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Abstract—Current placement algorithms aim at routable lay-
outs with shortest wirelength and mostly minimize the total Half-
Perimeter Wirelength (HPWL) of nets. A new clustering net
model is proposed for better handling of high degree hyperedges,
for which the HPWL can significantly underestimate wirelength.

Splitting a net into several lower degree subnets, the total
HPWL of the subnets estimates wirelength significantly better
than HPWL of the original net. An efficient clustering approach
is proposed with complexity linear on the number of pins. The
final Steiner tree wirelength is improved with no or little penalty
in runtime by transforming the circuit netlist between global
and detailed placement stages accordingly to the new net model.
The reduction in the wirelength also leads to shorter delays of
circuits.

I. INTRODUCTION

Placement and routing are the two steps that produce the
physical layout of a circuit. The cost function of algorithms for
physical layout incorporate factors responsible for the quality
of the circuit, such as area, delay and routability.

The estimation of the routing cost is crucial during place-
ment. On one hand, it is desirable to use models that provide
an accurate estimation of the final wirelength. On the other
hand, the models must be simple enough for the algorithms to
have a manageable computational complexity. This trade-off
is a continuous area of research in physical synthesis.

Half-perimeter bounding box wirelength (HPWL) is widely
used in placement as an objective function, since it is easy to
compute and it represents a reasonable first-order estimation
for routed wirelength [1], [2]. The HPWL is exactly equivalent
to rectilinear Steiner minimal tree (RSMT) cost for low-pin
nets with two or three pins and it is approximately proportional
for multi-pin nets [3]. Since the HPWL minimization place-
ment problem is NP-hard [4] and inapproximable [5], placers
optimize HPWL heuristically by applying such methods as
min-cut partitioning, quadratic or analytical solvers, or simu-
lated annealing. In order to produce routable designs, placers
typically combine HPWL cost optimization with different
congestion-aware techniques [6], [7], [8].

More accurate netlength estimation can be achieved by
calculating Steiner tree wirelength (StWL). However, the
construction of RSMT is an NP-complete problem [9] and,
thus, too computationally expensive in placement, even using
heuristics [10], [11]. In addition, the RSMT, that is not a
convex objective, may imply mathematical obstacles in StWL
optimization process. The most recent placer [12] that employs
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StWL cost function suffers from long runtime and highly
depends on effectiveness of RSMT heuristic methods.

Since most of placement algorithms aim at HPWL min-
imization, we propose a HPWL-based multi-clustering net
(MCN) model for better handling of high degree hyperedges.
The main contribution of our work is formulated by the
following statements.

o Clustering approach. We introduce a clustering tech-
nique for the netlength modeling problem and present an
efficient implementation with linear complexity on the
number of pins. When a net is split into several lower
degree subnets, the total HPWL of the subnets approx-
imates RSMT length significantly better than HPWL of
the original net.

« Practical StWL minimization. By transforming a circuit
netlist between global and detailed placement stages
accordingly to the MCN model, the total StWL of all
nets is improved with no or little penalty in runtime.
The proposed approach neither depends on any placement
algorithm or RSMT heuristic. In practice, it can be
applied between any consecutive placement steps.

An overview of the approach is presented in Section II.
Section III describes the MCN model. Finally, Section IV
reports the experimental results.

II. OVERVIEW

The paper addresses the problem of wirelength evaluation
for multi-pin nets (more than three pins) in placement. The
traditional HPWL model is adequate for nets with two or three
pins, but it can crucially underestimate wirelength for nets
with more pins. To overcome the deviation, a high degree
net is broken into several subnets by the clustering approach
described in Section III. In order to estimate the netlength, the
HPWL measure is applied to the resulting union of subnets.

On the MCN model, we assume that the pins with closest
position form the subnets. Furthermore, the Steiner tree of the
original net is likely to be within the HPWL bounding boxes of
the subnets. The sum of the HPWL of the subnets also gives
more accurate estimation, because the subnets have smaller
pincount. Our empirical results demonstrate the efficiency of
the MCN heuristic and prove more precision with regard to
the HPWL.

