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ARTICLE INFO ABSTRACT

Communicated by K. Li Restricted Boltzmann Machines are energy-based models capable of learning probability distributions. In
practice, though, it is seriously limited by the fact that the computational cost associated with the exact
evaluation of the gradients, required during learning, is prohibitively high. The standard approach to mitigate
this problem is to use the Contrastive Divergence algorithm, but it leads to a rough approximation that presents
issues on its own. As a completely different alternative, a model called RAPID (Pozas-Kerstjen et al., 2021)
recently appeared, where unit weights are constructed from high-probability patterns that allow for an effective
evaluation of the update rules along learning. In this work we analyze RAPID to find that it also presents some
drawbacks that constrain its performance. We identify the problematic sources in RAPID and modify them
accordingly to build a similar but more flexible alternative, called PIW (Pattern Induced Weights). Experiments
show that PIW performs better than the original RAPID implementation, bringing it to a competitive level when
compared to a standard RBM with CDk, with a substantial reduction in the number of training parameters.

1. Introduction

Restricted Boltzmann Machines (RBMs) [1], which emerged as
a simplified version of the more complex original Boltzmann Ma-
chine [2], have attracted the interest of the scientific community in
recent years due to their capability to solve probabilistic problems.
Being an energy-based model, the RBM follows a Boltzmann probability
distribution similar to the ones found in the Ising model or the spin
glass magnetic systems. Once trained, RBMs can be used as generative
stochastic neural networks that can learn a probability distribution over
its input space [3].

While the original formulation of the RBM considers only binary
units, different variants have been explored over the years, and are
still the subject of current research. For instance Gaussian-Bernoulli
RBMs [4-8], designed to handle continuous data, use visible and hidden
units following a Gaussian and Bernoulli distributions, respectively.
Furthermore, multinomial units have been successfully applied to treat
categorical data [9,10]. Other models that focus on changing the
nature of the visible and/or hidden units can also be found in the
literature [11-13].

Restricted Boltzmann Machines have also been used as the main
building blocks of relevant architectures such as Deep Belief Net-
works [14-16], Deep Autoencoders [17-19], Convolutional Restricted
Boltzmann Machines [20,21] or Recurrent Temporal Restricted Boltz-
mann Machines [22,23]. All these models extend the capabilities of
standard RBMs, fostering active research in many areas of general
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interest, such as, for example, image analysis and classification [17,
24,25], collaborative filtering [9,26], acoustic modeling [27], or quan-
tum physics [28-30]. Nowadays RBMs are still an active area of re-
search [31-33], although they are not the only kind of neural network
that can handle such problems, as the recent literature shows [34-36].

Despite the elegant formulation of the RBM neural network, in
practice it presents a number of challenging issues that have prevented
from its wide application to solve realistically large problems. The main
drawback can be actually traced down to the evaluation of the normal-
ization constant that enters the Boltzmann probability distribution, the
Partition function. In fact, this problem is more sound than it appears
as the learning update rule implies a statistical average over all possible
system states in what is called the negative phase. This problem is usually
circumvented using the Contrastive Divergence (CD) algorithm [37],
which replaces the exact negative phase by a sum over a set of states
generated performing k Gibbs steps starting from the training set. This
procedure is usually denoted CDKk.

While CDk has found its way in many applications, it is quite a
rough approximation that is only guaranteed to be reliable in the
k — oo limit [38,39]. For that reason, alternative approximations
are of relevance [40-42]. In this way, as an attempt to bypass this
problem, RAPID (Regularized Axons Pattern InDuced correlations) [43]
was developed. Using patterns as trainable parameters for Hopfield-like
weights built from the Hebb rule, the authors of RAPID created their
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model inspired on the physics of magnetic spin systems, where privi-
leged spin configurations have low energies and govern the behavior
of the system. In its own nature, RAPID tries to mimic that, finding
the configurations that make the training set have high probability.
Additionally, in RAPID the negative phase is approximated by a simple
expression that only depends on the patterns.

