph.D. in electrical engineering and computer science from
the University of California at Berkeley, CA, USA, in 1992. He has been the architect of the
POLIS project, developing a complete hardware/software co-design environment for control-
dominated embedded systems, and an architect of the CtoSilicon high-level synthesis system
from Cadence Design Systems. He is a co-author of two books on asynchronous circuit
design, of a book on hardware/software co-design of embedded systems, and has published
over 200 journal and conference papers.

He is currently a full Professor with the Department of Electronics and Telecommunica-
tion Engineering of Politecnico di Torino, Italy. He has been an Associate Editor of IEEE
TCAS and ACM TECS. His research interests include the synthesis of asynchronous and low-
power circuits, the concurrent design of mixed hardware and software embedded systems,
and the high-level synthesis of hardware modules from algorithmic specifications.

Koen van Eijk is a Scientist in the Design Group at Synopsys, Inc, where he works on clock
tree synthesis. Prior to joining Synopsys in 2012, he was a Chief Technologist at Magma
Design Automation, where he worked on placement, physical optimization, floorplanning,
and hierarchical design implementation. Dr. van Eijk studied at the Electrical Engineering
Department of the Eindhoven University of Technology, from which he graduated with honors
in 1992 and obtained a Ph.D. degree in 1997, on the topic of equivalence checking for digital
circuits.

Alex Yakovlev was a Dream Fellow of Engineering and Physical Sciences Research Council
(EPSRC), United Kingdom, to investigate different aspects of energy-modulated computing
during 2012-2013.

He received D.Sc. from Newcastle University in 2006, and M.Sc. and Ph.D. from St.
Petersburg Electrical Engineering Institute in 1979 and 1982 respectively, where he worked
in the area of asynchronous and concurrent systems since 1980, and in the period between
1982 and 1990 held positions of assistant and associate professor at the Computing Science

4

department. Since 1991 he has been at the Newcastle University, where he is a professor
and head of the MicroSystems research group at the School of Electrical and Electronic
Engineering. His current interests and publications are in the field of modelling and design
of asynchronous, concurrent, real-time and dependable systems on a chip. He has published
8 edited and co-authored monographs and more than 300 papers in academic journals and
conferences, and has managed over 30 research contracts. He is a Senior Member of the
IEEE and Fellow of IET.

He has chaired program committees of several international conferences, including the
IEEE Int. Symposium on Asynchronous Circuits and Systems (ASYNC), Petri nets (ICATPN),
Applications of Concurrency to Systems Design (ACSD), and he has been Chairman of the
Steering committee of the Conference on Application of Concurrency to System Design since
2001. In April 2008 he was General Chair of the 14th ASYNC Symposium and 2nd Int. Sym-
posium on Networks on Chip, 22nd PATMOS, and Tutorial Chair at Design Automation
and Test in Europe (DATE) in 2009. He has served as a Steering committee member for
ASYNC, NOCS, ICATPN, PATMOS. He was recently an invited speaker at DDECS 2010,
KTN event on Power Management in 2010, DATE 2011, DCIS 2014, where he spoke on
Asynchronous Systems and Energy-Modulated Computing. He was a tutorial organiser and
speaker at DATE 2013, gave lectures and courses on asynchronous design at ARM, IMEC
and Dialog Seminconductor in 2015.

David M. Zar is a Co-Founder of Blendics where he is also a Senior Engineer working
on metastability-related tools and analysis. Along with several of the other Co-Founders of
Blendics, Mr. Zar came from Washington University in St. Louis where he was involved in
asynchronous circuit design as well as metastability work on and off for over 19 years. He
is the principal developer of MetaACE, the first commercially available tool for the analysis
of metastability in synchronizers. In addition, Mr. Zar has worked in the areas of medical
devices, networking and cybersecurity for the past 25 years.

5

Clock Synthesis

and Chip Variability

Koen van Eijk

Synopsys

Modern Clocking Strategies:
Clock Synthesis and Chip Variability

Koen van Eijk
Synopsys

1. Clock Synthesis Fundamentals

2. Chip Variability and Timing Sign-Off

3. Variation Tolerant Clock Structures

4. Design Flow Aspects and Automation

Overview

Clock Synthesis and Chip Variability 1 DATE 2016

Setup timing check
• The data must arrive at the

D input before the arrival
of the next clock edge

Hold timing check
• The data must remain valid

long enough after the
arrival of the clock edge

Multiple clock domains,
clock gating, latches, path
exceptions, …

Synchronous Circuits

Clock Synthesis and Chip Variability 2 DATE 2016

CLK

combinational
logic D Q

FF1

D Q

FF2

Setup timing check
• The data must arrive at the

D input before the arrival
of the next clock edge

Hold timing check
• The data must remain valid

long enough after the
arrival of the clock edge

Multiple clock domains,
clock gating, latches, path
exceptions, …

Synchronous Circuits

Clock Synthesis and Chip Variability 3 DATE 2016

CLK

combinational
logic D Q

FF1

D Q

FF2

launching
clock path

capturing
clock path

data path

Clock Tree Synthesis

DATE 2016 Clock Synthesis and Chip Variability 4

• Clock tree synthesis creates
the network that connects
the system clock to the
sequential elements of the
chip

• Main goals

• Balance insertion delays

• Minimize clock area and
power

• The later flow stages include
clock optimization

Placement and
optimization

Clock Tree Synthesis

Routing and
optimization

Id
e

al
 c

lo
ck

s
P

ro
p

ag
at

e
d

 c
lo

ck
s

• Skew: Difference in arrival times at clock inputs

• Global: Between the clock inputs of any two sequential
elements in the same clock domain

• Local: Between two clock inputs that launch and capture
a timing path

• Positive skew: Capture comes later than launch

• Negative skew: Capture comes earlier than launch

• Useful skew: Use skew to meet signal timing

• Create positive skew on timing-critical paths

• Accept negative skew on non-timing-critical paths

Clock Balancing

DATE 2016 Clock Synthesis and Chip Variability 5

• Use static timing analysis to check that all timing
constraints are satisfied

• Determine the worst possible conditions for each
type of timing check

• How to account for chip variability?

