
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009 1437

Keynote Paper

Elastic Circuits
Josep Carmona, Jordi Cortadella, Member, IEEE, Mike Kishinevsky, Senior Member, IEEE, and

Alexander Taubin, Senior Member, IEEE

Abstract—Elasticity in circuits and systems provides tolerance
to variations in computation and communication delays. This
paper presents a comprehensive overview of elastic circuits for
those designers who are mainly familiar with synchronous de-
sign. Elasticity can be implemented both synchronously and asyn-
chronously, although it was traditionally more often associated
with asynchronous circuits. This paper shows that synchronous
and asynchronous elastic circuits can be designed, analyzed, and
optimized using similar techniques. Thus, choices between syn-
chronous and asynchronous implementations are localized and
deferred until late in the design process.

Index Terms—Asynchronous circuits, design, elastic circuits,
electronic design automation, latency-insensitive design, latency-
tolerant design, variability.

I. INTRODUCTION

VARIABILITY is one of the main impediments for suc-
cessful circuit design. Uncertainties in estimating delays

force designers to include conservative margins that prevent
circuits from working at the performance potentially achievable
for a specific technology.

Asynchronous circuits [105] have often been proposed as a
solution to the challenges of variability. However, many de-
signers still consider asynchronous circuits as an esoteric class
of devices with questionable value. The lack of nondisruptive
electronic-design-automation (EDA) flows has been one of the
main reasons why designers have been reluctant to adopt this
paradigm.

Recently, synchronous solutions to delay variability have
been proposed. Latency insensitivity [22] was introduced as a
method to design circuits tolerant of the latency variability of
computations and communications. From a broader standpoint,
latency-insensitive design can be considered as a discretization
of asynchronous design.

Manuscript received June 17, 2008; revised February 4, 2009, and,
June 22, 2009. Current version published September 18, 2009. This work was
supported in part by the Comision Interministerial de Ciencia y Tecnologia
under Grant TIN2007-66523, by the Elastix Corporation, and by Intel
Corporation. This paper was recommended by Associate Editor S. Nowick.

J. Carmona is with the Department of Software, Universitat Politècnica de
Catalunya, 08034 Barcelona, Spain.

J. Cortadella is with the Department of Software, Universitat Politècnica de
Catalunya, 08034 Barcelona, Spain, and also with Elastix Solutions S.L., 08022
Barcelona, Spain.

M. Kishinevsky is with Intel Corporation, Hillsboro, OR 97124 USA.
A. Taubin is with the Department of Electrical and Computer Engineering,

Boston University, Boston, MA 02215 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCAD.2009.2030436

This paper presents a review of elastic circuits. In this con-
text, elasticity refers to the property of a circuit to adapt its
activity to the timing requirements of its computations, com-
munications, and operating conditions. Elasticity does not make
any assumption about the specific implementation of the circuit.

This paper also presents a unified view of elastic circuits and
shows that they can be designed and analyzed with common
and conventional design flows. The decision as to whether to
select a synchronous or asynchronous implementation can be
postponed until the latest stages of the synthesis flow.

A. Why Elastic Circuits?

The scaling down to sub-100-nm technologies is having an
important impact on power consumption, variability, and circuit
complexity. Designing circuits with rigid clocks imposes rigor-
ous timing constraints and prevents the circuit from adapting its
functionality to dynamically changing operating conditions.

The time required to transmit data between two different
locations is governed by the distance between them and often
cannot be accurately known until the chip layout. Traditional
design approaches require fixing the communication delays up
front, and these are difficult to amend when layout information
finally becomes available.

Elasticity is a paradigm that provides the possibility of
tolerating timing variations in the computations and commu-
nications of a circuit and its environment. In addition, the
modularity of elastic systems promises novel methods for
microarchitectural design that can use variable-latency compo-
nents and tolerate static and dynamic changes in communica-
tion latencies.

This tolerance may enable schemes to adapt the voltage and
speed of a circuit to the operating conditions. For example, in an
elastic system, a component may automatically reduce its speed
when the temperature becomes too high without affecting the
correctness of the interaction with the rest of components.

More formally, elasticity removes timing constraints from
the nonfunctional requirements of a system. The more timing
constraints are removed, the more elasticity is acquired by
the system. These properties are often associated with ease of
design, e.g., simpler timing closure.

B. Cost of Elasticity

Elasticity is also associated with an extra cost that may
become prohibitive in some cases. Fig. 1 graphically shows
the tradeoff between elasticity and area overhead for different

0278-0070/$26.00 © 2009 IEEE

1438 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 1. Overhead associated with different types of elasticity.

classes of circuits. The simplest class is referred to as synchro-
nous elasticity [22], [31]. For a small control overhead, the
circuit can acquire a certain degree of cycle-level elasticity that
can make it tolerant of latency uncertainties.

Elasticity can reach finer levels of granularity by making the
circuit asynchronous. The cheapest style is the class of bundled-
data circuits [105]. In this paper, we show how synchronous-
elastic and bundled-data circuits can be implemented with the
same datapath. They only differ in the small control to generate
the clocking. Finally, there is a large variety of asynchronous
circuit styles, with increasing elasticity and overhead.

The most elastic and robust class is the one called delay-
insensitive (DI) circuits [78]. In their purest form, DI circuits
are tolerant of any delay variability of their components (gates
and wires). Unfortunately, the area overhead is extremely large,
and the set of DI circuits with practical interest is rather small.
For this reason, relaxed versions of DI circuits are often used
instead.

This paper will focus on those classes of circuits that can
provide elasticity with small overhead. These are the circuits
in the shadowed area shown in Fig. 1: synchronous elastic
circuits and asynchronous circuits with bundled data. Some
aspects of the other classes of asynchronous circuits will also
be discussed.

C. Essential Role of EDA

EDA tools have been essential for the rapid growth of elec-
tronics. Nowadays, it is inconceivable to face the design of a
complex system without resorting to a complete EDA design
flow that covers all the phases from the specification down to
the physical implementation.

Static timing analysis [98] (STA) is one of the fundamental
phases in circuit design. The goal of STA is to estimate the de-
lay of a circuit and detect possible timing errors. Synchronous
circuits include flip-flops and latches that enforce the synchro-
nization of multiple paths. This synchronization provides a set
of cut points that simplify STA considerably, since the analysis
is reduced to combinational paths between cut points.

Traditionally, one of the main reasons for the reluctance
of designers to adopt asynchronous circuits has been the lack
of EDA flows with similar maturity to those for synchronous
circuits, and STA tools have been the main target of criticism.
The unpredictability in the timing of events makes it difficult
to adopt existing STA tools for the analysis of asynchronous
circuits.

This paper will show how elasticity can be handled by a
common EDA flow in which the datapath can be designed
independently from the clocking scheme, either synchronous

Fig. 2. Different types of elasticity. (a) Inelasticity. (b) Asynchronous elastic-
ity. (c) Synchronous elasticity. Shaded boxes denote idle periods.

or asynchronous. Synthesis, analysis, and optimization can be
supported by similar tools and methods, and only the specific
details related to the generation of the clock signals must be
treated differently.

D. Organization of this Paper

Section II introduces the concept of elasticity with synchro-
nous and asynchronous variations. Section III discusses com-
mon implementability aspects of elasticity that are independent
of the synchronous or asynchronous nature of the control.
Sections IV and V present particular aspects of the implemen-
tation of asynchronous and synchronous protocols and latch
controllers, respectively. Section VI proposes a common EDA
flow for elastic circuits. Completion detection is one of the key
aspects that determines the performance of an elastic circuit.
Different schemes are discussed in Section VII. Performance
analysis and different techniques for performance optimization
will be discussed in Section VIII. A final discussion on the
subject and some examples are presented in Section IX.

II. ELASTICITY

Elasticity is a concept that has been used in various contexts
to refer to the flexibility of a system to adapt to the variability
of delays. The delay uncertainty can be either produced by
the system (e.g., voltage and temperature variations) or by the
environment (e.g., unpredictable input data rates).

Fig. 2 shows an attempt to graphically describe the meaning
of elasticity. The system is a simple adder that receives two
input data and produces their sum. The behavior of a conven-
tional inelastic system is shown in Fig. 2(a), where the adder
expects data and produces the result at each cycle. Each box
in the diagram represents a cycle, and the contents of the box
represent the value at the input or output of the adder. In an
inelastic system, the behavioral correctness depends on a global
timing synchronization that cannot be dynamically modified.

Fig. 2(b) shows the behavior of an elastic system. The
incoming data at each elastic channel may arrive at different
time instants, while the adder may also take a variable delay to
produce the result. Since there is no global synchronization, a
handshake protocol is required to synchronize the sender and
the receiver at each elastic channel. In an elastic system, the
behavioral correctness does not depend on the absolute timing
occurrence of the events. When delay information is available,
the handshake protocol might be simplified whenever explicit
synchronization is not required.

Fig. 2(c) shows a restricted class of elasticity. In this case,
there is a global clock that synchronizes the events. However,
the events may occur at arbitrary cycles, i.e., there may be idle
cycles at each channel. This is a type of discrete elasticity still

CARMONA et al.: ELASTIC CIRCUITS 1439

synchronized with a global clock signal that we will refer as
synchronous elasticity, in contrast to the more generic type of
elasticity that we will often refer to as asynchronous elasticity.

A. Formalizing Elasticity

Different forms of elasticity have been studied in the last
decade, thus providing various formal models with strong simi-
larities and subtle differences. All these models require a notion
of equivalence that defines the conditions under which two
systems can be considered to have the same behavior. They also
characterize the valid transformations to incorporate elasticity
into a system.

The formal models for elasticity are reminiscent to the notion
of observational equivalence [77], in which two systems are
equivalent when an external agent cannot differentiate them
by looking at their observable traces. In case of elasticity, the
observable traces would be the ones obtained after hiding the
idle cycles or events, denoted by τ in [77].

In the synchronous domain, the theory of patient processes
[22] introduced the notion of latency equivalence, extended by
the theory of elastic networks in [61]. In the asynchronous do-
main, the concepts of slack elasticity [70] and flow equivalence
[46] denote similar equivalences, adapted to asynchronous na-
ture of timing (we refer the reader to those papers for further
details on these formal models).

B. Asynchronous Elasticity

Elasticity, in its broader sense, has been formalized in differ-
ent ways and contexts. Probably, the earliest and closest term
approaching elasticity was proposed by Molnar et al. [78] in the
Macromodules project, introducing the concept of a DI module.

A DI module M interacts with its environment through input
and output signals. Between the module and its environment,
there are arbitrary interface delays that defer the observation of
the inputs in the module and outputs in the environment. These
delays are represented by a foam–rubber wrapper surrounding
the module.

Strictly, a DI circuit is one that behaves correctly regard-
less of the delays of its components (gates and wires). Due
to this stringent constraint, the class of DI circuits is rather
small [71].

A practical relaxation of this constraint was proposed by
Seitz [100], introducing the concept of self-timed systems. In
this context, the modules of the system are assumed to work
with local timing constraints, e.g., negligible wire delays, thus
relegating delay insensitivity to the interface of the modules
only. Since then, a large body of knowledge has been created
on the design and formalization of asynchronous circuits [9],
[18], [38], [57], [73], [82], [105].

C. Synchronous Elasticity

When using a clock to discretize elasticity, the delay insensi-
tivity is restricted to multiples of clock cycles. This direction
aims at exploring a tradeoff between the flexibility of asyn-
chronous systems and the extensive computer-aided-design tool
support for synchronous design.

The first formal approach to synchronous elasticity was
proposed by Carloni et al. [22], coining the term latency

Fig. 3. Handshake signals for synchronous and asynchronous elastic buses.

insensitivity. After that, several authors have proposed different
schemes for synchronous elasticity [31], [52], [92].

The behavior observed in these approaches corresponds to
the one shown in Fig. 2(c). The handshake signals may change
at each cycle, and their value determines the validity of the data
being transferred during the cycle. The most valuable advantage
of synchronous elasticity is the capability of designing circuits
with conventional design flows using STA.

D. Examples of Elasticity

There are already some examples of elasticity that are well
known by circuit designers. Elasticity is typically useful in
those designs where components with different speeds must
interact. This is the reason why the most popular buses use
elastic protocols, e.g., the VMEbus [51], AMBA AHB [3], or
OCP [88]. In all these cases, elasticity requires a pair of signals
to implement a handshake protocol. Single-track protocols are
also possible, requiring only one wire [11], [110].

