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Glioblastoma is the most frequent aggressive primary brain tumor amongst human adults. Its 
standard treatment involves chemotherapy, for which the drug temozolomide is a common choice. 
These are heterogeneous and variable tumors which might benefit from personalized, data-based 
therapy strategies, and for which there is room for improvement in therapy response follow-up, 
investigated with preclinical models. This study addresses a preclinical question that involves 
distinguishing between treated and control (untreated) mice bearing glioblastoma, using machine 
learning techniques, from magnetic resonance-based data in two modalities: MRI and MRSI. It aims 
to go beyond the comparison of methods for such discrimination to provide an analytical pipeline 
that could be used in subsequent human studies. This analytical pipeline is meant to be a usable 
and interpretable tool for the radiology expert in the hope that such interpretation helps revealing 
new insights about the problem itself. For that, we propose coupling source extraction-based 
and radiomics-based data transformations with feature selection. Special attention is paid to the 
generation of radiologist-friendly visual nosological representations of the analyzed tumors.

Glioblastoma (GB) is the most frequent of the aggressive primary brain tumor types found in human adults. 
Standard treatment for GB involves maximal resection surgery followed by radiotherapy and chemotherapy. For 
the latter, temozolomide (TMZ) is a common drug of choice1. Moreover, GB are heterogeneous tumors, show-
ing high variability, although their prognostic is invariably bad: survival rates are in average 16–18 months after 
diagnosis. Such heterogeneity, in addition to the usual inter-patient variability, highlights the need of improve-
ment of therapy response assessment, pursuing early and confident input information which may be useful for 
personalizing therapy schedules/strategies2. Therapy response follow-up is usually performed following strict 
guidelines, mostly centered in aspects such as tumor volume and contrast uptake using defined categorizations. 
Magnetic Resonance Imaging (MRI) is often used for the non-invasive evaluation of the GB response to therapy, 
through criteria such as the response assessment in neuro-oncology (RANO)3 and the Response Evaluation 
Criteria in Solid Tumors (RECIST)4, which are not exempt of misinterpretation due to pseudoresponse and 
pseudoprogression5. There is still much room for improvement in therapy response follow-up in GB, which can 
be at least partially addressed with preclinical GB models. Accordingly, this study addresses a preclinical ques-
tion that involves distinguishing between treated and control (untreated) mice bearing GL261 GB tumors in a 
noninvasive manner using magnetic resonance-based data. Therapeutic protocols applied in this study have been 
proved to raise sustained transient or sustained response (and even cure) in GB-bearing mice6. In this sense, we 
consider that treated mice are responding to therapy.
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It is worth noting that MR-based data come in different modalities: MRI is related to anatomical data (tumor 
volume, edema, contrast uptake), while Magnetic Resonance Spectroscopic Imaging (MRSI) is related to metabo-
lomics data. In this work, MRI was not analyzed in the conventional RECIST approach. Instead, regions of inter-
est (RoI) of the MRI were quantified using Radiomics, which entails the extraction of quantitative radiologic 
features in the form of image-based statistics that could be associated with clinical outcomes. If those features 
are sufficiently tumor type-specific, there is a chance to improve the predictive ability of images using their 
parsimonious summary description without resorting to the complete image7.

In addition to an exploratory, objective Radiomics study with MRI data, the current study amplifies the 
parametric scope to include MRSI data, since spectroscopy provides information about the molecular proper-
ties and metabolic heterogeneity of the tumor tissue2. This type of metabolomic information is not being taken 
into account in the clinical guidelines for therapy response follow-up. Previous research6,8,9 has shown that the 
metabolomic patterns extracted from MRSI can distinguish between treated and responding versus control 
murine GL261 GB. To this point, though, no attempt has been made to compare the capabilities of radiomics-
based MRI data transformations and source extraction-based MRSI data transformations and its potential impact 
in future clinical studies. This study aims to do so, but it also aims to go beyond the comparison of methods 
for the discrimination of treated/responding and control murine GL261 GB tumors and provide an analytical 
pipeline that could be used in subsequent human studies.