Anyway, the relation between the Hopfield model and the RBM is
not new, and has been widely explored in the last years. For instance
in [44], the thermodynamical equivalence between Hopfield networks
and visible units in Bernoulli-Gaussian RBMs is demonstrated for uncor-
related patterns. In this work, weights connecting visible and hidden
units are directly the patterns stored in the Hopfield network. These
results are extended in [45] (see also [46] and references therein) with
the same architecture, and in [47] with an additional set of hidden
units. In [48] correlated patterns are considered, and the equivalence
between Hopfield networks and Bernoulli-Gaussian RBMs is obtained
when the weights of the latter are the Q; vectors of the QR decom-
position of the patterns matrix. In practice, this procedure can be
used as a useful weights initialization in a standard RBM training.
Other interesting works relating patterns and weights can be found
in [49-51].

In this context, the novelty of RAPID is to use Hebb’s rule to
directly construct the weights of binary-binary RBMs, assuming these
will be the most probable configurations during learning and once the
network is trained. In this work, we analyze the behavior of RAPID
using different metrics to find that it presents some drawbacks that
limits its performance. With the aim to solve these issues, we modify
the original RAPID model to build a new one that is more flexible
and that is competitive when compared with a standard RBM and uses
less trainable parameters. We call this model Pattern Induced Weights
(PIW) RBM. The main ingredients of PIW are the use of patterns as
the atomic quantities that determine the weights, and to restore CDk
to compute the negative phase.

2. Restricted Boltzmann machines

The energy function of a binary RBM with N, visible units x and
N}, hidden units h, is defined as [1,52]:

Ex,h)=—x"Wh—-x"b-c"h (¢

where W is the matrix of two-body weights connecting visible and
hidden units, while b and ¢ are the visible and the hidden bias terms, re-
spectively. This energy defines the (Boltzmann) probability distribution
described by the RBM, namely

o—Exh)
,h) = s 2
p(x,h) Z (3]

with Z the normalization constant, usually called the partition func-
tion:

Z=) et 3

x,h

In order to estimate the model parameters 6 = {W,b,c} one usually
minimizes the Kullback-Leibler divergence (KL) between the empirical
probability distribution of the training set, ¢(x), and that of the RBM
model, p(x | 8).

Nr
ax) 1
KL[g() || px|®)] = ), q(x)In =-—In(Np) - — ) Inp(x;|0), (4)
XEZS p(x[0) " Nr ;
where S = {x, ..., Xy, } is the training set containing N elements, and

q(x) = 1/N; Vx € S. That is equivalent to maximize the log-likelihood
of the training data with respect to the RBM model

For a generic training parameter 0, the KL is usually optimized using
gradient descent, which leads to the standard equations [53]

oKL) 1 0F(xs)_ oF (x)
=5 —N—Tx% = ;mxw) = ®)
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in terms of the Free energy

F(x)=—1In [Z e—E(""”] , (6)

h

which in turn define the Boltzmann probabilities through the expres-
sion
e—E(x,h) _ e—F(x)

P = ; Z Ty, eTw @)

The complexity associated to minimizing the KL lies in the com-
putation of the second term in the rhs of Eq. (5), usually called the
negative phase, needed to compute the update rule for the parameters
0. The negative phase is typically approximated using CD [37], which
eliminates the forbidding task of evaluating the partition function Z.

3. RAPID

Due to the complex dynamics implied in standard RBM training,
the authors of Ref. [43] proposed a new method designed to improve
convergence and to reduce the computational cost. This model, denoted
as RAPID, is inspired on the thermodynamics of spin glass systems,
bringing some of the well-established statistical mechanics knowledge
acquired along the years to the world of RBMs [54,55].

As is well known, a generic Boltzmann Machine initialized with
Gaussian random weights behaves as the Sherrington and Kirkpatrick
spin glass model [56,57]. In this scenario, the system presents a strong
degree of frustration and the set of lowest energy states, which dom-
inate the Boltzmann probability distribution, is both very large and
very difficult to determine. In this way, finding this set becomes a
NP-complete problem.