Fig. 3 shows a simplified scheme of the handshake signals
for the VME (asynchronous) and AMBA AHB (synchronous)
buses. In both cases, there is a signal going from master to slave
to indicate the availability of information in the bus. Similarly,
there is another signal from slave to master to indicate the
completion of the transfer. In OCP, a similar synchronous hand-
shaking protocol is performed with the signals called master
command (MCmd) and slave command accept (SCmdAccept).

In asynchronous protocols, data transfers are indicated by
the events of the handshake signals, e.g., data strobe (DS)
and data-transfer acknowledge (DTACK) in the VMEbus. In
synchronous protocols, the initiation and completion of trans-
fers are indicated by the value of the handshake signals at the
clock edges. In the AMBA AHB bus, the HTRANS signal (two
bits) may indicate an IDLE cycle when no transfer must be
performed. The slave can also indicate that it has not been able
to accept the transfer (HREADY = 0), thus forcing the master
to maintain the same data on the subsequent cycles until the
transfer has been completed (HREADY = 1).

III. IMPLEMENTING ELASTICITY

Elasticity is inherently associated with the concept of dis-
tributed control. The communication between two elastic com-
ponents requires bidirectional information to manage the flow
of data correctly. In the forward direction, the validity of data
must be communicated from the sender to the receiver. In the
backward direction, the availability of resources to consume
data must be communicated from the receiver to the sender.

Different nomenclatures have been used to name the control
signals for elastic communication. In asynchronous design,
the most popular names are request and acknowledge for the
forward and backward signals, respectively. In synchronous
design, valid and stop (or stall) are often used.

1440 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 4. Distributed control for elasticity.

Fig. 5. Implementation of EBs.

An instructive explanation of the requirements for elastic
communication can be found in [52]. We briefly sketch these
requirements in the example shown in Fig. 4. The synchronous
pipeline contains four edge-triggered registers with an enable
control signal (en = not enabled). Fig. 4(a) shows a scheme in
which the valid signal is distributed along the stages, whereas
the stop signal is global. In this scheme, all the stages are stalled
when the environment asserts the stop signal.

Unfortunately, a global stop signal may be unacceptable for
a large system with long wire delays. However, a distributed
control requires a more complicated scheme to handle the
back-pressure generated by the assertion of the stop signal.
Fig. 4(b) shows a possible implementation of the distributed
stop, assuming that a cycle is taken to propagate from registers
A and B to registers C and D. When stop is asserted, the values
stored at A and B must be kept for the next cycle. However, a
new value is simultaneously flying from C to B and another
from D to C.

In the previous scenario, extra storage is necessary to accom-
modate the new incoming data from C to B while preserving
the previous value of B. This is the purpose of the auxiliary
register B′ in Fig. 4(b). When the stop signal is deasserted, the
value stored at B′ will be first delivered to B before the new
incoming data from C is transferred.

In general, the communication between two elastic modules,
either synchronous or asynchronous, requires extra storage to
capture the incoming messages that cannot be delivered because
of the back-pressure. Fig. 5(a) shows a general scheme in which
each channel has an elastic buffer1 (EB) to store the incoming
values.

1Also called relay station in [22]. Note that while this paper describes EBs
capable of holding two data items, in general, EBs are elastic first-in-first-outs
(FIFOs) of arbitrary finite capacity.

The capacity of an EB defines the maximal number of data
items that can be simultaneously stored inside the buffer. The
correct operation of elastic circuits requires minimal constraints
on the size of EBs. In synchronous elasticity, the capacity of
an EB C is a natural number that must satisfy the following
constraint: C ≥ Lf + Lb, where Lf is the forward-propagation
latency of the data and valid signals and Lb is the backward-
propagation latency of the stop signal measured in the number
of clock cycles. In the usual case of an EB with equal forward
and backward latencies of one clock cycle Lf = Lb = 1, it is
sufficient to have EBs capable of storing two data items. One
location is used for propagation of data item in absence of
back-pressure (as in a regular register), while the other location
stores the second data item which is sent by the sender before it
could see the blocking stop request. The proof of the earlier
fact has been done in the context of relay stations in [21]
and [68] and follows from the analysis of marked-graph (MG)
models corresponding to the elastic designs. Such models will
be described in Section IV-B.

Fig. 5(b) and (c) shows two possible implementations of an
EB using edge-triggered registers. Other implementations are
also possible, but in all of them, a multiplexor is required to
select data from the main flow or from the auxiliary storage.
As will be discussed as follows in the next section, a more
efficient implementation using transparent latches is possible;
however, the use of flip-flop-based registers can be more con-
venient for timing analysis or for the implementation in field-
programmable gate arrays that do not provide support for
latches.

A. Latch-Based Implementations of EBs

Efficient implementations of EBs can be derived using level-
sensitive latches, either in asynchronous designs [34], [59] or
in synchronous designs [31], [52]. These implementations are
based on the observation that each edge-triggered flip-flop is
composed of two level-sensitive latches (master and slave) [27]
that can potentially store different data if they can be controlled
independently. The resulting approach is shown in Fig. 5(d) and
is more efficient in area, delay, and power as compared to the
flip-flop-based implementations.

Using the latch-based implementation of EBs shown in
Fig. 5(d), we can compare three schemes with different degrees
of elasticity. Fig. 6(a) shows a conventional inelastic circuit
with a global clock connected to all flip-flops through a clock
tree. Fig. 6(b) shows a synchronous elastic scheme in which
the valid/stop signals are distributed along multiple stages.
A global clock remains to synchronize the control signals.
Finally, Fig. 6(c) shows a totally distributed (asynchronous)
scheme in which only locally generated clock signals are used
to synchronize adjacent stages. The removal of the global clock
requires the addition of local delays (shown in rounded boxes)
to match the corresponding delays in the datapath.

It is important to realize that the schemes in Fig. 6(b) and
(c) are very similar. The datapaths and the locally generated
enabling signals are identical. The only differences are the logic
and timing to generate the enabling pulses for the master/slave
latches. These schemes can also be generalized to incorporate
logic between the master and slave latches.

CARMONA et al.: ELASTIC CIRCUITS 1441

Fig. 6. (a) Synchronous inelastic circuit. (b) Synchronous elastic circuit. (c) Asynchronous elastic circuit (with matched delays).

Fig. 7. Synchronous elastic module with multiple inputs and outputs.

B. Extension to Generic Elastic Netlists

The designs shown in Fig. 6 can be easily extended to any
arbitrary netlist in which the elastic modules have multiple
inputs and outputs connected to other elastic modules.

An example of such extension is shown in Fig. 7. The con-
troller in the middle of the figure is synchronized with the
neighboring controllers. The Join block combines the hand-
shake signals of the input modules with the ones of the
controller. Similarly, the Fork block combines the handshake
signals for the output modules. Intuitively, the Join block imple-
ments the conjunction of valid signals, whereas the Fork block
implements the disjunction of stop signals.2

The exact details on how these blocks can be implemented
will be discussed in Sections IV and V.

C. Adding Bubbles

One of the properties of elastic circuits is that they accept the
insertion of latches at arbitrary locations while preserving the
behavior of the circuit. This can be done either for asynchro-
nous circuits [70], [80] or synchronous circuits [21], [61]. To
preserve the original behavior, these latches must be initialized
with empty (nonvalid) data, often referred to as bubbles, thus
maintaining the same amount of valid data after the insertion.
In this way, the latches merely behave as delays in the datapath.

The main reason for the insertion of bubbles is performance:
This insertion can compensate for the performance degradation
produced by unbalanced fork–join structures of some designs.
Empty EBs can also be inserted to pipeline long wires for
the purpose of fixing timing-closure exceptions in synchro-
nous elastic designs or removing performance bottlenecks in
asynchronous elastic designs. Section VIII-B will discuss some

2The same scheme applies for an asynchronous circuit with req/ack hand-
shake signals.

Fig. 8. Four- and two-phase protocols for data communication.

Fig. 9. Muller’s C-element with two different implementations.

strategies to improve the performance by adding bubbles in the
circuit.

IV. ASYNCHRONOUS ELASTICITY

This section reviews different approaches for designing asyn-
chronous elastic circuits with synchronization schemes like
the one shown in Fig. 6(c). The synchronization schemes are
characterized by the protocols committed by the handshake
signals (req and ack). We can classify the protocols into two
main families: four-phase and two-phase. We will review two
classical schemes for each family, which are interesting due to
their elegance, and help to illustrate the important points of this
section. Many other schemes that supercede the ones presented
in this section have been presented in the last two decades and
will be shortly highlighted at the end of the section.

A. Four-Phase Signaling

A four-phase protocol requires four events of the handshake
signals for each communication (see Fig. 8).

req ↑ ack ↑ req ↓ ack ↓

The first two are called signaling events, whereas the last two
are known as the return-to-zero events. One of the most popular
protocols is based on Muller’s C-element [79], shown in Fig. 9,
that synchronizes the events at the inputs and produces an event
at the output. The logic equation for a C-element is

cnext = ab + c(a + b)

where cnext represents the next state value of the output c.
A C-element preserves the value of c when the inputs are
different and propagates the value of the inputs when they are
the same. This behavior can be extended to C-elements with

1442 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 10. Synchronization control based on Muller’s pipeline.

Fig. 11. Behavioral model of Muller’s pipeline. (a) STG specification.
(b) Enable signals of adjacent latches. (c) Timing diagram.

n inputs: When all n inputs are high, the output of the n input
C-element can go high, and when all inputs are low, the output
can go low. Two different implementations of the C-element are
shown in Fig. 9.

Fig. 10 shows an asynchronous pipeline with a four-phase
handshake control based on Muller’s protocol. Every latch
receives an enable signal (Φ) coming from a C-element of the
control. For the enable signal to rise (Φ ↑), each C-element
waits for the arrival of new data from the previous stage (req ↑)
and the completion of the communication of the next stage
(ack ↓). This models the situation in which data are available
at the input (setup constraint) and the data at the output have
already been consumed (hold constraint). After Φ ↑, the control
continues with the remaining events of the four-phase protocol.

The delay inserted between the Φ signal and the req signal
of the next stage guarantees the setup constraint, i.e., that data
are stable when req ↑ occurs.

A well-known property of circuits based on transparent
latches and nonoverlapping clocking scheme is that no data
transfers occur simultaneously between two adjacent stages.
This property is the same as what it is observed in flip-flop-
based synchronous circuits, in which data transfers occur se-
quentially from master to slave or from slave to master latches
(that are hidden inside the master–slave implementation of the
flip-flops), but not simultaneously. A more detailed discus-
sion about performance in elastic circuits will be presented in
Section VIII.

B. Behavioral Model of Muller’s Pipeline

Fig. 11 shows a behavioral (untimed) model of Muller’s
pipeline, represented by a signal transition graph (STG [28],
[97]). An STG is an interpreted Petri net [81] in which events
(also called transitions) represent signal transitions.3 A partic-

3For historical reasons, + and − are used to denote rising and falling signal
transitions, respectively. For example, ack+ indicates a rising transition on
signal ack, and req− indicates a falling transition on signal req.

Fig. 12. Sutherland’s micropipeline.

ular class of Petri nets, called MGs, are often used to repre-
sent the behavior of pipelines. The nodes (transitions) of an
MG represent the events, and the arcs represent the causality
relations between pairs of events, whereas the tokens (marks on
the arcs) represent the state of the system. In an MG, an arc
can either be marked with a token or unmarked. When all input
arcs of an event are marked, an event can be performed (can
be fired), removing the tokens from the incoming edges and
placing one token on each outgoing edge. An MG has an initial
marking, and the operation of the system can be described by
the set of all possible sequences of markings that start with that
initial marking (we refer the reader to [32], [81], [82] for deeper
treatments of Petri nets, MGs, and STGs).

The STG in Fig. 11(a) shows the relationship between the
req/ack signals of two adjacent stages of a pipeline. The im-
portant causality relations are the ones represented by the arcs

reqi+ → acki + (setup constraint)

reqi+1− → acki+1 − (hold constraint).