Medical decision making is a well-honed combination of human expertise and available medical evidence. 
Due to technological and scientific advances, medicine is swiftly becoming a data-centered discipline. This 
datafication process becomes a unique opportunity for quantitative data analysis based on statistics and machine 
learning (ML). Even if so, it has been argued that ML and similar tools should only be used as an expert techno-
logical companion to the human expert decision making process. This is because, beyond providing enhanced 
accuracy, medical decision support systems must comply with existing guidelines, medical ethics and current 
legislation10. It has been claimed that for ML and similar methods to be accepted, legally compliant and put to 
work in the medical domain, they must be interpretable for the medical expert, so that the expert can explain, 
at least to some extent, the reasoning behind the algorithm’s decision.

The ultimate goal of the analytical pipeline proposed in this paper is providing tools that are both usable and 
interpretable for the radiology expert in the hope that such interpretation helps revealing new insights about the 
problem itself. To enhance interpretability and explainability we propose coupling the data transformations on 
different modalities with feature selection, trying to find an as parsimonious as possible selection of transformed 
features that accurately distinguishes between treated and control cases. Special focus is placed on the generation 
of intuitive visual nosological representations11 of the analyzed tumors.

Methods
Data.  The retrospective data analyzed in this study were acquired from 63 mice6,8,9, in which tumors were 
induced by stereotactical injection of GL261 GB cells. Each individual is identified by a unique code (CXXX, 
being XXX a sequential number). Mice were divided into control subjects (untreated, n = 29 ) and TMZ-treated 
mice ( n = 34 ). Out of these, 32 (19 treated, 13 untreated) of them were used to create the classification models, 
whereas 31 (15 treated, 16 untreated) were used as a holdout sample to gauge the performance of those models 
(see Ref.8 for details on TMZ administration route and schedule). The dataset is further detailed in the supple-
mentary materials. Therapy started eleven days after tumor generation. Tumor volume evolution was followed 
by MRI and MRSI, both acquired at chosen time points. Depending on the mice, acquisition can be of a single 
slice or multi-slice, thus the number of MRI images or MRSI grids acquired may vary from one to four in the 
same axis for each mouse. That entails a big difference in the number of samples among acquisitions and also 
limits the possibility of applying 3D techniques, due to the absence of several slices in many samples. Mice were 
euthanized and histopathological validation performed at endpoint, or chosen time points, depending on the 
case. All studies were approved by the local ethics committee [Comissió d’Ètica en l’Experimentació Animal i 
Humana (CEEAH)], according to the regional and state legislations (protocol CEEAH 3665). All experiments 
were performed in accordance with national and autonomic regulations regarding animal housing, supervision 
and welfare.

The data thus included both MRI and MRSI information. For this work, the available MRI was a T2 weighted 
(T2w) acquisition of the mouse brain, producing between one and four images of 256× 256 pixels. This was the 
basis for choosing the most suitable zone for MRSI acquisition. The MRSI grid used (which consists of 10× 10 
or 12× 12 voxels that can be treated as pixels in the analytical pipeline) can be graphically superimposed to the 
MRI image, where each element of the grid is associated with one spectrum (Fig. 1). The grid covers mostly the 
tumor/peritumoral zone, and was used as the input for this part of the study. In the present work, only short 
echo time (TE) spectra were used and in this sense no negative signals are expected. However, we have chosen 
to use cNMF in case a similar approach is intented to be used in future work with long TE spectra, and also 
because the sources can be understood as representative signal centroids. Before applying the designed analyti-
cal pipeline, raw spectra were processed with 3D Interactive Chemical Shift Imaging software (version 1.9.11, 
Columbia University) and normalized with Dynamic MRSI Processing Module (DMPM, GABRMN-Universitat 
Autònoma de Barcelona12), while MRI was used without any further transformation.

In summary, for each of the 63 mice, we had between one and four 256× 256 MRI images with their cor-
responding MRSI acquisition slices (1-4 depending on the case), and between 100 and 400 spectra distributed 
in 10× 10 or 12× 12 grids, covering most of the tumoral zone.

Radiomics.  Radiomic features are calculated over a whole RoI that can, in principle, be in 2D or 3D13. Note 
that images can indeed be analyzed as such, without transformation. Radiomics feature extraction, though, 
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implicitly generates a data dimensionality reduction that, eventually, retains the predictive capability of the 
original data. This parsimonious description may provide two inter-related advantages: a less over-fitting prone 
training sample, especially in low cases-to-features ratio samples such as the one under study, and an easier to 
interpret data description for radiologists when it comes to explaining the differences between treated and con-
trol cases. In this case, as previously mentioned, the treatment schedule used for GL261 GB is known to produce 
either transient response or cure, so it is reasonable to state that any local changes spotted by MRI/MRSI may be 
essentially due to response to treatment.

