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Abstract. The discovery of process models out of system traces is a

problem that has received significant attention in the last years. In this

work, a theory for the derivation of a Petri net from a set of traces is

presented. The method is based on the theory of abstract interpretation,

which has been applied successfully in other areas. The principal applica-

tion of this theory is Process Mining, an area that tries to incorporate the

use of formal models both in the design and use of information systems.

1 Introduction

Traces are everywhere: from information systems that store their continuous
executions, to any type of health care applications that record each patient’s
history. The transformation of a set of traces into a mathematical model that
can be used for a formal reasoning is therefore of great value.

This paper proposes methods to build a process model representing the causal
relations between the events in the trace, i.e., whether the event a occurs before
b and after c or d. The goal is to construct a graph modeling all these orderings
in a concise form. Among many of the graph formalisms that exist nowadays, we
have selected Petri nets (PN) [14] for representing a set of traces. The reasons
for this selection are: sound mathematical model, clear semantics, succinctness,
ability of representing concurrent and conflict behavior among others.

The problem of deriving a PN out of a set of traces (called log) is one of
the main areas of Process Mining [19]. More concretely, the goal is to obtain a
PN whose behavior contains all the traces in the log, but maybe more. Within
this area, several algorithms have been proposed to accomplish this task [4,20,5],
most of them based on the theory of regions [10]. Informally, the theory of regions
tries to map structures in the state-based or language-based representation of
a system into places of the derived PN. However, given the well-known state

explosion problem, algorithms that are defined at the level of the states will
suffer when dealing with large systems exhibiting a high degree of concurrency.

Abstract interpretation [8] is a generic approach for the static analysis of
complex systems. The underlying notion in abstract interpretation is that of
upper approximation: to provide an abstraction of a complex behavior with less
details. A property about a system such as an invariant is in some way an
abstraction: it represents all the states of the system that satisfy the property.

Intuitively, abstract interpretation defines a procedure to compute an upper
approximation for a given behavior of a system. This definition guarantees (a)
the termination of the procedure and (b) that the result is conservative. An
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Fig. 1. Approximating a set of values (left) with several abstract domains

important decision is the choice of the kind of upper approximation to be used,
which is called the abstract domain. For a given problem, there are typically
several abstract domains available. Each abstract domain provides a different
trade-off between precision (proximity to the exact result) and efficiency.

There are many problems where abstract interpretation can be applied, sev-
eral of them oriented towards the compile-time detection of run-time errors in
software. For example, some analysis based on abstract interpretation can dis-
cover numeric invariants among the variables of a program. Also, it has been
applied to extract invariants from a PN [6]. Several abstract domains can be
used to describe the invariants: intervals [7], octagons [13], convex polyhedra [9],
among others. These abstract domains provide different ways to approximate
sets of values of numeric variables. For example, Figure 1 shows how these ab-
stract domains can represent the set of values of a pair of variables x and y.

In this work we present an approach for deriving a PN from a log, based on the
theory of abstract interpretation. The contributions are: 1) a theory for deriving
PNs out of a set of traces, 2) a technique to allow for the partitioning of the set
of events into groups. The relations inside the groups and between groups can
be detected and the corresponding causalities computed, 3) a sampling strategy
that can be applied to detect the relations on a small set of instances instead of
the whole set, and 4) a prototype tool implementing all the theory of the paper.

1.1 An Introductory Example

Let us provide a simple example to illustrate the theory of this paper. The ex-
ample is taken from [17] and considers the process of handling customer orders.
The starting point in Process mining is a set of traces representing the log of a
system. In our example, the log contains seven traces with the following activi-
ties: r=register, s=ship, sb=send bill, p=payment, ac=accounting, ap=approved,
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1  r,s,sb,p,ac,ap,c

2  r,sb,em,p,ac,ap,c

3  r,sb,p,em,ac,rj,rs,c

4  r,em,sb,p,ac,ap,c

5  r,sb,s,p,ac,rj,rs,c

6  r,sb,p,s,ac,ap,c

7  r,sb,p,em,ac,ap,c

(a) (c)(b)

r ≥ em + s

em

r

s

ap + rs ≥ c

r ≥ em + s

p ≥ ac

.
.
.
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p
rj rs
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(d)