In fact, the authors of Ref. [43] argue that a properly trained RBM
should never enter a spin glass phase. This is because, in contrast to
what happens in a spin glass, only a limited number of states is expected
to acquire a significant amount of probability mass. Based on that,
a modification of the standard RBM model, called Regularized Axons
(RA), is proposed in [43] to avoid this problem.

In RA, the weights are built from a number K of patterns {®)},
through the Hebb rule [58] as in the Hopfield model [59]

K
Wi = == 2 ENEY, ®
VK =

where ¢, &% € {-1,+1}, with k = 1,....K, i = 1,...,N, and
,N,. Here we use Roman and Greek indexes to denote
visible and hidden units, respectively. The set of patterns {éfk), 5;,")}
become then the fundamental quantities of the model and constitute
the only trainable parameters. In its original form, RAPID has no bias
terms. In contrast to the original Hopfield model, RAPID is not a
standard associative memory since the {£X)} patterns do not represent
memorized data, but are learnt along RBM training.

In the Hopfield model and according to [57], when K < N, the
patterns are low-energy configurations because cross-talk terms are
expected to be small. This suggests a new approximation to estimate
statistical averages, called Pattern-InDuced correlations (PID) in [43], of
the form

a = 1,...

K
TGS WIGIN ©
k=1

for any function of the units f(). In this approximation one assumes
that the K patterns {£X} exhaust the complete set of low energy
states and have a similar energy. Furthermore, for Eq. (9) to be a
good approximation, it is assumed that the energy of the patterns is
much lower than the energy of any other state, which can apply or
not depending on the problem at hand. In any case, Eq. (9) allows
for a fast approximation of the negative phase, and is fully adopted in
RAPID. Finally, notice that in order to guarantee that the {£¥} patterns
represent physical spin configurations, they must be binary.
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Fig. 1. Evolution of the KL along learning (left) and final probabilities of the training set (right) for both the RAPID (blue) and the standard RBM (red) models. The shaded areas
in the left panel indicate the standard deviation obtained in different repetitions of the experiments. In the right panel, the final probabilities are compared with the empirical

distribution (black).

Training a RAPID model, as in standard RBMs, consists in looking
for the optimal values of the patterns { e:fk), 4—’;")} which minimize the
KL with respect to the empirical probability distribution associated to
a training dataset S. This is performed using a gradient ascent scheme
with Eq. (5), computing the positive phase exactly and the negative

phase approximated with PID [43].
4. Testing RAPID experimentally

In this section we check the performance of the RAPID model in
different experiments. We reproduce the results on simple problems
originally presented in [43], and extend the analysis to other quality
estimators.

As in [43], we use the 4 x 4 Bars dataset, consisting on 4 x 4
pixel images of vertical bars with +1 values. In this way, one can build
a total of 16 different Bar images, which include one with no bars
(with all pixels in white), and another with four bars (with all pixels
in black). However and in order to establish a fair comparison, we
follow the procedure used in [43] where these two last examples are
not considered. Therefore, the 4 x 4 Bars dataset contains 14 examples,
split in 10 training and 4 test images, respectively. In this sense, this
dataset is a toy model where all calculations are easily done, including
complex estimators that are out of reach in real size problems. As
in [43], we train a RBM with RAPID consisting of 16 visible and 1000
hidden units, and K = 8 patterns. For the sake of comparison, we
also train a standard CD10 RBM with 80 hidden units. This RBM has
a significantly smaller number of trainable parameters, but has been
chosen so as to follow the standard procedure of having a number of
hidden units equal to a small multiple of the number of visible ones. In
order to collect enough statistics, we have performed 20 independent
training runs for both (RAPID and standard RBM) models.

Restricted Boltzmann Machines with a small number of visible units
allow for the exact computation of the probabilities in Eq. (2), which
in turn grants access to the KL. This is the case of the 4 x 4 Bars
dataset. The authors in [43] analyze the Hamming Distance (HD) of
the reconstructed images to the training set instead. In their analysis
they conclude that RAPID converges faster than a standard RBM to
a low HD value. We have been able to reproduce this behavior in
our experiments. However, the cost function being optimized during
learning is not the HD but the KL, so this is the main quantity we will
address in the following discussion.