In this study, information to distinguish whether mice belong to the control or TMZ-treated groups comes 
mostly from the tumor tissue, reducing the region used to extract the Radiomics metrics and thus avoiding the 
inclusion of peritumoral/normal tissue. To achieve that, manual segmentation of the tumor was performed with 
expert supervision. Two types of Radiomic features were extracted to amplify the available mineable information: 
texture features and Minkowski functions.

First, 42 texture features were obtained using Radiomics MATLAB toolbox14 (listed in the supplementary 
materials), which extracts them from four texture matrices, namely: Gray Level Co-Ocurrence Matrix (GLCM), 
Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM) and Neighbouring Gray Tone 
Difference Matrix (NGTDM). These matrices offer different useful representations of the texture of an image. 
In order to calculate them, an initial rectangular matrix is required as input. Since the segmented tumor does 
not have this shape, an additional step of automatic selection of the smallest rectangle that contains the whole 
tumor region was applied.

Second, Minkowski functions were obtained directly from the segmented tumor mask. These are morphologi-
cal and structural descriptors of image heterogeneity that can characterize the tumor15,16. A number N of levels 
is selected, and N auxiliary binary images are created with N thresholds that are equally spaced along with the 
range of intensities of the mask (See example in Fig. 2). The area, perimeter and Euler parameter of the binarized 
object are then calculated, resulting in 3N features. From now on, these features will be referred to as Area#, 
Perimeter# or Euler#, being # the number of the threshold level associated with that feature. This transformation 

Figure 1.   Left, schematic representation of a mouse brain and slice positioning. Right, T2w MRI image for case 
C234, with the 32× 32 grid superimposed over it. Spectra colored in green are the ones belonging to the VoI 
(yellow square) of 10× 10 or 12× 12 enclosing the data used in the study. The rest of spectra are represented in 
red. Blue lines separate all grid pixels.

Figure 2.   Example of a 16-levels Minkowski thresholds over a tumor mask (C526, treated case, day 18).
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was performed using a specific MATLAB toolbox17 and a range of different values of N was explored, settling for 
a value of 16 and, therefore, generating 48 features. The whole Radiomics set (texture + Minkowski functions) 
thus consisted of a total of 90 features for every slice.

Data transformation using Radiomics still yields a large number of features that, as previously mentioned, 
would increase the risk of data over-fitting7. One way to decrease such risk is through further dimensionality 
reduction in the form of feature selection, as described in the following sections.

Aiming to imitate a decision-support system, where the final response provided must be a single output for 
every analyzed subject, in the case of multi-slice mice, it is necessary to gather all the outputs obtained for each 
slice and combine them into a single result. Keeping that in mind, a slice-voting system (SVS for short, hereafter) 
was implemented, where a weighted average of all the slices responses represents the output for every mouse 
(see a graphical illustration on the left hand side of Fig. 3). In this voting system, the essence is to offer more 
decision weight to those slices with a higher amount of tumor represented, thus the weights are based on the 
number of pixels in the tumor mask used for feature extraction, increasing the importance of central slices and 
reducing the periphery influence.

Convex‑NMF.  Although the use of Radiomics is a suitable approach to tumor characterization, it is not 
directly applicable to MRSI. This is because MRSI, even if anatomically located, consists of a group of spectral 
vectors describing signal in the frequency domain, from which texture matrices cannot be extracted. These 
spectra contain tissue metabolomic information and it can be assumed that, as complex compound signals, they 
are the result of the combination of different sources (i.e. paradigmatic spectra characteristic of certain tissue 
types of pathological conditions). Accordingly, methods of blind source separation are suitable to extract those 
sources. They can be seen as feature extractors as well as data dimensionality reductors.

In this study, we used Convex-NMF (non-negative matrix factorization)18, an unsupervised method that 
extracts individual sources from a signal that results from a combination of those sources through a mixing 
matrix. This variant of NMF just allows non-negative components in both source and mixing matrices, even 
though it allows negative values in the signal itself.

NMF and Convex-NMF are not new to the neuro-oncology domain, where they have been used to differenti-
ate abnormal masses19; to distinguish non-tumoral, responding and non-responding tumoral tissue in glioblas-
toma through source extraction in a semi-supervised way20; for tumor type classification21; or for spectral data 
quality control22, to name just a few applications.