Fig. 11(b) shows the behavior of the pipeline referring only to
the Φ signals of the latches. Finally, Fig. 11(c) shows the same
behavior with a timing diagram. The previous causality rela-
tions must be accompanied with appropriate timing constraints
to meet the timing requirements of the circuit. In particular, time
borrowing is essential for efficient latch-based designs. This
will be discussed in Section VI-B.

C. Two-Phase Signaling

In two-phase protocols, all events are signaling, and there is
no semantic difference between the rising and falling events of
a signal (see Fig. 8).

The two-phase signaling protocol was initially proposed by
Seitz [100] and later used by Sutherland in the Micropipelines
[111], shown in Fig. 12. The synchronization layer is based
on Muller’s pipeline. However, the two-phase interpretation of
the events requires a special type of latch called a capture–pass
(CP) latch, shown in Fig. 13.

The events on the C and P signals alternate to let the latch
capture and pass data alternatively. The signals Cd and Pd are
delayed versions of C and P, indicating that the capture and pass
operations have completed, respectively. An alternative scheme
was also proposed by substituting the CP latches by double
edge-triggered latches [123].

A debate in the asynchronous community is whether two-
phase protocols are superior to four-phase ones. On the one
hand, two-phase control might be less power consuming and

CARMONA et al.: ELASTIC CIRCUITS 1443

Fig. 13. CP latch.

Fig. 14. Semidecoupled four-phase controller.

higher throughput, since it avoids the return-to-zero events.
However, in logic terms, two-phase controllers are often more
complex than four phase. An example is the special latches
required for micropipelines. In addition, the return-to-zero
phase can overlap with the next signaling phase to increases the
throughput of a four-phase protocol. Moreover, power con-
sumption depends on many factors: the capacitive loads of stor-
age, the power consumed by the C-elements versus the simpler
gates used in four-phase protocol, the length of the wires, and
other factors.

The convenience or inconvenience of each protocol may
depend on the particular requirements of each application: area,
speed, and power.

D. Large Variety of Protocols for Latch Controllers

The previous sections have presented some of the earliest
handshake protocols for the synchronization of asynchronous
circuits. However, many different schemes have been studied
and proposed.

A remarkable effort has been devoted to study four-phase sig-
naling for latch controllers. The reason for that is the extensive
variety of protocols that can be devised by exploring different
ways of interleaving the return-to-zero events [13], [15], [39],
[69], [75].

As an example, we next discuss the semidecoupled four-
phase controller proposed in [39]. A behavioral specification
is shown in Fig. 14. The Ri,x,o and Ai,x,o signals represent the
req and ack signals of the controllers, whereas A, B, and C
represent the enable signals of adjacent latches. The diagram
at the left describes all the details of the protocol between
two adjacent controllers. The diagram at the right describes
the observable behavior when only considering the enable
signals of the latches. Compared with Muller’s pipeline, the
semidecoupled protocol offers more concurrence for the return-
to-zero events (e.g., as shown in Fig. 14, events A− and B+ can
happen concurrently). This reduces the length of the potentially
critical handshake cycle between Ri and Ai, thus reducing the
latency of the controller.

Fig. 15. Implementation of the semidecoupled four-phase controller.

An implementation of the semidecoupled controller is shown
in Fig. 15. The two latches play the role of master and slave (or
vice versa) in the original synchronous design. Therefore, the
initialization of the controllers corresponding to two adjacent
latches has to be different: Latch A is assumed to contain valid
information, whereas latch B is assumed to be “void.” Thus,
the first enable pulse after resetting is produced in latch B,
capturing the data stored in latch A.

Other more sophisticated schemes have also been proposed,
like the ones using single-track protocols [11], [110]. Both
schemes implement two-phase handshake mechanisms that
only use one wire to implement the req/ack signaling. The
schemes are based on the fact that the pull-up and pull-down
networks of the wire are distributed between the sender and the
receiver.

Singh and Nowick, in MOUSETRAP [104], proposed a
latch-based high-speed pipeline in which the synchronization
logic is implemented with simply one XOR gate for each latch.
The protocol requires specific timing assumptions for correct
operation.

Finally, it is worth mentioning the work done on dynamic
pipelines [118], proposing high-speed schemes that exploit the
concurrence between the precharge and evaluate phases of dy-
namic logic at different pipeline stages. Lines et al. [66], [72],
[90] presented an approach for quasi-DI scheme for fine-
grain pipelines. Recently, more advanced approaches with en-
hanced concurrence have achieved important improvements in
throughput [73], [102], [103]. In conclusion, a variety of hand-
shake controllers provides the designer with a variety of imple-
mentations to obtain an optimal handshake protocol for their
particular application.

E. Join and Fork Blocks

To implement arbitrary elastic netlists using the handshake
scheme shown in Fig. 7, it is necessary to provide an imple-
mentation for the Join and Fork blocks.

We next explain a very simple approach that can be used
for any two- or four-phase protocol implemented with a pair
of req/ack signals. We use the example in Fig. 16 that shows a
latch-based circuit in which the shadow boxes represent latches.
The letters inside the latches indicate their polarity: L stands
for “active low” (i.e., the latch is open when the clock has
zero value and opaque, otherwise) and H stands for “active
high” (the latch is open when the clock is high). Note that
this example does not explicitly distinguish between master

1444 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 16. Latch-based synchronous circuit.

Fig. 17. Asynchronous control for the circuit in Fig. 16.

and slave latches and contemplates the possibility of having
combinational logic between any pair of latches.

The synchronization of components with multiple inputs and
outputs is shown in Fig. 17. The boxes represent the handshake
controllers that generate the enable signals Φi for each latch.
The Join block is implemented as the conjunction (C-element)
of the corresponding req signals, whereas the Fork block is
implemented as the conjunction of the ack signals. Some
extensions for supporting Join and Fork blocks in dynamic
pipelines have also been proposed [91].

Informally, the conjunction of these events can be interpreted
as follows:

“A block can perform an operation when all its inputs
are available (C-element at Ri) and all its outputs have
been consumed (C-element at Ao).”
With this scheme, the control for any arbitrary netlist can

be built using C-elements and one-input/one-output latch
controllers.

V. SYNCHRONOUS ELASTICITY

This section describes the details of specific implementations
of synchronous elasticity.

The original work by Carloni et al. [22] on latency-
insensitive design described a handshaking protocol between
two signals, void (not valid) and stop, interacting with a relay

Fig. 18. SELF protocol.

station implemented with two edge-triggered registers and a
multiplexor, similar to the one shown in Fig. 5(b).

The first latch-based implementation of synchronous elas-
ticity was presented in [52]. Later, a similar implementation
was used in [31] to propose an automatic procedure for elas-
ticization of synchronous circuits. The formal specification and
properties of the handshake protocol was later presented in [61].
Synchronous elasticity is sometimes referred to as pseudoasyn-
chronous design [60], synchronous handshake circuits [92], and
synchronous emulation of asynchronous circuits [89].

In this section, we will give more details about the design
of controllers for latch-based implementations. There are two
main reasons for this choice.

1) Latch-based implementations are more efficient in area,
delay, and power.

2) The datapath can be identical to the one used for asyn-
chronous elasticity described in Section IV.

As it will be shown later in this section, synchronous
elasticity is achieved by augmenting a synchronous circuit
with a clock-gating distributed controller that implements a
synchronous handshake. The area overhead of this controller
is minimal, particularly with respect to synchronous circuits
that already have clock-gating control. The elastic controller
typically introduces no delay overhead, since the computation
and propagation delays of the control signals are shorter than
delays of the corresponding computation blocks. The elastic
controllers drive the enabling signals on the local clock lines.
The depth of the enabling logic is similar to what is used in
standard clock gating, and therefore, the contribution to jitter is
expected to be similar to a standard synchronous design with
clock gating.

A. Synchronous Elastic Protocol

To discuss the characteristics of synchronous elastic pro-
tocols, we will focus on the one presented in [31] and [61]
[synchronous elastic flow (SELF)]. This protocol does not
differ significantly from the one presented in [52], and it is
conceptually similar to the one presented in [22], even though
the latter is oriented to flip-flop-based implementations and
requires some extra signals for the multiplexor of the EBs.

The two handshake signals, valid (V) and stop (S), deter-
mine three possible states in an elastic channel (see Fig. 18).
(T) Transfer, (V ∧ ¬S): The sender provides valid data, and

the receiver accepts it.
(I) Idle, (¬V): The sender does not provide valid data.
(R) Retry, (V ∧ S): The sender provides valid data but the

receiver does not accept it.
The sender has a persistent behavior when a Retry cycle is

produced: It maintains the valid data until the receiver is able
to read it. The language observed at the elastic channel can
be described by the regular expression: (I∗R∗T)∗, indicating
that every transfer may be preceded by a sequence of Idle

CARMONA et al.: ELASTIC CIRCUITS 1445

TABLE I
TRACE COMMITTING THE SELF PROTOCOL

Fig. 19. Control specification for the latch-based EB.

cycles followed by a sequence of Retry cycles. The absence
of a subtrace RI implies the persistence of the behavior.
Table I shows an example of a trace transmitting the values
A−D. When V = 0, the value at the data bus is irrelevant
(cycles 0, 6, and 7). The receiver can issue a Stop even when the
sender does not send valid data (cycle 7). In the cycle following
Retry, the sender persistently maintains the same valid data as
in the previous cycle during cycles 3, 4, and 9.

B. Latch-Based Elastic Controllers

Fig. 19 shows the finite state machine (FSM) specifications
for the control of a latch-based EB and the overall structure of
the design. The transparent latches are shown with single boxes,
labeled with the phase of the clock. The control drives latches
with enable signals. To simplify the drawing, the clock lines
are not shown. An enable signal for transparent latches must be
emitted on the opposite phase and be stable during the active
phase of the latch. Thus, the Es signal for the slave latch is
emitted on the L phase.

The FSM specification shown in Fig. 19 is similar to the
specification of a two-slot FIFO. In the Empty state, no valid
data are stored in the latches.

In the Half-full state, the slave latch stores one valid data
item. Finally, in the Full state, both latches store valid data, and
the EB emits a stop to the sender. The specification is a mixed
Moore/Mealy FSM with some outputs associated with the states
and some other with the transitions. For example, the transition
from the Half-full state to the Full state occurs when the input
channel carries valid information (Vl is high), but the output
channel is blocked (Sr is high). An output signal enabling the
master latch is emitted (Em). In addition, the valid bit is emitted
to the output channel (Vr = 1), since this Moore style signal is
emitted at any transition from the Half-full state.

After encoding Empty, Half-full, and Full states of this FSM
with (Vr, Sl) = (0, 0), (1, 0), (1, 1) correspondingly, we can
derive the implementation shown in Fig. 20(a), where flip-flops
are drawn as two back-to-back transparent latches. By splitting
the flip-flops and retiming the latches, a fully symmetric latch-
based implementation can be obtained [Fig. 20(b)].

C. Join and Fork

In general, EBs can have multiple input/output channels.
This can be supported by using elastic Fork and Join control
structures. Fig. 21(a) shows an implementation of a Join. The
output valid signal is only asserted when both inputs are valid.

Fig. 20. Two implementations of an EB control.

Fig. 21. Controllers for elastic Join and Forks. (a) Join. (b) Lazy fork.
(c) Eager fork.

Otherwise, the incoming valid inputs are stopped. This con-
struction allows the composing of multiple Joins together in a
treelike structure.

Fig. 21(b) shows a Lazy Fork. The controller waits for both
receivers to be ready (S = 0) before sending the data.4 A more
efficient structure shown in Fig. 21(c), the Eager Fork, can send
data to each receiver independently as soon as it is ready to
accept it. The two flip-flops are required to “remember” which
output channels already received the data. This structure offers
performance advantages when the two output channels have
different back-pressures.

VI. EDA SYNTHESIS FLOW FOR ELASTIC CIRCUITS

The approaches presented in the previous two sections to
transform an inelastic circuit into an elastic one can be au-
tomated by a common EDA synthesis flow that is mostly
independent from the fact that the final implementation can be
either synchronous or asynchronous.

In this section, a synthesis flow for latch-based datapaths is
presented, following the schemes described in [22], [31], and
[52] for synchronous elasticity and in [16], [34], [59], and [113]
for asynchronous elasticity.5 A similar flow could be easily
devised for alternative implementations of the EBs, such as the
ones shown in Fig. 5(b) and (c).