In order to better clarify this last statement, we compute the KL
divergence along learning for both RAPID and the standard RBM. We
also evaluate the model probability distributions after learning, and
compare it with the empirical probability distribution of the data. The
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Fig. 2. KL for RAPID along learning with different binarization periods N, =
1,10,20,50 in the 4 x 4 Bars dataset.

left panel of Fig. 1 shows the evolution of the KL, while the resulting
probabilities of the training examples are depicted in the right panel
(blue and red bars for RAPID and standard RBM, respectively). The
results in the left panel show the mean and standard deviation of 20
independent runs, while the right plot depicts the resulting probabilities
for one typical run. The first and most relevant conclusion one can draw
from the figure is that RAPID is unable to optimize the learning KL cost
function, reaching final values orders of magnitude worse than those
of the standard RBM. This is very surprising considering the small size
of the problem at hand. A direct consequence is that the probabilities
assigned to the training set differ significantly from the empirical ones,
which are uniform and equal to 0.1 (black line in the right panel). In
most of our experiment repetitions, RAPID assigns almost one hundred
percent of the probability mass to just two states of the training set,
leaving almost nothing for all other vectors of the space. Additionally,
these two states are the reverse of each other, consistently with the
absence of bias terms that help breaking this symmetry. Notice, though,
that the extremely large KL values reported are a consequence of the
fact that the small probabilities assigned to the training vectors are
really small, while in practical terms it is irrelevant whether a resulting
probability is 10710 or 10719, the latter leading to improperly large
value of the KL. On the other hand, the standard RBM produce more
balanced probabilities, consistent with much lower KL values.
Another important ingredient of the RAPID model is to use binarized
patterns. Of course, the use of standard learning techniques breaks
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Fig. 3. The PIW network architecture.

this property at each epoch, so the authors binarize their values along
learning. However, this is a delicate procedure as the probabilities
assigned by the RBM to a given state change dramatically after this
procedure. This is a direct consequence of the fact that the energy is a
polynomial in the patterns (through the weights) while the joint (visible
and hidden) probabilities are proportional to the exponential of the
energy. The impact of this is shown in Fig. 2, which shows the evolution
of the KL while learning, at constant learning rate. The different curves
show the result produced by RAPID changing the interval N,;, at which
the binarization is performed. As can be seen, this produces notorious
spikes that reset the KL to undesired large values. This is probably the
reason why the authors in [43] use an uncommonly large decreasing
learning rate scheme, which enforces convergence by itself.

5. Pattern induced weights RBM

The previous analysis show that the main ingredients in the RAPID
model lead to large values of the KL loss function even in small sized
problems where a standard RBM performs better. For that reason we
look for suitable modifications that improve the original RAPID model.
We denote by PIW (Pattern Induced Weights RBM) the resulting model.
Despite the modifications described below, the topology of the network
is very similar to the one used in RAPID, as shown in Fig. 3. The PIW
network is a RBM that shares with RAPID the fact that weights are no
longer atomic items but rather computed from the fundamental quan-
tities of the model, which are the set of {EX} patterns. As discussed
below, the PIW model incorporates bias terms, which are missing in
the original RAPID network.

The first and more evident change, according to the results shown
in Fig. 2, is to discard the binarization of the X during learning.
This implies that the patterns can no longer be understood as spin
configurations. However, the fact that the patterns can take real val-
ues induces plasticity into the model, allowing it to adapt better to
the problem at hand. Notice that the binarization, together with the
definition of RA in Eq. (8) imply that the weights are constrained to be
in a bounded interval, which can be of relevance since bounded weights
imply bounded energies which in turn imply bounded probabilities.
Furthermore, the original definition of RA in Eq. (8) leads to much
larger weights than what one usually find in standard RBMs. Although
this scenario typically avoids the problems related to having the system
in a spin glass phase, it produces largely unbalanced probabilities
and therefore large KL values, as shown above. Anyway and as in
RA, we still keep real valued, non-binary patterns as the fundamental
quantities defining our model. We initialize them following a Gaussian
distribution centered at the origin, normalized to 1. Once learning
starts, no further normalization is performed afterwards.