Here, as in the Radiomics-based approach, only information extracted from tumor regions was considered, 
and only spectra that represent completely the tumor region were selected based on the manual segmentation 
of the tumor (see an example in Fig. 4). This reduces the initial 12,700 available spectra (3200 for model training 
and 9500 as holdout sample) to a subset of 4465 (1433 for training and 3032 as holdout).

Convex-NMF was applied to the 4465 spectra to extract 20 source vectors. These sources can be qualitatively 
analyzed by radiology experts in terms of different metabolite contribution. On the other hand, the mixing matrix 
may inform of how these sources are combined to create each spectrum. Source weights were used as features 
in the subsequent classification models.

One of the benefits of the grids of MRSI is that they will provide results and information of different anatomi-
cal areas inside the tumor, letting us know how heterogeneous they are and how this influences the way each 
area of the tumor is responding.

Also, as for the Radiomics approach, a method to obtain a single Convex-NMF classification result for each 
mouse was developed in order to imitate a decision-support system (see an example on the right hand side of 
Fig. 3). In this case, decision weighting is easier than for MRI, because every single spectrum voxel covers the 
same amount of tissue, so it is only necessary to count the voxels classified as control in all the slices and compare 
this with the number of classified as treated. The most abundant one will inform the final model output. This 
method is the voxel-voting system (VVS from now on).

Figure 3.   Example of how voting systems work on mouse C1320, control case. (a, left) Slice-voting system 
(SVS); (b, right) Voxel-voting system (VVS).
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Feature selection.  High data dimensionality increases the risk of model over-fitting, while irrelevant and 
redundant features increase the search space and make pattern detection difficult, as well as risk obfuscating the 
classification models. This problem can be alleviated either through an exponential increase of the number of 
cases in the analyzed sample or through dimensionality reduction methods. Feature selection is an important 
step to extract more consistent knowledge from our data that are relevant to the problem, discarding redundant 
features23.

Although the choice of the optimal feature selection algorithm is data-dependent, wrapper feature selection 
methods usually obtain good results, even though at the expense of a high computational cost. In the wrapper 
scheme, the accuracy of the classifier is used to gauge the relevance of a subset of features, unlike in the filter 
scheme, where the classifier is built only after the features are already selected. In a third approach, the embed-
ded scheme, the internal structure of the classifier itself allows assigning a measure of relevance to every feature. 
These three schemes can in turn be applied with different search algorithms (exponential, sequential, etc.). See 
Ref.24 for further details.

In the present study, feature selection was used in two distinct situations. In MRI analysis, which is a low 
cases-to-features ratio scenario (32-to-90 in the training set), feature selection must be performed in combina-
tion with a not-too-complex classifier to ensure model generalization and reliability. This is different from the 
source extraction analysis in MRSI. In this case, even if the data dimensionality does not force us to apply feature 
selection, it should lead us to a better quantitative and qualitative understanding of which sources are most 
responsible for the differentiation of control and treated cases. For these reasons and for the sake of the clinical 
interpretability of the feature selection results, only linear models were used in both cases.

Similar feature selection approaches were applied to both pipelines. First, a univariate t-test allowed to estab-
lish a rough rank of their singular importance in the separation of control and treated cases, following a filter 
scheme25. In a second experiment, we applied a recursive feature elimination (RFE) search scheme that starts 
from the whole set of features and removes one feature (the one considered less relevant) at every step. For the 
MRSI data, a standard wrapper RFE was applied. For the MRI data, a RFE wrapper did not allow to distinguish 
the relevance of the features (most accuracies were equal in the first steps) and, therefore, an embedded RFE 
with linear classifiers was performed instead, and, over the selection of the embedded method, a wrapper feature 
selection was applied in another step, aiming to reduce even more the size of the subset of selected features. In 
the embedded RFE scheme, the relevance of a feature was computed as follows: suppose that we have trained K 
linear classifiers with different data partitions (as in a K-fold cross-validation), so that every classifier can be 
expressed as fj(x) = g

(

∑N
i=1 ωijxi

)

 , where N is the number of features and g is some monotonic function (such 
as the linear function or the logistic function for the logistic regression classifier). Then, the relevance of a feature 
i can be expressed as the mean of 

{

|ωij|
}K

j=1
 . This idea is based on the hypothesis that irrelevant features produce 

smaller variations in the output values than relevant ones. Hence, a natural way to compute the relevance of a 
feature i in the trained model fj(x) is to compute the absolute value of the derivative of fj(x) with respect to xi , 
which is 

∣

∣

∣
g ′
(

∑N
i=1 ωijxi

)

ωij

∣

∣

∣
 . If we only want to compare the relevance between two features, the term 

g ′
(

∑N
i=1 ωijxi

)

 can be ignored.

