ELASTICITY AND PETRI NETS

Jordi Cortadella, Universitat Politecnica de Catalunya, Barcelona
Mike Kishinevsky, Intel Corp., Strategic CAD Labs, Hillsboro

Is the GHz race over ?

CPU-Frequency 1993 - 2005

A and Intel

£
7
§
=
g

Moore’s law

transistors
10.000,000,000
Dual-Core Intel” [tanium® 2 Processor,
1,000,000,000
MOORE'S LAW Intel® tanium® 2 Processor.
InteF ltanium* Processor
intel Pentium® 4 Processor 100,000,000
Inter Peatiurm® Bl Processor
Intel* Pentium* 1l Processor. 10,000,000
Intel® Pentium® l'h\m::sor‘I
Inte486" Processor L
1,000,000
Imel386™ Processor
286
4 100,000
8085, /
8080 10,000
8008,
4004 @

1,000
1970 1975 1980 1985 1990 1995 2000 2005 2010

Source: Intel Corp.

Many-Core is here

Trend to Many-Core
Many-care

Multi-Core

Dual-Core

Hyper-threading

Multi Processor

Source: Intel Corp.

Why this tutorial ?

= Digital circuits are complex concurrent systems
= Variability and power consumption are key
critical aspects in deep submicron technologies
= Multi (many)-core systems will become a novel
paradigm:
a System design
= Applications
= Concurrent programming

» Theory of concurrency may play a relevant role
in this new scenario

Elasticity Outline
= Tolerance to delay variability = Asynchronous elastic systems
= The basics: circuits and elasticity
= Different forms of elasticity = Synthesis of asynchronous circuits from Petri nets
s Asynchronous: no clock = Modern methods for the synthesis of large controllers
= De-synchronization: from synchronous to

= Synchronous: variability synchronized with a clock asynchronous

= Synchronous elastic systems

= Inall forms of elasticity, token-based = Basics of synchronous elastic systems

computations are performed

= Early evaluation and performance analysis
(reg/ack, valid/stop signals are used)

= Optimization of elastic systems and their correctness

Outline

» Gates, latches and flip-flops.
Combinational and sequential circuits.

» Basic concepts on asynchronous circuit

design.
THE BASICS: .
» Petri net models for asynchronous
CIRCUITS AND ELASTICITY controllers. Signal Transition Graphs.
Boolean functions Memory elements: latches
Composed from logic gates
D——>f H —Q D L
gj:)— X x=—aAb | 7
%j— y y=avh En En
g s=—(CEA) Vv, Active high: Active low:
Z g} z En=o0 (opaque): Q =prev(Q) En=1 (opaque): Q = prev(Q)
En=1(transparent): Q=D En=o (transparent): Q=D