Timing Sign-Off

DATE 2016 Clock Synthesis and Chip Variability 6

Correctness
Yield

Lifetime

Timing Closure
Die Size
Power

Process
• Variation in critical dimensions

• Random dopant fluctuation

• Variation of the gate oxide
thickness

Sources of Variation

DATE 2016 Clock Synthesis and Chip Variability 7

Reference: M. Wirnshofer, Variation-Aware Voltage Scaling for Digital CMOS
Circuits, Springer Series in Advanced Microelectronics 41

Voltage
• Offset in the voltage regulator

• Power noise (IR drop, di/dt
noise)

Temperature
• Ambient temperature changes

• Global variations and local
fluctuations due to power
dissipation

Aging
• Hot carrier injection

• Bias temperature instability

• Main origin of random variability in conventional bulk transistors

• Responsible for ~60% of device-to-device VT variation at 45nm

• For SOI and 3D multi-gate transistors, the channel/body doping can be
eliminated to mitigate RDF effects

• Still other sources of random variability

Example: Random Dopant Fluctuation

DATE 2016 Clock Synthesis and Chip Variability 8

Source: K. Kuhn et al., Managing Process Variation in
Intel’s 45nm CMOS Technology, Intel Technology

Journal, Volume 12, Issue 2, 2008

P

N N

• Systematic versus random

• Systematic variations are deterministic in nature, can be
attributed to layout or manufacturing equipment related
effects, and generally show spatial correlation behavior

• Global versus local

• Global variations affect similar components on the same
die in the same way

• Static versus dynamic

• Dynamic variation is time-dependent, with time
constants ranging from small (power noise) to large
(aging)

• Process variation is static

Classifying Variation

DATE 2016 Clock Synthesis and Chip Variability 9

• Multicorner analysis

• Model chip-to-chip variations

• Examples: Ambient temperature, metal dimensions

• Basic OCV modeling

• Model variations with min/max delays

• Examples: Power noise, temperature fluctuations

• Advanced and parametric OCV

• Model correlations to reduce pessimism

• Examples: Random dopant fluctuation, effective gate
lengths

Modeling variation

DATE 2016 Clock Synthesis and Chip Variability 10

• Perform conservative checks by applying maximum and
minimum delays
• Example: Define min/max by -10%/+10% derating

Basic OCV Modeling

DATE 2016 Clock Synthesis and Chip Variability 11

CLK

combinational
logic D Q

FF1

D Q

FF2

CLK

combinational
logic D Q

FF1

D Q

FF2

max delay

min delay

Setup timing check Hold timing check

• It is pessimistic to assume both minimum and
maximum delays for the common part

• CRPR removes this pessimism by only assuming
maximum delays for the common part

Clock Reconvergence Pessimism Removal

DATE 2016 Clock Synthesis and Chip Variability 12

CLK

combinational
logic D Q

FF1

D Q

FF2

max delay

min delay CLK

combinational
logic D Q

FF1

D Q

FF2

• Advanced OCV

• Derate values as a function of logic depth (for
random variations) and location (for systematic
variations)

Advanced and Parametric OCV

DATE 2016 Clock Synthesis and Chip Variability 13

• Parametric OCV

• Computes arrival
times, required
times and slacks
as statistical
distributions

Creating Robust Clock Structures

DATE 2016 Clock Synthesis and Chip Variability 14

 Synthesis algorithm

– Bottom-up tree construction
using clustering, buffering,
clock gate merging, splitting,
sizing and relocation

 Techniques for improving
variation tolerance

–Multi-corner optimization

–Gate/wire delay balancing

– Common path sharing

Gate/Wire Delay Balancing

DATE 2016
Clock Synthesis and Chip Variability

15

Balancing with Cell Delay Only Balancing with Cell & Wire Delay

Corner Scaling Ratio
For gate: 2:1

For Wire: 1:1.5

A
B

A
B

A GATE WIRE

4.0 4.0

B GATE WIRE

5.0 3.0

A GATE WIRE

4.0 4.0

B GATE WIRE

3.5 4.5

Corner 1

A GATE WIRE

2.0 6.0

B GATE WIRE

2.5 4.5

A GATE WIRE

2.0 6.0

B GATE WIRE

1.75 6.75

Corner 2

Common Path Sharing

DATE 2016 Clock Synthesis and Chip Variability 16

• Prefer late branching

Early branching Late branching

• Timing-aware clustering

Robust by Construction

DATE 2016 Clock Synthesis and Chip Variability 17

 Global clock tree (H-tree)

– Structural balancing

– Strong repeaters and high
layers to achieve low latency
Less impact from OCV derating
Less sensitive to variations

 Clock mesh

–OCV tolerance

 Clock subtrees

– Flexibility for fine-grain
clock gating and useful skew

Trade-offs for Multisource CTS

DATE 2016 Clock Synthesis and Chip Variability 18

Regular CTS
Multisource CTS

w/o mesh
Multisource CTS

with mesh

Lower power

More robust against global and local variations

Lower latency

Fewer flow steps

Automation & easy exploration

1. Create mesh routes

• Non-default rule, shielding

2. Insert mesh drivers

• Placed in regular pattern

3. Hook up pins to mesh

• Restrict topology to avoid daisy
chaining

4. Analyze and annotate delays

• Integrated circuit simulation

Mesh Creation

DATE 2016 Clock Synthesis and Chip Variability 19

Tap Assignment

DATE 2016 Clock Synthesis and Chip Variability 20

Tap driver Clock gate 1

Clock gate 2

Sinks

Macro

Assigning clock sinks to tap drivers
• Involves clock gate splitting

Global Distribution with H-tree

DATE 2016 Clock Synthesis and Chip Variability 21

• H-tree synthesis

• Simultaneous buffering and routing

• Balanced routing per level

• Layers that are primarily used for

power distribution, with few tracks

available

• Handle fragmented floorplans
• Obstructed areas

• Areas with less regular placement

• Dummy branches for balancing

• Insert cells with tunable delays and tune the delay to
minimize skew
• Typically part of the global clock distribution

Post-Silicon Clock Tuning

DATE 2016 Clock Synthesis and Chip Variability 22

dynamic tuning static tuning

Source: B. Doyle et al., Clock
distribution on a dual-core, multi-
threaded Itanium/spl reg/ family

microprocessor. Integrated Circuit
Design and Technology, 2005.

• Variation tolerant clock structures
• Improving balancing and path sharing in bottom-up tree construction

• Global distribution with H-tree

• Clock mesh for very high performance designs

• Complete flow support for multisource CTS
• Tap synthesis, mesh creation and analysis, global tree synthesis

Summary

DATE 2016 Clock Synthesis and Chip Variability 23

Correctness
Yield

Lifetime

Timing Closure
Die Size
Power

Chip
Variability

Asynchronous Timing

Alex Yakovlev

University of Newcastle

Modern Clocking Strategies:

Asynchronous Timing

Jordi Cortadella
UPC, Barcelona

Alex Yakovlev

Newcastle University, UK

• Starting from Synchronous

• Completion Detection

• Handshaking

• Why going asynchronous?