Fig. 2. Derivation of PNs using abstract interpretation: (a) log, (b) some invariants
obtained, (c) from invariants to PN arcs, (d) mined Petri net

c=close, em=express mail, rj=rejected, and rs=resolve. Part of these traces is
shown in Figure 2(a), whilst Figure 2(b) shows some invariants that have been
extracted from these traces using the theory of abstract interpretation. These in-
equalities can be obtained under the domain of convex polyhedra (see Figure 1),
and relate the number of occurrences between events, e.g., r ≥ em + s indicates
that the number of occurrences of r is always greater or equal than the sum of oc-
currences of em and s. Each invariant can be converted into a set of arcs in a PN,
as it is shown in Figure 2(c). The final PN that covers all the traces in the log is
presented in Figure 2(d) (see Section 2.1 for the formal semantics of a PN). It ac-
cepts the language defined by the expression1: r; (sb; p)||(em|s); ac; (rj; rs)|ap; c,
where ||, | and ; denote interleaving, union and concatenation operators.

1.2 Related Work

Besides the work related to the theory of regions cited above [4,20,5], there are

other approaches for process mining. In [19], an algorithm (called α-algorithm)
to derive a restricted class of Petri nets was presented. The α-algorithm has been
extended in [22] to enable a wider class of nets. Other techniques like [21] derive
models that are easily transformed to a Petri net.

2 Preliminaries

Some mathematical notation is provided for the understanding of the paper.
Given a set T , we denote P(T ) as the powerset over T , i.e. the set of possible

1 For the reader not familiar with Petri nets: a transition (box) in a PN is enabled if
every input place (circle) holds a token (black dot). If enabled, the transition can
fire, removing tokens from its input places and adding tokens to its output places.
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subsets of elements of T . A sequence σ ∈ T ∗ is a called trace. Given a trace

σ = t1, t2, . . . , tn, and a natural number 0 ≤ k ≤ n, the trace t1, t2, . . . , tk is
called the prefix of length k in σ. Given a set of traces L, we denote Pref (L) the

set of all prefixes for traces in L. Finally, given a trace σ, #(σ, e) computes the

number of times that event e occurs in σ.

2.1 Logs and Petri Nets

Definition 1 (Log). A log over a set of activities T is a set L ∈ P(T ∗).

Definition 2 (Petri net [14]). A Petri net is a tuple (P, T, F,M0) where

P and T represent finite sets of places and transitions, respectively, and

F : (P × T ) ∪ (T × P )→ N is the weighted flow relation. The initial marking

M0 ∈ N
|P | defines the initial state of the system.

The sets of input and output transitions of place p in PN N are denoted by
•p and p•, respectively. A transition t ∈ T is enabled in a marking M if
∀p ∈ P : M [p] ≥ F (p, t). Firing an enabled transition t in a marking M leads
to the marking M ′ defined by M ′[p] =M [p]− F (p, t) + F (t, p), for p ∈ P , and

is denoted by M
t
→M ′. The set of all markings reachable from the initial mark-

ing m0 is called its Reachability Set. The Reachability Graph of PN (RG(PN))
is an automaton in which the set of states is the Reachability Set, the arcs are

labeled with the transitions of the net and an arc (m1, t,m2) exists if and only

if m1
t
→ m2. We use L(PN) as a shortcut for L(RG(PN)), i.e. the language of

the reachability graph of the net. Finally, a place p in a PN is redundant if its
removal does not changes L(PN). Figure 2(d) contains an example of a PN such

that σ = r, s, sb, p, ap, c ∈ L(PN).

2.2 Convex Polyhedra

As suggested in Section 1.1, the convex polyhedra domain provides the necessary
inequalities for the purposes of this paper. It can be described as the set of
solutions of a set of linear inequality constraints with rational (Q) coefficients.
Let P be a polyhedron over Qn, then it can be represented as the solution to
the system of m inequalities P = {X |AX ≤ B} where A ∈ Qm×n and B ∈ Qm.