The second change, which is in fact related to the previous one, is
to remove the 1/ \/E constant from the RA scheme of Eq. (8), leading
to

K
W, = Y &b (10)
k=1

Since we do not binarize the patterns but let them take any real value
during learning, an overall multiplicative factor in the weights becomes
unnecessary. This removes any a priori constraint on the »,, weights,
letting the learning process decide what is the proper norm the patterns
should take.

The modification of RA has a direct impact on PID, the other main
idea of RAPID. As previously mentioned, PID assumes that statistical
averages can be approximated using only the set of K patterns {®)}.
As in the Hopfield model, though, this picture is broken when cross-
talk terms become relevant, something that cannot be known a priori.
Besides that, since patterns are no longer binary in PIW, the PID
approximation loses its physical insight. We therefore discard the PID
approximation, replacing the evaluation of the negative phase with a
standard Contrastive Divergence approximation. To that end, the CDk
algorithm has been adapted accordingly to be applied directly to the
£ patterns rather than to the RBM weights and biases as is usually
done. Notice also that, once the PID approximation is discarded, there
is no need to constrain the number of patterns to be much smaller than
the total number of units.

We also include biases into the model, a feature that is missing in
the original RAPID formulation, meant to break the parity symmetry
of the energy function. There are two immediate ways to incorporate
biases into the model: to consider them as independent new quantities,
or to make them dependent on the patterns. In the end and provided the
number of components of each pattern is large, this does not make a big
difference. In this work we have adopted the first option, and modify
them along learning with standard CDk. With all these modifications
the free energy reads, considering {—1,+1} binary states

n m m
F(x)=- In [ZCosh(Z WigXy + ca>] =D bixg a1
a=1 i=1 i=1

while the gradients with respect to the visible and hidden sectors of the
patterns become, respectively

oF - “
*s) =X Z W tanh (Z WjgXs; + ca> , 12)
a=1 Jj=1

=- Z fl@xsi tanh <Z WigXs; + ca> . 13)

k
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In much the same way, the gradient with respect to the visible and

hidden biases read

IF(xy)
b,

and

—Xgi » (14)

o0F(x,)

m
= —tanh 2 Wigxgj+cy | - (15)
de, =

These equations are the basic ingredients of PIW learning, which
follows the standard structure of a stochastic gradient ascent procedure
with CDk, as summarized in Algorithm 1. First, patterns are randomly
initialized from a low variance Gaussian distribution centered at the
origin. Then, for every epoch and every minibatch, CDk samples are
computed and their derivatives estimated using Egs. (12)—(15). Finally,
patterns and biases are updated and w,, recomputed. In our experi-
ments we used an exponentially decreasing learning rate scheme, which
is also a common scheme when training standard RBMs. All these
modifications seek to mitigate the issues found in Section 4, leading
to a more flexible model when compared to the original RAPID one.

Algorithm 1 Training procedure for PIW
Input: dataset X

number of patterns K

number of hidden units H

number of minibatches N

number of epochs N

number of Gibbs steps kg

learning rate A

momentum parameter v
Output: trained weights and patterns W, b, c, &

1: Initialize 6 = {&, b, ¢} according to K and H
2: Compute w;, = Zf;l §fk)§,§k)

3: for m < 1 to N do

for n < 1 to Ny do

5 Select the n-th minibatch x” € X
6 forr < 0to kg —1do

7: Sample A" ~ p(h | x)
8
9

> Loop over epochs
> Loop over minibatches

»

> Gibbs sampling

@t+1)
Sample x,  ~ p(x | h®)
) opae)

. dFy « o) e > CDk using Egs. (12)-(15)

10: 400 — v A9M=D 4 4. dF,

11: 6 « 6+ A0 > Update patterns and biases
K 20 gk

12: Compute w;, = Y _ Xl

6. Experimental results

In this section, we analyze the performance of the PIW model in
several different binarized datasets: the 4 x 4 Bars & Stripes [60], the
MNIST [61], the Connect-4 [62] and the OCR-Letters [63]. For the sake
of completeness, we compare the results with the ones obtained from a
RBM trained with the standard Contrastive Divergence algorithm, and
with the RAPID network.