• Towards near and sub-threshold

• GALS – Globally Asynchronous, Locally Synchronous

• Design Automation

Overview

1
Asynchronous timing

DATE 2016

Synchronous circuits

DATE 2016 Asynchronous timing 2

Synchronous circuit

DATE 2016 Asynchronous timing

Combinational
Logic

Fl
ip

 F
lo

p
s

Fl
ip

 F
lo

p
s

PLL

3

1 2 1 1 2

Synchronous circuit

DATE 2016 Asynchronous timing

CL

Two competing paths:
• Launching path
• Capturing path

Launching path < Capturing path + Period

CLKtree + CL < CLKtree + Period

CL < Period (no clock skew)

2
PLL

4

Source-synchronous

DATE 2016 Asynchronous timing

CLK
gen matched delay matched delay matched delay

• No global clock required

• More tolerance to PVT variations

• Period > longest combinational path

• Good for acyclic pipelines

Launching path

Capturing path

5

CLK
gen

?

Source-synchronous with forks and joins

DATE 2016 Asynchronous timing

How to synchronize incoming events?

6

Completion detection

DATE 2016 Asynchronous timing 7

C element (Muller 1959)

DATE 2016 Asynchronous timing

C
A

B
C

A

B

C

A B C

0 0 0

0 1 C

1 0 C

1 1 1

8

C= AB + C(A+B)

(many implementations exist)

Completion detection

DATE 2016 Asynchronous timing

CLK
gen

fixed delay

The fixed delay must be longer than the
worst-case logic delay (plus variability)

Q: could we detect when a computation has completed ASAP ?

9

A 1 SP 0 SP 1 SP 1 SP

Delay-insensitive codes: Dual Rail

• Dual rail: every bit encoded with two signals

DATE 2016 Asynchronous timing

A.t A.f A

0 0 Spacer

0 1 0

1 0 1

1 1 Not used

A.t

A.f

10

Plus:
• Systematic code
• Easy to extract value
• Easy to detect completion
Minus:
• More area
• More power

DI codes (1-of-n and m-of-n)

• 1-of-4:

• 0001=> 00, 0010=>01, 0100=>10, 1000=>11

• 2-of-4:

• 1100, 1010, 1001, 0110, 0101, 0011 – total 6
combinations (cf. 2-bit dual-rail – 4 comb.)

• 3-of-6:

• 111000, 110100, …, 000111 – total 20 combinations
(can encode 4 bits + 4 control tokens)

• 2-of-7:

• 1100000, 1010000, …, 0000011 – total 21
combinations (4 bits + 5 control tokens)

11 DATE 2016
Asynchronous timing

Dual-Rail AND gate

DATE 2016 Asynchronous timing

A B C

SP SP SP

0 - 0

- 0 0

SP 1 SP

1 SP SP

1 1 1

A

B
C

A.t

A.f

B.t

B.f

C.t

C.f

12

Single rail data vs. dual rail

Some back-of-the-envelope estimations:

DATE 2016 Asynchronous timing

Single rail Dual Rail

Area 1 2

Delay 1 << 1

Static power 1 2

Dynamic power < 0.2 2

Dual rail:
• Good for speed
• Large area
• High power consumption

13

Handshaking

DATE 2016 Asynchronous timing 14

Handshaking

DATE 2016 Asynchronous timing

CLK
gen

unknown delay

Assume that the source module can provide data at any rate:

• When should the CLK generator send an event if the

internal delays of the circuit are unknown?

Solution: handshaking

15

Handshaking

DATE 2016 Asynchronous timing

I have data

I want data

Data

Request

Acknowledge

16

Asynchronous elastic pipeline

C

ReqIn ReqOut

AckIn AckOut

C C C

• David Muller’s pipeline (late 50’s)
• Sutherland’s Micropipelines (Turing award, 1989)

DATE 2016 Asynchronous timing 17

Multiple inputs and outputs

DATE 2016 Asynchronous timing 18

Multiple inputs and outputs

DATE 2016 Asynchronous timing 19

Channel-based communication

• A channel contains data and handshake wires

DATE 2016 Asynchronous timing

Data
Req

Ack

20

Data
Req

Ack

Two-phase protocol

• Every edge is active

• It may require double-edge triggered flip-flops or
pulse generators

DATE 2016 Asynchronous timing

Data 1 Data 2 Data 3

Req

Ack

Data

Data transfer Data transfer

21

Four-phase protocol

• Valid data on the active edge of Req

• Req/Ack must return to zero before the next
transfer

• Different variations of the 4-phase protocol exist

DATE 2016 Asynchronous timing

Data 1 Data 2 Data 3

Req

Ack

Data

Data transfer Data transfer

22

How to memorize?

DATE 2016 Asynchronous timing

Combinational
Logic L L

delay

C C

? ?

2-phase or 4-phase ?

23

How to memorize?

DATE 2016 Asynchronous timing

Combinational
Logic L L

delay

C C

Pulse
generator

2-phase

24

How to memorize?

DATE 2016 Asynchronous timing

Combinational
Logic L L

delay

C C 4-phase

25

Why going asynchronous?

DATE 2016 Asynchronous timing 26

Modularity

• Time-independent functional composability
• Performance may be affected (but not functionality)

DATE 2016 Asynchronous timing 27

A B
Data
Req

Ack
B’

Tracking variability

DATE 2016 Asynchronous timing 28

matched delay

Tracking variability

delay

best typ worst

Good correlation for:

• Process variability (systematic)

• Global voltage fluctuations

• Temperature

• Aging (partially)

DATE 2016 Asynchronous timing 29

Margins

Gate and wire delays (typ) P V T Aging
PLL

Jitter
Skew

Rigid Clocks:

Cycle period

Gate and wire delays (typ) P V T

A
g

in
g

Elastic Clocks:

Skew

Cycle period

Margin reduction

Speed-up / Power savings

DATE 2016 Asynchronous timing 30

wasted time
computation time

Rigid clock

computation time

Cycle period

Cycle period

Elastic clock

Clock elasticity

DATE 2016 Asynchronous timing 31

Voltage scaling and power savings

-24% -14%

3 ARM926 cores
on the same die

DATE 2016 Asynchronous timing 32

Scaling Vdd to near or sub-threshold

DATE 2016 Asynchronous timing 33

Source: David Bol, Pushing
Ultra-lLow-Power Digital
Circuits into the Nanometer
Era, PhD thesis,

Optimising Vdd for energy per
operation shifts us towards
Subthreshold operation

Relationship with timing variability

But we need to be more

timing robust!

Source of variability

analysis:

Yu Cao, Clark, L.T.,

2007

Technology node:

 90nm

Optimising Vdd for energy per
operation shifts us towards
Subthreshold operation

34 DATE 2016 Asynchronous timing

Example: 8-bit Booth’s Multiplier

• Synchronous
• Rigid 1GHz clock

• Frequency scaling

• Tuned for 1GHz, 500MHz and 250MHz

• Asynchronous, bundled data
• Extra control logic and delay lines

• Asynchronous, dual-rail

• Double comb. logic and FF size (more leakage)
• Extra completion detection and single-rail to dual-rail

converters
• Double switching activity (spacer/code-word)

35 DATE 2016 Asynchronous timing

Benchmark Architectures

Adaptive frequency scaling
Bundled data

Dual-rail

36 DATE 2016 Asynchronous timing

Multiplier: Power-speed scaling

37 DATE 2016 Asynchronous timing

Globally Asynchronous
Locally Synchronous (GALS)

DATE 2016 Asynchronous timing 38

DATE 2016 Asynchronous timing 39

Clocking and interfaces: Towards GALS

Example from IHP Baseband processor design
(Moonrake chip), GALAXY project

Synchronous

Asynchronous

GALS

Measurements of Moonrake Chip

GALS has shown:

 much better EMI profile

 improved power consumption and

 reduced area!