The domain of convex polyhedra provides the operations required in abstract

interpretation. In this paper, we will mainly use the following two operations:

y

x

P QP Q

Meet (∩): Given convex polyhedra P and
Q, computes R = P ∩ Q. Notice that this
operation is exact, e.g., the intersection of two
convex polyhedra is always a convex polyhedra,
implying that R does not contain any point
outside P ∩Q.
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P Q
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Q

Join (∪): Given convex polyhedra P and Q,
computes R = P ∪ Q. Unfortunately the union
of convex polyhedra is not necessarily a convex
polyhedron. Therefore, the union of two convex
polyhedra is approximated by the convex hull,
the smallest convex polyhedron that includes

both operands. The example on the left shows in gray the zone added by com-
puting the convex hull of P and Q.

3 From Logs to Petri Nets via Extraction of Invariants

This section will set the basis for the approach presented in this paper. The
underlying idea can be stated informally: for each trace of the log and each
prefix of the trace, a vector describing the number of firings of each event for the
prefix is computed2. All these vectors are then inserted as n-dimensional points
in the theory of convex polyhedra, where n is the number of events considered.
Finally, a polyhedron is computed such that contains all these points, and its
set of constraints represents invariants for the system.

3.1 Derivation of Invariants from Logs

We introduce the main element to link traces from a log L and convex polyhedra:

Definition 3 (Parikh vector). Given a trace σ ∈ {t1, t2, . . . , tn}
∗, the Parikh

vector of σ is defined as σ̂ = (#(σ, t1),#(σ, t2), . . . ,#(σ, tn)).

Any component of a Parikh vector can be seen as a constraint
for the n-dimensional point that it defines. Hence, a Parikh vector
σ̂ = (#(σ, t1),#(σ, t2), . . . ,#(σ, tn)) can be seen as the following polyhedron:

Pσ̂ = (x1 = #(σ, t1)) ∩ (x2 = #(σ, t2)) ∩ . . . ∩ (xn = #(σ, tn))

where each variable xi denotes the number of occurrences of ti in σ, i.e.,
xi = #(σ, ti)

3. For each prefix σ of a trace in L, a polyhedron Pσ̂ can be ob-
tained. Given all possible prefixes σ1, σ2, . . . , σm of traces in L, the polyhedra
Pσ̂1 , Pσ̂2 , . . . , Pσ̂k can be found4. Finally, the polyhedron

P =
⋃

i∈{1...m}

Pσ̂i

can be seen as the convex-hull of the points represented by the polyhedra
Pσ̂1 , Pσ̂2 , . . . , Pσ̂m , thus representing completely the behavior of the log. As Sec-
tion 2.2 explains, a polyhedron can be described as the set of solutions of a

2 We use the terms event and transition as synonyms in this paper.
3 Hence a point σ̂ is represented as the polyhedron Pσ̂ that defines it.
4 Here k is in practice significantly smaller than

∑
σ∈L

|σ| since many prefixes of

different traces in L share the same Parikh vector.
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Pref(L)

m:  ...

...

1:  a

3:  a,x

4:  a,c,e

2:  a,c

5:  a,c,e,a

(a)

Log L

1:  a,c,e,b,d,x,e,a,c, ...

...

3:  a,x,c,y,e,b,...

2:  a,c,e,a,x,c,y, ...

(b) (c)

Parikh vectors

3:  (1,0,0,0,0,1,0,0)

4:  (1,0,1,0,1,0,0,0)

2:  (1,0,1,0,0,0,0,0)

1:  (1,0,0,0,0,0,0,0)

...

5:  (2,0,1,0,1,0,0,0)

(a,b,c,d,e,x,y,z)

(d)

Causality const.

...
e + 1 ≥ a + b

a ≥ c

c + d ≥ e

c + d ≥ y

Fig. 3. From traces to invariants: (a) Initial log, (b) corresponding m prefixes of the
log, (c) Parikh vectors associated to the prefixes, and (d) derived causality constraints

conjunction of linear inequality constraints. These constraints can be obtained
from P in state-of-the-art libraries for convex polyhedra [11]. Hence from P one
can obtain the set of m constraints representing it:

a11 · x1 + a12 · x2 + . . .+ a1n · xn ≤ b1

a21 · x1 + a22 · x2 + . . .+ a2n · xn ≤ b2
... ≤

...

am1 · x1 + am2 · x2 + . . .+ amn · xn ≤ bm

each one of these constraints models invariants that the system (i.e., the log)
satisfy.