6.1. 4 x 4 bars & stripes

Inspired by the 4 x 4 Bars analyzed by the authors of RAPID, we
analyze the more standard 4 x 4 Bars & Stripes problem [64]. This is
a small dataset of 30 images containing all possible combinations of
vertical bars and horizontal stripes in 4 x 4 pixel images. We use all
these states to train our models, so there is no test set to check against.
In this case there are 16 visible units corresponding to each pixel in
the input images, while the number of hidden units and patterns has
to be properly selected. In the present case we have decided to use 60
hidden units in the standard RBM, which is large enough compared
with the number of visible ones and corresponds to a total of 1036
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Fig. 4. Logarithm of the KL obtained at the end of training different PIW models using
CD20 and a variable number of hidden units and patterns for the 4 x 4 Bars & Stripes
dataset. In all cases the total number of training parameters is as close as possible to
1036.
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Fig. 5. Evolution of the KL for both the RBM and the PIW trained with CD1 and CD20
for the 4 x 4 Bars & Stripes dataset. The blue, red, green and magenta lines correspond
to PIW with CD1, the standard RBM with CD1, PIW with CD20 and the standard
RBM with CD20, respectively. The shaded regions indicate the standard deviation
corresponding to 100 repetitions of each experiment.

training parameters (TP) considering biases and two-body weights. For
the PIW one has to decide both the number of hidden units and patterns
to include, as discussed in the following.

In order to establish a suitable comparison between the RBM, the
RAPID and the PIW models, we stick to the criteria of having the most
similar amount of TP. In PIW this can be obtained from different com-
binations of number of patterns and hidden units, while the resulting
models can perform differently. With no a priori knowledge of the
optimal combination we have performed a model selection based on the
lowest KL obtained in different repetitions of learning instances of the
problem. The results obtained using CD20 are shown in Fig. 4. As it can
be seen, there is a region of optimal configurations where the best KL
changes only slightly. We have found that, for this particular dataset,
the lowest KL corresponds to 80 hidden units and 10 patterns. In all
cases, we have run 100 independent training simulations of 12000
epochs each.

For the sake of completeness, we have also tested a larger standard
RBM with 120 hidden units and a larger PIW network, both containing
a similar amount of TP, which is close to twice the number in the
smaller models. Additionally, we have also trained the original RAPID
network with the same configurations. After the same model selection
procedure performed for the small network, the resulting number of
patterns and hidden units is K = 26 and N, = 60. The final KL values
corresponding to the different models averaged over 100 repetitions
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Table 1
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KL values for the 4 x 4 Bars & Stripes dataset with the different models and number of training parameters

(in parenthesis).

Dataset RBM CD1 PIW CD1 RBM CD20 PIW CD20 RAPID
4 x 4 BS 0.218 (1036) 0.181 (1056) 0.0336 (1036) 0.0291 (1056) 21.84 (1056)
4 x 4 BS 0.170 (2056) 0.161 (2052) 0.0301 (2056) 0.0280 (2052) 8.26 (2052)

are reported in Table 1, where the selected models have been trained
using CD1 and CD20. Notice that RAPID does not use CD at any
stage in its original formulation for such small problems. As it can be
seen, the resulting KL of PIW are quite consistent and do not change
significantly when doubling the number of TP of the model. In contrast,
the performance of RAPID is not competitive with the other results,
even though the KL values reported in the table are much lower than
those shown in Fig. 1. This is due to the overwhelming difference in
the number of hidden units employed in each case.