Memory elements: flip-flop

D L H Q D FF —Q
A
akx —— | cik

Network of Computing Units

%
4

No combinational cycles

Finite-state automata

Inputs —— —> Ouputs

CL

* Output function
* Next-state function CLK

Marked Graph Model
P \Circuit

~
Register

Combinational logic

-
-
~. -
~~~~~~~

Marked graph




Outline

BASIC CONCEPTS ON = What is an asynchronous circuit ?

= Asynchronous communication

ASYNCHRONOUS CIRCUIT = Asynchronous design styles (Micropipelines)

DESIGN = Asynchronous logic building blocks
= Control specification and implementation

= Delay models and classes of async circuits
= Channel-based design
= Why asynchronous circuits ?

Synchronous circuit Asynchronous circuit

Ack —

- R - R R

Req

CLK

Implicit (global) synchronization between blocks Explicit (local) synchronization:
Clock period > Max Delay (CL + R) Req/Ack handshakes



Motivation for asynchronous
= Asynchronous design is often unavoidable:

= Asynchronous interfaces, arbiters etc.
» Modern clocking is multi-phase and distributed —

and virtually ‘asynchronous’ (cf. GALS — next slide):

= Mesachronous (clock travels together with data)
= Local (possibly stretchable) clock generation

» Robust asynchronous design flow is coming
(e.g. VLSI programming from Philips, Balsa from
Univ. of Manchester, NCL from Theseus Logic ...)

Key Design Differences

= Synchronous logic design:

= proceeds without taking timing correctness
(hazards, signal ack—ing etc.) into account

= Combinational logic and memory latches
(registers) are built separately

= Static timing analysis of CL is sufficient to
determine the Max Delay (clock period)

= Fixed set—up and hold conditions for latches

Globally Async Locally Sync (GALS)

Asynchronous

World
Reqi —— Reqs
Acki — — Ack3
Reqz —— ——Reqs
Ack2 Async-to-sync Wrapper Acks

Key Design Differences

= Asynchronous logic design:

s Must ensure hazard—freedom, signal ack-ing,
local timing constraints

= Combinational logic and memory latches (registers)
are often mixed in “complex gates”

= Dynamic timing analysis of logic is needed to
determine relative delays between paths

= To avoid complex issues, circuits may be built
as Delay-insensitive and/or Speed-independent
(as discussed later)



Synchronous communication Dual rail

/W A N W W W R i

[0S0\ [0}

1 1 0 0 1 0

= Clock edges determine the time instants where data = Two wires with L(low) and H (high) per bit
must be Sampled o \\LL’I = \\Spacerlll \\LH’I = \\OII, \\HL’I = \\1II
. L ) )
- Data wires may glitch between clock edges n—bit data communication requires 2n wires

(set—up/hold times must be satisfied) = Each bit is self-timed

= Data are transmitted at a fixed rate » Otherdelay-insensitive codes exist (e.g. k-of-n)

and event—based signalling (choice criteria: pin and
(clock frequency) power efficiancy) 9 9 P

Bundled data Example: memory read cycle

Valid address

1 0 0 1 0 Address

= VaIiFiitysignaI o valid data [\
= Similar to an aperiodic local clock

= n-bit data communication requires n+1 wires

= Data wires may glitch when no valid

= Transition signaling, 4-phase
= Signaling protocols

o |evel sensitive (latch)
= transition sensitive (register): 2-phase / 4-phase



Example: memory read cycle

valid addreL/ \
RS 0 U S U —
Valid data ’ \

» Transition signaling, 2-phase

Asynchronous latches: C element
vdd

A= B—ﬂ

- —
=

B—dE Zz&d[; ,
A0 o

B—|If

|_|J‘ Static Logic
Implementation
A_”:‘ B_|E| [van Berkel 91]

Gnd

Asynchronous modules

DATA
Data IN |:> PATH

reqin

ackin

:> Data OUT

start

done

req out
:l CONTROL l: ack out

= Signaling protocol:

reqin+ start+ [computation] done+ reqout+ ackout+ ackin+

reqin- start-

(more concurrency is also possible)

[reset]

done- reqout- ackout- ackin-

C-element: Other implementations

vdd
A—

B—

B —|
A

Gnd

Dynamic

vdd

A

Weak inverter

B—

B —
A—]

Gnd

Quasi-Static



Dual-rail logic
At —
nl —
Af 3

Cf
B.f

Valid behavior for monotonic environment

Cit
Dual-rail AND gate

Differential cascode voltage switch logic

start —@

Zf.

<

—Do—Z.t

i Jo—done

3-input AND/NAND gate

At
cf-[ B[ At B N-type
transistor
C.
- network
|
-E"—start

Completion detection

done

e LTI
oD

Completion detection tree

Example of dual-rail design

= Asynchronous dual-rail ripple-carry adder
(A. Martin, 1991)
= Critical delay is proportional to logN
(N=number of bits)
= 32-bit adder delay (1.6m MOSIS CMOS): 11 ns versus
4o ns for synchronous

= Async cell transistor count = 34
versus synchronous = 28



Bundled-data logic blocks

Single-rail logic

start * done

Conventional logic + matched delay

Micropipelines (Sutherland 89)

Ty
::::i!llI!IlllllllllllllllllliE:: .

Micropipelines (Sutherland 89)

Micropipeline (2-phase) control blocks

>._ Request-
Grant-Done
Join (RGD)Arbiter
Merge
Select Toggle 1

Call

Data-path / Control

—'Rout
—

in

10



Control specification

Control specification
A+

A+
A

A >¢ B
A- B

B— Ainput
B output

B+

Control specification Control specification

A+ B+
C+ A—i \C+/ A—
A[ \B— B— C ?_ B—
B-
\/

|

C-

11



Control specification A simple filter:

Ri+ —— Ro+ specification Ay R, IN
Ri FIFO [ Ro AL+ Ali+ y:i=0;
Ao cntrl A I | loop
Ri Ro- X := READ (IN); filter
| | WRITE (OUT, (x+y)/2);
Ri 3' Ao- Ai- }:“= X;
endaloo
— @ O endoop

| Aout Rout OUT

Ai

A simple filter: block diagram A simple filter: control spec.

¢ x and y are level-sensitive latches (transparent when R=1)
¢ + is a bundled-data adder (matched delay between R,and A,)

n
* R, indicates the validity of IN |
e After A, +the environment is allowed to change IN R,-
* (R, A, control a level-sensitive latch at the output '
A —

12



A simple filter: control impl.

R A A R, R, A

!

- @
,

out

out

in

Taking delays into account

Z+ — X—

/ N X

X+ —— y+ z- X y
/ z z'
\

y_

Delay assumptions: unbounded delays

events: X+ > X'- 5 y+ 52+ 5> Xx— > X'+ 5> y— failure !
time: 3 4 5 6 9 10 11

Taking delays into account

Z+ — X—

AN X
Sl o

y_

Delay assumptions:
¢ Environment: 3 time units
* Gates: 1 time unit

events: X+ 9 X'- 2 y+ 32+ 9 2- I x-3IX+ 32- 32+ > y-—-

time: 3 4 5 6 7 9 10 12 13 14

WHY ASYNCHRONOUS ?

13



Motivation (designer’s view) Motivation (technology aspects)

= Low power
* Modularity for system-on-chip design @ Automatic clock gating
= Plug-and-play interconnectivity = Electromagnetic compatibility
= No peak currents around clock edges
= Average-case peformance .
= Security

= No ‘electro—magnetic difference’ between logical ‘o’ and
‘12'in dual rail code

= No worst-case delay synchronization

* Many interfaces are asynchronous

= Robustness
o Buses, networks, ...

= High immunity to technology and environment variations
(temperature, power supply, ...)

Dissuasion

= Concurrent models for specification
@ CSP, Petrinets, ...: no more FSMs

= Difficult to design
= Hazards, synchronization

= Complextiming analysis
= Difficult to estimate performance

= Difficult to test
= No way to stop the clock



SYNTHESIS OF ASYNCHRONOUS
CIRCUITS FROM PETRI NETS

Delay models (II)

= Separation between functionality and timing [Muller]
= Every gate has a zero-delay atomic evaluator (Boolean function)

s Adelay is associated to every output (gate delay model)
or every input (wire delay model)

= Delays can be:
* Unbounded (arbitrary finite delays)
* Bounded (within given min/max bounds)

D= =0

Gate delay model Wire delay model

Delay models (I)

A_— |
C
B—|

Real (analog) behavior Abstract behavior

s N I

Abstractions are necessary to define delay models manageable for
design, synthesis and verification. Abstractions introduce optimistic
and pessimistic simplifications that must be carefully taken into account.

Delay models (III)

= Gate delay model: delays in gates, no delays in wires
» Wire delay model: delays in gates and wires
- o




Delay models (IV)

= Speed-independent circuit:
hazard-free under the unbounded gate delay model

= Delay-insensitive circuit:
hazard-free under the unbounded wire delay model

* Quasi-delay -insensitive circuit:
delay-insensitive with some isochronic forks

Fundamental mode of operation

Inputs Outputs
—

Circuit

i
i

[Huffman 1964] : The circuit/environment interact with two phases
(1) The environment sends inputs to the circuit
(2) The circuit computes the outputs and the state signals

The environment does not send new inputs until the circuit stabilizes

Normal Fundamental Mode: Only one input changes at each communication cycle

Speed-independent model

= Pessimistic, since delays are typically bounded

= Optimistic, since it assumes isochronic forks
(negligible skew wrt the receiving gate delays)

= Efficient synthesis methods exist
_j_©7 Isochronic fork

Input/Output mode of operation

= Computation and communication can overlap
(according to some specified protocol)

= Event-based specification models are often used
to describe the behavior (e.g., Petri nets).

This tutorial will cover the synthesis of speed-independent

circuits that work under the /O mode of operation
and are specified using Petri nets.




Delay models for async. circuits
Outline

Bounded delays (BD): realistic for gates and wires.

s Technology mapping is easy, verification is difficult = Qverview of the SyntheSiS flow

Speed independent (SI): Unbounded (pessimistic) delays for . S pECIfl cation

gates and “negligible” (optimistic) delays for wires. = State gra ph a nd next-state functions
= Technology mapping is more difficult, verification is easy Stat d
= State encoding
Delay insensitive (DI): Unbounded (pessimistic) delays for ™ |m Iementa blllt Conditions
gates and wires. p Y
= Dlclass (built out of basic gates) is almost empty = Speed—independent circuit

@ mplex
Quasi-delay insensitive (QDI): Delay insensitive except for Co ple gates )
critical wire forks (isochronic forks). o C-element architecture

s In practice it is the same as speed independent » Review Of some advanced tOpiCS

Design flow
Book and synthesis tool

Specification

(STG)
. . Reachabili lysi
= J. Cortadella, M. Kishinevsky, A. Kondratyev, | Reachabityanalyss
State Graph
L. Lavagno and A.Yakovley, | state encoding
Logic synthesis for asynchronous EE——
controllers and interfaces, csc

l Boolean minimization

Springer-Verlag, 2002

Next-state
functions
- petrlfy l Logic decomposition
. . Decomposed
http://www.lIsi.upc.es/petrify fonctions

l Technology mapping
Gate netlist



Specification

SignalTransition Graph (STG)

State graph

Xyz
000
lx+
100
z+ @—X .Zy Y*
101 110
X+ —@—y+ @—z y V y& A

Token flow

Next-state functions

x=Z'(x+y)|
y=z+x|
Z=x+Yy-Z

Xyz
000
lx+
101 110
V y& A
001 111
N\
011
|
010



Gate netlist

Data
Transceiver

Device

VME Bus
Controller

DSw
DTACK

LDTACK

Read Cycle

x

Design flow

Specification

(STG)
Reachability analysis
State Graph

l State encoding
SG with
cscC

l Boolean minimization
Next-state
functions

l Logic decomposition
Decomposed
functions

l Technology mapping
Gate netlist

STG for the READ cycle

K/—DSH <«—@—— DTACK- ‘ﬁ

LDS+ — LDTACK+ ——» D+ —» DTACK+ ——» DSr- —» D-

k’-\ LDTACK- <«——— LDS- J
]D

psr —s| vMEBus |25
Controller
LDTACK
DTACK

pu— le——r




Choice: Read and Write cycles Choice: Read and Write cycles

D5r+ DSw+
LDS+ D+
LDTACK\W f./” LD£+