Area
(mm2)

Power
Dissipation

(mW)

Spectral amplitude of Core VDD (dBm)

1st peak 2nd peak 3rd peak

SYNC TX
2.33

(43.2%)

258 -15 -32 -23

GALS TX
2.22

(41.0%)
237 -41 -48 -53

Difference +4.7% +8.2% 26dB 16dB 30dB

Amplitude of on-chip core VDD from SYNC TX

Amplitude of on-chip core VDD from GALS TX

Source: M. Krstic et al. Evaluation of GALS Methods in Scaled CMOS Technology:
Moonrake Chip Experience, IJERTCS, 3(4), 2012

40
DATE 2016 Asynchronous timing

DATE 2016 Asynchronous timing 41

GALS: asynchronous wrapper

Request-Acknowledge Window

DATE 2016 Asynchronous timing 42

Optimization of async wrapper

Xin Fan, Milos Krstic, and Eckhard Grass, “Analysis and optimization of pausible clocking based GALS design,” ICCD 2009

Two-way arbiter (Mutual exclusion element)

req1

req2

ack2

ack1

(0)

(0)

(1)

(1)

(0)

(0)

Basic arbitration element: Mutex (due to Seitz, 1979)

An asynchronous data latch with metastability resolver can be
built similarly

Metastability
resolver

43 DATE 2016 Asynchronous timing

Design Automation

DATE 2016 Asynchronous timing 44

Design automation paradigms

• Synthesis of asynchronous controllers

• Logic synthesis from Petri nets or
asynchronous FSMs

• Syntax-directed translation

• Correct-by-construction composition of
handshake components

• De-synchronization

• Automatic transformation from synchronous to
asynchronous

DATE 2016 Asynchronous timing 45

Synthesis of asynchronous controllers

DATE 2016 Asynchronous timing 46

DSr

LDS

LDTACK

D

DTACK

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS- LDTACK-

DSr+

Device

LDS

LDTACK

D

DSr

DSw

DTACK

VME Bus
Controller

Data

Transceiver

Bus

Synthesis of asynchronous controllers

DATE 2016 Asynchronous timing 47

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS- LDTACK-

DSr+

DTACK
D

DSr

LDS

LDTACK

Example: Petrify

Workcraft tool

• Workcraft is a software package for graphical edit,
analysis, synthesis and visualisation of
asynchronous circuit behaviour

• Petrify, MPSAT, plus a few other tools are part of it
as plug-ins

• It is based in Java tools

• Can be downloaded from http://workcraft.org/

• And installed in 10 minutes

• There is a simple to use tutorial for that

48
DATE 2016 Asynchronous timing

Workcraft

DATE 2016 Asynchronous timing 49

Conclusions

• Asynchrony offers flexibility in time
• Modularity
• Dynamic adaptability
• Tolerance to variability

• Better optimization of power/performance
• Facilitates near and sub-threshold modes
• Facilitates easier power-gating

• Why isn’t it an important trend in circuit design?
• Lack of commercial EDA support (timing sign-off)
• Designers do not feel comfortable with “unpredictable”

timing
• Other aspects: testing, verification, …

• De-synchronization might be a viable solution

DATE 2016 Asynchronous timing 50

Some references

• General Async Design: J. Sparsø and S.B. Furber, editors. Principles of

Asynchronous Circuit Design, Kluwer Academic Publishers, 2001.

(electronic version of a tutorial based on this book can be found on:

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm855.

pdf

• Async Control Synthesis: J. Cortadella, M. Kishinevsky, A. Kondratyev,

L. Lavagno, and A. Yakovlev. Logic Synthesis of Asynchronous Controllers

and Interfaces. Springer-Verlag, 2002. (Petrify software can be downloaded

from: http://www.lsi.upc.edu/~jordicf/petrify/)

• Arbiters and Synchronizers: D.J. Kinniment, Synchronization and

Arbitration in Digital Systems, Wiley and Sons, 2007 (a tutorial on arbitration

and synchronization from ASYNC/NOCS 2008 can be found:

http://async.org.uk/async2008/async-nocs-slides/Tutorial-

Monday/Kinniment-ASYNC-2008-Tutorial.pdf)

• Asynchronous on-chip interconnect: John Bainbridge, Asynchronous

System-on-Chip Interconnect, BCS Distinguished Dissertations, Springer-

Verlag, 2002 (electronic version of the PhD thesis can be found on:

http://intranet.cs.man.ac.uk/apt/publications/thesis/bainbridge00_phd.php)

 DATE 2016 Asynchronous timing 51

Metastability and

Clock Domain Crossing

David M. Zar

Blendics, Inc.

Modern Clocking Strategies:
Metastability and

Clock Domain Crossing

David M. Zar

Blendics, Inc

• Clock Domain Crossing (CDC) Fundamentals

• How Synchronizers Can Fail

• Common Synchronizer Structures

• Analysis of Synchronizer Failure

• Good Synchronizers

Overview

DATE 2016 Metastability and Clock Domain Crossing 1

• A CDC occurs whenever a signal crosses from one
clock domain to another

• Any data input not synchronous to a clock is a CDC,
in general (e.g. an asynchronous input)

• In modern SOCs, there could be hundreds, or even
thousands, of CDCs ocurring between any number
of disparate clock domains

• If any of these CDCs are not dealt with, the circuit
may fail due to a synchronization failure:

• Metastability failure or

• Under/over sampling failure

Clock Domain Crossing (CDC) Fundamentals

DATE 2016 Metastability and Clock Domain Crossing 2

• A violation of input timing at the synchronizer can
cause the output of the synchronizer to go
metastable:

• During the transition, the output must not be
sampled at the destination until it has resolved

Metastability Failure

DATE 2016 Metastability and Clock Domain Crossing 3

Clock

Data

Edges too close

Output
Invalid logic level

• If the clock frequency of the receiver is too
fast/slow, a sampling failure may occur:

• Destination clock too slow → data lost

• Destination clock too fast → data repeated

Sampling Failure

DATE 2016 Metastability and Clock Domain Crossing 4

Clock_S

Data_S

Clock_D

Data_D

So
u

rc
e

D
es

ti
n

at
io

n Destination clock is too slow Destination clock is too fast

Properly Dealing With CDC

DATE 2016 Metastability and Clock Domain Crossing 5

Clock
Domain

1

Clock
Domain

2

Here we have a CDC with no
synchronization. Nobody
does this, right?