A. Automatic Synthesis

The fundamental ingredients for the synthesis recipe are the
control blocks that generate the enable signals for the latches
and fork–join modules in the datapath.

1) The latch controllers that generate the enable signals
for the latches. For example, the semidecoupled latch

4This implementation is identical to the one presented in [52].
5The automated flow for asynchronous elasticity has also been called desyn-

chronization [34].

1446 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 22. Elasticization of a synchronous circuit.

controller could be used for asynchronous elasticity (see
Fig. 15), or the EB controller in Fig. 20 for synchronous
elasticity.

2) The Join and Fork blocks. For asynchronous elasticity,
C-elements are sufficient to implement these blocks (as
in Fig. 17) regardless the protocol used for the latch
controllers. For synchronous elasticity, the designs shown
in Fig. 21 can be used.

The steps for the transformation of an inelastic circuit [e.g.,
Fig. 6(a)] into an elastic circuit [e.g., Fig. 6(b) or (c)] are as
follows.

1) Group the flip-flops into multibit registers. The registers
determine the level of granularity at which elasticity is ap-
plied. Each register will be associated with one controller.

2) Remove the clock signal and replace each flip-flop with
an EB [Fig. 5(d)].

3) Add the required bubbles to improve the performance of
the circuit (see Section VIII-B).

4) Create the control layer that generates the enable signals
for the latches. It has the following components:
a) one latch controller for each EB;
b) a Join block at the input of each latch controller

receiving multiple inputs;
c) a Fork block at the output of each latch controller

sending multiple outputs.
5) In case of synchronous elasticity, connect the clock sig-

nal to the latch controllers and the join/fork blocks (if
required). In case of asynchronous elasticity, add the
matched delays for the appropriate timing among con-
trollers. Timing will be discussed in Section VI-B.

An example showing the result of the transformations is
presented next. Fig. 22(a) shows a synchronous datapath in
which the shadowed boxes correspond to registers. Fig. 22(b)
shows the same datapath after having added some bubbles (see
Section VIII-B) for performance optimization. Fig. 22(c) shows
the architecture of the control. The EB boxes represent the
controllers for the latches. The F and J boxes represent the
join and fork blocks, respectively. The arrows in the control
represent pairs of handshake signals, with the arrow following
the forward direction. The V/S signals represent the handshake
signals that interact with the environment (valid/stop for syn-
chronous or req/ack for asynchronous).

Fig. 23. Setup and hold constraints for asynchronous circuits.

B. Timing

This section briefly discusses some timing issues related to
the previous synthesis flow.

In case of synchronous elastic circuits, a conventional two-
phase clocking scheme for latch-based circuits can be used.
When the logic between pairs of latches is unbalanced, time
borrowing is typically used to compensate for the difference of
delays between adjacent stages [27]. This situation occurs when
the flip-flops are split into pairs of master/slave latches, without
any logic between master and slave. Most timing-analysis tools
provide support for latch-based designs and time borrowing.

Timing is less conventional when dealing with asynchronous
circuits. However, the underlying constraints for the correctness
of the circuit are not much different from the ones used in
synchronous circuits: setup and hold constraints.

The timing constraints for asynchronous circuits are slightly
different than those for the synchronous case, but they are still
based on setup and hold constraints. Fig. 23 shows the timing
paths for the data transfer between two latches in an asynchro-
nous elastic circuit. In both cases, the arrival time of two paths,
one fast (F-path) and another slow (S-path), are competing.
Both paths have a common anchor point, represented as a thick
dot. This point must be identified inside the latch controller and
depends on its specific implementation. The timing constraints
have the form

δmin(S-path) > δmax(F-path) (1)

where δmin and δmax represent the minimum and maximum
delays of the path, respectively. These constraints are the
ones that determine the value of the matched delays. Timing
constraints for asynchronous blocks from the design library
can be generated using formal verification techniques. These
constraints can be later validated using standard STA tools and
used in standard synthesis flows [108].

The setup constraint, also called long-path constraint, guar-
antees that the enabling pulse of the receiving latch arrives
after the data arrive at the input of the latch. In case of time
borrowing, this constraint must refer to the falling edge of the
pulse. The F-path covers the path from the launching controller
to the input of the receiving latch. The S-path covers the
path from the launching controller to the enable signal of the
receiving latch through the matched delay of the req signals.

The hold constraint, also called short-path constraint, pre-
vents data overwriting. The F-path covers the path from the
receiving controller to the enable signal of the latch, whereas
the S-path covers the path from the receiving controller back
to the input of the latch through the ack signal and the launching
controller and latch.

CARMONA et al.: ELASTIC CIRCUITS 1447

Fig. 24. Asymmetric delay for four-phase signaling.

For four-phase signaling, the previous constraints may in-
volve “two rounds” across the same logic, for the active phase
and the return-to-zero. In this case, the matched delays are
crossed twice for the same constraint. For efficiency reasons,
asymmetric delays are often used, thus minimizing the return-
to-zero delay. Fig. 24 shows a possible implementation of an
asymmetric delay with a long rising delay and a short falling
delay.

VII. COMPLETION DETECTION

Synchronous circuits are typically based on the assumption
that a computation within every pipeline stage must be al-
ways completed within one clock cycle. Moreover, during the
design process, the clock-cycle period is assumed to have a
fixed duration. Most synchronization mechanisms are based
on a feedforward clock network from the oscillator. All delay
uncertainties in the clock tree, the combinational logic, and the
setup-hold constraints of the sequential logic must be taken
care of by means of appropriate worst-case margins. This style
may not be appropriate for designs where some uncertainty can
result in very large margins. For example, Hanson et al. [48]
report that the clock period of a circuit in 65-nm technology
must be increased by 230% for an ultralow power design with
Vdd = 300 mV (aggressively reduced voltage) to eliminate
late-mode errors introduced by variability.

Modern on-die active control techniques (e.g., [42], [84])
allow switching the design into different power-performance
states with different clock frequencies (and clock switched off
in deep-sleep states). However, within each mode of operation,
the clock cycle (and, hence, the deadline for every computation)
is fixed. Time borrowing and clock scheduling that are ap-
plied in advanced synchronous circuits redistribute delay slack
among different stages of computation and can reduce worst-
case margins for individual stages and, as a result, the overall
waste for delay margins.

There have also been recent attempts to reduce delay penal-
ties in synchronous design due to manufacturing-process un-
certainties by using STA [14], which is used to model the
impact of correlated and independent variability sources on
performance.6

However, the earlier techniques cannot adjust the duration
of the clock period dynamically according to the data patterns
that occur during the execution. This can be done by applying
completion detection for signaling completion of operations
instead of estimating their worst-case delays during the design
process. We now discuss how completion design can be done in
asynchronous and synchronous elastic circuits.

A. Asynchronous Circuits With Matched Delays

Most asynchronous design styles use some timing assump-
tions to correctly coordinate and synchronize computations.

6A discussion on the delay penalties in synchronous systems related to
manufacturing-process uncertainties and the asynchronous alternatives can be
found in [5] and [112].

The synchronization scheme for the asynchronous design
shown in Fig. 6(c) is based on inserting matched delays into
the request and acknowledgment paths of the controller. This
design style is often called bundled data. It assumes that the
maximum delay of each combinational logic island is smaller
than that of a reference logic path, which is called a matched
delay [105]. The durations of matched delays in different stages
need not be the same. The simplest way of selecting the value
for the delays is by applying standard STA to the corresponding
computation block, assuming the worst-case delays and then
adding some safety margin.

The design of the matched delays must be done taking into
account the potential sources of variability, either static (process
variations) or dynamic (voltage, temperature, noise). For this
reason, a multicorner analysis with on-chip variability parame-
ters must be performed. This would mainly affect the delay
constraints shown in (1). For each constraint and variability pa-
rameter, the minimum and maximum delays must be considered
for the left- and right-hand sides of the inequality, respectively.

Matched delays are implemented using the same gate library
(typically as a chain of inverters) and are subject to the same
operating conditions (temperature, voltage) if placed in the
same region as the corresponding blocks of the datapath. This
may result in consistent tracking of the datapath delays by the
matched delays and allows to reduce the design margins.

The margins associated with the matched delays depend on
technological parameters and the expected performance and
yield. Conservative margins contribute to improve yield, since
they provide more tolerance to variability. However, they have
a negative impact on performance. On the other hand, small
margins can result in better performance at the expense of
sacrificing yield.

To adjust the value of the postmanufacturing delays accord-
ing to the manufacturing and operating conditions (temperature,
voltage) or to the type of data that are currently being processed,
it is possible to introduce a completion detector based on multi-
plexing of different delay chains with different values of delays
matched against particular cases of execution or manufacturing
[41], [83].

A simple example of adjustable matched delay studied in
the literature is with application to the variable-delay adders.
Most additions do not require a complete carry propagation
from the least to the most significant bit. By including extra
logic, it is possible to monitor the carry propagation and deliver
a completion signal sooner [40], [87].

B. Asynchronous Elastic Circuits With DI Codes

Fig. 25(a) shows an alternative scheme for designing asyn-
chronous circuits. The datapath in this paper uses DI codes
[116]. For such codes, it is always possible to detect when the
operation is completed. Data are latched by stage i + 1 when it
detects the arrival of a new value from stage i. Because this
completion information is encoded with the data, the circuit
automatically adapts to timing variations arising from changes
in the operating conditions or sensitivity to data patterns.

A simple DI code that allows for an easy completion de-
tection is a dual-rail code in which every bit is encoded with
two wires (perhaps the first use of this code with completion
detection is published in [80] and [101]).

1448 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 25. (a) Asynchronous elastic design using DI code in the datapath and completion detection instead of matching delays. (b) Example of completion detection
for QDI dual-rail code. (c) Synchronous elastic design with variable-latency unit and completion detection.

A dual-rail protocol uses two wires per bit, e.g., (a0, a1), for
a single bit a in Fig. 25(b). Values of (a0, a1) equal to (1, 0)
and (1, 0) represent “valid data” (logic 0 and 1, respectively).
Code (0, 0) represents “no data” (a so-called spacer). The code
(1, 1) is not used.7 Every transition between two sequential
valid data transfers should move through a spacer code. This
allows for the implementing of a four-phase handshake protocol
as follows.

1) The sender issues a valid code (1, 0) or (0, 1).
2) The receiver consumes the code after its validity is indi-

cated by the completion detector and sets the acknowl-
edgment high.

3) The sender responds by issuing the spacer code (0, 0).
4) The receiver acknowledges the spacer after it is indicated

by the same completion detector by setting the acknowl-
edgment low.

On an n-bit channel, a new codeword is received when
exactly one wire in each of the n wire pairs makes a transition.
The spacer is received when all pairs make a transition to the
spacer. An implementation of such code recognizers is shown
in Fig. 25(b): The OR gates distinguish valid data from spacer
at each wire pair, whereas the n-input C-element changes the
done signal when all pairs are valid (done = 1) or all pairs are
spacers (done = 0). Data are latched by the next stage after the
completion signal done is set [106].

While completion detection allows the measurement of real
delays, it also requires overhead for completion detection and
for the use of DI codes (such as dual rail). Hence, the actual
advantages with respect to other design styles strongly depend
on the class of applications.

C. Synchronous Elastic Circuits With Variable-Latency Units

Fig. 25(c) shows an extension of the basic synchronous
elastic circuit from Fig. 6(b) to accommodate variable latency
of operation in the second stage of the design. The valid signal
of the stage starts the computation. The input latch is stalled
until the done signal reports the completion of the operation
(which may occur in a few clock cycles). This triggers latching
the result by the output latch and, if necessary, clears small
internal FSMs inside the variable-latency unit.

Synchronous elastic pipelining presents a convenient frame-
work for inserting variable-latency blocks, since the pipeline
can tolerate variability in latency of operations. The variability

7Obviously, different encoding can be used, e.g., a spacer can be coded with
(1, 1) or sometimes as (0, 0) and sometimes as (1, 1).

in computation delays in this design style must be counted
in multiples of cycles. Implementing variable-latency blocks
requires synchronous completion detectors.

A typical approach for designing variable-latency units is
called telescopic units [7], [8], [109].