Example 1. Figure 3(a) shows part of a log containing several traces on the

events a, b, c, d, e, x, y and z5. Once the prefixes of the traces are found (Fig-
ure 3(b)), corresponding Parikh vectors are converted into polyhedra. A unique
polyhedron is derived by performing a join operation on the polyhedra, and the

related invariants are extracted, some of them shown in Figure 3(d).

As it was said in Section 2.2, the join operator to obtain the convex-hull may
introduce extra points not belonging to any prefix in L, which may in turn
invalidate some of the invariants that hold only for the points in L. How severe
is this limitation and how can be alleviated is a topic for future investigation. In
practice, however, the effects of these spurious points where not observed in the

experiments shown in Section 6.

3.2 From Invariants to Petri Nets

If we split the coefficients into positive and negative coefficients, constraint i can
be represented in the following way:

∑

aij>0

aij · xj +
∑

aij<0

aij · xj ≤ bi

5 This log contains 100 traces of length 50 each. The reader can inspect the log by
following the reference provided in [2].



190 J. Carmona and J. Cortadella

that can be transformed into:

∑

aij>0

aij · xj − bi ≤
∑

aij<0

−aij · xj

A constraint i is a causality constraint if the following conditions hold:

– There is at least one positive coefficient, and
– bi ≤ 0

Hence causality constraints can be described as:

∑

aij>0

aij · xj + ci ≤
∑

aij<0

−aij · xj (1)

with ci = −bi ≥ 0. The intuition behind causality constraints is that they
represent real causalities observed in the log which can be explicit in the derived
PN. Hence if we assume indices n1, . . . nk range over the indices of variables
with negative coefficients and p1, . . . pl range over the variables with positive
coefficients, (1) can be modeled in a PN as:

.
.
.
.

.
.
.
.

xn1
xp1

xplaipl

ci

ain1
aip1

aink

xnk

where ci inside the place denotes ci tokens, and aij in an arc represents the

weighted flow relation F for the arc (see Def. 2).

Example 2. Following the example in the previous section (shown in Figure 3),
causality constraints can be selected and the corresponding places and arcs in-
troduced, deriving the Petri net shown in Figure 4. For instance the place labeled
p is obtained from the constraint c+ d ≥ y.

Finally, a necessary property in the area of Process Mining that relates the set

of traces possible in the PN and the ones in the log can be established:

Theorem 1. Let PN = (P, T, F,M0) and L be a Petri net and a log, respectively,
such that L(PN) ⊇ L, and the i-th causal constraint from L as described in (1).
Then the PN

′ = (P ′, T, F ′,M ′
0) defined as

P ′ = P ∪ {p}

F ′ = F ∪ {tj
aij

−→ p | aij < 0} ∪ {p
aij
−→ tj | aij > 0}

M ′
0[q] =

{

M0[q] if q &= p
ci otherwise

where p /∈ P , satisfies L(PN) ⊇ L(PN
′) ⊇ L.
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Fig. 4. Petri net derived from the causality constraints shown in Figure 3(d)

Proof. The inclusion L(PN) ⊇ L(PN
′) is well-known in Petri net theory from the

fact that P ⊂ P ′, F ⊂ F ′ andM0 ≤M ′
0. The inclusion L(PN

′) ⊇ L can be shown
by induction on the length of traces in L, and we sketch here the proof. First,
if a trace σ = σ′t ∈ L satisfies σ′ ∈ L(PN

′) but σ /∈ L(PN
′), then t ∈ p• because

transitions not in the postset of the new place inserted p will also be enabled by
firing σ′ in PN’. Second, the induction can now be used to prove that p will have
enough tokens to also enable t, hence contradicting the hypothesis σ /∈ L(PN