Clock
Domain

1

Clock
Domain

2

How about a DCFIFO? It’s big
and how wide? Oh wait,
what’s inside?

Clock
Domain

1

Clock
Domain

2

D Q D Q

Use the 2-stage synchronizer
we all learned about. But
what is being synchronized?
How long can you wait? Are
two stages enough?

Properly Dealing With CDC

DATE 2016 Metastability and Clock Domain Crossing 6

Clock
Domain

1

Clock
Domain

2

Here we have a CDC with no
synchronization. Nobody
does this, right?

Clock
Domain

1

Clock
Domain

2

How about a DCFIFO? It’s big
and how wide? Oh wait,
what’s inside?

Clock
Domain

1

Clock
Domain

2

D Q D Q

Use the 2-stage synchronizer
we all learned about. But
what is being synchronized?
How long can you wait? Are
two stages enough?

• So it seems until you look under the covers:

• This still can have a synchronizer failure!

Handshaking Solves the CDC Problem! [?]

DATE 2016 Metastability and Clock Domain Crossing 7

Clock
Domain

1

Clock
Domain

2

D QD Q

Q D Q D

Request

ACK

Data

• The good news is that identifying CDCs is easy:
• Designer should know, right:

• Static analysis – did you find them all?
• Power islands – dynamic powering up/down?
• Reset – where does it go and when?

• Helpful tools:
• Blue Pearl ACE
• Mentor Graphics Questa CDC
• Real Intent Meridian
• Synopsys SpyGlass CDC (Formerly Atrenta)
• vSync Circuits vChecker
• Others…

CDC Identification

DATE 2016 Metastability and Clock Domain Crossing 8

• If you have removed all unnecessary CDCs and then
properly added synchronization at the remaining CDCs,
your synchronizer may still fail

• What is a synchronizer failure?

• A synchronizer failure is when the output fails to
resolve to a valid logic level by a certain point in time
(typically clock period minus setup time)

• Is caused by the inputs changing at the wrong time
(like violating setup or hold time at a flip-flop)

Analysis of Synchronizer Failure

DATE 2016 Metastability and Clock Domain Crossing 9

How Does a Latch Resolve?

DATE 2016 Metastability and Clock Domain Crossing 10

For V0 small

• Flip-flop is too complex, but is made up of latches; use a latch!
• Now small signal analysis finds the relationship between output

voltage (V1) and initial output voltage (V0)

gmV1

Cn

Cn

Cm

Cm

V1

V2

Cn

Cn

V1

gmV2
Cm

V2
t = 0

V0
2V0

t = t’

V1

/t

01 eVV




mgC /

• 𝝉 is a time constant related to the time it takes to get from the
metastable voltage to a valid logic voltage level

Failing Master-Slave Flip-Flop

DATE 2016 Metastability and Clock Domain Crossing 11

• Given a data-clock offset (𝜹) in the red window for D, output
𝑸𝒎 resolves near or past the falling edge of C

• A narrower red window causes output 𝑸𝒔 to resolve near or
past next rising edge of C. (We define Tw as the largest such
window that causes the output to “push out” past the nominal
clock-output delay)

• When C is high, the settling behavior at 𝑸𝒎 is a function of 𝝉𝒎
• When C is low, 𝑸𝒔 is a function of 𝝉𝒔

Qm Qs δ𝑚

δ𝑠

τ𝑠

τ𝑚

Master (Qm)

Slave (Qs)

Clock (C)

• So given that you can identify CDCs in circuits, and

• Given that you cannot guarantee they will always
work,

• What are you to do?

• Give up?

• Pretend the problem won’t happen because you
used a two flip-flop synchronizer?

• Design good synchronizers, use them, and
analyze their failure rates to be sure you are at
acceptable levels?

CDC Failure Analysis

DATE 2016 Metastability and Clock Domain Crossing 12

• For a given synchronizer
• We can determine some

intrinsic parameters that
govern how fast it
resolves (τ and Tw)

• We can determine some
extrinsic parameters that
describe the environment
(clock frequency, data
arrival rates, etc.)

• We can then determine
the failure rate for any
particular synchronizer

Failure Analysis

DATE 2016 Metastability and Clock Domain Crossing 13

• We commonly use Mean Time Between Failures (MTBF) when speaking
of synchronizer failures:

𝑴𝑻𝑩𝑭 =
𝒆 ൗ𝑺 𝝉

𝑻𝒘𝒇𝒅𝒇𝒄
S is the settling time by which the signal must be resolved,

fd is the data rate and fc is the sampling clock rate

• Failure Rate = 1/MTBF (also known as Failures In Time, or FIT)
• For N such synchronizers in C chips shipped, the total Failure Rate is

NC/MTBF (or many orders of magnitude higher than for a single
synchronizer!)

• Pr(safe) – Probability of Being Safe – measures the probability that all
units in the field perform safely through the average lifetime of said
units:

𝑷𝒓 𝒔𝒂𝒇𝒆 = 𝐞𝐱𝐩
−𝑵𝑪𝑳

𝑴𝑻𝑩𝑭
Where 𝑳 𝐢𝐬 𝐭𝐡𝐞 𝐚𝐯𝐞𝐫𝐚𝐠𝐞 𝐥𝐢𝐟𝐞𝐭𝐢𝐦𝐞 𝐨𝐟 𝐚 𝐮𝐧𝐢𝐭

Failure Rate/MTBF/Pr(safe)

DATE 2016 Metastability and Clock Domain Crossing 14

• MTBF is not how long it will take, on average, for your
circuit to fail.
• MTBF of 100 years is fine for one failure in 100 years and is

acceptable for my calculator.

• MTBF is not the expected lifetime of your device.
• MTBF of 5 years for a cell phone is fine if nobody uses it for

that long.

• MTBF is not the service time of your device.
• MTBF of 2 years for the IV pump is acceptable if we will service

it every year, test it, etc.

• For example, an MTBF of 10 years implies that:
• In the first year, we expect ~10% of our devices to fail,

• After 10 years, we expect ~63% of our devices to fail!

MTBF/Failure Rate Fallacies

DATE 2016 Metastability and Clock Domain Crossing 15

• It is imperative to know the MTBF for your synchronizer:

• Turns out, as feature size goes below about 65 nm, 𝝉
starts to increase (lowering MTBF) relative to FO4 delay

Know Your MTBF

DATE 2016 Metastability and Clock Domain Crossing 16

From Beer, et al.
Devolution of
Synchronizers

• Process variability affects MTBF

• For example, 𝝉 𝐢𝐬 𝐬𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐞 𝐭𝐨 Vt

Know Your MTBF (2)

DATE 2016 Metastability and Clock Domain Crossing 17

• Vdd matters, too

Know Your MTBF (3)

DATE 2016 Metastability and Clock Domain Crossing 18

• The duty cycle of the clock can affect MTBF in
master-slave type flip-flops/synchronizers

• Typically, 𝝉 is assumed to be only a function of the
master (or slave) of a master-slave FF; This is not
the case.