An alternative approach is based on the partitioning of the
original computational unit into several subunits to form an iter-
ative network [117]. Each subunit is designed to distinguishing
data words from transient words using some specific encoding,
thus producing a completion signal. A typical case is a ripple
carry adder with a scheme that detects the completion of the
carry propagation. The adder is subdivided into k partial adders,
and the variable latency of the adder is translated into a variable
number of clock cycles, between 1 and k, that are required to
complete the operation [19].

VIII. PERFORMANCE ANALYSIS AND OPTIMIZATION

OF ELASTIC CIRCUITS

A. Performance Analysis

Performance analysis has received extensive attention in the
last decades. The existing techniques can be classified into
three groups: simulation-based [20], [76], [86], [121], partial-
order [25], [50], and Markov analysis methods [62], [120]. In
addition, fast hierarchical methods can be used [43]. To cover
all of these techniques would require a tutorial on its own, so in
this paper, we will pick a simple technique based on graph the-
ory that is both simple and sufficient to illustrate the concepts
of this section.

Let us start by analyzing the performance of a simple elastic
circuit (a ring), consisting of six stages, as shown in Fig. 26(a).
The formal model used in this paper to analyze an elastic
circuit is a timed MG (TMG) [81], where transitions correspond
to the combinational logic in stages, pairs of complementary
arcs denote latches, and the marking represents the distribution
of the data. Transitions are annotated with the delay of the
combinational logic: It can be a natural number if the system
is synchronous (number of clock cycles) or a real number if
the system is asynchronous (e.g., delay in picoseconds). In the
asynchronous setting, more detailed models can be defined that
capture particular types of delays for a stage of the circuit [56]:
function evaluation and reset delay, completion detection delay,
and control overhead delays for evaluation and reset. For the
sake of clarity, we summarize all these delays into only one
number. This simplification can be dropped if a richer model
is used. For instance, the full buffer channel net [6] annotates
delays in the arcs instead of the transitions of the Petri net, thus
allowing forward and backward latencies to be distinguished.

CARMONA et al.: ELASTIC CIRCUITS 1449

Fig. 26. (a) Elastic circuit. (b) Corresponding MG. (c) Throughput versus
number of tokens.

In general, these delays are unequal with forward latencies
typically being greater.

Tokens and bubbles (see Section III-C) are represented by
the marking of complementary arcs, as shown in the right part
of Fig. 26(a). In particular, a token is represented by a marker
on the forward solid arrow, whereas a bubble is represented
by a marker on the backward dashed arrow. Fig. 26(b) shows
the TMG corresponding to the ring shown in Fig. 26(a), with
only one datum in stage F1. In this example, we assume unitary
delays on all transitions and therefore do not explicitly annotate
delays on transitions. Additionally, notice that (for convenience
only) we draw the flow of data with solid lines (forward arcs),
whereas the flow of back-pressure is drawn with dashed lines
(backward arcs).

The performance of an elastic circuit is usually represented
by its throughput, defined as the number of valid tokens that
flow through a stage per time unit. Assuming unit delay in all
stages shown in Fig. 26(a) and given that there is only one token
in the circuit, its throughput is 1/6. In the TMG, this can be
observed by the forward cycle with one token and six transi-
tions. A question arises: what is the throughput with respect to
its token distribution? Section VIII-B will introduce strategies
for improving the performance of an arbitrary elastic circuit.
In this paper, we analyze the performance of this toy ring with
respect to the tokens and bubbles it has. Fig. 26(c) shows an
interesting principle [45], [119]: by adding tokens into the ring,
the throughput can increase up to a maximal point, in which
the number of tokens is equal to the number of bubbles for
identical forward and backward latencies.8 As indicated in the
figure, in reality, the maximal throughput achievable might be
less than the ideal throughput, due to slow stages that limit the
performance of the whole system. The left part of the maximal
point is known as data limited, because only the absence of
tokens limits the performance improvement, whereas the right
part is known as bubble limited, since the absence of space in
the elastic circuit limits the flow of tokens, thus degrading the
performance. Deadlock points are also shown in the diagram,
corresponding to an elastic circuit with no data (left) or with no
bubbles (right).

8In general, the optimal number of tokens and bubbles depends on the values
of the forward and backward latencies in the ring [45], [66], [118].

Fig. 27. Example of a TMG.

In general, an elastic circuit can be modeled with a TMG con-
taining several cycles that are synchronized at particular points.

A TMG is a tuple G = (T,A,M0, δ), where T is a set of
transitions, A ⊆ T × T is a set of directed arcs, and M0 : A →
N is a marking that assigns an initial number of tokens to each
arc. Function δ : T → R

+ ∪ {0} assigns a nonnegative delay
to every transition. In a TMG, once a transition t is enabled,
it fires after δ(t) time units. An example of a TMG is shown
in Fig. 27. This TMG models latches of capacity two, and all
transitions have unitary delay.

The throughput analysis of an arbitrary elastic circuit mod-
eled as a TMG must consider several rings (cycles in the TMG),
synchronized at particular points, as it happens in the example
shown in Fig. 27. In [94], two important facts are observed
for a TMG.

1) The performance is defined by the throughput of its most
stringent simple cycle.

2) All transitions have the same throughput.
Formally, if C is the set of simple directed cycles in a TMG,

its throughput can be determined as [94]

Θ = min
c∈C

M0(c)
∑

t∈c
δ(t)

(2)

where M0(c) denotes the sum of tokens in cycle c. In the
example shown in Fig. 27, the throughput is 1/4 (backward
cycle {d, h, j, i}). Many efficient polynomial algorithms for
computing the throughput of a TMG exist that do not require
an exhaustive enumeration of all cycles [35], [53].

The previous technique can be easily adapted to handle
different forward and backward latencies, as it is shown, for
instance, in [6]: The idea is to annotate the delays in the arcs,
instead of the transitions. Hence, forward latencies will be
assigned to forward arcs in the TMG model, whereas backward
arcs will encode the corresponding backward latencies. Equa-
tion (2) can be easily adapted to define the throughput in this
extended model.

B. Performance Optimization by Slack Matching

Two techniques to improve the performance of elastic cir-
cuits are presented in this section.

Unbalanced fork–join structures in an elastic circuit cause
tokens in different branches to arrive at a join stage at different
times, making the earlier tokens stall until tokens from the slow
branches arrive. This will cause further tokens in the back-
ward direction of the stalled tokens to stall, degrading the
performance of the circuit. Let us illustrate this phenomenon
on the example shown in Fig. 28. In Fig. 28(a), a synchronous

1450 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 28. (a) and (b) Effect of unbalanced branches. (c) Recycling fast branch
for slack matching.

elastic circuit with two branches is shown. Assuming unit
delays, the theoretical throughput is represented by the top
cycle, with ratio 2/5 (two dots, five registers). Notice that, in the
bottom cycle, there is one datum stalled in the initial state. This
will cause, in the next clock tick, stalling the fork channel, as
shown in Fig. 28(b). The fork channel is stalled one clock cycle
until the slow branch can provide a token to the join channel.
In summary, the stalling of the bottom (fast) branch produces
the stalling of some channel in the slow branch. Hence, the
throughput of the system is degraded to 2/6. This is because
the bottom cycle is bubble limited.

One way to prevent this throughput degradation is by forcing
tokens to arrive at join stages at the same time. Slack matching
enforces this by increasing the capacity of fast branches with
the aim of balancing fork–join branches [6], [70], [119]. In
Fig. 28(c), an empty buffer has been inserted in the bottom
branch to avoid the propagation of the stall to the fork channel.
Even though the two branches are not totally balanced, this
insertion is already sufficient to make the bottom cycle token
limited, thus allowing the pipeline to reach the maximum
throughput of 2/5.

Two techniques can be used to increase the capacity in short
branches: The one applied in Fig. 28(c) is called recycling and
is based on the insertion of empty buffers. A drawback of this
transformation is that it might increase the cycle time of the
system when these empty buffers create new critical cycles.
The second transformation, known as buffer sizing, increments

Fig. 29. Two techniques for slack matching for the TMG of Fig. 27. (a) Buffer
sizing. (b) Recycling.

the capacity of buffers in short branches. The cost of buffer
sizing is the need for extra logic to control the additional
capacity of increased buffers [26], [67]. On the other hand, the
cycle time is never degraded by buffer sizing. In general, the
techniques for slack matching are usually based on the solution
of a linear system of constraints. In this section, we will use
the TMG model to illustrate how efficient algorithms can be
derived for slack matching.

Buffer sizing: increasing buffer capacity. The modeling of
the capacity increase of a buffer in an elastic circuit is done in
the TMG by adding tokens in the corresponding backward arc.
When the most stringent cycle of a TMG contains backward
arcs, then increasing the capacity of the corresponding buffers
may increase the throughput [67]. For instance, in Fig. 27, if
the capacity of any of the channels in the cycle {d, h, j, i}
is augmented in one unit, then the throughput will rise to
2/4. With another increase (in one unit) of the capacity of
any of these buffers, the cycle {d, h, j, i} will have ratio 3/4.
The resulting TMG is shown in Fig. 29(a). Note that, after
these two transformations, the cycle {a, b, c, d, e} becomes the
most stringent cycle, determining the system throughput to
be 3/5. Hence, from the TMG in Fig. 27, increasing buffer
capacities in cycle {d, h, j, i} in 2, 3, . . . , k units will lead to the
same throughput improvement. Unfortunately, the problem of
determining the minimal buffer increase to reach the maximal
throughput is NP-complete [96].

Recycling: adding bubbles. An optimization technique sim-
ilar to buffer sizing is recycling [23], which also aims at
increasing the ratio of critical cycles containing backward arcs.
In synchronous circuits, recycling can be used to attain a given
clock period by breaking long combinatorial paths: In this
sense, it is a similar technique to buffer insertion in physical
synthesis. An example of recycling applied to the TMG shown
in Fig. 27 is shown in Fig. 29(b), with a bubble inserted
between transitions h and j. This transformation achieves the
same throughput improvement of buffer sizing on the same
example. Recycling cannot always attain the same throughput

CARMONA et al.: ELASTIC CIRCUITS 1451

improvement as buffer sizing, because a zero-marked forward
arc is inserted that may degrade the ratio of the cycle involved.

C. Early Evaluation

Conventional elastic systems rely on late evaluation: The
computation is initiated only when all input data are available.
This requirement can be too strict. Consider a multiplexor with
the following behavior:

z = if s then a else b.

The result of a multiplexer can be produced by an early
evaluation of the expression. For instance, if s and a are
available and the value of s is true, then there is no need to
wait for b to arrive before evaluating the output. In that case, the
result z = a can be produced right away. However, the value of
b should be discarded when it arrives at the multiplexer without
producing a new result at the output of the multiplexer.

In early evaluation, care must be taken in preventing the spu-
rious enabling of functional units when the nonrequired inputs
arrive later than the completion of the computation. A possible
technique is the use of negative tokens, also called antitokens.
Each time an early evaluation occurs, an antitoken is generated
at every nonrequired input in such a way that when it meets the
positive token, they annihilate. The antitokens can be passive,
waiting for the positive token to arrive, or active, traveling in
the backward direction to meet the positive token. The passive
protocol is simpler to implement, but the active protocol may
be advantageous in terms of power and performance.

Active antitokens implement a counterflow of information
in the elastic circuits and therefore are reminiscent of the
counterflow pipeline from [107]. The idea of passive antitokens
for early evaluation was used in [57] and [122], extending Petri
nets for handling OR causality and nodes with arbitrary guard
functions.

To incorporate early evaluation in a elastic circuit, the Join
module of a synchronous or asynchronous elastic controller
must be modified: The AND evaluation function [shown in
Fig. 21(a)] is replaced with a corresponding early evaluation
guard function. The guard function can be data dependent and
listens to a few inputs from the datapath. For the multiplexor
example, the early evaluation guard needs to have a select
signal of the multiplexor to make correct decisions on when
antitokens can be issued and in which channel. In addition,
some hardware should be added to discard tokens of unneeded
information, e.g., by generating and counting antitokens for a
passive protocol or generating and propagating antitokens for
an active protocol.

For synchronous elasticity, several approaches have been
proposed for early evaluation using different schemes to ac-
count for the negative tokens in the flow [24], [29], [65]. In
the EDA flow proposed in this paper, the implementation of
early evaluation can be reduced to an enhancement of the Join
controllers.