Figure 4.   Example of how only spectra regions that are completely inside the tumor (blue outline) are selected 
from all the grid (red outline). Mouse C234.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19699  | https://doi.org/10.1038/s41598-020-76686-y

www.nature.com/scientificreports/

Nosological visualization of the Convex‑NMF sources‑based classifier.  The anatomically-
bounded information provided by the cNMF-based prediction allows us to add a layer of information on top 
of the raw classification itself. Such information will reflect how the responsiveness to TMZ behaves across the 
tumor structure and how certain the classifier is about the results yielded for each voxel (and, therefore, for the 
different tumor regions). Such certainty is quantified as the posterior probability P(s) of the label predicted for 
the input spectra, described as follows:

where observation j is in class k = {−1, 1} ; sj is the score of observation j; + 1 and − 1 denote the positive and 
negative classes, respectively; and π is the prior probability that an observation is in the positive class26. These 
nosological maps aim not just to show the certainty of the classifier output, but also to use the map itself as a 
visual tool for the radiologist to see the response distribution on a subject. They are likely not to show just a 
binary state (responding–not responding) of the tumor, but, instead, a more nuanced gradation of the response 
along the anatomical axes.

Overlaying this representation, binary state maps can be created to visually display and identify which indi-
vidual spatial voxels, or regions of voxels, are misclassified in different slices.

The analytical pipeline in a nutshell.  For the sake of clarity, the dual analytical pipeline is summarized 
here. For the same cases, we have both MRI and MRSI representations. To address the unbalance in the ratio of 
cases-to-features in the data set, we apply radiomics to the MRI and cNMF source extraction to the MRSI. To 
further improve that ratio and to increase the interpretability of the classification results, parallel filter and wrap-
per feature selection procedures are implemented for both sets of extracted features. Classifiers are implemented 
and selected, with their evaluation complemented by the use of voting procedures for multi-slice cases (SVS 
for the radiomic features from MRI and VVS for the features extracted by cNMF from MRSI). Finally, we take 
advantage of the anatomical coherence of the MRSI to provide an intuitive, radiologist-friendly visualization, 
using nosological images, of the level of certainty of the classification results.

Results
The 63 mice of the dataset under analysis were split into two groups, as follows: 32 mice with single-slice MRSI 
acquisitions were used to train the models, while 31 mice with multi-slice MRSI acquisition (95 MRSI slices in 
total) were used to test the potential of the classification models over unseen cases. Note that, strictly, the latter is 
not a test or hold-out set in the common ML sense, because given the restricted number of mice included, there 
is limited certainty that they can be considered as a representative sample drawn from the same distribution.

The relevance of MRI and MRSI data features for the discrimination between control and treated cases was 
evaluated using two very distinct approaches. First, they were ranked according to a crude filter feature selec-
tion criterion, namely a univariate t-test. The second approach attempted to rank features according to a more 
sophisticated multivariate embedded-wrapper type feature selection procedure, as described in the “Methods” 
section. Here, the ultimate target is finding the most parsimonious selection of features retaining an optimal 
discrimination accuracy between control and treated cases.

Embedded-wrapper type feature selection was performed for both MRI and MRSI datasets using different 
linear classification models, namely logistic regression (LR), linear discriminant analysis (LDA) and support 
vector machine (SVM) with linear kernel. These models were selected as arguably being the best-known linear 
classification models and commonly used in ML. Out of these, we report here only the results of the best perform-
ers. An LR classifier was selected for the Radiomics features. Importantly, this linear classifier allows a low degree 
of over-fitting on our limited number of samples. An SVM with linear kernel was selected for the classification 
of MRSI data, also with quite good results.