Figure 1 illustrates how the wirelength is estimated for a
net with six pins. Figure 1(a) depicts the RSMT with 17 units
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length, and the HPWL of 14 units undervalues the netlength.
As shown in Fig. 1(b), the net is split into two subnets
(light rectangles) and one additional subnet that connects
them (dark rectangle). The total HPWL of the subnets is 18
units. Figures 1(c,d) depict the MCN approach for 4 and 5
subnets respectively. The MCN model is able to reach the
exact wirelength of the RSMT in Fig. 1(d).

In the presented work, the effect of the MCN approach
on real placement algorithms is examined by transforming a
circuit netlist between global and detailed placement steps.
The experimental scheme is based on the outline of Fig. 2.

The layout produced by global placement is captured and a
new netlist is built, where each multi-pin net is substituted
by the union of the subnets. The new netlist is passed to
detailed placement that minimizes the wirelength accordingly
to the MCN net model. Finally, our approach results in shorter
Steiner tree wirelength in comparison with common global and
detailed placement flow.

ITI. MULTI-CLUSTERING NET MODEL

The MCN model aims at obtaining a better approximation
of the netlength for a given net. The accuracy of the wirelength
estimation is increased by splitting the original net into several
subnets.

An optimization algorithm has been designed to perform the
partition. The technique selects the best set of subnets based on
a local search algorithm. Iteratively, several groups of subsets
of pins are explored and the best one is chosen. Internally, the
problem is simplified to cluster the pins of the net by closest
position. The well-known k-means algorithm [13] is used as

Algorithm 1 Clustering Algorithm

Require: A net N
Ensure: A group of subsets of pins

1: Cost of clustering: Cost <= Cost of net N
2: Number of subsets: k < 2

3: repeat

4: centroids of subsets: {C,...,Cy} <= k random points
5: while changes in {Si,...,S} do

6: Vie {1,...,k}, S; < Pins of net N closer to C;
7: Vie{l,...,k}, C; < centroid of S;

8: end while

9: Cost < Cost of the k subsets {Si,...,S}

10: k<k+1

11: until no improvement in Cost
12: return {Si,...,S}

the clustering technique. The construction of the subnets is
straightforward from the subsets.

In this section, the k-means algorithm is initially presented
because it is the core of our approach. Then, the algorithmic
details of the optimization algorithm and the method applied
to construct the subnets are described.

A. k-means algorithm

The k-means clustering algorithm [13] is commonly used
in data mining where efficient algorithms were proposed to
process large quantity of data [14]. The complexity of this
algorithm is O(kni), where k is the number of clusters, n is
the number of points to be clustered, and i the number of
iterations to converge. In our case, k is the number of subsets
of pins and n is the total number of pins of the net, which are
typically small. Experimentally, the algorithm converges very
fast when #n is small, thus showing linear complexity on n.

The k-means algorithm (lines 4-8 in Algorithm 1) aims at
clustering the pins into k subsets. Initially, k pins are arbitrarily
chosen as the potential centers of the clusters (also known
as centroids) and the remaining pins are assigned to the
cluster with the closest center. The centroid of each cluster
is re-calculated at each iteration as the center of gravity of
the components of the cluster. The calculation stops when a
fixpoint is reached for all the centroids.

Figure 3 depicts an example of the k-means algorithm when
two clusters (k = 2) are sought. A net with eight pins is
depicted in Fig. 3(a). Figures 3(b,c,d) show the locations of
the centroids (shadowed circles) and the two subsets S; and
S, at each iteration'. The initial points A and B are selected
randomly (Fig. 3(b)). These initial centroids classify the pins
into two subsets: §; = {A,C} and S, = {B,D,E,F,G,H}.
After re-clustering, point B is moved to the cluster S; and
convergence is reached.

B. Clustering algorithm

The algorithm is shown in Algorithm 1. The initial solution
is the original net that corresponds to a single subset of
all pins. The clustering technique iteratively explores several
solutions by incrementing the number of possible subsets. The
k-means algorithm is applied in the innermost loop to obtain

!To be precise, the figure shows the state of the loop after the calculation
of S and S, and before the re-calculation of the centroids.