The strategy for incorporating active antitokens in [29] was
based on a dual counterflow of tokens. In that case, the two
flows were implemented using symmetric versions of the latch,
join, and fork controllers. The protocol required four handshake
signals: two for tokens and two for antitokens. In that protocol,
passive antitokens were simply implemented as a simplification

of the scheme for active antitokens. The details of the imple-
mentation can be found in [30], in which the formal verification
of the controllers is also addressed.

Early evaluation has also been used in asynchronous con-
trollers. In [95], the inputs of blocks with early evaluation
are partitioned into early and late. Early evaluation is allowed
when all early inputs have arrived. The block waits for all
inputs to arrive before advancing to the next evaluation. A
35% improvement was reported in the performance of a MIPS
microprocessor.

Active antitokens have also been proposed by [1] and [17]
for the design of faster asynchronous pipelines. In this case,
special care must be taken to avoid metastability conditions
when tokens and antitokens cross each other. In [1], an elegant
solution was proposed based on implementing a two-phase
protocol in which the arrival of tokens (antitokens) and the ac-
knowledgment of antitokens (tokens) is treated symmetrically.
With such property, the protocol can be implemented with a
metastability-free circuit without requiring the use of arbiters.

IX. EXAMPLES AND DISCUSSION

The widespread use of cache memories, the difficulty of hav-
ing an accurate estimation of the worst-case execution time for
software, and the use of multitasking kernels make many sys-
tems work in scenarios with high variability in which average-
case performance is the main metric to estimate efficiency.

Along the same vein, design schemes with elastic compo-
nents (either synchronous or asynchronous) that provide
average-case delays may be acceptable for many applications,
ranging from general-purpose computing to multimedia and
wireless communications. If the average throughput of an
elastic device is significantly higher than that of a tradition-
ally designed device, then the performance advantage may be
sufficient to accept moderately disruptive changes in the de-
sign flow.

Instead of minimizing the worst-case parameters, several
approaches [4], [19], [37], [55], [60], [99] suggest optimizing
circuits for typical modes of operation, i.e., to make circuits
elastic. One of the most known examples of such approach
(sometimes called Better Than Worst-Case Design [4]) is Razor
[37]. It is based on the observation that many signals often stabi-
lize before their worst-case delay in most operating conditions.
Thus, these signals can be sampled using shorter clock periods,
at the expense of sporadically violating the long-path (setup)
constraint.

The Razor CPU is designed with double slave latches and
an XOR gate in each master–slave pair, thus doubling the area
overhead of each converted latch. The second slave is clocked
later than the first slave, guaranteeing a safe operation. If the
comparator detects a difference between the values sampled by
each slave, it means that the first slave memorized an incorrect
value. When such anomaly occurs, the processor “skips a beat”
and restarts the pipeline with the value of the second latch,
which is always correct. This mechanism could be consid-
ered as a scheme for completion detection in synchronous
designs.

This approach may be appealing for low-power processors,
but it also has an inherent problem that makes it unsuitable
for some application-specific integrated-circuit (ASIC) designs.

1452 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Due to near-critical clocking, it is always possible for the first
latch to become metastable [58]. To avoid circuit malfunction
in Razor, a synchronizer is added to the output of the latch in
such a way that the error is detected after a certain latency.9

When an error is detected, the pipeline is flushed and restarted
in a way similar to what is done for precise interrupts. However,
it is very difficult, if not impossible, to use similar mechanisms
for conventional ASICs.

Asynchronous implementations with completion detection,
as demonstrated, e.g., in [54], [74], and [85], achieve similar
goals with much simpler logic, since the delay of the logic
is directly used to generate the synchronization signals in a
feedback control fashion.

A version of the DLX microprocessor [49] was automatically
synthesized using the desynchronization approach presented in
Section IV [2], [34]. When comparing the average-case asyn-
chronous with the worst-case synchronous performance, the
desynchronized version was shown to be in average 10% faster
in 90% of the cases [2]. Desynchronized mode of operation also
demonstrated good tolerance to variability of design parame-
ters [33]. DLX was also chosen as an example of efficiency
(it combines the modularity of asynchronous design with the
ease of synchronous approach) for both the latency-insensitive
approach [21] and the synchronous elastic pipelining [31] pre-
sented in Section V.

The correct-by-construction nature of synchronous elastic
pipelining [21], [61] enables its applicability at the latest stages
of the design, when delays of data transfers have been calcu-
lated, without any impact on the functionality of the systems.

Synchronous elastic pipelining can be effectively combined
with variable-latency blocks when the synthesis of these blocks
can be supported by EDA tools. A well-known example of this
approach is telescopic units, which can be applied to relatively
large designs achieving performance gains higher than 25% on
average [109].

The syntax-directed translation from concurrent languages is
another paradigm targeting asynchronous elasticity. The most
prominent examples are the languages Haste [93] and Balsa
[36], which are synthesized into a set of handshake components
that implement the functionality of the language constructs
[10]. Its main forte is the inheritance of all the advantages
of asynchronous circuits by controlling the activation of both
control and datapath units (and, hence, power and energy
consumption) at a very fine level with direct and explicit
HDL support. The best-known examples in this framework are
the ARM996HS [12], a 32-b RISC processor core part of the
ARM9E family targeted at low-power robust design, and the
SmartMX microcontroller, used in 80% of the world’s smart
passports because of its low-power consumption [47]. This par-
adigm enables the conception of purely asynchronous systems
from the early design stages, thus taking advantage of the full
power of asynchrony in terms of computation and communica-
tion. Unfortunately, this approach, which is attractive from the
theoretical point of view, requires reeducation of RTL designers
and rewriting of existing specifications, which is not realistic
for large and expensive designs (see [112] for details). In the
context of compiling high-level specifications with choices into

9A typical synchronizer requires at least two flip-flops, thus adding a latency
of at least one cycle.

asynchronous elastic systems, it was shown that, for a system
to be functionally correct after introducing buffers, it must meet
the requirements for slack elasticity [70].

An extreme case of asynchronous elastic pipelining—gate-
level pipelining, can combine high throughput with low voltage,
given the robustness achieved by the insensitivity to variabil-
ity provided by gate-level completion detection. Furthermore,
this approach is suitable for applications related to hardware
security [112], since the combination of asynchronous elasticity
and balanced dynamic gates is essential for the design of
devices that are highly resistant to side-channel attacks (dual-
rail dynamic gates are easier to balance, completion detection
makes early propagation attack problematic, glitch attacks are
not possible, etc., see [63], [64] for details).

One of the main trends in EDA today is to increase the
level of abstraction at which systems are specified, thus moving
from RTL to higher level languages. Many researchers believe
that most systems in the area of SoC design are going to
use the so-called electronic-system-level (ESL) flows. At the
very least, ESL flow is supposed to incorporate a front-end
with higher level specifications (e.g., SystemC or ANSI-C)
into synthesis flow. There are several interesting publications
related to ESL flow for asynchronous (bundled delay) design
[44], [114], [115]. This flow is actually closer to a software
C-compiler than a hardware synthesis flow.

Nevertheless, elasticity can play a relevant role in this area,
enabling correct-by-construction refinements of the high-level
specifications. The tolerance to delay or latency variations,
while preserving correctness, may become a valuable feature
for the construction of complex systems composed of hetero-
geneous blocks that continuously change their nonfunctional
properties (e.g., power and timing).

X. CONCLUSION

Elasticity is a concept that goes beyond the particular imple-
mentation aspects of timing. This paper has presented a unified
view of elasticity in synchronous and asynchronous pipelines,
showing that the underlying theory can often be shared and
reused in different scenarios.

This paper has shown that a common EDA flow can be
devised for elastic circuits in which the synchronous or asyn-
chronous nature of the design only affects the clocking scheme
synthesized by the flow.

The relevance of variability in the timing behavior of circuits
will surely increase the presence of different forms of elasticity
in the next few years.

REFERENCES

[1] M. Ampalam and M. Singh, “Counterflow pipelining: Architectural
support for preemption in asynchronous systems using anti-tokens,” in
Proc. ICCAD, 2006, pp. 611–618.

[2] N. Andrikos, L. Lavagno, D. Pandini, and C. P. Sotiriou, “A fully-
automated desynchronization flow for synchronous circuits,” in Proc.
44th DAC, 2007, pp. 982–985.

[3] AMBA Specification (Rev 2.0), ARM Limited, U.K., 1999.
[4] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and

challenges for better than worst-case design,” in Proc. ASP-DAC, 2005,
pp. 2–7.

[5] P. Beerel, J. Cortadella, and A. Kondratyev, “Bridging the gap between
asynchronous design and designers,” in Proc. VLSI Des. Conf., Mumbai,
India, 2004, pp. 18–20. (tutorial).

CARMONA et al.: ELASTIC CIRCUITS 1453

[6] P. Beerel, A. Lines, M. Davies, and N.-H. Kim, “Slack matching
asynchronous designs,” in Proc. 12th IEEE Int. Symp. Asynchronous
Circuits Syst., Mar. 2006, pp. 184–194.

[7] L. Benini, E. Macii, M. Poncino, and G. De Micheli, “Telescopic
units: A new paradigm for performance optimization of VLSI designs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 17, no. 3,
pp. 220–232, Mar. 1998.

[8] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino,
“Automatic synthesis of large telescopic units based on near-minimum
timed supersetting,” IEEE Trans. Comput., vol. 48, no. 8, pp. 769–779,
Aug. 1999.

[9] C. H. van Berkel, M. B. Josephs, and S. M. Nowick, “Scanning the
technology: Applications of asynchronous circuits,” Proc. IEEE, vol. 87,
no. 2, pp. 223–233, Feb. 1999.

[10] K. van Berkel, Handshake Circuits: An Asynchronous Architecture for
VLSI Programming, vol. 5. Cambridge, U.K.: Cambridge Univ. Press,
1993.

[11] K. van Berkel and A. Bink, “Single-track handshaking signaling with
application to micropipelines and handshake circuits,” in Proc. Int.
Symp. Adv. Res. Asynchronous Circuits Syst., Mar. 1996, pp. 122–133.

[12] A. Bink and R. York, “ARM996HS: The first licensable, clockless 32-bit
processor core,” IEEE Micro, vol. 27, no. 2, pp. 58–68, Mar./Apr. 2007.

[13] G. Birtwistle and K. Stevens, “The family of 4-phase latch protocols,”
in Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst., Apr. 2008,
pp. 71–82.

[14] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical tim-
ing analysis: From basic principles to state of the art,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 4, pp. 589–607,
Apr. 2008.

[15] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and
C. Sotiriou, “Handshake protocols for de-synchronization,” in Proc. Int.
Symp. Adv. Res. Asynchronous Circuits Syst., Apr. 2004, pp. 149–158.

[16] A. Branover, R. Kol, and R. Ginosar, “Asynchronous design by
conversion: Converting synchronous circuits into asynchronous ones,”
in Proc. DATE, Feb. 2004, pp. 870–875.

[17] C. Brej, “Early output logic and anti-tokens,” Ph.D. dissertation, Univ.
Manchester, Manchester, U.K., 2005.

[18] J. A. Brzozowski and C.-J. H. Seger, Asynchronous Circuits.
New York: Springer-Verlag, 1995.

[19] A. Burg, F. K. Gürkaynak, H. Kaeslin, and W. Fichtner, “Variable delay
ripple carry adder with carry chain interrupt detection,” in Proc. IEEE
Int. Symp. Circuits Syst., 2003, pp. 113–116.

[20] S. M. Burns, “Performance analysis and optimization of asynchronous
circuits,” Ph.D. dissertation, California Inst. Technol., Pasadena, CA,
1991.

[21] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli, “Theory of
latency-insensitive design,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 20, no. 9, pp. 1059–1076, Sep. 2001.

[22] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sagiovanni-
Vincentelli, “A methodology for correct-by-construction latency
insensitive design,” in Proc. ICCAD, Nov. 1999, pp. 309–315.

[23] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis
and optimization of latency insensitive systems,” in Proc. ACM/IEEE
Des. Autom. Conf., Jun. 2000, pp. 361–367.