′).
For |σ| = 1 it trivially holds. Assume it is true for |σ| ≤ n − 1, let us consider
|σ| = n, with σ = σ′xt. If x /∈ •p or t /∈ p•, applying the induction hypothesis
on σ′ the statement on p holds. If x ∈ •p and t ∈ p•, the induction hypothesis
guarantees that after σ′, either some other place q #= p is disabling t or t is
enabled. Hence, by firing x the enabling state of t cannot change, contradicting
the disabling of t after σ′ in PN’. 2

The addition of places and arcs corresponding to causality constraints

is applied starting from the net PNinit
def
= (∅, T, ∅, ∅), which accepts

the language T ∗. In summary, the flow for Process Mining will fol-

low the steps Log
abstract interpretation

−→ Convex Polyhedra
causality constraints

−→ PN.
The next corollary follows from Theorem 1 and L ⊆ L(PNinit):

Corollary 1. Let PN be the net obtained after adding to PNinit all the places

and arcs corresponding to causality constraints in the polyhedron P derived from

L. Then L(PN) ⊇ L.

3.3 Derivation of Unbounded Places

Perhaps one of the main theoretical results of this work has been already pre-
sented in the example of the previous section. Informally, the derivation of places
and arcs from causality constraints may produce unbounded places in the Petri
net, i.e. places where no bound is possible on their number of tokens. For in-
stance, the place p in Figure 4 may have k tokens when k firings of the sequence
ac occur and no firing of y occurs, for any natural number k.

4 Process Mining of Large Logs

The approach presented in the previous section cannot be applied for logs ex-
tracted from industrial/real-life applications, where either the number of events
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Consumer2

Producer

Inter−group

Consumer1

Fig. 5. Detection of groups of related events: Producer, Consumer1 and Consumer2 are

tightly related, whereas the transitions within the Inter-group area are loosely related

or the number of Parikh vectors in the traces or both might be too large for grow-
ing polyhedra straightaway. For these situations, a divide-and-conquer strategy
is required. A possible strategy is presented in this section: instead of a blind
search for causality constraints on the whole set of events T , groups of events
that are tightly related are identified, and causality constraints are divided into
intra-group and inter-group. For instance, on a log representing a producer and
a pair of consumers, intra-group relations might provide the causalities within
the three gray zones depicted in Figure 5, whereas inter-group relations might
derive the causalities within the corresponding area shown in the figure.

4.1 Identification of Groups of Tightly Coupled Events

For determining the partition of T into groups, several techniques can be applied.
In this paper, two different techniques are used:

– Principal Component Analysis (PCA) [12] is an exploratory data analysis
technique that, given a data set of possibly correlated variables, tries to select
a subset of variables that is uncorrelated (called principal components) and
which accounts for as much of the variability in the data as possible.

– Firing causalities is an ad hoc technique to extract causalities between two
events from the Parikh vectors considered in the previous section.

In the remainder of this section we explain them in detail:

Principal Component Analysis can be applied to select the partition
on T = {t1, . . . , tn}. The steps are i) the set of Parikh vectors σ̂1, . . . , σ̂m is

transformed to the set σ̂′

1, . . . , σ̂
′

m
so that σ̂′

i
= (#(σi, t1)/t1, . . . ,#(σi, tn)/tn),

where ti is the mean for number of occurrences of ti in the set of Parikh
vectors of L, ii) compute the correlation matrix A ∈ [−1 . . . + 1]n×n using
the data set found at i) [12]. This matrix measures the amount of correla-
tion between variables ti and tj : when |A(i, j)| ⋍ 1 then both variables are



Process Mining Meets Abstract Interpretation 193

highly correlated. Finally, iii) the number of groups is decided by finding
the eigenvalues and eigenvectors of A: the eigenvalues are sorted according
to their value (the highest eigenvalue explains the highest correlation and so
on), and only the most important (those that explain the important amount
of correlation) are taken6. For each selected eigenvalue λi, we can select
the leader of the group for λi by looking at the corresponding eigenvector
α1 · x1 + . . . + αn · xn: the leader will be the transition ti for which absolute
value of the coefficient αi is maximal [12]. A transition tj such that |A(i, j)| ⋍ 1
will be incorporated to the group led by ti. Transitions not assigned to any
group can be considered as independent events that may be left out of the
analysis. This way, a natural noise filtering is accomplished by using this method.