Fig. 3. Example of k-means algorithm when k = 2: (a) Initial net, (b,c,d)
evolution of the k-means algorithm.

the clustering of the pins. Note that the optimal clustering is
not guaranteed. The quality of the final solution depends on
the initial centroids, which are commonly initialized to random
coordinates.

To evaluate the clustering quality, we define a cost function
that aims at minimizing the total inter- and intra-clustering
variance:

Cost = i Z (xiji)er Z (Ci—Cr)?

i=lXj€Si c;eC

inter—clustering intra—clustering

where k is the number of clusters, C; is the centroid of the
cluster S;, and Cr is the center of gravity of the centroids of
the clusters. The inter-clustering variance penalizes far-away
pins and leads to more compact clusters. On the other hand, the
intra-clustering variance constraints large connections among
clusters.

The clustering algorithm stops when there is no improve-
ment in the cost. Experimentally, we observed no significantly
improvement on further exploration in larger number of sub-
sets after a worst solution is found.

In terms of performance, the complexity considered to be
linear with regard to the number of pins due to the small
number of k-means algorithm runs and the small number of
explored subnets that does not exceed 6 in practice and equals
to 3-4 in average in the experiments on ISPD05 benchmarks.

Figures 4(a,b,c,d) show an example of the clustering algo-
rithm. In the figures, the centroids of the subsets are labeled
with C; where i is the number of the subset and Cr corresponds
to the center of gravity of the centroids. The two elements in
the cost function, shown also in the figure, correspond to the
inter- (light color) and intra-clustering (dark color) variance
respectively. The original net is assumed as the initial solution
in Fig. 4(a). Fig. 4(b) corresponds to the clustering into
two subsets derived from the example shown in Fig. 3. The
algorithm stops when k = 4 because the cost is not improved.
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Fig. 4. Example of the clustering algorithm. (a) Initial net. Cluster pins into
(b) 2 subsets, (c) 3 subsets and (d) 4 subsets. (e) Resulting set of subnets
(with hyperedges) for (c) solution.

Finally, the solution with 3 subsets reported on Fig. 4(c) is
selected.

C. Construction of the subnets

The subnets are constructed after the clustering to form the
new netlist. Assuming that the pins of the net are split into
k subsets, k+ 1 new hyperedges are created. A hyperedge
is selected to interconnect the pins, because it gives total
freedom to the posterior placement steps to apply any model
on wirelength estimation. The subnets are built in two steps:

« The pins of each subset are connected with a hyperedge.
« For each subset, the closest pin to the center of gravity
Cr is selected. The set of closest pins are interconnected
with another hyperedge. It is not necessary to introduce
any additional nodes like in Star net model [15].
Figure 4(e) depicts the resulting group of subnets: the three
subnets derived from the solution in Fig. 4(c) and an extra
hyperedge (with dark color) that binds them.

IV. EXPERIMENTAL RESULTS

To test the application of our MCN model in existing
placers, we have performed experiments based on the outline
of Fig. 2. An intermediate step has been inserted between
the two placement steps. The new netlist built after applying
the MCN model is passed to the following detailed placement
phase. Thus, all positive benefits compared to the common
placement flow are produced because of the netlist modifica-
tions. Moreover, the contribution on the total CPU time of the
MCN netlist construction is meaningless.

The experimental objective is to obtain placement layouts
with shorter StWL. FastSteiner package [11] is used to mea-
sure the wirelength. We rely on the statement that improve-
ment in StWL leads to better results on routing stage [12].

Before carrying out the main experiments, we evaluate the
accuracy of the MCN model on ISPDOS benchmarks [1]. In