[24] M. Casu and L. Macchiarulo, “Adaptive latency-insensitive protocols,”
IEEE Des. Test Comput., vol. 24, no. 5, pp. 442–452, Sep./Oct. 2007.

[25] S. Chakraborty, K. Yun, and D. Dill, “Timing analysis of asynchro-
nous systems using time separation of events,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 18, no. 8, pp. 1061–1076,
Aug. 1999.

[26] T. Chelcea and S. Nowick, “Robust interfaces for mixed-timing sys-
tems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 8,
pp. 857–873, Aug. 2004.

[27] D. Chinnery, K. Keutzer, J. Sanghavi, E. Killian, and K. Sheth, “Auto-
matic replacement of flip-flops by latches in ASICs,” in Closing the Gap
Between ASIC & Custom, D. Chinnery and K. Keutzer, Eds. Norwell,
MA: Kluwer, 2002, ch. 7.

[28] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic
specifications,” Ph.D. dissertation, MIT Lab. Comput. Sci., Cambridge,
MA, Jun. 1987.

[29] J. Cortadella and M. Kishinevsky, “Synchronous elastic circuits with
early evaluation and token counterflow,” in Proc. ACM/IEEE DAC, Jun.
2007, pp. 416–419.

[30] J. Cortadella and M. Kishinevskyin “Synchronous elastic circuits with
early evaluation and token counterflow,” Universitat Politècnica de
Catalunya, Barcelona, Spain, Tech. Rep. LSI-07-13-R, 2007. [Online].
Available: www.lsi.upc.edu/~techreps/files/R07-13.zip

[31] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis
of synchronous elastic architectures,” in Proc. ACM/IEEE DAC,
Jul. 2006, pp. 657–662.

[32] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, Logic Synthesis of Asynchronous Controllers and Interfaces.
New York: Springer-Verlag, 2002.

[33] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, “Coping
with the variability of combinational logic delays,” in Proc. 22nd IEEE
Int. Conf. Comput. Des., 2004, pp. 505–508.

[34] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou,
“Desynchronization: Synthesis of asynchronous circuits from syn-
chronous specifications,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 25, no. 10, pp. 1904–1921, Oct. 2006.

[35] A. Dasdan, S. S. Irani, and R. K. Gupta, “Efficient algorithms for
optimum cycle mean and optimum cost to time ratio problems,” in Proc.
36th Des. Autom. Conf., 1999, pp. 37–42.

[36] D. Edwards and A. Bardsley, “Balsa: An asynchronous hardware
synthesis language,” Comput. J., vol. 45, no. 1, pp. 12–18, Jan. 2002.

[37] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner, “Razor: Circuit-level correction of timing errors for
low-power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20,
Nov./Dec. 2004.

[38] R. M. Fuhrer and S. M. Nowick, Sequential Optimization of Asynchro-
nous and Synchronous Finite-State Machines: Algorithms and Tools.
Norwell, MA: Kluwer, 2001.

[39] S. B. Furber and P. Day, “Four-phase micropipeline latch control
circuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 4, no. 2,
pp. 247–253, Jun. 1996.

[40] J. D. Garside, “A CMOS VLSI implementation of an asynchronous
ALU,” in Asynchronous Design Methodologies, vol. A-28, S. Furber
and M. Edwards, Eds. Amsterdam, The Netherlands: Elsevier, 1993,
pp. 181–207.

[41] J. D. Garside, W. J. Bainbridge, A. Bardsley, D. A. Edwards,
S. B. Furber, J. Liu, D. W. Lloyd, S. Mohammadi, J. S. Pepper,
O. Petlin, S. Temple, and J. V. Woods, “AMULET3i—An asynchronous
system-on-chip,” in Proc. Int. Symp. Adv. Res. Asynchronous Circuits
Syst., Apr. 2000, pp. 162–175.

[42] G. Gerosa, S. Curtis, M. D’Addeo, B. Jiang, B. Kuttanna, F. Merchant,
B. Patel, M. Taufique, and H. Samarchi, “A sub-1 W to 2 W low-power
IA processor for mobile internet devices and ultra-mobile PCs in 45 nm
hi-k metal gate CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf.,
Feb. 2008, pp. 256–611.

[43] G. Gill, V. Gupta, and M. Singh, “Performance estimation and slack
matching for pipelined asynchronous architectures with choice,” in Proc.
ICCAD, Nov. 2008, pp. 449–456.

[44] G. Venkataramani and S. C. Goldstein, “Leveraging protocol knowledge
in slack matching,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des.,
San Jose, CA, Nov. 2006, pp. 724–729.

[45] M. R. Greenstreet and K. Steiglitz, “Bubbles can make self-timed pipe-
lines fast,” J. VLSI Signal Process., vol. 2, no. 3, pp. 139–148, Nov. 1990.

[46] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann, “Polychrony for system
design,” J. Circuits Syst. Comput., vol. 12, no. 3, pp. 261–304, Apr. 2003.

[47] Handshake solutions empowers 80% of epassports globally, 2006.
[Online]. Available: http://www.handshakesolutions.com/News/

[48] S. Hanson, B. Zhai, D. Blaauw, D. Sylvester, A. Bryant, and X. Wang,
“Energy optimality and variability in subthreshold design,” in Proc.
ISLPED, 2006, pp. 363–365.

[49] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach. San Mateo, CA: Morgan Kaufmann, 1990.

[50] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello, “An algorithm for
exact bounds on the time separation of events in concurrent systems,”
IEEE Trans. Comput., vol. 44, no. 11, pp. 1306–1317, Nov. 1995.

[51] IEEE Standard for a Versatile Backplane Bus: VMEbus, IEEE Std 1014-
1987 (R2008), 1987.

[52] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook,
S. E. Schuster, E. G. Mercer, and C. J. Myers, “Synchronous interlocked
pipelines,” in Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst.,
Apr. 2002, pp. 3–12.

[53] R. Karp, “A characterization of the minimum cycle mean in a digraph,”
Discr. Math., vol. 23, no. 3, pp. 309–311, Sep. 1978.

[54] C. Kelly, V. Ekanayake, and R. Manohar, “SNAP: A sensor-network
asynchronous processor,” in Proc. Int. Symp. Adv. Res. Asynchronous
Circuits Syst., May 2003, pp. 24–33.

[55] E. Kim, D.-I. Lee, H. Saito, H. Nakamura, J.-G. Lee, and
T. Nanya, “Performance optimization of synchronous control units for
datapaths with variable delay arithmetic units,” in Proc. ASP-DAC, 2003,
pp. 816–819.

1454 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

[56] S. Kim and P. A. Beerel, “Pipeline optimization for asynchronous
circuits: Complexity analysis and an efficient optimal algorithm,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 3,
pp. 389–402, Mar. 2006.

[57] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky,
Concurrent Hardware: The Theory and Practice of Self-Timed Design,
ser. Series in Parallel Computing. New York: Wiley, 1994.

[58] L. Kleeman and A. Cantoni, “Metastable behavior in digital systems,”
IEEE Des. Test Comput., vol. 4, no. 6, pp. 4–19, Dec. 1987.

[59] R. Kol and R. Ginosar, “A doubly-latched asynchronous pipeline,” in
Proc. ICCD, Oct. 1996, pp. 706–711.

[60] Y. Kondo, N. Ikumi, K. Ueno, J. Mori, and M. Hirano, “An early-
completion-detecting ALU for a 1 GHz 64 b datapath,” in Proc. 43rd
IEEE ISSCC. Dig. Tech. Papers, Feb. 6–8, 1997, pp. 418–419. 497.

[61] S. Krstic, J. Cortadella, M. Kishinevsky, and J. O’Leary, “Synchronous
elastic networks,” in Proc. FMCAD, 2006, pp. 19–30.

[62] P. Kudva, G. Gopalakrishnan, and E. Brunvand, “Performance analysis
and optimization for asynchronous circuits,” in Proc. ICCD, Oct. 1994,
pp. 221–224.

[63] K. Kulikowski, A. Smirnov, and A. Taubin, “Automated design of
cryptographic devices resistant to multiple side-channel attacks,” in
Proc. CHES, Yokohama, Japan, 2006, pp. 399–413.

[64] K. Kulikowski, V. Venkataraman, Z. Wang, A. Taubin, and
M. Karpovsky, “Asynchronous balanced gates tolerant to interconnect
variability,” in Proc. IEEE Int. Symp. Circuits Syst., Seattle, WA, 2008,
pp. 3190–3193.

[65] C.-H. Li and L. Carloni, “Leveraging local intracore information to
increase global performance in block-based design of systems-on-chip,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 2,
pp. 165–178, Feb. 2009.

[66] A. Lines, “Pipelined asynchronous circuits,” M.S. thesis, California Inst.
Technol., Pasadena, CA, 1998. (CaltechCSTR:1998.cs-tr-95-21).

[67] R. Lu and C.-K. Koh, “Performance optimization of latency insensitive
systems through buffer queue sizing of communication channels,” in
Proc. ICCAD, Nov. 2003, pp. 227–231.

[68] R. Lu and C.-K. Koh, “Performance analysis of latency insensitive
systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 25, no. 3, pp. 469–483, Mar. 2006.

[69] R. Manohar, “An analysis of reshuffled handshaking expansions,” in
Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst., Mar. 2001,
pp. 96–105.

[70] R. Manohar and A. J. Martin, “Slack elasticity in concurrent computing,”
in Proc. 4th Int. Conf. Math. Program Construction, J. Jeuring, Ed, 1998,
vol. 1422, pp. 272–285.

[71] A. J. Martin, “The limitations to delay-insensitivity in asynchronous
circuits,” in Advanced Research in VLSI, W. J. Dally, Ed. Cambridge,
MA: MIT Press, 1990, pp. 263–278.

[72] A. J. Martin, A. Lines, R. Manohar, M. Nyström, P. Pénzes,
R. Southworth, and U. Cummings, “The design of an asynchronous
MIPS R3000 microprocessor,” in Proc. Adv. Res. VLSI, Sep. 1997,
pp. 164–181.

[73] A. J. Martin and M. Nystrom, “Asynchronous techniques for system-
on-chip design,” Proc. IEEE, vol. 94, no. 6, pp. 1089–1120,
Jun. 2006.

[74] A. J. Martin, M. Nyström, K. Papadantonakis, P. I. Pénzes, P. Prakash,
C. G. Wong, J. Chang, K. S. Ko, B. Lee, E. Ou, J. Pugh, E.-V. Talvala,
J. T. Tong, and A. Tura, “The lutonium: A sub-nanojoule asynchro-
nous 8051 microcontroller,” in Proc. Int. Symp. Adv. Res. Asynchronous
Circuits Syst., May 2003, pp. 14–23.

[75] P. B. McGee and S. M. Nowick, “A lattice-based framework for the
classification and design of asynchronous pipelines,” in Proc.
ACM/IEEE Des. Autom. Conf., 2005, pp. 491–496.

[76] E. G. Mercer and C. J. Myers, “Stochastic cycle period analysis in timed
circuits,” in Proc. Int. Symp. Circuits Syst., 2000, pp. 172–175.

[77] R. Milner, Communication and Concurrency. Englewood Cliffs, NJ:
Prentice-Hall, 1989.

[78] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger, “Synthesis of
delay-insensitive modules,” in Proc. Chapel Hill Conf. Very Large Scale
Integr., H. Fuchs, Ed, 1985, pp. 67–86.

[79] D. E. Muller, “Asynchronous logics and application to information
processing,” in Proc. Symp. Appl. Switching Theory Space Technol.,
1962, pp. 289–297.

[80] D. E. Muller and W. S. Bartky, “A theory of asynchronous circuits,” in
Proc. Int. Symp. Theory Switching, Apr. 1959, pp. 204–243.

[81] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[82] C. Myers, Asynchronous Circuit Design. New York: Wiley, 2001.

[83] S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. Desai,
E. Alon, and M. Horowitz, “The implementation of a 2-core, multi-
threaded itanium family processor,” IEEE J. Solid-State Circuits, vol. 41,
no. 1, pp. 197–209, Jan. 2006.

[84] Powerwise adaptive voltage scaling. [Online]. Available: http://www.
national.com/analog/powerwise

[85] L. Necchi, L. Lavagno, D. Pandini, and L. Vanzago, “An ultra-low
energy asynchronous processor for wireless sensor networks,” in Proc.
12th IEEE Int. Symp. Asynchronous Circuits Syst., Mar. 13–15, 2006,
pp. 78–85.