Firing causalities between two events ti and tj can be extracted by consid-
ering the maximal distance (in number of firings) between both events in any
possible Parikh vector. Formally, we build the matrix M ∈ Z

n×n such that

M(i, j) = max{#(σk, ti) − #(σk, tj) | 1 ≤ k ≤ m}. There is a causality between
ti and tj if M(i, j) > 0 and M(j, i) ≤ 0.

4.2 Intra-group Causality Constraints

The information obtained from the two previous techniques can be combined to
form the groups. Intuitively, events ti and tj will belong to the same group if

– ti leads a group and has a high correlation with tj or vice versa, or
– there is a firing causality relating ti and tj

Once a group is identified, the Parikh vectors can be projected into the events
of the group and the technique presented in Section 3 can be applied for the
projected Parikh vectors.

Example 3. Following with the running example used in the previous section
(see the resulting PN in Figure 4), we will show how the same Petri net can be

obtained by the hierarchical approach presented in this section. Using the firing
causalities, we will find the pairwise causalities a → c, b → d, x → y and y → z.
With PCA, more complex relations will be detected: e related with a and b, and
also e related with c and d. Hence, two groups are selected: g1 = {a, b, c, d, e} and
g2 = {x, y, z}. Projecting the Parikh vectors into each group of events will give
the causality constraints only relating the events in the group, e.g., for group g1
the constraints a ≤ c, b ≤ d, e+ 1 ≤ a+ b and c+ d ≤ e will be obtained. These
constraints correspond to the subnet to the left of place p in Figure 4. The right
subnet corresponds to group g2.

4.3 Inter-group Causality Constraints

The causalities between different groups might be detected by applying a hierar-
chical approach: for each group gi = {ti1, . . . , t

i
|gi|

}, a new variable hi is created

6 Threshold values are used both for deciding whether |A(i, j)| ⋍ 1 and for selecting
the correlation ratio explained by the selected eigenvalues.
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such that it represents the sum of firings of the transitions in the group for each

Parikh vector. By using the sum of the firings, relations between group’s firings
might be revealed. Afterwards, the same strategy of Section 3 can be applied to
detect causalities between these new variables introduced.

Formally, given the groups g1, . . . , gk and a set of Parikh vectors σ̂1, . . . , σ̂m,

a new set of hierarchical Parikh vectors ̂σh1 , . . . , σ̂
h
m is created such that

̂σhi = (
∑

t∈g1

#(σi, t), . . . ,
∑

t∈gk

#(σi, t))

and now convex polyhedra can be created representing the hierarchical Parikh
vectors:

P
σ̂h
i

= (h1 =
∑

t∈g1

#(σi, t)) ∩ . . . ∩ (hk =
∑

t∈gk

#(σi, t))

And in the same way as Section 3.1, a set of invariants can be extracted from
the union of the m polyhedra build as explained above.

a11 · h1 + a12 · h2 + . . . + a1k · hk ≤ b1

a21 · h1 + a22 · h2 + . . . + a2k · hk ≤ b2
... ≤

...

am1 · h1 + am2 · h2 + . . . + amk · hk ≤ bm

These invariants provide relations between groups of variables. Intuitively,
invariants where the constant bi is small denote relevant causalities between
groups, whilst invariants with a large constant represent loose causalities possibly
originated by the length of the traces in the log. Hence, only these invariants
with small constant are used7.

When a set of groups are identified to be related, the same technique of
Section 4.2 applied for a group can be now applied for the set of groups: the

Parikh vectors are projected into the variables that belong to any of the groups
related, and causality constraints that relate these variables can be extracted.

The general algorithm is presented as Algorithm 1. The functions used in the

algorithm are next defined:

– InvariantMining is the invariant derivation technique from Section 3.1.

– ComputeGroups is the group derivation technique explained in Section 4.1.

– SelectLowConstant is a function that given a set of invariants, chooses those
ones having a small constant.