DTACK- D+ LDTACK- LDTACK- LDTAlCK+ DTACK-
DTACK+ D-
DSr- LDS- LDS-  DTACK+
D- DSw-
Circuit synthesis Speed independence
» Goal: » Delay model
o Derive a hazard-free circuit = Unbounded gate / environment delays
under a given delay model and = Certain wire delays shorter than certain paths in the

mode of operation circuit

= Conditions for implementability:
s Consistency
= Complete State Coding
= Persistency



Design flow

Specification
(STG)
l Reachability analysis

State Graph
State encoding

SG with
Ccsc

l Boolean minimization

Next-state
functions

l Logic decomposition

Decomposed
functions

l Technology mapping
Gate netlist

Binary encoding of signals

1DS +

STG for the READ cycle

K—’—DSH <«—@—— DTACK- ,.j

LDS+ —» LDTACK+ ——» D+ —» DTACK+ ——» DSr- —» D-

k.—ﬁ LDTACK- <4———— 1 DS- 4’)

[o
LDS

DSr —»| VMEBUS [—n0u—p
Controller

LDTACK

D

DTACK |

Binary encoding of signals

DSr+ ~\ DTACK-

LDTACK- LDTACK-

DSr+ DTACK-

10 10

LDTACK+

1011
D+

DSr- (DSr, DTACK, LDTACK,, LDS , D)



Excitation / Quiescent Regions

ER(LDS+)

LDS+

QR (LDS+) ER(LDS-)

Karnaugh map for LDS
LDs-o |

DTACK DTACK
D DSr D DSr
LDTACK 00 o1 11 10 LDTACK 00 o1 11
00 00
o1 - - - - o1
11 - - - - 11

10

10

Next-state function

Design

flow

Specification
(STG)
l Reachability analysis
State Graph

l State encoding

Boolean minimization

Next-state
functions

l Logic decomposition
Decomposed
functions
l Technology mapping
Gate netlist

0—0

1-0



Concurrency reduction

10110

State encoding conflicts

D)

LDTACK+

10110

Concurrency reduction

’/,/DSH +«—@—— DTACK- ﬁ

LDS+ —» LDTACK+ —» D+

Signal Insertion

-
LDS+ LDTACK-
[
LDTACK+ LDS-
o2 2 9
® ® o—©

DTACK+ —— DSr- —» D-

\.-\ LDTACK- <————— | pg. 42

csc




Design flow

Specification
(STG)
l Reachability analysis
State Graph
l State encoding

SG with
Ccsc

l Boolean minimization

Next-state
functions
l Logic decomposition

Decomposed
functions

l Technology mapping
Gate netlist

Implementability conditions

= Consistency

s Rising and falling transitions of each signal
alternate in any trace

= Complete state coding (CSC)
o Next-state functions correctly defined

= Persistency

= No event can be disabled by another event (unless
they are both inputs)

Complex-gate implementation

LDS = D +csc
DTACK=D
D=LDTACK:-csc

csc = DSr- (csc+ LDTACK)

Implementability conditions
= Consistency + CSC + persistency

= There exists a speed-independent circuit that
implements the behavior of the STG

(under the assumption that ay Boolean function
can be implemented with one complex gate)

10



Persistency

100 —£— 000 —<£— 001 aﬁb
| b+ | b+ ¢

.\

b /\/
\_, is this a pulse ?

Speed independence = glitch-free output behavior under any delay

ab 0000 ——
cd 00 01 11 10 at
w 0000 e
1100
| EEEIR-
0100
-+
11111 ER(@D) iy
d+ d-
"N ot
| a+
1111
| b-
1011
S
0011 1001
c- a,

ER(d-)—

ab

cd 00 o1 11 10

d=c+ad

Complex gate

0000 ~———

a+
1000
I b+
1100
a-
0100
c+
0110
I d+
0111
a+
1111
L.

1011

N

0011 1001
N o
0001 ——

0000 ———

a+

1000
I b+
1100
a-
0100

c+

d+
0111
a+
1111
[
1011
N\

0011 1001
c s

11



Implementation with C elements

00 535+ 572+ —>S->R+—>2- 5 R-—>eee

* S (set) and R (reset) must be mutually exclusive
e S must cover ER(z+) and must not intersect ER(z-) U QR(z-)
* R must cover ER(z-) and must not intersect ER(z+) U QR(z+)

but ...

Assume that R=ac has an unbounded delay
Starting from state 0000 (R=1 and S=0): 1 OO
I b+

a+ R-ib+ja- et S+d+ 1100

I

R+ disabled (potential glitch)

12



cd

o1

11

10

[e]e] 01 11 10

Monotonic covers

Speed-independent

implementations

= Implementability conditions
s Consistency
s Complete state coding
s Persistency

= Circuit architectures
s Complex (hazard-free) gates
a C elements with monotonic covers

a

C-based implementations

S
d ¢ d
ﬁ,{é:)— ISjt(C)—
b
a
+
C weak +
d C weak
d
a
. af>o

b ]

generalized C elements (gC)

Synthesis exercise

Y' 7. 1001 Y' 1011
1000 0001 W+
Y+/ VY' 7 yf

z- - W+
I I | 1010 0000 0101 0011

y+ X+ X- \W:V \X-"-7

0010 0100
\ / XV
/ Z+
0110 —— 5 0111
Z+

Derive circuits for signals x and z (complex gates and monotonic covers)

13



Synthesis exercise

1001 «— 1011

11

Signal x

Logic decomposition: example

y- y-
- 1001 - 1011
- A\
. 1000 0001 W+
NN

z- - wH
1010 0000 0101 0011
N 4 | | |
0010 0100 X- y+ X+ X-

N

\ u
0110 ——m — 0111
Z t

Synthesis exercise

1011
WX
yz 00 o1 11 10

W+
ol 01 0] -10
u| 1| 1|-]1 X-

Signal z

Logic decomposition: example

X

y-

W

w

z
z

@ -
i

14



Logic decomposition: example Logic decomposition: example

s=1 X s=1
) " ) y-
y S \
Z s-
x \
w z- - w+
w

zhy
z

]

y+ + X-

\/ 1

Z+ —5S+

Speed-independent Netlist Adding timing assumptions

’//’ DSr+ <—@—— DTACK- ﬁ ’//’ DSr+ <—@—— DTACK- ﬁ

LDS+ —» LDTACK+ —>» D+ —>» DTACK+ —» DSr- —» D- LDS+ —>»LDTACK+ —» D+ —» DTACK+ —>» DSr- —» D-

\—Q‘ LDTACK- < LDS- 4//J \—Q‘ LDTACK- < LDS- 4//J
DTACK g D DTACK g D" LDTACK- before DSr+
LDS LDS
Pl P —p{
DSr cs¢ DS csc

LDTACK LDTACK




Adding timing assumptions State space domain

Sr+ <«—@—— DTACK-
///”‘— ‘ﬁ DSr+
LDS+ —» LDTACK+ D+ —» DTACK+ —» DSr- — D- LDTACK- before DSr+
LDTACK- <« LDS- 4—/’J

DTACK A b LDTACK- before DSr+
N

—D—
j Y+ map ’ )—LDS

DSr e @

LDTACK

LDTACK-

State space domain State space domain

DSr+ DSr+
LDTACK- before DSr+ LDTACK- before DSr+
LDTACK- LDTACK-
@ @

Two more unreachable states

16



Boolean domain

DTACK

DTACK
D DSr D DSr
LDTACK 00 01 11 10 LDTACK 00 01 11
00 00
01 - - - - 01
11 - - - - 11
10
Netlist with one constraint
’/,/" Sr+ <+—@—— DTACK- ﬁ
LDS+ —» LDTACK+ D+ —» DTACK+ —% DSr- —» D-
LDTACK- <4——— LDS- 4//—’J
D
DTACK 4
D~ D=
map
DSr e
N
LDTACK

10

Boolean domain

01

DTACK DTACK

D DSr D DSr

LDTACK 00 01 n 10 LDTACK oo
0o 0o -
o1 - - - - o1 -
11 - - -

10

One more DC vector for all signals

1

One state conflict is removed

Netlist with one constraint

/,// Sr+ <—@—— DTACK- ﬁ

D+ —» DTACK+ —» DSr- —» D-

LDTACK- <«—— LDS- 4/’)

LDS+ —>» LDTACK+

DTACK
—

TIMING CONSTRAINT

D
[LDTACK— before DSr+

)

DSr

iD LDS

LDTACK

17



Signal insertion

= New signals need to be inserted to solve some
synthesis problems (e.g., state encoding, logic
decomposition)

* Foreachsignals, the events s+ and s- must be
inserted while preserving certain behavioral
properties (consistency, persistency).

= Eachnew signal determines a new partition of
states (s=0, s=1)

From state graphs to Petri nets

= Astate graph may require transformations to

meet certain properties (e.g., state encoding).

» The visualization of a state graph is not very
informative. Event-based specifications
explicitly represent the relations between
events.

» Resort to the theory of regions

Signal insertion

From state graphs to Petri nets

Region: {2,3}

18



From state graphs to Petri nets From state graphs to Petri nets

Region: {1} Not a region: {3,5}
From state graphs to Petri nets Theory of regions
0 » Region: all arcs of any event have the same relationship
e ) with the region (enter, exit, no cross).
» Minimal region: not included in any other region
d < * Pre-/post-region of an event: region such that the event
d € exits/enters the region
: » Property: excitation closure
s Theintersection of all pre-regions of an event is the excitation
el (f region of the event

Region: {0,3,5}



OTHER PARADIGMS

Thanks to Steve Nowick (Columbia Univ.)

Burst-Mode Specifications

Example: Burst-Mode (BM) Specification:

- Inputs in specified “input burst” can A+ZC_:+/
arrive in any order and at any time @
- After all inputs arrive, generate o
“output burst” 74
Note: C/
-input bursts: must be non-empty Y+

(at least 1 input per burst)
-output bursts: may be empty
(o or more outputs per burst)

Initial Values:
ABC = 000
YZ =01

Burst-Mode Specification

How to specify "burst-mode” behavior?:
current state

input burst/
output burst

next state

inputs
outputs

[4 e— P X

B e y |
Hazard-Free

l_C E— Combinational z I
input burst Network state output burst

(several

bits)

Burst-Mode Specifications

“Extended Burst-Mode"” (XBM):

) ok+ Rin*/
[Yun/Dill ICCAD-93/95] ok- Rin*/ FRout+

FAin+ Rin*/
FRout-

New Features: @
<Cnd-> Rin-/ l FAin- Rin+/

1. “directed don’t cares” (Rin*): A
allow concurrent inputs & outputs Aout- out+

2. "conditionals” (<Cnd>):

allow “sampling” of level signals <Cnd+> Rin-/
Aout- FRout+ Rin+ FAIn-/
Handles glitchy inputs, Aout+
mixed sync/async inputs, etc. o
Rin* FAin+/
FRout-

20



Syntax-directed translation

2-Place “Ripple Register” (= FIFO) [van Berkel]

Tangram Program ‘ Intermediate “"Handshake Circuit”

proc (a?T &b!T) 3
begin CONTROL
X0, X1: varT
| forever do
b! x1; 4 SEQUENCERS
X1 := XO; g
a? xo
od
end v o 0
a(Tr (00 —(Tr—(x—{T)b

DATAPATH

Background: Channel-Based Communication

active port /w (\passive port

O QO
Channel A

Components communicate using “4-phase handshaking”
< O1: initiates communication
% 02: completes communication

Active phase

kﬁ“ ......... NIVEN

Channel impltn. => use 2 wires: e

req => start operation ack

ack => operation done T

Return-to-zero (RTZ) phase
(... can be extended to handle data)

A Larger

Example

Intermediate
“Handshake Circuit”

Handshake Components: Sequencer

2-Way Sequencer: activated on channel P;

then activates 2 processes in sequence on channels A1 and A2

1
! 1
Al “ Pro)((:fss B E
. N II
P O I ;
// ____ “‘
A2 ;' Process ;
% X2 !

Goal: activate two sequential processes (i.e. operations)

Operation
X1; X2

21



Handshake Components: PAR Component

PAR Component: activated on channel P; procedure Bufl (
then activates 2 processes in parallel on channels A1 and A2 input i: byte;
output o: byte) is
_emmTTTTTh local variable x : byte
\ Process ! :
Al X1 __‘1 begin
P \ _____ / loop begin
O ST \ 3
. i-> x ;
A2 | Process i ’
,'\ X2 I o <— X
e end
Operation
Xa || X2 end
Syntax-Directed Translation

Goal: activate two parallel processes Tangram Spec

Conclusions

» STGs have a high expressiveness power at a low level of
granularity (similar to FSMs for synchronous systems)

» Synthesis from STGs can be fully automated

= Synthesis tools often suffer from the state explosion
problem (symbolic techniques are used)

» The theory of logic synthesis from STGs can be found in:

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakovlev,

Logic Synthesis of Asynchronous Controllers and Interfaces,
Springer Verlag, 2002.

—

unoptimized

Intermediate Representation

Handshake Circuit

22



Outline

Structural methods for » Structural theory of Petri nets
synthesis of large - Marking equation

specifications

» ILP methods based on the marking equation
= Detection of state encoding conflicts
= Synthesis

» Methods based on unfoldings

Thanks to Josep Carmona and Victor Khomenko

State space explosion problem Event-based vs. State-based model
» Even in bounded nets, the state space o .
can be exponential on the size of the net i /\ e
= Concurrency (explosion of interleavings) N , L %
| 5\‘\\ o .> ,,,,,
\_/ oo
/ .\/ \; State Graph

\o)/ (,,/”.

Petri Net



Marking equation Marking equation

Incidence matrix

a+ a— b+ b+ b- ¢+ c— a+ a- b+ b+ b- c+ c-

p, (-1 0 0 0 1-1 0) P10 (1) (-1 0 0 0 1 -1 o0\
| 1 0-1 0 0 0 o Pz| 0 0 1 0-1 0 0 0 O
po| 1-1 0 0 0 0 0 P3| o 0 1-1 0 0 0 0 O
.| 0 0 0 0 0 1-1 P/ o| =|o0o|+| 0 o0 o0 0 0 1-1