Fig. 5 shows the evolution of the KL along learning for the small
models considered in Table 1. RAPID has not been included because
of the large scale difference. In all cases we use CD1 and CD20 for the
evaluation of the negative phase. As it can be seen from the figure, the
final value of the CD20 curves are similar, while the curves in the CD1
case show a better performance of the PIW model. As expected, using
20 Gibbs steps leads to clearly better results, regardless of the choice
of the model, while PIW performs slightly better in both cases.

6.2. MNIST

The binarized MNIST dataset [61] has 50000, 10000 and 10000
training, validation and test vectors corresponding to 28 x 28 images of
handwritten digits. This dataset, which is commonly used as a standard
benchmark in Machine Learning, provides also the labels indicating
which digit corresponds to each image. Here we have also tested the
performance of the models using different configurations as shown in
Table 2. In all cases one has 794 visible units, corresponding to the
28% = 784 pixels in each image, plus 10 additional units for the one-hot-
encoded labels. Regarding the standard RBM, several models with 100,
200, 500 and 900 hidden units have been tested, shown in the third
column of Table 2. . As a reference, N, = 500 has often been employed
in the literature [65]. Each model contains a different total number
of training parameters, reported in the second column of Table 2. As
in the 4 x 4 BS case, we have compared the performance of these
RBMs to the results obtained with different PIW and RAPID models
with similar number of TP. A systematic analysis as the one shown
in Fig. 4 resulted in different combinations of number of patterns and
hidden units reported in the fourth column of Table 2. For all these
experiments we have done 20 independent trainings using CD20.

Due to its large size, it is not possible to calculate the exact KL of
the networks when learning this problem. Therefore, we have chosen
to report the accuracy when used as a classifier, corresponding to
a standard supervised scenario for RBMs [66]. Results for the best
average validation accuracies are reported in the last three columns
of Table 2. Two numbers are reported in each case, the left ones
corresponding to the result produced directly by the model, while the
right one is the result of a logistic regression performed over the values
of the hidden units, as in Ref. [43].

As can be seen, the PIW models perform better in all configurations.
Furthermore, in some cases the improvements is remarkable, particu-
larly on the results obtained from the bare models. Additionally, PIW
yields similar results regardless of the number of TP, something that
does not happen with the other two. In this way, one can conclude
that the PIW architecture is more robust. Note also that PIW requires
a lower number of TP than the standard RBM and RAPID to achieve
similar or better results.

The average accuracy along learning of the validation set with the
corresponding error bars for the bare PIW and RBM models with 4. 105
TP are shown in Fig. 6. As it can be seen, the standard RBM improves
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Fig. 6. Accuracy of PIW (red) and the standard RBM (blue) models in the validation
set for the MNIST problem.

faster at a very early stage, but its best prediction is worse than the one
achieved by PIW. From there on, both models start to slightly degrade,
while PIW seems to be more stable.

Once trained, one can also check the performance of the PIW
network as a generative model. In order to do that we use corrupted
versions of test set images, where half the pixels are replaced by
uniformly distributed +1 values. We then apply 10 Gibbs steps to these
vectors, keeping the non-corrupted part of the image and the associated
label. Results for this experiment are shown in Fig. 7, where one can
see that, overall, the reconstruction performance of the trained model
is almost perfect. This confirms that the model has been able to capture
the underlying features required for conditional generation.

6.3. Connect-4

We have also tested PIW, RAPID and the standard RBM in the
Connect-4 dataset, which contains 16 000 training and 47 557 valida-
tion images of 126 binarized pixels with 3 different labels [62]. These
images correspond to legal intermediate situations in the Connect-4
game with 7 x 6 positions board, while the three classes indicate the
final result for player one (win, loss, draw). As in the MNIST case, this
dataset is too large to compute the exact KL, so we once again resort
to the evaluation of the accuracy instead.

As in the previous cases, we have performed an exhaustive search
of model parameters, including the number of hidden units, learning
rate and number of patterns in the PIW case, for fixed total number
of TP. As before, four representative choices of a standard RBM have
been used, containing 50, 100, 190 and 350 hidden units. In order to
get a similar number of TP in the PIW and RAPID networks, we have
selected the number of patterns and hidden units as shown in the table.