– NonZeroCoefs is a function that given an invariant, return these variables
that have non-zero coefficients, i.e., the variables that define the invariant.

7 Several threshold criteria can be applied to limit the number of invariants to consider.

For instance, one can greedily take invariants as far as the constant lies within the

order of the previous one.
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Algorithm 1. GroupMining

Input: Parikh vectors σ̂1, . . . , σ̂m,
Output: Invariant set I containing inter and intra-group causality constraints
begin1

I = ∅2

{g1, . . . , gk} = ComputeGroups(σ̂1, . . . , σ̂m)3

foreach group gi do4

I = I ∪ InvariantMining(σ̂1|gi , . . . , σ̂m|gi)5

end6

H = SelectLowConstant(InvariantMining(σ̂h
1
, . . . , σ̂hm))7

foreach invariant i ∈ H do8

{g1, . . . , gl} = NonZeroCoefs(i)9

I = I ∪ InvariantMining(σ̂1|g1,...,gl , . . . , σ̂m|g1,...,gl)10

end11

end12

Example 4. Let us show the relation between the two only groups g1 and g2
found in Example 3. By creating two sum variables h1 and h2 as explained in

Section 4.3 and building the polyhedron that corresponds to the union of the

polyhedra representing the projection of the Parikh vectors into these variables,

the constraint h2 ≤ h1 is detected, meaning that the number of firings in the

group g2 is always less or equal than the number of firings of group g1. By pro-

jecting now the Parikh vectors into these groups and extracting the causality

constraints that relate both groups of variables, the constraint y ≤ c + d will

be extracted, which corresponds to the place p shown in Figure 4. Notice that

although for this toy example we ended up by building polyhedra for the whole

set of events, in general this will not be the case for real systems. For instance,

we experimented with several systems like the one used in our running exam-

ple, working in parallel. The approach presented in this paper was able to find

the intra and inter-group relations for each individual system, thus avoiding to

project into the whole set of events. In section 6 we provide such experiments.

5 Sampling

Orthogonal to the approach presented in the previous section, this section in-

troduces a technique to avoid dealing with a large number of polyhedra and use

instead a limited amount that might be enough for extracting the important re-

lations between the events. For instance, if the log contains ten thousand traces

of length a hundred, then in the worst case the techniques presented in the pre-

vious sections will be dealing with a million of polyhedra that must be joined, a

scenario that often can not be completed successfully with existing libraries for

abstract interpretation.

The general algorithm for applying sampling is shown as Algorithm 2. In order

to avoid operations with a large number of polyhedra, one can randomly select
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Algorithm 2. Sampling

Input: Parikh vectors σ̂1, . . . , σ̂m, number of samplings p, sampling size s
Output: Invariant set I
begin1

I = ∅2

for i ← 1 to p do3

P = empty domain4

for j ← 1 to s do5

r =Random(1 . . .m)6

compute P
σ̂r

7

P = P ∪ P
σ̂r

8

end9

I1 = Invariants(P )10

foreach invariant i ∈ I1 do11

if i satisfies σ̂1, . . . , σ̂m then I = I ∪ {i}12

end13

end14

end15

with uniform probability a small set (s) of Parikh vectors that will be converted
to polyhedra and joined (lines 5-9). Once the join operation for the s vectors
has been done, the set of invariants that denote properties for the Parikh vectors

considered must be verified on each one of the Parikh vectors not considered in
the join, and only those invariants that are true for all the Parikh vectors will be
accepted (lines 10-13). This sampling technique can be applied more than once,
i.e., one can apply p samplings in order to find the relations on a set of events
(external loop starting at line 3).

Sampling and the strategy presented in the previous section can be applied
jointly. This will be accomplished by simply substituting the calls to Invariant-
Mining in Algorithm 1 by calls to the function Sampling with a user-defined
sampling size and number of samplings. In the experiments, this joint use of
these strategies has enabled dealing with large specifications.

6 Experiments

The theory has been implemented in the prototype tool aim, which is written in
C/C++ and uses the Apron library for Convex Polyhedra manipulation [11]. For
the PCA method which requires computation of eigenvalues and eigenvectors,
the ALGLIB library [1] was used. Some conclusions can be drawn from applying
the tool on some well-known benchmarks within the Process Mining domain.