pel 0o 0 0-1 0 1 o Ps| 0 0 0 0 0-1 0 1 0
ol 0 0 1 0-1 0 1 Ps| 1 0 0 01 0-1 0 1
p, L0 1 0 1-1 0 o0 P .0 L0 10 1-1 0 0}

Necessary reachability condition, but not sufficient.

Checking Unique State Coding

= {a+ b+ a- b-
M, —= M1Z / }Mz

* M, and M, have the same binary code
(z must be a complementary set of transitions)

* M, and M, must be different markings
(they must differ in at least one place)




Checking Unique State Coding Some experiments (USC)

z={a+ b+ a- b-}

M, X M, M, benchmark P IT| Isignals| CPU(s)
PpWk(3,9) 106 56 28 0.03
ILP formulation: PpWk(3,12) 142 74 37 0.05
M, = M, + Ax PpWkCsc(3,9) 108 56 28 0.67
M= M.+ A PpWkCsc(3,12) 144 74 37 1.17

2 1 <
bal(z) PpArb(3,9) 128 72 34 0.06
M =M PpArb(3,12) 164 90 43 0.08

1 2
X, 2, M, M, >0 PpArbCsc(3,9) 131 72 34 1.05
: PpArbCsc(3,12) 167 90 43 1.69
bal(z) = Va: #(a+) - #(a-) = 0
Checking Complete State Coding Enabling conditions in ILP

P %) P; Ps Ps

ormulation:
M, =M, + Ax
M,=M, + Az
bal(z)

M, € ER(a*)
M, # ER(a*)
x,z, M, M, =20

M € ER(a+): M(p;)+M(py)=2 v M(p;)+M(p,)+M(ps) =3

M & ER(a+): M(p;)+M(py)s1 A M(p;)+M(p,)+M(ps) <2

n ILP problems must be solved (*formulation for safe nets only)
(n is the number of transitions with label a*)



Some experiments (CSC) Synthesis

benchmark |P| [T| |signals| CLP SAT ILP . . .
Tangam@2) 142 = = R » Each signal can be implemented with a
Tangram(4,3) 321 202 83 006 004 900 subset of the STG signals in the support
Art(10,9) 216 198 99 0.00 0.42 0.06 (typlca”y |ess than 10)
Art(20,9) 436 398 199 5.00 10.35 0.24
Art(30,9) 656 598 299 38.02 81.82 0.56
Art(40,9) 876 798 399 138.04 264.57 0.92 . . .
Art(50,9) 1096 998 499 377.00 630.41 1.46 > syntheSIS Of a SIQnaI'
ArtCsc(10,9) 752 630 315 tme  14m  3m = Project the STG onto the support signals (hide the rest)
ArtCGsc(20,9) 1582 1270 635 time  mem  27m = After projection, the STG still has CSC for the signal
ArtCsc(30,9) 2312 1910 955 time mem 15h ) )
ArCsc(40,9) 3002 2550 1275 ime  mem 35h = Use state-based methods on each projection
ArtCsc(50,9) 3872 3190 1595 time mem 7h
Synthesis example il T
\ e ol —per]
] S ¢« o. I
R \ AT
::/.\: EWE ;51‘;?2?“ for :(ZT \_X/
’_/M\ “CSZF;s‘l;ppcn for x1: gc)‘sz(‘:‘:uggc’:n for x3:
R o L e L N N [ S R T S T




Checking the support for a signal

Let 3. be the set of signals and >.” a potential support for a.
Let 7" be the projection of z onto X",
2" is a valid support for a if the following model has no solution:

ILP formulation:

M, =M, + Ax
M,=M, + Az
a=0 bal(z’)

M, € ER(a*)
M, ¢ ER(a*)
x,z, M, M, 20

Experiments (Support + Synthesis)

benchmark States P [T|  |signals| Literals CPU

Petrify P Petrify P
PpWkCsc(2,6) 8192 47 26 19 57 57 5 1
PpWkCsc(2,9) 524288 71 38 19 87 87 49 2
PpWkCsc(3,9) 2.7 x 10E7 106 56 28 ? 130 mem 3
PpWkCsc(3,12) 2.2 x 10E11 142 74 37 ? 117 time 3
PpArbCsc(2,6) 61440 62 36 17 77 77 21 83
PpArbCsc(2,9) 3.9 x 10E6 110 60 29 107 107 185 59
PpArbCsc(3,9) 3.3 x 10E9 131 72 34 163 165 10336 289
PpArbCsc(3,12) 1.7x 10E12 167 90 43 ? 210 time 608
TangramCsc(3,2) 426 142 92 38 97 103 56 146
TangramCsc(4,3) 9258 321 202 83 ? 247 mem 2h

» Petrify (Cortadella et al):
» State-based & technology mapping
= BDD

Algorithm to find the support
z' := {a} u {trigger signals of a};
forever
z" 1= ILP_check_support (STG, a, z);
if 27 = 0 then return z’;
z' := 2" u {unbalanced signals in z"};

end forever

Design flow

structural encoding

STG with CSC

remove internal signals

and check CSC
structural transformations
optimized STG
A —
Gpport fora support for b o o support for 2°
projection

logic synthesis (petrify)

circuit for a circuit for b



Synthesis example

-
F—f2 -]
3 '
CSC-support for x2
E~— | x1, x3, x2} x2
CSC-supportfor x1 CSC-support for x3:
cs 12,4, x3) /

\ oo e
'.\\ I 1 \ —\. T

TR A

s

IIII\ W /
w

u IMPLEMENTATION

TS
ﬁ ol SO
" IMPLEMENTATION

[ EET
&‘m ] @
S




IMPLEMENTATION

STATE ENCODING

X

IMPLEMENTATION

Detection of conflicting states Disambiguation by consistent signal insertion

Disambiguate the conflicting states STG Insertion of signal s must:
LDTACK- by introducing a new signal s: 1. Solve conflict
2. Preserve consistency
10000 3. Preserve persistency

LDTACK- (CSC + consistency + persistency = SI-circuit)

DTACK+ DSr- 10110 .

o ILP

[Carmona & Cortadella, ICCAD'03]
* SAT-UNFOLD

[Khomenko et al., Fund. Informaticae]

10111 DTACK+ DS 01111



Implicit place

DEF1 (Behavior): The behavior of the net does not depend
on the place.
DEF2 (Petri net): it never disables the firing of a transition.

e —_———

a
222 7 N\
.27 / X+ Y-
A IT N /,'
Ny \ ,b'A’
S .
~

Implicit Places & Consistency

y=0 A
- +
! PR
X+ X-
| L
1
+

y=1
y

Theorem (Colom et al.)
Places y=0 and y=1 are implicit
if and only if signal y is consistent

Consistency

Consecutive firings of a signal must alternate

| N y+ x- y- b+ x- x+ b-y+ ..
X A | |

—___7?

Disambiguation by consistent signal insertion

Disambiguate the conflicting states Insertion of s into the STG:
by introducing a new signal s:

o s- will precede LDS+
¢ s+ will precede DTACK-

LDTACK-

DTACK+ DSr-



read cycle write cycle

DSw-

read cycle write cycle

s+;DTACK-

D+ LDTACK- LDTACK+

C:) <> s is consistent
DTACK+ s-:D-
LDS-
DSr- DTACK+

DSw-

read cycle

read cycle

DSr+

LDTACK+

s+;DTACK-

S+

NG
>0 :

LDTACK-

D+

write cycle

s=0 is not implicit!! ]

05708

DTACK+

DSw-

DSw+

LDS+

LDTACK+

DSw-

write cycle



Main algorithm for solving CSC conflicts State space explosion problem

» Goal: avoid state enumeration to check

while CSC conflits exist do implicitness of a place.

(0,,0,) := Find traces connecting conflict
(s=0,s=1):= Find implicit places
to break conflict

» Classical methods to avoid the explicit
Insert s+/s- transitions connected to state Space enumeration:
endf,iiii or (s=1) » Linear Algebra (LP/MILP;j>StructuraI methods
= Graph Theory

» Symbolic representation (BDDs)
= Partiar order (Unfoldings)

LP model to check place implicitness LP model to check place implicitness

A place p is implicit if the following A place p is implicit if the following A place p is implicit if My[p] is
LP model is infeasible, LP model is infeasible, greater than or equal to the
where P’ = P — {p}:

X where P’ = P — {p}: optimal value of the following LP,
M, AN M

LP formulation.: . DAL e =P ey
M, + Ax = M-~

0 P {p}: LP formulation: LP formulation.

s — > P .
M[P] - F[P,pe]'s=20--- : Q © - © O Mo+ Ax=M min y- M,
i M[P] — F[P,pe]'s>0 y:A[P'.T] < A[p,T]
M[p] - F[p,pe]'s < 0---1 3 M[p] - F[p,pel's<0 vy F[P, pe] = Flp, pe]
B et 3 s1=1 y=0

s1=1 X, M,s>0
X, M/ S2 0 [Silva et al]

[Silva et al.]



MILP model to insert a implicit place

AI

h MILP formulation.
min y- Mg
A y'ATP'T] < ATp,T]
y* F'[P’, pe] 2 F[p, pe]

y= 0

/ pei{-101}
MILP variables: y, p

Number of inserted encoding signals

N w0 oo N

1 petrify (state-based)
1 MILP (structural)

Ww i

Benchmarks from [Cortadella et a/., IEEE TCAD'97]

MILP model to find insertion points
that disambiguate the conflict

DTACK+

MILP formulation:

MILP “s=0 implicit”
MILP “s=1 implicit”
#(0115+) = #(c’lls') +1
#(0215') = #(°2ls+) +1
Mo[s=0] + M,[s=1] =1

LDTACK-

If there is a solution, rows in A’ for s=0
and s=1 describe the insertion points
(arcs in the net)

DSr-

Number of literals (area)

petrify (state-based)

I

Benchmarks from [Cortadella et a/., IEEE TCAD'97]

11



Experimental results: large controllers

example Places Trans Signals
Art(10,9) 216 198 99
Art(20,9) 436 398 199
PpWk(3,12) 142 74 37
PpArb(3,12) 164 90 43
Var(9,5) 302 338 150
Var(12,1) 368 394 183
Par(12) 63 52 52
SeqPar(21,10) 160 128 64
SPM(7,16,18) 192 394 60

CPU(min)
3.6

73.0

1.0

11.5

6.4

12.7

0.2

2.2

11.8

Synthesis with structural methods from
[Carmona & Cortadella, ICCAD'03]

SYNTHESIS USING

UNFOLDINGS

Work by Khomenko, Koutny and Yakovlev

#sig
28
57

24
27
12
23
17

Lits HDL
305 -

629
190
206
613
445

101 253
269 398
237 640

It doesn't always work ...

Behaviorally equivalent

Occurrence nets .
in-place

. Occurrence net oM
Petri net

12



Occurrence nets

» The occurrence net of a PN Nis a labelled (with names
of the places and transitions of A) net (possibly
infinite!) which is:

= Acyclic
= Contains no backward conflicts (1)
= No transition is in self-conflict (2)
= No twin transitions (3)

Finitely preceded (4)

NO!

NO!

Unfolding of a PN

» The unfolding of Petri net ~#is a maximal
labelled occurrence net (up to
isomorphism) that preserves:

= one-to-one correspondence (bijection)

between the predecessors and successors of
transitions with those in the original net

= bijection between min places and the initial
marking elements (which is multi-set)

O\/ : O\ p mq

D 7 D t7

net N unfolding N’ net N unfolding N’

Relations in occurrence nets

conflict

precedence

concurrency

andsoon ...

13



Unfolding construction

Unfolding
Petri net

4@p1

Petri net and its unfolding

“~LPN transition and its
instance in unfolding

14



Petri net and its unfolding

the transition

Prehistory (local -
configuration) of |

instance
t2

Final ‘cut of prehistory and

its marking (final state)

Cutoff transitions

e

Qe L

Cut-offs

Truncation of unfolding

» At some point of unfolding the process begins to

repeat parts of the net that have already been
instantiated

» In many cases this also repeats the markings in
the form of cuts

» The process can be stopped in every such
situation

» Transitions which generate repeated cuts are
called cut-off points or simply cut-offs

» The unfolding truncated by cut-off is called prefix

Example: CSC Conflict

dtack- . dsr+ 10000
01000 @ 05600
lds+
Idtack- Idtack- |dtack-
) dtack- ) dsr+ ) 10100
> o e}
01010 00010 10010
Ids- Ids- Ids- Idtack-+
dtack- | dsr+ S b4
) —
01110 00110 M" M .‘m
d+
dsr- dtack+
o) 0o
01111 1111 10111

15



Example: enforcing CSC

dtack- dsr+ csC+
) g™

010000 @ } 000000 4 100000 ?100001
Idtack- Idtack- Idtack- Ids+
dtack- dsr+ b
o} 0 e}
010100 00100 100100 101001
Ids- Ids- Ids- Idtack+
dtack- dsr+
011100 0011000 bM” M'<31o1101 )
d- d+
L csc- dsr- dtack+
o -0 o)

O
011110 011111 111111 101111

€ € €3
| dsr+ H Ids+ H Idtack-+
1
conf’=111000000000 |conf”=1111111101 00 )
Code(conf')=10110 : Code(conf”)=10110 L’

» Configuration constraint: conf’ and conf” are
configurations

» Encoding constraint: Code(conf’) = Code(conf")
» Separating constraint: Out(conf’) # Out(conf”)

Unfoldings

© Alleviate the state space explosion problem
© More visual than state graphs

© Proven efficient for model checking

® Quite complicated theory

® Not sufficiently investigated

® Relatively few algorithms

Translation Into a SAT Problem

Conf(conf') A Conf(conf") A
Code(conf',..., val) A Code(conf",..., val) A
Out(conf’,..., out') A Out(conf",..., out") A

out'z out"

16



Configuration constraint Tracing the value of a signal

° /\ (conf, — conf )

fe*Ce)

causality

feCe)\e)

|T|
CéD ° /\ —(conf, Anconf )
(]

no conflicts

Computing the signals’ values Computing the enabled outputs
° |

D
b
0
cut, < CO?lfe A A_ICOI’lff en, & f/.(\)conff /\f{\). —conf,
feb' fe (Ce e(e
val, & \/ cut, out < \/ en
h(b)=p. £ st e

17



Analysis of the Method

© A lot of clauses of length 2 — good for BCP

© The method can be generalized to other coding