𝜏𝑒𝑓𝑓 =
𝛼

𝜏𝒎
+

1 − 𝛼

𝜏𝒔

−1

• Where 𝝉𝒆𝒇𝒇 is the effective 𝝉 𝐨𝐟 𝐭𝐡𝐞 device.

• 𝜶 𝐢𝐬 𝐭𝐡𝐞 𝐝𝐮𝐭𝐲 𝐜𝐲𝐜𝐥𝐞 (e.g. 0.4 means the clock is high
for 40% of the clock period)

• 𝝉𝒎 is the 𝝉 for the master latch; 𝝉𝒔 is the 𝝉 for the slave
latch

Know Your MTBF (4)

DATE 2016 Metastability and Clock Domain Crossing 19

Effective 𝝉 Example

DATE 2016 Metastability and Clock Domain Crossing 20

• A 𝝉𝒆𝒇𝒇 will vary between the 𝝉 values of the master and the slave, being

their harmonic mean at a 50% duty cycle when the two 𝝉 values are close to
each other.

• Things are more interesting when the 𝝉 values are very different

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160

Duty cycle- 


e

ff
e

c
ti
v
e
 (

p
s
e

c
)

Very Different
𝝉𝒎 = 𝟏𝟓𝟎 𝐩𝐬, 𝝉𝒔 = 𝟑𝟎 𝐩𝐬

0 0.2 0.4 0.6 0.8 1
60

62

64

66

68

70

72

74

76

78

80

Duty cycle - 

 e
ffe

c
tiv

e

Nearly the Same
𝝉𝒎 = 𝟖𝟎 𝐩𝐬, 𝝉𝒔 = 𝟔𝟎 𝐩𝐬

• Finally, most published MTBF models are not
correct for multi-stage FF-based synchronizers (see
Beer, MTBF Bounds for Multistage Synchronizers)

Know Your MTBF (5)

DATE 2016 Metastability and Clock Domain Crossing 21

0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
0

10
10

10
20

10
30

T (nsec)

M
T

B
F

 (
y
e
a

rs
)

Calculation (17)

[14]  Master

[14]  Slave

[14]  Effective

[8]  Master

[8]  Slave

[8]  Effective

[7]  Master

[7]  Slave

[7]  Effective

Simulations

1 1 1 1 1 1.0001

10
5

10
6

10
7

10
8

10
9

10
10

T (nsec)

M
T

B
F

 (
y
e
a

rs
)

Calculation (17)

[14]  Master

[14]  Slave

[14]  Effective

[8]  Master

[8]  Slave

[8]  Effective

[7]  Master

[7]  Slave

[7]  Effective

Simulations

1 1 1 1 1 1.0001

10
5

10
6

10
7

10
8

10
9

10
10

T (nsec)

M
T

B
F

 (
y
e
a

rs
)

Calculation (17)

[14]  Master

[14]  Slave

[14]  Effective

[8]  Master

[8]  Slave

[8]  Effective

[7]  Master

[7]  Slave

[7]  Effective

Simulations

(Or… Why You Should Never Use a Data Flip-Flop as a
Synchronizer)
• Data Flip-Flop

• Used for temporary storage of data
• Prevent data values from corruption during a clock cycle
• Hold data values for multiple clock cycles

• Designed for deterministic cycle-to-cycle operation
• Implies large setup/hold times

• Synchronizer Flip-Flop
• Used to minimize Pr(failure)

• Data/clock may arrive at any time which may cause a
setup/hold violation at a following data flip-flop

• Needs to preserve data transition sequence
• No guarantee of deterministic cycle-to-cycle timing

Good Synchronizers

DATE 2016 Metastability and Clock Domain Crossing 22

Data Flip-Flops Vs. Synchronizer Flip-Flops

DATE 2016 Metastability and Clock Domain Crossing 23

In

Clk

Different performance characteristics to optimize based on FF use:

tpd tsu th τ Tw

Data FF minimize minimize 0 - -

Synchronizer FF - - 0 minimize minimize

• From Cox,
Synchronization and
Data Flop-Flops are
Different

• Green devices are
what you want to
optimize

• Red devices are what
should be minimized

Good Synchronizing Scan D Flip-Flop (SDFF)

DATE 2016 Metastability and Clock Domain Crossing 24

Minimize
capacitance at red

devices/nodes
Maximize gain-

bandwidth product
at green devices

• A SDFF cell from a library was compared to this
good cell (at 45 nm) (VTG uses standard Vt devices
whereas VTL uses low-Vt devices)

How Good is a Good Synchronizer?

DATE 2016 Metastability and Clock Domain Crossing 25

Library
VTG
(ps)

Good
VTG
(ps)

Good
VTL
(ps)

τm 19 14 10

τs 55 31 19

τeff 28 19 13

1.E+00

1.E+06

1.E+12

1.E+18

1.E+24

1.E+30

1.E+36

1.E+42

1.E+48

1.E+54

1.E+60

1.E+66

750.00 825.00 900.00 975.00 1050.00 1125.00 1200.00 1275.00 1350.00

M
TB

F
(y

e
ar

s)

Clock (MHz)

MTBF of Dual Scan DFF
Tau-lib Tau-Good Tau-Vtl-Good

• You want a large MTBF

• So you need small 𝝉

• Use low-Vt transistors if you can

• Use largest Vdd you can

• Reduce capacitance on nodes in regenerative loops -
including output node(s)

• Design a custom synchronization flip-flop (as in
reference: Synchronization and Data Flop-Flops are
Different)

• BEWARE: Many clever synchronizing flop-flop designs
have new issues. Why be complicated when you can
analyze?!