[86] C. D. Nielsen and M. Kishinevsky, “Performance analysis based on
timing simulation,” in Proc. ACM/IEEE Des. Autom. Conf., Jun. 1994,
pp. 70–76.

[87] S. M. Nowick, K. Y. Yun, and P. A. Beerel, “Speculative completion
for the design of high-performance asynchronous dynamic adders,” in
Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst., Apr. 1997,
pp. 210–223.

[88] Open Core Protocol Specification, OCP Int. Partnership, Portland, OR,
2007. release 2.2.

[89] J. O’Leary and G. Brown, “Synchronous emulation of asynchronous
circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 16, no. 2, pp. 205–209, Feb. 1997.

[90] R. O. Ozdag and P. A. Beerel, “High-speed QDI asynchronous
pipelines,” in Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst.,
Apr. 2002, pp. 13–22.

[91] R. O. Ozdag, M. Singh, P. A. Beerel, and S. M. Nowick, “High-
speed non-linear asynchronous pipelines,” in Proc. DATE, Mar. 2002,
pp. 1000–1007.

[92] A. Peeters and K. van Berkel, “Synchronous handshake circuits,” in
Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst., Mar. 2001,
pp. 86–95.

[93] A. M. G. Peeters, “Implementation of handshake components,” in Proc.
25 Years Communicating Sequential Processes, 2004, pp. 98–132.

[94] C. V. Ramamoorthy and G. S. Ho, “Performance evaluation of
asynchronous concurrent systems using Petri nets,” IEEE Trans. Softw.
Eng., vol. SE-6, no. 5, pp. 440–449, Sep. 1980.

[95] R. Reese, M. Thornton, C. Traver, and D. Hemmendinger, “Early eval-
uation for performance enhancement in phased logic,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 4, pp. 532–550,
Apr. 2005.

[96] J. Rodriquez-Beltran and A. Ramirez-Trevino, “Minimum initial mark-
ing in timed marked graphs,” in Proc. IEEE Int. Conf. SMC, Oct. 2000,
vol. 4, pp. 3004–3008.

[97] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: From self-timed
to timed ones,” in Proc. Int. Workshop Timed Petri Nets, Torino, Italy,
Jul. 1985, pp. 199–207.

[98] S. S. Sapatnekar, “Static timing analysis,” in The CRC Handbook of
EDA for IC Design, L. Scheffer, L. Lavagno, and G. Martin, Eds.
Boca Raton, FL: CRC Press, 2006, pp. 6-1–6-17.

[99] T. Sato and I. Arita, “Constructive timing violation for improving
energy efficiency,” in Compilers and Operating Systems for Low Power.
Norwell, MA: Kluwer, 2003, pp. 137–153.

[100] C. L. Seitz, “System timing,” in Introduction to VLSI Systems,
C. A. Mead and L. A. Conway, Eds. Reading, MA: Addison-Wesley,
1980, ch. 7.

[101] J. C. Sims and H. J. Gray, “Design criteria for autosynchronous circuits,”
in Proc. Eastern Joint Comput. Conf. (AFIPS), Dec. 1958, vol. 14,
pp. 94–99.

[102] M. Singh and S. M. Nowick, “The design of high-performance dy-
namic asynchronous pipelines: High-capacity style,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 15, no. 11, pp. 1270–1283,
Nov. 2007.

[103] M. Singh and S. M. Nowick, “The design of high-performance
dynamic asynchronous pipelines: Lookahead style,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 15, no. 11, pp. 1256–1269,
Nov. 2007.

[104] M. Singh and S. M. Nowick, “MOUSETRAP: High-speed transition-
signaling asynchronous pipelines,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 15, no. 6, pp. 684–698, Jun. 2007.

[105] Principles of Asynchronous Circuit Design: A Systems Perspective,
J. Sparsø and S. Furber, Eds. Norwell, MA: Kluwer, 2001.

[106] J. Sparsø, J. Staunstrup, and M. Dantzer-Sørensen, “Design of delay
insensitive circuits using multi-ring structures,” in Proc. EURO-DAC,
Hamburg, Germany, Sep. 1992, pp. 15–20.

[107] R. F. Sproull, I. E. Sutherland, and C. E. Molnar, “The counterflow
pipeline processor architecture,” IEEE Des. Test Comput., vol. 11, no. 3,
pp. 48–59, Fall 1994.

CARMONA et al.: ELASTIC CIRCUITS 1455

[108] K. S. Stevens, Y. Xu, and V. Vij, “Characterization of asynchronous
templates for integration into clocked CAD flows,” in Proc. Int. Symp.
Adv. Res. Asynchronous Circuits Syst., 2009, pp. 151–161.

[109] Y.-S. Su, D.-C. Wang, S.-C. Chang, and M. Marek-Sadowska, “An
efficient mechanism for performance optimization of variable-latency
designs,” in Proc. 44th Annu. DAC, 2007, pp. 976–981.

[110] I. Sutherland and S. Fairbanks, “GasP: A minimal FIFO control,” in
Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst., Mar. 2001,
pp. 46–53.

[111] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6,
pp. 720–738, Jun. 1989.

[112] A. Taubin, J. Cortadella, L. Lavagno, A. Kondratyev, and A. Peeters,
“Design automation of real life asynchronous devices and systems,”
Found. Trends Electron. Des. Autom., vol. 2, no. 1, pp. 1–133, Jan. 2007.

[113] V. Varshavsky and V. Marakhovsky, “GALA (Globally Asynchronous—
Locally Arbitrary) design,” in Concurrency and Hardware Design,
vol. 2549, J. Cortadella, A. Yakovlev, and G. Rozenberg, Eds.
New York: Springer-Verlag, 2002, pp. 61–107.

[114] G. Venkataramani, T. Bjerregaard, T. Chelcea, and S. C. Goldstein,
“Hardware compilation of application-specific memory-access intercon-
nect,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25,
no. 5, pp. 756–771, May 2006.

[115] G. Venkataramani, M. Budiu, T. Chelcea, and S. Goldstein, “C to
asynchronous dataflow circuits: An end-to-end tool flow,” in Proc. IWLS,
Temecula, CA, Jun. 2004, pp. 501–508.

[116] T. Verhoeff, “Delay-insensitive codes—An overview,” Distrib. Comput.,
vol. 3, no. 1, pp. 1–8, Mar. 1988.

[117] W. M. Waite, “The production of completion signals by asynchronous,
iterative networks,” IEEE Trans. Comput., vol. C-13, no. 2, pp. 83–86,
Apr. 1964.

[118] T. E. Williams, “Self-timed rings and their application to division,”
Ph.D. dissertation, Stanford Univ. Press, Stanford, CA, Jun. 1991.

[119] T. E. Williams, “Performance of iterative computation in self-timed
rings,” J. VLSI Signal Process., vol. 7, no. 1/2, pp. 17–31, Feb. 1994.

[120] A. Xie and P. A. Beerel, “Symbolic techniques for performance analysis
of timed systems based on average time separation of events,” in Proc.
Int. Symp. Adv. Res. Asynchronous Circuits Syst., Apr. 1997, pp. 64–75.

[121] A. Xie and P. A. Beerel, “Performance analysis of asynchronous circuits
and systems using stochastic timed Petri nets,” in Hardware Design and
Petri Nets, A. Yakovlev, L. Gomes, and L. Lavagno, Eds. Norwell, MA:
Kluwer, Mar. 2000, pp. 239–268.

[122] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
M. Pietkiewicz-Koutny, “On the models for asynchronous circuit behav-
iour with OR causality,” Form. Methods Syst. Des., vol. 9, no. 3, pp. 189–
233, Nov. 1996.

[123] K. Y. Yun, P. A. Beerel, and J. Arceo, “High-performance asynchronous
pipeline circuits,” in Proc. Int. Symp. Adv. Res. Asynchronous Circuits
Syst., Mar. 1996, pp. 17–28.

Josep Carmona received the M.S. and Ph.D. de-
grees in computer science from the Universitat
Politècnica de Catalunya, Barcelona, Spain, in 1999
and 2004, respectively.

He was a Visiting Scholar at the University of
Leiden, Leiden, The Netherlands, in 2003. He is cur-
rently a Lecturer with the Department of Software,
Universitat Politècnica de Catalunya. His research
interests include formal methods and computer-aided
design of very large scale integration systems with
special emphasis on asynchronous circuits, concur-

rent systems, logic synthesis, and nanocomputing.
Dr. Carmona was the recipient of the Best Paper Award at the 9th Interna-

tional Symposium on Application of Concurrency to System Design in 2009.

Jordi Cortadella (M’88) received the M.S. and
Ph.D. degrees in computer science from the Univer-
sitat Politècnica de Catalunya, Barcelona, Spain, in
1985 and 1987, respectively.

He was a Visiting Scholar at the University of
California, Berkeley, in 1988. He is currently a Pro-
fessor with the Department of Software, Universitat
Politècnica de Catalunya. He is currently also Chief
Scientist with Elastix Solutions S.L., Barcelona.
His research interests include formal methods and
computer-aided design of very large scale integration

systems with special emphasis on asynchronous circuits, concurrent systems,
and logic synthesis. He has coauthored numerous research papers and has been
invited to present tutorials at various conferences.

Dr. Cortadella has served on the technical committees of several international
conferences in the field of design automation and concurrent systems. He was
the recipient of the Best Paper Awards at the International Symposium on
Advanced Research in Asynchronous Circuits and Systems and at the Design
Automation Conference, both in 2004, and the International Symposium on
Application of Concurrency to System Design in 2009. He was also the
recipient of a Distinction for the Promotion of the University Research from
the Generalitat de Catalunya in 2003.

Mike Kishinevsky (SM’96) received the M.S.
and Ph.D. degrees in computer science from
the Electrotechnical University of St. Petersburg,
St. Petersburg, Russia.

He was a Research Fellow with the Russian
Academy of Sciences, Moscow, Russia; a Senior
Researcher at a start-up in asynchronous design
(TRASSA); a Visiting Associate Professor at
the Technical University of Denmark, Lyngby,
Denmark; and a Professor with the University of
Aizu, Aizu-Wakamatsu, Japan. In 1998, he joined

Intel Corporation, Hillsboro, OR, where he is currently leading a research group
in front-end design with the Strategic CAD Laboratories. He coauthored three
books in asynchronous design and has published over 70 journal and conference
papers.

Dr. Kishinevsky has served on the technical program committee at sev-
eral conferences and workshops. He was the recipient of the Semiconductor
Research Corporation Outstanding Mentor Award in 2004, the Best Paper
Awards at the Design Automation Conference in 2004 and at the International
Symposium on Application of Concurrency to System Design in 2009.

Alexander Taubin (SM’96) received the M.Sc.
and Ph.D. degrees in computer science and en-
gineering from the Electrotechnical University of
St. Petersburg, St. Petersburg, Russia.

From 1979 to 1989, he was a Research Fellow
with the Computer Department, St. Petersburg Math-
ematical Economics Institute, Russian Academy of
Sciences, Moscow, Russia. From 1988 to 1993,
he was a Senior Researcher with the R&D Coop
TRASSA. From 1991 to 1992, he was a Postdoctoral
Researcher with the Department of Advanced Re-

search, Institute of Microelectronics, Zelenograd, Russia. From 1993 to 1999,
he was a Professor with the Department of Computer Hardware, University of
Aizu, Aizu-Wakamatsu, Japan. In 1999, he joined as a Senior Scientist with
Theseus Logic, Inc., Sunnyvale, CA. He is currently with the Electrical and
Computer Engineering Department, Boston University, Boston, MA, where he
joined as an Associate Professor in 2002. His current research interests include
design and design automation of asynchronous pipelined systems and high-
security, high-speed, and low-power devices and systems. He coauthored three
books in asynchronous design and has published more than 60 journal and
conference papers.

Dr. Taubin was the recipient of the Best Paper Award from the 11th Design,
Automation and Test in Europe (DATE 2008) Conference. He has served on
the technical committees of several international conferences in his field. He
was Program Cochair of the 2nd and the 14th International Symposium on
Advanced Research in Asynchronous Circuits and Systems (Async1996 and
Async2008).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