ISPD05 Statistics mPL 6 FastPlace 3 Capo 10.5
bench. #nodes | Avr. || HPWL (x10°) | SIWL (x10°) | CPU || HPWL (xI0%) | StWL (x10°) | CPU || HPWL (x10°) | StWL (x10°) | CPU
(x10%) ND GP+DP MCN GP+DP MCN Ratio GP+DP MCN GP+DP MCN Ratio GP+DP MCN GP+DP MCN Ratio
adaptecl 21 43 078 | 079 | 088 | 086 | 1.00 080 | 083 | 090 | 089 | 1.01 088 | 089 | 098 | 097 | L3
adaptec2 26 4.0 092 | 093 107 | 1.03 | 1.00 094 | 097 | 110 | 1.08 | 096 099 | 1.00 | LI5 113 | 113
adaptec3 45 4.0 214 | 216 | 240 | 232 | 1.00 214 | 220 | 239 | 237 | 093 244 | 250 | 262 | 258 | 115
adaptec4 5.0 37 194 | 195 | 213 | 206 | 099 201 | 206 | 219 | 218 | 0095 216 | 219 | 236 | 234 | L17
bigbluel 28 40 097 | 099 | 111 1.07 | 1.00 098 | 102 | 112 | 111 | 097 1.08 109 | 122 | 120 | LI5
bigblue2 56 37 152 | 153 1.75 170 | 096 156 | 159 | 178 176 | 0.99 162 | 164 | 185 183 | 114
bigblue3 11.0 34 344 | 348 | 407 | 395 | 098 377 | 378 | 436 | 428 | 094 430 | 435 | 499 | 4091 1.14
bigblue4 228 4.0 830 | 837 | 941 9.15 | 095 860 | 862 | 958 | 941 | 094 974 | 980 | 1080 | 1060 | 1.15
Norm. 1.000 | 1.013 | 1.000 | 0.970 | 0.98 || 1.000 | 1.024 | 1.000 | 0.988 | 0.98 || 1.000 | 1.011 | 1.000 | 0.985 | 114
TABLE 11
MCN APPROACH ON ISPDO5 CIRCUITS.
ISPDO05 Wirelength error (%) . .
bench. % nets AT ets £ nets >3 pins performed on the ISPDOS5 circuits placed by mPL6 [18]. As
>3 pins || HPWL [ MCN || HPWL | MCN described above, each net is firstly split into several subnets
adaptecl 32 373 | 045 || -1146 | 137 . . .
adaptec? 23 200 | 019 || -1254 | 031 according to the MCN clustering algorithm, and the total
adaptec3 24 -2.62 | 025 || -10.62 | 1.00 HPWL of the subnets gives the estimation.
adaptecd 21 219 | 022 || -1007 | 1.02 .
bigbluel 27 336 | 032 || -1218 | 114 In Table I, the average error is computed for all nets and
bigblue2 20 238 | 019 || -11.50 | 0.93 for nets with more than three pins separately. The table also
bigblue3 18 -194 | 012 || -1044 | 0.65 . .
bigblued 2 255 | 017 |l -1125 | 075 reports the percentage of high-degree nets. The normalized
Norm. 271 | 024 [ -11.26 [ 0.96 sum of the errors is shown in the last row.
TABLE 1 The HPWL underestimates the wirelength (shown with

AVERAGE ERROR IN WIRELENGTH ESTIMATION OF HPWL AND MCN
MODELS IN RESPECT WITH FASTSTEINER [11] HEURISTIC.

the following series of experiments, we evaluate the MCN
approach on circuits from different benchmark suites:

e ISPDO5 benchmarks [1]. We examine the performance
of the MCN approach on different academic placers and
report the improvement in StWL.

e PEKU benchmarks [16]. These experiments show the
efficiency of the MCN model on circuits with large
number of multi-pin nets, where significant reduction in
StWL is achieved.

o ISCAS99 benchmarks. Timing analysis is performed on
the circuits mapped with different process technologies.
The experiments show the improvement in wirelength and
delay.

On these experiments, the traditional flow with global and
detailed placement (referenced in the tables of results as
GP+DP) is compared with the new flow with our intermediate
step (referenced in the tables as MCN). All tables present the
number of nodes and the average netdegree (Avr. ND) for
all the circuits. For each circuit and placer tool, we report the
HPWL, the StWL and the ratio of CPU time of the flow with
the MCN approach with regard to the traditional flow. Both
HPWL and StWL values are measured in dimensionless units
of BookShelf format [17]. The last row shows the normalized
sum of each column.