Design for Good Synchronization

DATE 2016 Metastability and Clock Domain Crossing 26

• To properly handle the CDC in your circuit, you need
to identify all such occurrences

• Then you need to ensure a proper synchronization
mechanism is used

• Then you need to determine the MTBF/FIT for each
CDC

• Finally, you can calculate the MTBF/FIT/Pr(safe) for
the entire circuit based on the individual MTBF/FIT,
the number of each, the length of service and the
number of copies you expect to be in use

So…

DATE 2016 Metastability and Clock Domain Crossing 27

Questions

DATE 2016 Metastability and Clock Domain Crossing 28

• Beer, S. et al., MTBF Bounds for Multistage Synchronizers, ASYNC2013,
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6546190&url=http%3A%2F%2Fiee
explore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6546190

• Beer, S et al., The Devolution of Synchronizers,
http://kolodny.eew.technion.ac.il/files/2013/08/The-devolution-of-synchronizers-ASYNC-
2010.pdf

• Beer, S et al., Supply Voltage and Temperature Influence in Circuit Synchronization,
DATE2013, http://webee.technion.ac.il/~ran/papers/BeerVoltageTempVariations.pdf

• Cox, J, Beware of Parameter Variability in Clock Domain Crossings, SemiWiki.com, 2015
https://www.semiwiki.com/forum/content/4625-beware-parameter-variability-clock-
domain-crossings.html?s=30b01668a0a490331fd3f496f7a4f86a

• Cox, J, et al., Synchronization and Data Flop-Flops are Different, ASYNC 2015,
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7152686&url=httpA%2F%2Fieeex
plore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7152686

• Cox, J, Synchronizer Reliability Metrics, 2014, SemiWiki,
https://www.semiwiki.com/forum/content/3294-synchronizer-reliability-metrics.html

• Golson, S, Synchronization and Metastability, 2014, http://blendics.com/wp-
content/uploads/2015/06/golson_snug14.pdf

References

DATE 2016 Metastability and Clock Domain Crossing 29

Adaptive Clocking

Jordi Cortadella

Universitat Politècnica de Catalunya

Modern Clocking Strategies:

Adaptive Clocking

Jordi Cortadella
Universitat Politècnica de Catalunya

Outline

• Sources of variability
– Static/dynamic, local/global

• Reducing Margins for Static and Slow Variability
– Binning
– Voltage-Frequency Scaling

• Reducing Margins for Fast Variability
– Resilient circuits
– Adaptive Clocks

• Reactive Clocks and GALS

DATE 2016 Adaptive Clocking 2

The cost of variability

DATE 2016 Adaptive Clocking 3

margins

frequency

Goal:
Reduce margins

Impact:
Speed
Energy

Process variability

DATE 2016 Adaptive Clocking 4

Fast

Typical

Slow

Dynamic variability

DATE 2016 Adaptive Clocking 5

Raj Nair (Anasim Corp.),
IC floorplanning and Power Integrity, SOCcentral, Aug 2, 2010.
http://www.soccentral.com/results.asp?entryID=31901.
From SOCcentral.com, Copyright 2002 - 2014 Tech Pro Communications

(Vdd-Vss)

• Dynamic variability (V,T) depends on the actual activity of the circuit
• Assumptions required on the min/max values for voltage and temperature
• Ranges may depend on the application domain (automotive, HPC, handheld devices, …)

Global and local variability

DATE 2016 Adaptive Clocking 6

Source: H. Masuda et al. (ICICC 2005)
Challenge: Variability Characterization and Modeling for 65- to 90-nm Processes

D2D (global)

WID
(local)

12112

Timing: setup constraint

DATE 2016 Adaptive Clocking

Comb. Logic

Two competing paths:
• Launching path
• Capturing path

Launching path < Capturing path + Period2
PLL

7

PVTA variability

No variability
(or very little) +

Margins

Margins for Variability

DATE 2016 Adaptive Clocking 8

Q

D

D Q

Period

clock-data compensation

launching path

margin

capturing path

Q

D

D Q

Period

time

Margins are required to account for the
worst-case variability (static and dynamic)

Variability and margins

DATE 2016 Adaptive Clocking 9

Static
Dynamic

Slow (ms) Fast (ns)

Global (corners) PV VTA V

Local (OCV) PV VTA V

Voltage variability:
• Static IR drop
• Dynamic IR drop
• Inductive noise (Ldi/dt)

(P:Process; V: Voltage; T: Temperature; A: Aging)

Reducing Margins for
Static and Slow Variability

V-F operation points

DATE 2016 Adaptive Clocking 11

Voltage

Frequency

Nominal
voltage

Speed binning

DATE 2016 Adaptive Clocking 12

Voltage

Frequency

𝐹1 𝐹2 𝐹3

Nominal
voltage

Voltage binning

DATE 2016 Adaptive Clocking 13

Voltage

Frequency

𝑉1

𝑉2

𝑉3

Dynamic Voltage Frequency Scaling (DVFS)

DATE 2016 Adaptive Clocking 14

Voltage

Frequency

(𝑽𝟏, 𝑭𝟏)
(𝑽𝟐, 𝑭𝟐)

(𝑽𝟑, 𝑭𝟑)

(𝑽𝟒, 𝑭𝟒)

(𝑽𝟓, 𝑭𝟓)

(𝑽𝟔, 𝑭𝟔)

DVFS Table

𝑉1 𝐹1

𝑉2 𝐹2

𝑉3 𝐹3

𝑉4 𝐹4

𝑉5 𝐹5

𝑉6 𝐹5

Open loop control (SW).
(V,F) selected according to:

• Workload
• Temperature
• Power budget

DVFS scheme

DATE 2016 Adaptive Clocking 15

DVFS
block

L-SHIFTERS & CDC

V1
VRM

V2
VRM

(variable)

(fixed)

SW

AVS scheme

DATE 2016 Adaptive Clocking 16

AVS
block

V1
VRM

V2
VRM

(variable)

(fixed)

PMU

L-SHIFTERS & CDC

Performance
Monitor

Closed
Loop

Control

• Every die works at its best (V,F) point (plus some guardband margins)
• AVS can compensate slow variability (temperature, aging)

Performance monitors

• Estimate the voltage/frequency relationship of
the actual silicon

• Examples:

DATE 2016 Adaptive Clocking 17

Counter Ref. Clock

Measure frequencyRing oscillator

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
CLK

delay

Edge detector

Time-to-digital converter

Reducing Margins for
Fast Variability

Resilient circuits

DATE 2016 Adaptive Clocking 19

CLK

Data

CLK

CLK_del

Data

P
P + 

Error recovery

Different values

Conventional timing

Resilient timing

= Error

Main
flip-flop

Shadow
latchdelay

Main data

Shadow data

CLK

Data

Resilient circuits

DATE 2016 Adaptive Clocking 20

Source: D. Ernst et al.,
Razor: circuit-level corrrection of timing errors for low-power operation,
IEEE Micro, Nov-Dec 2004.

Resilient circuits: technical issues

DATE 2016 Adaptive Clocking 21

CLK

CLK_del

Data

P
P + 

Potential
metastability



min short
path

Error recovery
(may take several cycles)

• Only critical flip-flops require shadow latches
• Short paths must have a min delay
• Metastability may take several cycles to resolve
• Sophisticated error-recovery procedures are required

DATE 2016 Adaptive Clocking 22

Source: S. Das et al.,
RazorII: In Situ Error Detection and Correction for PVT and SER Tolerance.
IEEE JSSC 44(1), Jan 2009.