As in the MNIST case, Table 2 display the results of the best average
validation accuracy of each model after 20 independent runs. Once
again, the PIW models produce more stable predictions when changing
the number of TP, while the standard RBM results show a slightly larger
variation. In this case, the larger RBM models yield somewhat better
results than PIW, although the improvement is not really relevant. In
contrast, for the smaller models PIW performs slightly better. In all
cases, though, the predictions are very similar and slightly better than
RAPID.
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Table 2

Neurocomputing 610 (2024) 128469

Accuracies obtained with the different RBM models for the problems tested. Columns two to four refer to the number of training parameters,
hidden units and patterns. The last three columns report the results. Numbers on the left and right correspond to the accuracies both from

bare models and the logistic regressions, respectively.

Dataset TP N, RBM K/N, PIW & RAPID RBM CD20 PIW CD20 RAPID CD20(&)
MNIST 8-10* 100 75/265 0.256/0.863 0.958/0.955 0.114/0.815
MNIST 1.6-10° 200 145/300 0.682/0.886 0.969/0.961 0.111/0.848
MNIST 4.10° 500 240/900 0.943/0.939 0.976/0.967 0.528/0.909
MNIST 7-10° 900 190/3000 0.964/0.960 0.971/0.969 0.558/0.932
Connect4 6.6-10° 50 28/100 0.710/0.704 0.743/0.710 0.670/0.703
Connect4 1.3-10* 100 25/350 0.744/0.729 0.765/0.780 0.725/0.759
Connect4 2.5-10* 190 50/350 0.770/0.768 0.767/0.783 0.685/0.745
Connect4 44-10* 350 90/350 0.784/0.790 0.767/0.783 0.713/0.765
OCR-Letters 9.4-10° 60 43/60 0.741/0.774 0.763/0.807 0.620/0.748
OCR-Letters 3.9-10* 250 85/300 0.849/0.861 0.862/0.874 0.511/0.858
OCR-Letters 9.5-10* 610 170/400 0.873/0.881 0.874/0.884 0.467/0.840

Fig. 7. Reconstruction of half-corrupted images from the MNIST dataset using the
trained PIW model.

6.4. OCR-Letters

Finally, we compare the performance of the standard RBM, RAPID
and the PIW models in the OCR-Letters dataset [63], composed by
32152 training and 10000 validation images of 128 binarized pixels
with 26 different labels, leading to models with 154 visible units. As
in the previous cases and due to its large size, we evaluate the quality
of the models using the accuracy metric. Three standard RBMs with
60, 250 and 610 hidden units were tested. As before, a search with
similar number of TP has yielded best results for PIW and RAPID with
the parameters reported in Table 2. Once again, we have carried out
20 independent training runs in each case.

As seen in the last columns of the table, a similar behavior to the
one found in the previous cases is observed here, with the PIW models
producing more stable accuracies under a change of the number of
TP, and overall better performance than the standard RBM and RAPID
models.

7. Summary and conclusions

To summarize, in this work we analyze some of the main prop-
erties of the original RAPID model of Ref. [43] to identify potential
improvements. We track the evolution of the Kullback-Leibler (KL)
divergence along learning to find that, even in simple models where
quantities can be derived analytically, the final values obtained are not
as competitive as those produced by a standard RBM. Based on that
we have relaxed some of the approximations of the RAPID model that
significantly constrain its performance, while preserving the interesting
idea of building network weights from patterns. We call this model
PIW.

We have tested the PIW network on both small and large problems.
We have found that, for small datasets where the KL can be directly
computed, the final values obtained after learning are similar or slightly
better than the values obtained training a standard RBM. In larger
classification problems, where the KL cannot be exactly evaluated, we
have observed a similar trend in accuracy, which is, on average, slightly
better than that provided by a standard RBM. In all cases, PIW achieves
better results than RAPID. Despite the differences in performance of
PIW with respect to the standard RBM not being too significant, the
main advantages of PIW are its requirement for a much lower number
of TP, and the stability of its predictions under reasonable changes to
network parameters.
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