The benchmarks applied are synthetic logs publicly available within the web-
site [3]. These logs have been used by other algorithms and therefore will be
considered in this paper to perform a comparison with two other tools for the

same purpose. The tools are: genet, which implements algorithms based on
the theory of regions and supports the mining of k-bounded PNs [5], and the
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Table 1. PN derivation from logs

Log Information genet ILPMiner aim

Log |T | #traces #Parikh P/F Time P/F Time P/F Time

a12f0n00 1 12 200 17 11/25 0.1 11/25 1 11/27 0
a12f0n00 5 12 1800 17 11/25 0.1 11/25 0.7 12/30 0

a22f0n00 1 22 100 750 19/49 0.3 19/49 3 19/48 20
a22f0n00 5 22 900 3290 19/49 0.3 19/49 23 16/38 2

a32f0n00 1 32 100 1377 32/75 718 31/73 25 34/84 33
a32f0n00 5 32 900 5543 31/73 1 31/73 112 31/68 6

a42f0n00 1 42 100 1211 memout 44/109 154 41/88 16
a42f0n00 5 42 900 4326 timeout 44/101 1557 49/118 77

ILPMiner [20] (within ProM), that uses the language version of the theory of
regions for the same purpose. For using genet, an automaton representing all
the traces is the input of the tool. Several algorithms exists to transform the log
into an automaton [18]. For both tools we used the default parameters.

The comparison is shown in Table 1. For each log, we report the number of
events (|T |), the number of traces and the number of Parikh vectors obtained
after removing repetitions. The number of places discovered (P ) and the number

of arcs (F ) is then provided, together with the CPU time (measured in a desktop
computer) in seconds. For testing each tool, we limited the amount of memory
and time that could be used to 1Gb and 10000 seconds respectively.

For the experiments, we run the tool applying 5 samplings with sampling
size a number between 50 and 100, depending on the log. This light sampling
application allowed to derive PNs sometimes within two orders of magnitude less
CPU time than other methods. Notice that genet has both memory (memout)
and time (timeout) problems with the last two logs. On the other hand, aim
invests considerably more time in deriving a PN for a22f0n00 1, which may be

due to the particular structure of the polyhedra built on that log.
A second point to consider is the quality of the information obtained. The

PNs derived with aim most of the time have the same arcs and places of the
other tools. Sometimes extra causalities might be obtained like in a12f0n00 1
or a42f0n00 5. These denote redundant causalities (unnecessary places in the

model) that can be removed by a final application of well-known PN methods
for redundant places removal [16]. More elaborated quality measures, like the

one presented in [15], are restricted to a particular class of Petri nets and hence
cannot be used in our general setting.

Table 2 reports experiments with two logs that represent the activity of a
system of producers and consumers where components are synchronized through
unbounded places (see Figure 5). For ProdCons 1, the PN derived by aim is the
one shown in Figure 4. The traces for ProdCons 3 contain the interleaving of
three independent instances of PNs like the one in Figure 4. Both genet and the

Parikh Miner have problems in dealing with these logs: genet cannot derive
the unbounded place in ProdCons 1 and received a timeout for ProdCons 3,
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Table 2. PN derivation from two logs obtained from a Producers/Consumers system

Log Information genet ILPMiner aim

Log |T | #traces #Parikh P/F Time P/F Time P/F Time

ProdCons 1 8 50 3756 7/16 14 0/0 5 8/19 7
ProdCons 3 24 50 4910 timeout 0/0 182 24/57 36

whereas the ILPMiner did not obtain any relation between the activities of the
log8. In contrast, aim was able to discover the exact PN in both logs.

7 Conclusions and Future Work

A novel theory for deriving a PN from a set of traces has been presented. The
results obtained are promising when compared with some of the approaches in
the literature for the same task. The current work is mainly focused in obtaining
a mature implementation of the first prototype. Also, other strategies to comple-
ment the ones described in this paper will be investigated. Finally, the derivation
of other graph formalisms will be explored.
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