properties, e.g. USCand normalcy

© The method can be generalized to nets with
dummy transitions

© Further optimization is possible for certain net
subclasses, e.g. unique-choice nets

Experimental Results

» Unfoldings of STGs are almost always small in
practice and thus well-suited for synthesis

» Huge memory savings
» Dramatic speedups

» Every valid speed-independent solution can be
obtained using this method, so no loss of quality

» We can trade off quality for speed (e.g. consider
only minimal supports): in our experiments, the
solutions are the same as Petrify’s (up to Boolean
minimization)

» Multiple implementations produced

Synthesis using unfoldings

for each output signal z

for each ‘promising’ support X

apply Boolean minimization to the
obtained ON- and OFF-sets

choose the best implementation of z

ILP vs. Unfoldings

» ILP:
= Efficient in runtime
» Incomplete (spurious markings)
» Unfoldings:
= Efficient in runtime (but slower than ILP)
= Complete

» Both methods give synthesis results similar
to state-based methods

18



Direct synthesis
(Varshavsky’s Approach)

Controlled
pl Operation p2

=01

pl p2
(1 (0) © @

. (1)

To Operation

Direct synthesis

Direct synthesis

19



o Outline

De- synchromzatlon:
from synchronous to asynchronous = What is de-synchronization ?
m Behavioral equivalence
m 4-phase protocols for de-synchronization
m Concurrency
m Correctness
Based on the paper: = An example
Blunno, Cortadella, Kondratyev, Lavagno, Lwin, Sotiriou,

Handshake protocols for de-synchronization,
ASYNC 2004.

Synchronous circuit

MS flip-flop

De-synchronize

=

CLK

CLK oK




De-synchronization

C C c—C

—
——

Design flow
m Think synchronous

m Design synchronous:
one clock and edge-triggered flip-flops

m De-synchronize (automatically)

® Run it asynchronously

De-synchronization

Distributed controllers substitute the clock network

L. ; -

! l

C C

The data path remains intact !

Prior work
m Micropipelines (Sutherland, 1989)

m Local generation of clocks
+ Varshavsky et al., 1995
¢ Kol and Ginosar, 1996

m Theseus Logic (Ligthart et al., 2000)
& Commercial HDL synthesis tools
« Direct translation and special registers

m Phased logic (Linder and Harden, 1996)
(Reese, Thornton, Traver, 2003)

+ Conceptually similar
« Different handshake protocol (2 phase vs. 4 phase)



Automatic de-synchronization Outline

. ) m What is de-synchronization ?
m Devise an automatic method for

- m Behavioral equivalence
de-synchronization

m 4-phase protocols for de-synchronization

m Identify a subclass of synchronous circuits m Concurrency
suitable for de-synchronization m Correctness

m An example
m Formally prove correctness

Synchronous flow
> (o




De-synchronized flow

Flow equivalence

[Guernic, Talpin, Lann, 2003]



Flow equivalence

(¢} )< S I oy I N S N o N A oy N O

Ai 1§ 3 P2 i1 85 i3 51160
Bi 5 i1 2311 4 2i4:i3 1

Synchronous behavior
A 1 o3 ez inisiz i ie o

5i1i2 4 12040 3411

De synchromzed behavior

Flow equivalence

N e v e e e e o v O
BiS i1 23 1 i4 24 3;]1

Syl.achron;ms behavior

e L e I L= L= = | Sy ¥
A o e e s R e e
BiSili2i 31 1 1 4 i 2141 3: 1
De-synchronized behavior

Outline

m What is de-synchronization ?

m Behavioral equivalence

m 4-phase protocols for de-synchronization
m Concurrency

m Correctness

®m An example



C C C—'C%
|
C

— — - —
— — — e

A latch cannot read another data item until
the successor has captured the current one

A latch cannot become opaque before having
captured the data item from its predecessor



Outline

m What is de-synchronization ?

m Behavioral equivalence

m 4-phase protocols for de-synchronization
m Concurrency

m Correctness

m An example

NN
T~

A+ B+ A+——e——B+

A- «—e——B-



A+ B+

data overrun
Can we reduce concurrency ? How much ?

A+ B+

(8 states)

»

A+ B+

(6 states)

A B-\ A+ —e—— B+

(5 states) \ \

- — — -
A+ —o—>B+ A B

(4 states)

A-—B-

e — =

\ de-synchronization
/ model \
A+ —e——B+
fully decoupled \ GasP, IPCMOS
/ B- (Furber & Day)
@%
semi-decoupled
A+ B+ / (Furber & Day) \

T ==l e Yy

simple 4-phase non-overlapping




A- —e—— B
fully decoupled
(Furber & Day)

simple 4-phase
A+ —e—— B+ /

A-——B-

e

A+ B+

\

de-synchronization
model

A+ —e—— B+

A- —e—B-

A+ —e—— B+
™\
\ \ & GasP, IPCMOS

non-overlapping

semi-decoupled \ A+ B+
(Furber & Day) >< \
B-

4-phase latch controllers

{

Rin

Ain

Rout

Aout

> Rin+

l

Ain+

?

> Rin-

A

— Ain-

A-

Rout+ <

Aout+

Rout-

Aout- —

4-phase latch controllers

Lt

Rin

Ain

R

A\ 4

Rout

. Lt
Rin Routp————--->

Aoutle Ain Aoutj€——nu-—

Furber and Day, IEEE Trans. VLSI, June 1996

Implementation note: Lt=0 (transparent), Lt=1 (opaque)

4-phase latch controllers

\%
Ain+ €— Lt+

?

Lt
—>{Rin

Ain

{

Rout

Aout

e— v

— Ain- €— Lt-

Simple 4-phase controller

> Rin+t ——> Rout+ €

f— Rin- =——> Rout-

/|

Aout+

| o
/|

Aout- —




4-phase latch controllers 4-phase latch controllers

> Rint =————> Rout+ <€ > Rint —> A+ —> Rout+ €
Ain+ €— Lt+/Aout+ Ain+ €— Lt+ Aout+
® l l ® ® l ®
Rin- =—> Rout- —3IRin Lt Routb—> Rin- —>» A- —> Rout-
/ l <€—Ain Aoutje— l l
— Ain- €— Lt- Aout- =— — Ain- €— Lt- Aout- —
Simple 4-phase controller Semi-decoupled controller
4-phase latch controllers 4-phase latch controllers
@ v
> Rin+t —> A+ —> Rout+ <€ > Rin+t —> A+ —> Rout+ <€
Ain+ €— Lt+ Aout+ Ain+ (\— Lt+ Aout+
® l ® ® l BJ ®
Rin- —> A- —> Rout- —3>JRin Lt Rout b—> Rin- A- —> Rout-
l‘ l’ <€—jAin Aoutje— l l‘ l
— Ain- €— [t- Aout- — — Ain- Lt- Aout- —
NV
B-

Semi-decoupled controller Fully decoupled controller



4-phase latch controllers

® v

l

datain L Ain+ €— Lt+

B+
* |l %

Aout Rout — Ain- Lt-

B-

Fully decoupled controller

cntrl AX cntrl

(semi-decoupled 4-phase protocol)

> Rin+t —> A+ —> Rout+ €

Rin- A- —> Rout-

l

Aout+

l

Aout- =

4-phase latch controllers (state graphs)

State:

00\’11 A B Rout Aout Rin Ain At
100110
Rin+ Rout- Ains, Aout-
‘/ \ Rin- v \4:“
100101 = 100111 100040
0111 0001 N \ \:ouu
101010

B+
+ - -

At \ / \A:”t To0001 o1t g
L yor FRgog | N

Ain,
114 0101 0000 RSN A
. / \ / - 110100 110001 110011 \
. Y im:
& b i \.0/ \J 101101 xl m«(
1ot 0100 110110 110000 111001 111100
Rin- / N NSNS \[_ \1
HIOI0 411000 411101 «— 111311
1001 1100 / \ P
Rout# 1010 411100 OTHOT e— 011111
\ / / \ \Rout—
1000 1110 att10 011100 010101 <= 010111

ous ‘( \7 Aout-
\ / \ /“"’;'"%0"";0/ nn1'0(0/ }0001 ¢—>’1°1‘

1010 1M1 00ffS ogas e o \
010110 010000

State: ,)gu
A Rin Rout Aout \101‘1/ w0 W%‘w‘n/

0001 8-

Semi-decoupled controller Fully decoupled controller

Rx

cntrl AX cntrl
Ai +— Ao

(semi-decoupled 4-phase protocol)

11



A+ B+

AN

N e N

X
A- —e——B- \ ‘T‘ T"

A+ —o—>B+/

A- ———— B- A- B-

Outline

m What is de-synchronization ?

m Behavioral equivalence

m 4-phase protocols for de-synchronization
m Concurrency

m Correctness

m An example

Which protocols are valid
for de-synchronization ?

crRi  Rol—Ri Ro Al

12



A+ B+

Theorem:
the de-synchronization protocol
preserves flow-equivalence
Proof: by induction on the length of the traces
Induction hypothesis: same latch values at reset

Induction step:
same values at cycle i =» same values at cycle i+/

Theorem:
any reduction in concurrency preserves flow-equivalence

A+ B+ A+ —e——B+

(N

A- ———B- A- B-

A+ B+

e \
A B

+ B+ A\+\<T+
A- —e—— B- A- B-

A+ —o—>B+/

A- B-

A-——B-

Any hybrid approach preserves
flow-equivalence !

Semi-
_decoupled

E Fully —  Semi- J—~@ Fully
decoupled _ decoupled | decoupled CE
[ 1L 1 (e

—

Semi-
decoupled

: AU KO

E‘:(\ T 1 ) 1
a non- non-

overlapping overlapping -
L ] L 1

13



NN

Liveness

m Preservation of flow-equivalence:

all the generated traces are equivalent

m Are all traces generated ?
(Is the marked graph live ?)

Not always !

C

A B D

Tr\ T>< Tr ﬂ+

A- —e—— B- C-—e—D-
semi- non- fully

decoupled overlapping decoupled

Flow-equivalence is preserved, ... but ...

L8 -

A+ —@ B+ C+—@— D+

A- —@— B- C-—e—D-

\__/

Semi-decoupled 4-phase handshake protocol

Liveness: all cycles have at least one token [Commoner 1971]

14



Simple 4-phase handshake protocol

A+ B+

| \\
Mg
R WMM

A- o B- non-overlapping

semi-decoupled \ At B+
(Furber & Day) \ >< \
A- B-

Results about liveness

m At least three latches in a ring are required with
only one data token circulating
[Muller 1962]

m Theorem (this paper):
any hybrid combination of protocols is live if the
simple 4-phase protocol is not used

Proof: any cycle has at least one token

Outline

m What is de-synchronization ?

m Behavioral equivalence

m 4-phase protocols for de-synchronization
m Concurrency

m Correctness

m An example

15



COMBINATIONAL LOGIC

T3> C

[e]
o)
Ao Ai LDQ
Ro R delay
Ri—-@» 0+4’/Ro—
/s
Ai— /// Ao—
L)
Ri+—* O—®>Ro+
|
Ai+ Ao+ Ai+ Ao+
Initial state: E=Ao=1, Ri=Ai=Ro=0 Initial state: Ai=1, O=Ri=Ro=A0=0
Synchronous RTL
Synchronous Desynchronized
—
I
Cycle: 4.4ns Cycle: 4.45ns
Power: 70.9mW Power: 71.2mW
Area: 372,656pm Area: 378,058um

All numbers are after Placement & Routing
Total of 1500 flip-flops, 3000 latches

DE-SYNC design includes 5 controllers, each driving 2 clock trees

Power numbers include the clock tree
Technology: UCM/Virtual Silicon 0.18 pm

Async DLX block diagram

! DMEM |
\l, 1 interface !

ARB/
SYNC

324B/

ADDRJ,
H/
EXMEM |w

IF Latch Control {0 Latch Conirel EX Latch Control MEM Latch Contrc

Discussion

m The de-synchronization model provides an
abstraction of the timing behavior

>
[es)




[5.7]

=

[2,3] |a

1,21 [e—i8.91 [o

bl

* Timing analysis
* Exploration of the design space

Conclusions

m EDA tools require a formal support
(they must work for all circuits)

m A complete characterization of 4-phase protocols
has been presented
(partial order based on concurrency)

m Design flow developed at Cadence Berkeley Labs
+ Automated from gate netlist
+ Static timing analysis to derive matched delays
+ Constrained P&R to meet timing constraints

17



Part 2: Synchronous Elastic Systems B Synchronous elastic systems also called
— Latency tolerant systems or

— Latency insensitive systems

Jordi Cortadella and Mike Kishinevsky . s
E We use term synchronous elastic” since

better linked to asynchronous elastic

Agenda of Part 2 I

What and Why

Intuition

How to design elastic systems
Converting synchronous system to elastic
Micro-arch opportunities

Marked Graph models

Performance evaluation

|.  Basics of elastic systems

ll. Early evaluation and
performance analysis

l.  Optimization of elastic systems and
their correctness



Synchronous Stream of Data

Token (of data)

Clockcycle =+

-
o

Synchronous Circuit

Latency =0

e |74 1

---|1]o 2}

+

.. [3]4]3]

Synchronous Elastic Stream

Clock cycle =«

L 7
2

Clockcycle==* 5 4 3 2

—_
ol —

10

aanid o N
Bubble (no data)

Synchronous Elastic Circuit

Latency =0

e |74 1

---|1]o 2}

+

.. [8]4]3]

{7 411

1 |10 2

e

+

_>lll8

Latency can vary



Synchronous Elastic

Ordinary Synchronous System (charagteristic property)

A cJ I—A—m—»cJ |—Ae CeJ I—Ae—@—»ceJ

Changing latencies changes behavior Changing latencies does NOT change behavior
= time elasticity

Why

® Scalable Example of elastic behavior
E Modular (Plug & Play)

B Better energy-delay trade-offs
(design for typical case instead of worst case)

® New micro-architectural opportunities