A. Accuracy of wirelength estimation

The goal of this section is to compare the accuracy of the
wirelength estimation for HPWL and MCN net models with
regard to FastSteiner [11] heuristic. The experiment has been

negative numbers). Our MCN model consistently produces an
accurate wirelength estimation for all the circuits. Comparing
with HPWL, the MCN approach increases the accuracy from
—2.71% to 0.24% for all nets. The lost of precision for both
net models comes from multi-pin nets that are 20 —30% in
the netlist. This small amount of nets produces a significant
increment of the inaccuracy for HPWL measure (—11.26%).
On the contrary, the MCN model is able to estimate the same
netlength with considerably smaller error (0.96%).

These promising results for the MCN model justify our
heuristic for the optimization of the StWL in placement
processes.

B. Experiments on ISPD05 benchmarks

The ISPDO5 suite includes circuits with sizes ranging from
210 thousand to 2.1 million objects. The circuits also con-
tain considerable number of multi-pin nets. Three placers,
mPL6 [18], FastPlace 3 [19] and Capo 10.5 [12]% have been
run to demonstrate the performance of the MCN model.

Table II reports the results of the experiments. The HPWL
increases for all placers and circuits, because the MCN
model targets to the StWL optimization rather than improving
HPWL. The last column shows the average reduction in StWL
by 3.0%, 1.2% and 1.5% for mPL6, FastPlace and Capo
respectively.

We have 14% of overhead in CPU time for Capo, but we
spend less CPU time for the other placers. This highly depends
on details of the placement algorithm, since there is always a
trade-off between the increment on the number of nets and the
reduction in the average net degree due to the MCN approach.

2We do not use ROOSTER feature, because the produced placement layouts
of ISPDOS5 circuits are not competitive in the final wirelength. The point is that
ROOSTER is aimed strictly for routability, and comparison in the wirelength
is not fair(according to the personal reference to the authors).
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Fig. 5. Tterative detailed placement on adaptecl circuit.

However, the runtime of constructing the MCN netlist is not
of great concern and typically is less than 1% of overall placer
CPU time.
Iterative Detailed Placer. One possible improvement of the
scheme described in Fig. 2 consists on the idea of feedback
line (not shown in the scheme). We can produce the MCN
netlist and run detailed placer iteratively. The input placement
for building the netlist is the detailed placement produced
in the previous iteration. The proposed iterative approach is
reasonable, because detailed placement contributes a small
portion in overall CPU time compared to the global placement.
Figure 5 presents the results for adaptecl circuit during
5 runs of the detailed placer mPL6 [18]. We compare the
iterative MCN approach (denoted as MCN) with an iterative
scheme of the traditional flow (denoted as GP+DP). Fig-
ure 5(a) shows the expected HPWL reduction due to the
iterative application of detailed placer. However, the MCN
approach gives superior results in StWL reduction because
of employing the MCN model as plotted in Fig. 5(b).
Figures 5(c,d) present the main feature of the MCN ap-
proach. The StWL is measured separately for low degree and
multi-pin nets. The wirelength of low degree nets for both
MCN and GP+DP placement flows is being reduced at the
same ratio from iteration to iteration as shown on Fig. 5(c).
However, the MCN approach can improve the wirelength for
high degree nets significantly (Fig. 5(d)).

C. Experiments on PEKU benchmarks

In this section, the performance of the model is shown on
circuits with the large number of multi-pin nets. We used the
artificial PEKU benchmarks, because they contain only multi-
pin nets, while the ISPDO5 circuits tend to have low-pin nets.

mPL6 [18] is selected as global and detailed placer because
it can work on PEKU benchmarks (FastPlace3 [19] fails on
some circuits).

PEKU Statistics mPL 6
bench #nodes Avr. HPWL (x10%) StWL (x 10%) CPU
(x10%) ND GP+DP MCN GP+DP MCN Ratio
dp01 1.3 111.7 0.91 0.92 2.96 2.62 1.00
dp05 2.9 167.5 1.95 1.96 7.41 6.59 1.01
dpl0 7.0 261.7 5.62 5.52 24.77 23.76 1.04
dpl5 16.3 401.5 11.99 11.77 69.92 65.23 0.98
dpl8 21.2 458.3 16.19 14.43 99.48 86.71 1.00
Norm. 1.000 0.974 1.000 0.908 1.01

TABLE IIT

MCN APPROACH ON PEKU CIRCUITS.