Resilient circuits

DATE 2016 Adaptive Clocking 23

Resilient
circuit

Vdd
VRM

Error
Monitor

Closed
Loop

Control

𝑃𝑒𝑓𝑓 = 𝑃 1 + 𝑛ℰ

probability
of error

num cycles for
error recovery

Closed Loop Control:
• Raise voltage if too many errors
• Lower voltage if too few errors

Error recovery mechanism:
• Reuse existing checkpoint schemes in advanced processors

Schemes with resilient circuits

• ARM + University of Michigan
– Different variations: Razor I, Razor II, Bubble Razor

• Intel:
– Transition Detector with Time Borrowing (TDTB)

– Double Sampling with time Borrowing (DSTB)

• Using pausable clocks and metastability
detectors
– SafeRazor (Torino, Technion and UPC)

– Blade (USC)

DATE 2016 Adaptive Clocking 24

Voltage droops

DATE 2016 Adaptive Clocking 25

Source: Y. Kim et al.,
Automating Stressmark Generation for Testing Processor Voltage Fluctuations,
IEEE Micro, July-August 2013.

Voltage droops are the main source of fast variability

Power Delivery Network

DATE 2016 Adaptive Clocking 26

Source: Jitesh Shah
Floorplanning A Power Delivery Network With Spice Electronic Design
July 24, 2008
http://electronicdesign.com/energy/floorplanning-power-delivery-network-spice

PDN model

DATE 2016 Adaptive Clocking 27

Local Global

Adaptive Clock

DATE 2016 Adaptive Clocking 28

Vdd Droop detected

Period stretched New frequency

Mechanisms are needed for:
• Droop detection
• Clock period stretching
• Frequency reduction

DLL

CLK

AMD Steamroller

DATE 2016 Adaptive Clocking 29

Source: K. Wilcox et al.
Steamroller Module and Adaptive Clocking
System in 28nm CMOS
IEEE JSSC 50(1), Jan 2015.

Intel Adaptive Clock

DATE 2016 Adaptive Clocking 30

Source: K.A. Bowman et al.
A 22 nm All-Digital Dynamically Adaptive Clock
Distribution for Supply Voltage Droop Tolerance,
IEEE JSSC 48(4), April 2013.

Intel Adaptive Clock

DATE 2016 Adaptive Clocking 31

Margins for Adaptive Clocks

DATE 2016 Adaptive Clocking 32

Clk

Nominal voltage

droop detection threshold

Reaction time margins saved
by adaptive clock

Circuit Sensors

Frequency
Synthesizer

Control

Other approaches:

• N. Kurd, P. Mosalikanti, M. Neidengard, J. Douglas, and R. Kumar,
Next generation Intel core micro-architecture (Nehalem) clocking,
IEEE JSSC 44(4), 2009.

• K. Chae and S. Mukhopadhyay, All-digital adaptive clocking to
tolerate transient supply noise in a low-voltage operation,
IEEE TCAS II 59(12), 2012.

• C. Lefurgy, A. Drake, M. Floyd, M. Allen-Ware, B. Brock, J. Tierno,
J. Carter, and R. Berry, Active guardband management in Power7+
to save energy and maintain reliability, IEEE Micro 33(4), 2013.

Reactive Clocks

Mechanisms to reduce margins

DATE 2016 Adaptive Clocking 34

Static
Dynamic

Slow (ms) Fast (ns)

Global (corners) PV VTA V

Local (OCV) PV VTA V

Mechanism Reduces margins for …

Binning, DVFS (open loop) Static variability

AVS (close loop) + Slow global variability

Adaptive Clocks + Fast global variability (moderate)

Reactive Clocks + Fast global variability (aggressive)

Resilient circuits Any variability (aggressive)

12112

Timing: setup constraint

DATE 2016 Adaptive Clocking

Comb. Logic

Two competing paths:
• Launching path
• Capturing path

Launching path < Capturing path + Period2
PLL

35

PVTA variability

No variability
(or very little) +

Margins

Reactive Clock

DATE 2016 Adaptive Clocking

Comb. Logic

Launching path < Capturing path + Period

36

PVTA variability

+
Margins

Variability: PLL vs. Reactive Clock

DATE 2016 Adaptive Clocking 37

Q

D

D Q

PLL period

Q

D

D Q

Reactive Clock

clock-data compensation

launching path

margin

capturing path

Q

D

D Q

PLL period

time

Reactive
Clk (1.2V)

Reactive
Clk (0.85V)

PLL vs. Reactive Clock

DATE 2016 Adaptive Clocking 38

30%
PLL

(1.2V)

Reactive
Clock

Reactive Clock

DATE 2016 Adaptive Clocking 39

PLL

Enable

Gain: 40% less Energy or
1.6x speed-up

Pain: Negligible

Risk: Zero

• Original circuit not modified
• Negligible area
• Post-tapeout calibration (by SW)
• Conventional timing (PrimeTime)

Clock domain

J. Cortadella, L. Lavagno, P. López, M. Lupon,
A. Moreno, A. Roca, and S. S. Sapatnekar.
Reactive clocks with variability-tracking jitter.
ICCD 2015.

PLL Rclk

PLL vs. Reactive Clocks

DATE 2016 Adaptive Clocking 40

DUT

PLL Rclk

temperature

25oC 125oC75oC
SPICE models

(65nm)

Slow
125oC

Typical
125oC

Timing
sign-off

Slow
75oC

Typical
75oC

1.6x

1.2x

sign-off

PLL Rclk

PLL vs. Reactive Clocks

DATE 2016 Adaptive Clocking 41

DUT

PLL Rclk

temperature

25oC 125oC75oC
SPICE models

(65nm)

-20%
(1.07V)

-42%
(0.91V)

Energy reduction
(@iso-performance)

Synthesis of the Ring oscillator

DATE 2016 Adaptive Clocking 42

Library Corners

PLL period

D
e

la
y

OCV

Programmable by SW

PLL

Enable

Clock domain
CDC

CDC

CDC

Ring oscillator

Reactive Clock Domain

DATE 2016 Adaptive Clocking 43

CDC structures required for communication outside the clock domain

GALS with Reactive Clocks

DATE 2016 Adaptive Clocking 44

RO

RO

RO

RO

• A different Reactive Clock for each domain
• Clock Domain Crossing structures between domains

Summary

DATE 2016 Adaptive Clocking 45

Ideal typical die
(no PVT variability)

Slow die (sign-off)

Binning (or AVS)

Adaptive clock (tolerance to droops)

Resilient (Razor)

Reactive clock
(ring oscillator)

Conclusions

• Moore’s law is (economically) over. It is time to
exploit what is left in established nodes.

• What is left? Margins for variability.

• Dilemma: how to spend your money?

– introducing techniques to reduce margins, or

– moving to a new (expensive) technology node

DATE 2016 Adaptive Clocking 46