in digital design

E Not asynchronous: use existing design
experience, CAD tools and flows



How to design elastic systems

We show an example of the implementation:
SELF = Synchronous Elastic Flow

Others are possible

Not valid

Lazy

0 10

Reminder:
Memory elements. Transparent latches

D Q D L Q
En En
Active high: Active low:

En=o0 (opaque): Q =prev(Q)

En=1(transparent): Q=D

En=1 (opaque): Q = prev(Q)

En=o (transparent): Q=D

16




Reminder: Reminder: Clock cycle = two phases

Memory elements. Flip-flop

o — - o D-_o
CLK T - H
<< N N N A Y I

0 delay abstraction
o | I e A L X z X y
= -
o— | L 2G) = x(i—1) 2()= y(i—0.5) = x(i~1)
Elastic channel protocol Elastic channel protocol

Sender Receiver

Sender Receiver

Transfer

Retry
Idle




Elastic buffer keeps data while stop is in flight Communication channel

Cannot be done with sender receiver

Single Edge Flops
W1R1 {:F without double pumping

Can use latches inside

Master-Slave
W2R1

Long wires: slow transmission
W1R2 w
W2R2
Pipelined communication The Valid bit
sender

receiver sender receiver

I\ [ N [ )
14 » » » 14

What if the sender does not always send valid data?

I\ [ N [ )
14 » » » 14

What if the receiver is not always ready ?




The Stop bit

sender receiver

1 1
Back-pressure

Example: pipelined linear communication chain
with transparent latches

sender receiver

H L H L

<

n n
» »

Y2cycle Vzcycle

Master and slave latches with independent control

Cyclic structures

) 4

1 1 # "
Valid

A AN
—G‘ — Stop
Combinational cycle
V4 N4

'y

i

One can build circuits with combinational cycles (constructive cycles by Berry),
but synthesis and timing tools do not like them

Shorthand notation
(clock lines not shown)

En




SELF (linear communication) SELF

sender receiver sender receiver

SELF Basic VS block

sender receiver

VS block + data-path latch = elastic HALF-buffer



Join

Eager Fork

(Lazy) Fork

Eager fork (another implementation)




Variable Latency Units (to be changed)

Ryias

.
TIEL/WE LR

Elasticization

Synchronous

—

Elastic

MEM/WB

CLK

CLK

10



Circuit vs. parchitectural cycles

(%9}
Q0
=

C

-’
T

o

Q

Q.

o
©

—

-’
i

(&

O
=
<

(O]

S

P

o

S
9
=

11



Variable-latency cache hits

12-cycle miss L2-cache

2-way associative

32KB L1-cache

1-cycle hit
suggested by Joel Emer for ASIM experiment

Variable-latency cache hits

12-cycle miss L2-cache

Pseudo-associative

64KB L1-cache

Sequential accesb ®GiBMifrst access L = 1, if not — L=2
Trade-off: faster, or larger, or less power cache

Variable-latency cache hits

12-cycle miss L2-cache

Pseudo-associative

32KB L1-cache

Sequential access:@Srlrst access L = 1, if not — L=2
Trade-off: faster, or larger, or less power cache

Variable-latency RF with less ports

By-pass control By-pass

8 read ports
1 cycle read

3 4 4

Cache of recent computations

LD R2, A(R5)
ADD R1,R2, R3 | «——— 1 by-pass, 1 read port
MUL R4, R1,R6 | «—— 1 by-pass, 1 read port
CMP R4, #100 +«—— 1 by-pass

4-way superscalar or 4 threads assumed, 1 way shown

12



Variable-latency RF with less ports

By-pass control By-pass

KJ

+ +

Cache of recent computatio‘ns

LD R2, A(R5)
ADD R1,R2,R3 | «——
MUL R4,R1,R6 | «———
CMP R4,#100 | «——

1 by-pass, 1 read port
1 by-pass, 1 read port
1 by-pass

Benchmark s:a:::::gzd
“Patricia” sizes
from

Media Bench &

12 bits of an adder \\A PR

do 95% of additions — 13 5 7 o 11131517 19 21 23 25 27 20 31 3
bits of adder used |

Variable-latency ALUs

E In most of the ADD/SUB operations, only few
LSBs are used. The rest are merely for sign

extension.

E Use the idea of telescopic units:
— 1-cycle addition for 16 bits and sign extension
— 2 or more cycles for 64-bit additions
(rare case)
— maybe there is no need for CLA adders ...
— or do all additions with 16-bit adders only

Variable Latency Adder

long



Power-delay [preliminary]

H;mc”py ompare 64 bits prefix adder with vla
ower, m

| |
N
-
T
|
T
.
-
L_‘\;% .

Delay, ps
160.00 180.00 200,00 22000 24000 260.00

Partitioned register file

(= N elelNeNel "

short / long /

or heterogeneous register files, register caches

Pre-compute and tag size information

| [_shortdata ]

... and select functional unit
according to the size of the data

Reminder:
Petri Nets and Marked Graphs



Petri nets

B Petri net
= Places {P}
m Transitions {T}
m Arcs

m Tokens

Petri nets. Token game

Enabling Rule:
* A transition is enabled if

all its input places are marked
+ Enabled transition can fire at any time

Firing Rule:

* One token is removed from
every input place

+» One token is added to
every output place

+ Change of marking is atomic

Petri nets. Token game

Enabling Rule:
« A transition is enabled if

1 t2 all its input places are marked
+ Enabled transition can fire at any time

3 Firing Rule:
* One token is removed from
every input place
*» One token is added to

t4 p— every output place
» Change of marking is atomic

Timed Petri nets

E Assign a delay () to every transition

— An enabled transition fires 8 time units after enabling

Assume 6=1

15



Timed Petri nets

B Assign a delay () to every transition
— An enabled transition fires  time units after enabling

Assume 6=1

Marked Graph models
of elastic systems

Timed Petri nets

E Assign a delay () to every transition

— Atransition with marked input places will fire after § time units

Assume 6=1

t=2

Modelling elastic control with Petri nets

bubble data-token

N/

data-token

bubble

16



Modelling elastic control with Petri nets

bubble 2 data-tokens data-token

B

Hiding internal transitions of elastic buffers

Modelling elastic control with Marked Graphs

| R R |

Forward
(Valid or Request)

.....
.~ o
.......

Backward
(Stop or Acknowledgement)

Modelling elastic control with Marked Graphs

o o (o

Elastic control with Timed Marked Graphs.
Continuous time = asynchronous

=11

Delays in time units

.

.....
.~ o
.......

17



Elastic control with Timed Marked Graphs.
Discrete time = synchronous elastic

| 1 B |

Latencies in clock cycles

1

. 8 » o
. . N .
. . . .
0 o .
________________
..............

.....
.......
_________

Elastic control with Timed Marked Graphs.
Discrete time. Variable latency operation

e.g. discrete probabilistic distribution:
average latency 0.8"1 + 0.2*2=1.2

{1,2}

. o
''''''
-------

ot
.t

Elastic control with Timed Marked Graphs.
Discrete time. Multi-cycle operation

Modeling forks and joins

18



Elastic Marked Graphs

An Elastic Marked Graph (EMG) is a Timed MG such that
for any arc a there exists a complementary arc a’
satisfying the following condition

«a=a+ and +a =a

Initial number of tokens on a and a’ (Mo(a)+Mo(a’)) =
capacity of the corresponding elastic buffer

Similar forms of “pipelined” Petri Nets and Marked Graphs
have been previously used for modeling pipelining in HW
and SW (e.g. Patil 1974; Tsirlin, Rosenblum 1982)

Performance

Th = operations / cycle

Performance analysis on Marked Graphs

Th=3/7

Performance

19



Performance

Th=3/5

Performance

Th = min ( 0.43, 0.6, 0.4)

Performance

HE

Th=2/5

Performance

Minimum mean-weight cycle
(Karp 1978)
Many efficient algorithms
(some reviewed in
Dasdan,Gupta 1998)

Th = min ( 0.43, 0.6, 0.4)

20



k Early evaluation

B Dual Marked Graphs
B Implementing early evaluation

B Performance analysis

Examples of early evaluation

Goal: Improve system performance and power

MULTIPLIER

a
b }C ifa=0thenc:=0 --don’twaitforb

MULTIPLEXOR

a—T1
b E © ifs=Tthenc:=a --don’t waitforb
else c:=b --don’t wait fora

S

Early evaluation

Naive solution: introduce choice places
— issue tokens at choice node only into one (some) relevant path

— problem: tokens can arrive to merge nodes out-of-order
later token can overpass the earlier one

Solution: change enabling rule
— early evaluation

— issue negative tokens to input places without tokens,
i.e. keep the same firing rule

— Add symmetric sub-channels with negative tokens
— Negative tokens kill positive tokens when meet

Two related problems:
Early evaluation and Exceptions (how to kill a data-token)

Example: next-PC calculation
®

PC+4

Branch target
address

21



Related work

E Petri nets

— Extensions to model OR causality
[Kishinevsky et al. 1994, Yakovlev et al. 1996]

B Asynchronous systems
— Reese et al 2002: Early evaluation
— Brej 2003: Early evaluation with anti-tokens

— Ampalan & Singh 2006: preemption using anti-tokens

Dual Marked Graph
B Marking: Arcs (places) —>Z

E Some nodes are labeled as early-enabling

E Enabling rules for a node:
— Positive enabling: M(a) > 0 for every input arc

— Early enabling (for early enabling nodes):
M(a) > 0 for some input arcs

— Negative enabling: M(a) < 0 for every output arc

B Firing rule: the same as in regular MG

Dual Marked Graphs

Dual Marked Graphs

Early enabling is only defined for nodes labeled as early-
enabled. Models computations that can start before all
the incoming data available

Early enabling can be associated with an external guard
that depends on data variables (e.g., a select signal of a
multiplexor)

In DMG actual enabling guards are abstracted away

Anti-token generation: When an early enabled node

fires, it generates anti-tokens in the predecessor arcs
that had no tokens
Anti-token propagation counterflow: When negative

enabled node fires, it propagates the anti-tokens from
the successor to the predecessor arcs

22



Dual Marked Graph model

A-lhe

Passive anti-token

E Passive DMG = version of DMG without negative enabling

E Negative tokens can only be generated due to early
enabling, but cannot propagate

B Let D be a DMG and D, be a corresponding passive DMG.

If environment (consumers) never generate negative
tokens, then
throughput (D) = throughput (D,)

— If capacity of input places for early enabling transitions is unlimited,

then active anti-tokens do not improve performance

— Active anti-tokens reduce activity in the data-path
(good for power reduction)

Properties of DMGs

Firing invariant: Let node n be simultaneously positive (or
early) and negative enabled in marking M. Let M1 be the
result of firing n from M due to positive (or early) enabling.
Let M2 be the result of firing n from M due to negative
enabling. Then, M1 = M2.

Token preservation. Let cbe a cycle of a strongly
connected DMG. For every reachable marking M,

M(c) = Mo(c).

Liveness. A strongly connected DMG is live iff for every
cycle ¢c: M(c) > 0.

Repetitive behavior. In a SC DMG: a firing sequence s from
M leads to the same marking iff every node fires in s the
same number of times.

DMGs have properties similar to regular MGs

Implementing early enabling

23



How to implement anti-tokens ?

Positive tokens

Negative tokens

How to implement anti-tokens ?

Valid*——, — Valid+

+

Stop*—— «——— Stop*

Valid~ —— Valid-

Stop~——, Stop-

How to implement anti-tokens ?

Positive tokens

Negative tokens

Controller for elastic buffer

Data I

24



Dual controller for elastic buffer Dual fork/join and early join

En

En
da‘la
Vi, = . W% "
— S BT
Via Vie at
o + {:E
ot

B T
Sg, I S3 ™
© | ﬂ% - =
St - Wl é Vi @
55 < f:: Sat
Vip—— = Dj} Vin—— e} :Dj}
|| L]
©

Dual fork/join Join with early evaluation
Example

DLX processor model with slow bypass