The results are summarized in Table III. The MCN strategy
leads to superior results in both HPWL and StWL. The StWL
is improved by 9.2% at the expense of 1% CPU time increase.

D. Experiments on ISCAS99 benchmarks

ISCAS99 allows to track improvement not only in Steiner
tree wirelength but also in delays. We selected the largest
circuits and used FastPlace as a placement tool.

The 0.13um vxlib ALLIANCE library [20] has been used for
technology mapping. The technological parameters have been
scaled down for the different technologies (65nm and 32nm),
using the Predictive Technology Model [21]. For instance, the
wire capacitance and resistance for 65nm are 2.71Q/um and
0.19fF /um, respectively, that approximately correspond to
M2/M3 metal layers of the 65nm technology described in [22].

The initial circuits have been obtained by using the tree-
height reduction technique speed_up [23] and the tree-
mapping algorithm in the SIS tool [24]. A square layout with
25% whitespace has been created, with the terminals uniformly
distributed around the bounding box.

Table IV summarizes the results. Besides the Steiner tree
wirelength and the CPU ratio, the worst negative slack (WNS)
and the total negative slack (TNS) are also reported based
on the Steiner tree wirelength estimation provided by Fast-
Steiner [11]. The same tendency is observed in wirelength
and runtime with respect to the previous experiments. Al-
though, the MCN model is not a delay-oriented approach,
the improvement in wirelength is also reflected in delay. The
reduction of delay in future semiconductor technologies (from
2.8% of improvement in 65nm to 5.6% in 32nm) corroborates
the increasing relevance of interconnect optimization due to
the dominant role of wire delays.

V. CONCLUSIONS

The new clustering approach for better wirelength modeling
in placement has been proposed. We experimentally proved
that our MCN model approximates the Steiner tree wirelength
more accurately than the traditional HPWL model. Circuits
with shorter wirelength and delays have been produced on the
explored placement flows.

As future work, we will integrate our model in a global
placer and track improvements in routability. Another line
of investigation is to design a delay-aware clustering model,
in order to group critical pins to the same subnet. This new
model applied in placement could considerably reduce delays
on critical paths.



ISCAS99 Statistics Wirelength 65 nm 32 nm
bench. #nodes Avr. StWL (x 10°) CPU WNS (x10% ps) TNS (x10° ps) WNS (x10°) ps TNS (x10° ps)
(x1 05) ND GP+DP MCN Ratio GP+DP MCN GP+DP MCN GP+DP MCN GP+DP MCN
b14_1 76 30 285 | 272 | 096 571 539 T12 1.08 7.62 7.01 131 126
b15_1 73 32 4.81 4.69 0.98 6.85 6.69 1.93 1.89 8.33 8.03 2.36 227
b17_1 225 32 1461 | 1430 | 097 7.18 6.82 637 | 622 9.32 8.39 774 | 7.58
b20_1 8.9 3.1 5.77 5.65 0.98 8.04 8.05 2.56 251 10.27 9.12 2.99 2.87
b21_1 9.1 3.1 585 | 5.69 | 096 8.21 8.08 267 | 266 9.66 9.38 314 | 3.10
b22_1 134 3.1 7.41 7.25 0.97 9.53 9.60 4.35 4.27 10.59 10.61 5.03 4.94
513207 2.7 2.8 1.49 1.38 0.99 2.88 2.74 0.44 0.43 3.01 0.95 0.50 0.49
s15850 107 | 29 || 195 | 1.88 | 097 || 394 | 385 | 120 | 122 || 958 | 939 | 550 | 493
$38584 10.0 29 600 | 594 | 099 0.99 5.01 417 | 3.63 1396 | 1357 | 924 | 736
Norm. 1.000 0.969 0.98 1.000 0.974 1.000 0.972 1.000 0.950 1.000 0.944
TABLE IV
MCN APPROACH ON ISCAS99 CIRCUITS.
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