Bypass

Fetch Decode
Evaluation Throughput Throughput: Th = operations / cycle
No early evaluation 0.277
PRSI BB [ = U 0.280 System performance| (Applying early evaluation on “Execution” and “Write-back”
Passive anti-tokens F3 - W 0.387
Active anti-tokens 0.400 Th=0.5 Th=0.7 (0=0.3;p=0.3)




Conclusions

B Early evaluation can increase performance
beyond the min cycle ratio

E The duality between tokens and anti-tokens
suggests a clean and effective implementation

Reminder: Performance analysis of

—Narked graots

Th = operations / cycle = number of firings per time unit

The throughput is given by the
minimum mean-weight cycle

Th(A)=3/7
B Th(B)=3/5

Th(C)=2/5

Th=
<in(Th(A), Th(B), Th(C))=
2/5=0.4

Efficient algorithms: (Karp 1978), (Dasdan,Gupta 1998)

Performance analysis
with early evaluation

(joint work with Jorge Julvez)

Marked graphs. Performance analysis

The throughput can also be computed by means of
linear programming

p »  Average marking

m, =lim ['m (dz
Throughput

D th=minm
th=min(m , ,m ) p 7

26



Marked graphs. Performance analysis

The throughput can also be

computed by means of th = min I’I_’lp
linear programming p
max th -
(mm =1+t,—1, reachability

TM:O+Q—%
Tw=1+g—g
My =0+t -1

Me=1+1,—1
\_"° c d th constraints

b
of <Ia> P2

th< mg, //transition b
th< m,, //transitionc
th< mys //transition d
\th < min(My,, M) / transition a

[Campos, Chiola, Silva 1991]

Multi-guarded Dual Marked Graph

F Execution of transitions:
— At the initial marking and each time tfires one of
guards gi from G(t) is non-deterministically selected
® Selection is persistent (cannot change between firings of )

E Accurate non-deterministic abstraction of the early
evaluation conditions (e.g. multiplexor select signals)

— tis enabled when for every place p in selected gi:
M(p) >0

— enabled t can fire (regular firing rule)
B Single-server semantics: no multiple-instances
of the same transition can fire simultaneously

— Abstraction for systems that communicate through
FIFO channels

GMG = Multi-guarded Dual Marked Graph

Refinement of passive DMGs

Every node has a set of guards

Every guard is a set of input arcs (places)

Simple transition has one guard with all input places

Example:

3 t2

t1
p1 p3 ‘.p2

B G(t4)={{t1,13},{t2,t3}}

Timed GMG

Every transition is assigned a non-negative delay J(t)
E O(t)=1 unless specified otherwise

Every guard g of every guarded transition is assigned a
strictly positive probability p(g) such that for every t:

>.p(g)=1

geG(1)
Guard selection for every transition is non-deterministic,
but respects probabilities in the infinite executions

Probabilities assumed to be independent
(generous abstraction)

Firing of transition ¢ takes 8§t) time units, from the time it
becomes enabled until the firing is completed

27



Early evaluation

Timed GMG

{Places, Transitions, 9, Prob} Throughput?

Marked graphs with early evaluation

stochastic dynamic system

Alternatives to compute the throughput:
— Simulation
— Markov chain
— Linear programming

Early evaluation

)'/O‘/O'/O‘ 0.43
EXARYR 024 0.4 0.45 045 0.45
m 0.44 045 047 045 0.49
ERMEEE 0.4+ 045 0.42 051 054

§ 044 0.45 0.49 0.54 [0
(0.43)  (0.60) (0.40)
Throughput
Th=1im o(t)/t
T—> o0

B 1 —time, o(t) — firing vector
B This limit exists for every timed GMG
E It is the same for all transitions!



Markov chains

P1 P2
Ps Pa

b, c,d

v

b Ps 1 0] ad 0 1|abc |0 1
10 1 1 0 1
By /Iw ’ b, c 0 1-a 1
o
\ a S1 S2 S3
o /

Solve Markov chain:

Ps /'I\FL;

Qi ® S2-S1; S3=(1-0)S2; S1+S2+S3=1;
\I I/ Th =1+ (1-0)S2
p
d 7 ¢

[Th:(z-a)/(s-a)]

State explosion problemk

Linear programming. Example

b max th
(M =1+t,—t, )
7 M2 =0+, — b,
P4 a P2 Meg=1+1,—1,

/ Tp4 =0+t -t
/I\ kmp5=1+tc_td <
P: @ 1- ® " (th< my,
\ / th< my,
I4—.4—I ths myg
\. J
Cc

th = oMy, + (1-0) Mg

J/

Linear programming formulation

Average marking: m,

max th

m = Mg + tin _tout

reachability

th constraints

p1 p2
: ‘ [8(’[) * th < min(r_nm,mpz) for all “classical” t]
t

th constraints
p1 p2 —
a: :Hx [5(0 «th = oo my+ (1-0) M, for all “early” t
t

Averaging cycle throughput or cycle times
does not work

p1N a> e [T =a1/2+(1-0)23=(4-0)/6 |

Ps Q\ﬁl\‘ P4
2/3 \I«.«I/

d Ps ¢

Averaging throughput of
individual cycles

Averaging effective cycle times
of individual cycles

1/Th” =20+ (1-a) 3/2= (3 + a) / 2
Th” = 2/(3+ )

29



Example

Y e
1
i, P @]
4 A
¥ I:I . '
. P G
,p P

Initial marking Average (steady state) marking

Throughput estimation

B Throughput estimation:

t, b 2. Low = throughput without

= early enabling
I/I'\O_75 L J 3. Th=(Up + Low)/2

(I / 1. Up = throughput obtained with LP

Linear programming

In general the LP yields a throughput
upper bound

Particular cases of exact throughput:
* No early joins (i.e. MGs)

« All joins are early evaluation

Name Nodes  Edges MG=Low

Results s27 0.333
S208 0.500

s298 0.091

s349 0.333

Circuits from MCNC 5382 0.250
s386 0.400

s400 0.400

2-input gates S444 0.200
a latch for each gate S510 0167
S526 0.333

75% tokens, 25% bubbles JEIZA 0.333
S713 0.250

25% muxes S820 0.143
Random select probability S832 0.286
S953 0.286

S1423 0.100

S1488 0.188

S1494 0.154

S5378 0.235

s9234 0.200

Err

30



Summary

Early evaluation to improve system throughput
—  Evaluate expressions as soon as possible
—  Generate antitokens to erase “don’t care” bits

Analytical model to estimate the throughput
—  Useful for architectural exploration
B Which muxes must have early evaluation ?
®  Where do we put our by-passes ?
—  Faster than simulation
—  Simulation can be used at later design stages

Buffer sizing

(joint work with Dmitry Bufistov)

E Optimization
— Slack matching and buffer sizing
— Retiming and recycling
— Clustering controllers

E Correctness
— Theory of elastic machines
— Formal verification

How many bubbles do we need?

O(n?) cycles

O(n) cycles

31



Throughput of an n-stage ring

n bubbles 0
tokens + bubbles = n
1/2 Lo .
o tokens : No space
0 tokens n/2 n

Optimization techniques

E Buffer sizing: select optimal capacity of
elastic buffers without increasing forward
latency for propagating data-tokens

B Slack matching: insert additional empty
elastic buffers
— increases buffer capacity
— but, typically increases forward latency as well

— also called recycling in the context of
synchronous elastic (latency-tolerant) designs

What flexibility do we have ?

Number of tokens on a loop cannot be easily
changed (inherent to the computation)

Bubbles can always be added (as many as
necessary), but may decrease throughput

Buffer sizes can always be increased (provided
forward latency of the buffer does not change)

Tokens determine the maximum achievable
throughput (assuming infinite buffer sizes)

Buffer optimization

F N

l Th=5/8=0.625

Z %-\

32



i
0
e

Buffer optimization

Forward (Valid)

,,,,,
........
________

Backward (Stop)

o
.t

Traffic jams in short branches

of fork/join structures

‘. .0.
8 .
.
K

0 e,

Buffer optimization

............ &, O W
u .‘ S "
: 30 ’
= . \x :;

VE . “0:1» . > .:. Ih=S/5=06
. v - AT el - 705
s S0 e S Th-4/7-057

e .'. . ' 1, '.4'- LA
SO o5t e
: 3/5=06 e
. - ’

.
.
S ALY

Make non-critical branches longer
(be careful, forward latency increases)

33



Solution 2: increase buffer size

FIFO: n master + 1 slave latches

Buffer optimization
........... ®.. O ..
Pl . A ‘h ® P

A '.:‘ Al Th=5/8=0.625
R 3 Y
@ ".,%..‘ o . Th=3/5=06
e e e g R r-¢/7-057

v ."..‘;‘“ 'l""“'g" e %

5
V'
<

LEELE LY TSN
-n

A
k)

jll. ‘ll. .
8 v,
o

- "y 4
: Qans *” .: .
- .,
: : @
SR o
DA L L Yy tI T I Ll

Increase buffer capacity = Put token in backward edge

0"
8

jll. ‘ll. .
8 v,
o

Slack matching vs. buffer capacity

E Not equivalent (slack matching cannot always
achieve the forward latency, while buffer
capacity can)

B Slack matching is a well-studied problem in
asynchronous design

E Slack matching = inc buffer capacity + split

Buffer optimization
o O @

.t
R
o

5 P . 4 . . P
d
A TR ST " Rl Th=5/8=0625
. [ ] h":. “‘.
- [
: @ ®
: $"-" ..'.
v = PA $4; ® RS Th=3/5=0.6
w, V., @ v
e e S Th-4/7-057
S e Ty, ..,‘.‘_.__.‘ .
. Yanas*® Taggpp+* . .
*
. 3l @
.. ’
v essssarrrsnrsapmreansesansne=*’

Increase buffer capacity = Put token in backward edge

34



Buffer sizing

B Find min possible increase in buffer sizes
such that the throughput is equal to the
throughput of a system with infinite size
buffers

B Combinatorial problem

B We found an exact ILP formulation, but ...

E ILP is exponential
E Can we do better (polynomial time) ?

LP performance model

(only forward (“Valid”) edges)

max achievable throughput
(infinite-size buffers)

Buffer sizing is NP-complete

B NP-hardness: reduction of
“min edges that cut all cycles in a digraph”
to buffer sizing

B NP: Checking validity of solution can be done in
polynomial time (e.g. Karp’s algorithm)

B Therefore,

No polynomial algorithm exists, unless P = NP

ILP model for buffer sizing

throughput with
infinite buffers

extra capacity

35



Table of results

Cicuit | V1| | Th | M| aTok (C%PC‘; 1(‘14\/‘1’:)‘
S1423 84| 942|033 [033 | 0 | < 81
S1488 21| 1662|105 |05 | 0 | <I 95
S1494 31| 177505 |05 | 0 l 108
5208 36| 100]05 |1 % | 1 1
527 31| 78|05 |05 | 18 | < 1
3298 823 7154|105 |05 | 0 3 946
5349 39| 21|05 |06 | 3 | < 7
3386 %] 33905 |05 | 0 | <I 7
5400 9] 273]033 [033 | 0 | < 7
<444 132 298[033 |033 | 0 | <I 3
5310 @] 57105 |05 | 0 | < 6
5526 45| 382|033 |033 | 0 | < il
s5378 | 1138| 2484042 | 055 | 30 | 4708 | 500
ey 82| 298|05 |067 | 6 | < il
7713 208] 3501042 (05 | 1 | < 5
5820 83| 919]05 |05 | 0 | < 31
832 o1 972[05 Jos | o | < 3
w234 | 1023] 1992]025 [025 | 0 | <1 350
5953 373|704 045 [0.64 | 10 | >21600] 60
538417 | 8315| 16440]0.25 | 033 | - ~ [ >26p

* - Non optimal integral solution with time limit 120 seconds

Retiming

B Retiming: moving registers across combinational
blocks or (equivalently) moving combinational
blocks across registers n retimed backward
— forward retiming

— backward retiming ;:°< >°/0/'
e
& Retiming in elastic systems " retimed forward

— all registers participating in the retiming move should
be labeled with the same number of data-tokens

— use of negative tokens can remove the above
constraint (will not discuss here)

Retiming and Recycling

(joint work with Dmitry Bufistov
and Sachin Sapatnekar)

Recycling

B Recycling: insert (or remove) empty elastic
buffers (empty registers for short) on any
edge
— possible only in elastic systems

B We will ignore initialization and consider
only steady state behavior

— Initialization to an equivalent state almost
always possible, but may require extra logic

36



Effective Cycle Time

E Cycle time: ¢ = max {path delay between registers}

E Throughput: ® = min {tokens/cycle}
Was formally defined before

B Effectivecycle: C=c/0®

c=12 ©=4/5 C=

R&R is more powerful than retiming

Min delay retiming Min delay R&R

R&R graph (RRG)

@ combinational block with a delay of 10 units
B8l register (EB) with one data token

B empty register (EB with no data tokens)

Analogy between circuit retiming and
reachability in MGs

E Retiming graph of a circuit = MG:
B combinational block = node
B connection = edge
B register = token

E firing rules = backward retiming rules: each time a node is retimed,
registers are removed from the input edges and added to the output
edges

E MGs: A live marking M of an SCMG is reachable iff
M(9) = MO(¢) for every cycle ¢.
Retiming interpretation.
= => valid retiming preserves the number of registers at each cycle

E <= if an assignment of registers has the same number of registers at
each cycle as the initial circuit, then the assignment is a valid
retiming.

37



Analogy between circuit retiming and

reachability in MGs Example of marking equation

Non-negative marking M is reachable iff the
marking equation holds: L R L
M=MO0 + Axc e, |0] |1 1 -1 0 O
Retiming interpretation: e (1| |0 (1T 0 =1 0} I

E MO - initial assignment of registers to edges €53 2 0 0 1 -1 O 2

E M -assignment after retiming = + X

E A - retiming matrix €u |1 0 0O 1 0 -1| |0

B G - retiming vector €3 |0 1 0O 0 1 -1} |1
Rename Mto R: R=R0+Axc €1 0] [0] [-1 0 O 1]
ILP formulation (A is totally unimodular. M=MO+AXo
Polynomial problem)

Valid R&R solutions Combinational path constraints

Any integer solution for R and R’ :
R>R'=Ro+AX0O

is a valid R&R solution
E R’ retiming subset (registers with data-tokens)

E R represents the R&R solution (registers with data-tokens T,_ de_s,l_red cycle tl.m e
or bubbles) T — original cycle time or any other constant >t

F (R - R’) registers with bubbles (recycling) E{((ue))_—nnoudrﬁt;je(rjilfaryegister on edge e=(U.v)
Register delays can be taken into account

38



Throughput constraints

Let R be a valid R&R register assignment.
There is a nonnegative real vector ¢ that fulfils
the above inequality iff ®(R) > ©

Min period R&R

Given an RRG and a throughput ® >0, find a
register assignment R that minimizes the cycle
time t and has throughput ®(R) => 0 .

ILP formulation for R&R

Given a cycle time t and a throughput ®, R is a valid
R&R register assignment of an RRG (N,E,RO0, ) with
7(R) <t and B(R) > @ iff there exists a feasible
solution of the above ILP

Max throughput R&R

Given an RRG and a cycle period 7, find a
register assignment R with t(R) <=1 that
maximizes the throughput ®(R).

This problem is not linear (and not convex): @ is a variable of
the model and the second constraint of RR(z, ®) is not linear.

Use binary search on different ®

39



Size of the interval for binary search

* Binary search explores [0,0,]
0O, has feasible R&R solution, ®;— does not
* What is the size of the interval not to miss an optimal solution?

|IRo| — number of initial registers
|E| — number of edges

Search for min effective cycle

Initialization: ®(Rn) >= da/ T, Where d,,, is the
maximum delay of a node and 1, is the cycle period
obtained by min-delay retiming

MT
T b oA retiming
T : lution
: (VI R =

MT +€ 5
MP |

ve . MIN_PER

MT e P MAX_THR
N
©=0 dpt 0=1

This search does not miss any solution with a better effective cycle time

Min effective cycle time R&R

Given an RRG, find a register assignment R, with a
minimal effective cycle time C(R )

Resulis

B R&R can provide better effective cycle
time than regular retiming if
—long cycles and
— unbalanced delays

E Useful for micro-architectural problems,
not for well balanced circuit graphs

40



Clustering controllers

(joint work with Josep Carmona
and Jorge Julvez)

Sharing controllers and elastic buffers

Merging nodes in elastic MG

e «------ s

@ a »

; L]
—————>

Mergeable transitions

E Definition:Transitions tiand tjof EMG G
are called mergeable if Th(G) = Th(G)),
where G’ obtained by merging tiand tjin
G

B |dea: Merge transitions with the same
critical average marking at their input arcs
— If transitions are not critical, then explore

slack at the non-critical input arcs: check if the
same throughput can be achieved with critical
average marking

41



Correctness and Verification

Correctness (long story) =
theory of Elastic Machines

(joint work with Sava Krstic and
John O’Leary)

Correctness (short story)

B Developed theory of elastic machines

E Verify correctness of any elastic
implementation = check conformance with
the definition of elastic machine

E All SELF controllers are verified for
conformance

E Elasticization is correct-by-construction

Systems

A stream a over a set A is an infinite sequence a[0], a[1]....
of elements of A

a ~n b iff a and b have a common prefix of length n

W is a set of wires

W-behavior ¢: a stream o.w for each w € W
[W] = the set of all W-behaviors

~n extends to [W]: o ~p 7 iff (Vw e W) cow ~n 7w

A W-system is a subset of [W]
Example: Conn(X,Y) ={r|c. X =0Y} C [{X,Y}]

42



Operations Machines = abstract circuits

Projection o — 0.V : [W] — [V] defined for V. C W
Definition An (/,0)-machine is an (I UO)-system given by a

hidey (S) = {o.(W = V) |o €S} C [W V] . o :
function F: [I] — [O] satisfying the causality property
S1USy = {o]| oWy €81 Ao Wa €S8y} C [Wy LW,

Vo,o' € [1 vk > 0 ~p ol = F ~p F (!
Networks of systems: (Vo,o' e ID(Vk 2 0) o~ o (6) ~1 F(a)

(81,...,Smuy =vo,...,up =vy) =
hid , (S U USSR UG yo)U---UC U (XX
€Ly, ..., un.il.....in}( 1 m onn(uy,v1) onn(un, vn)) eee vee
ees F | ~ee9 LN N ]
[ XX ]
= (A,B,C,D|2=5,4=7,10=11,8=9,12=1) Outputs at the first k cycles are determined by inputs at the first k cycles.
When is a network a machine? Sequential and combinational dependency
Feedback Definition An input-output pair (u,v) is sequential if
—lu | . —u = /oy ;o \ o~ ol
S <‘S | v = UJ) : v oW = [[/H A = F(o)vr~p F(o)w
—t ] U5207) iy bacons :
A network is a multiple feedback vee
[ XX} F ) vee
= R

3ot

Must preclude “combinational cycles”—but what are they? Feedback Lemma If (u,v) is sequential for a machine S, then
(S| u=w)is a machine.




Detecting combinational loops

Definition I'(N): Vertices are wires of \/; directed edges
drawn for non-sequential wire pairs.

Theorem If I'(N) is acyclic, then A is a machine.

Liveness

Liveness
(7Y € 0O) § = G(min_tctg > tcty A min_tcty > tcty = Fvalidy-)

(VX 1) 8§ =G (min tctfyp > tety = F —stopy)

Serve only the most hungry channels:

2 =xa cE> 1 =g e 2 =la ol
d=> 0 de>1 d=r1
1 =H4b e=>1 1=pb eE>1 2 =pb eE=p1

Liveness guarantees that all transfer behaviors wT.Z are
infinite (in an “elastic environment”)

The transfer system 8T = {wT|w e SUEmwro}

[1,0] - Elastic machine

Input-output structure
inputs: T U {validy | X € I} U {stopy |Y € O}
outputs: O U {validy |Y € O} U {stopy | X € I'}

stopy e | > alid

+—— stop ;

Persistence

S = G (validy A stopy = (validy)T)  for every ¥ € O

Elastic machine

Determinism

Twi,wp €8) w

H=—

Definition § is an [I, O]-elastic machine if it has the
input-output structure as described, and satisfies the
persistence, liveness, and determinism conditions.

Theorem If § is an [I,O]-elastic machine, then ST is an
({,0)-machine.

S is an elasticization of M when M = S§T

44



Elastic networks

Suppose Sq,...,Sn are elastic machines.

Elastic feedback

F=(SIP=Q) = (S|P =Q,validp = validg, stopp = stopgy)
N = (S0, SmI Xy = Yi,. .., Xn = Vi) ¢ ¢

A = = = =
= = 7 =
(S1,..+,Sm | X = Yi,validx, = validy;, stopx, = stopy, (1 <i < n)) =P 0> E“ j.

Definition An i/o channel pair (P, Q) sequential for S if

S B G (min_tetjuo > tetg A min_tct;_py > tetg = Fvalidg)
and the graph I'((F) is acyclic.

Theorem If the channel pair (P, Q) is sequential for F, then

Is AV an elastic machine? the wire pair (P, Q) is sequential for &T
F is an elastic machine
Do we have NT=(S],....SL X1 =Y1,..., X, =Y,)7 FT=(ST|P=0)
Elastic network theorem Inserting empty buffers

N = (81, Sl X1 =V1,..., X0 = Vo)

§; : a sequentiality interface for S; (6,(7) is a set of input
wires “jointly sequential” wrt Z)

Definition A(N) : Vertices are channels of A/ (. X, and Y]

are identified); a directed edge drawn for each pair Theorem Suppose N7 and A5 are elastic networks obtainable
(P,Q) € I, x O; such that P ¢ §,(Q). from each other by insertion and deletion of empty elastic
buffers. If one of A(N7), A(N2) is acyclic, then the other is
N = (8], ShIX =V, Xn=Ya) acyclic too, and one has N] = N,

Theorem If A(N) is acyclic, then N is an elastic machine, N/
is a machine, and NT = A",



Implementation of Elastic Module

Verification of elastic systems - N @

1. Verify Properties of Elastic Machine
2. Verify Data Transfer Properties

@
—

4l

(joint work with Syed Suhaib and
Sava Kirstic)

Problem Finite domain is sufficient

‘o ; E Any implementation has finite sequential depth between
® Infinite domain transfer counters (tct) any input channel and any output chanael -

E Model the tct variable as integers modulo (k+1) in some
gnitehrange [0,k] sufficient to cover maximal sequential

. . .. . ept

B Model checking requires finite domain

counters E Reset the tct when range reaches k, and restart from 0

How oo you compute k?

46



Synchronous Slack

E Capacity: C(i,j) is defined as the maximum
number of data storage elements between

channels i and j, where il and j €O

B For an [I,0]-system S, its synchronous

slack € =min y , {k: G(k = max(|tct, — tetj))}

Validating Data Correctness

Buffer full

Valid output

Synchronous Module

CoE -

|
! Sender

- Do Envionment L]

Provide

ND data

Elastic Module

Insert ND f i
bubbles

Valid output

i
Buffer full Join+EB +Fork |[*————————

k| o S0p |y D [T] gy
signal signal signal

Modeling of Counters

Int Elastic —— outl
Counters

@ ~Modulo Count i —_— —
B - Shifted Count in2 MDdMLC out2

Synchronous Slack =5

inl

Use uninterpreted function

E Symbolic terms and uninterpreted function
— Proposed by Burch and Dill '94

E We employ similar procedure
— Encode all possible terms
— Combinational logic modeled as a single function

E Consider, e.g., a two input uninterpreted function

47



Model checking

B SPIN Model Checker [Bell Labs]

B NuSMV Model Checker [IRST and CMU]

Research directions

E How to specify elastic machines

— Asynchronous specification (e.g., CSP) discretized asynchrony

view
— Elastic synchronous specification
(extend Esterel, Lustre, PBS with controlled asynchrony)

E Compilers

E Improve bounds on analytical perf. analysis for early
evaluation

B Formal methods for micro-architectural optimization

B R&R and buffer optimization for systems with early
evaluation

® More on optimization for elastic machines

Summary

SELF gives a low cost implementation of elastic machines

Functionality correct when latencies change

New micro-architectural opportunities

Compositional theory proving correctness

Early evaluation - mechanism for performance and power
optimization

Retiming and recycling, buffer optimization and other
optimization opportunities

To read on this work: see list of references

Some of Related work

= Async
— Rings (T. Williams, J.Sparso)
— Caltech CHP and slack-elasticity (A. Martin, S.Burns, R.Manohar et al.)
— Micropipelines (I. Sutherland)
— Many others
B Latency insensitive design
— L. Carloni and a few follow-ups (large overhead)
— C. Svensson (Linkdping U.) - wire-pipelining
& Interlock pipelines
— H.Jacobson et al.
®  Desynchronization
— J. Cortadella et al.
— V. Varshavsky
r Performance analysis
— S.Burns
— H. Hulgaard
— C.Nielsen/M.Kishinevsky, etc.
= Synchronous implementation of CSP
— J.O'Learyetal.
— A.Peetersetal.
®  Telescopic units — Benini et al.

B See a list of refrerences

48