Regarding the MRI data analysis pipeline, the results for the feature subsets corresponding to the two used 
approaches, varying from 1 to 30 features, are presented in Fig. 5. For the t-test, the features are directly ranked 
by relevance. In the wrapper approach, instead, each subset corresponds to the best results for that number of 
features. In both cases, each subset of features is included in the subsets of higher dimensions. This also means 
that all features except the 30 most relevant were directly discarded for two reasons: first, the low cases-to-features 
ratio and second, the quest for parsimonious, explainable solutions. Complete rankings of the 90 features for 
both feature selection approaches are shown in supplementary materials.

In the MRSI pipeline, all 20 extracted sources were considered, and the classification performance results are 
graphically depicted in Fig. 5. In supplementary materials, the full set of 20 sources is shown with an ID number 
and both rankings are presented to inform of the relevance of each source.

Note that these figures report the accuracy of the different classifiers over the hold-out set after a training 
procedure. This accuracy is calculated according to both the SVS and VVS for each classifier. Leave-one-out 
cross-validation was used in the Radiomics setting due to the low number of samples, whereas in source extrac-
tion, where samples are more abundant, 20-fold cross-validation was applied.

The anatomically-grounded visual representation of the proposed analytical pipeline is exemplified by the 
nosological MRI-based images in Fig. 6, which simultaneously display the classification boundaries and the 
degree of certainty of the classification outcome (results for all mice and classifiers can again be found in the 
supplementary materials).

P(sj) =















0; sj < max
yk=−1

sk

π; max
yk=−1

sk ≤ sj ≤ min
yk=+1

sk

1; sj > min
yk=+1
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Discussion
Radiomics study.  The study of tissue morphology is used in oncology to detect the presence of disease and 
also to check tissue local changes determined by treatment.

Qualitative neuroimaging analysis is usually hampered by a lack of reproducible and objective measures, 
although approaches such as the VASARI features have been proposed27. For this reason, quantitative assessment 
of tissue morphology as part of an at least semi-automated analytical pipeline could be of great practical interest. 
MRI-based studies using Radiomics quantitative descriptions of MRI images have been found to predict brain 
tumor survival/progression, or follow response to therapy7,15,28,29. Radiomics is an emerging technique used in 
radiology that aims at extracting quantitative information features from medical images that potentially bear 
descriptive and predictive capabilities13. This type of feature extraction or transformation is able to predict char-
acteristics of different types of diseases and has already been applied to the analysis of GB images for survival 
prediction and patient stratification30.

The results reported in Fig. 5 show that Radiomic features can discriminate fairly well between treated and 
control cases in our preclinical study. LR results show a somehow irregular pattern that overall deteriorates as 
the number of patterns increase. This is not unexpected, due to the small sample size. In the wrapper approach, 
over 75% hold-out accuracy can be achieved with just two features (namely Gray-Level Co-Occurrence Matrix 
(GLCM) Entropy and Perimeter9), both with the slice classification and SVS methods. The t-test ranking, though, 
nears 90% accuracy for 10 features (the first 10 listed in the ranking of Table S3 in the supplementary materials) 
with the SVS method.

Malignant brain tumors usually have a heterogeneous appearance in MRI, due to the presence of necrosis and/
or hemorrhagic foci. Moreover, the architecture of the tissue can change upon treatment31,32; at the histopatholog-
ical level, transient response to TMZ, detected in our preclinical GB model under different protocols, leads to the 
appearance of giant cells, decrease of the proliferative rate and increase of acellular spaces9. Altogether, this may 
have a clear impact on MRI and its associated features (see MRI examples of treated and control mice in Fig. 7).

Moreover, changes in tumor properties such as ischemia, angioedema and avascular necrosis, might be more 
obvious on T2w MRI, reinforcing the potential of this approach alone for a radiomics-based therapy response 
analysis. On the other hand, Minkowski functions have been described as useful in analyzing heterogeneity 
of peritumoral hyperintensity of glioblastoma, demonstrating prognostic value in predicting survival33. Our 

Figure 5.   Top: representation of performance (accuracy over the hold-out set) of Logistic Regression over the 
number of Radiomics features selected (n most relevant features according to t-test, with n = 1, . . . , 30 ) for 
MRI data in (a) and (b). Slice classification method was used in (a) whyle SVS method was used in (b). Bottom: 
performance of SVM classifier with linear kernel (accuracy for the hold-out set) over the number of sources 
selected for the MRSI data in (c) and (d). Voxel classification method was used in (c), while VVS method was 
used in (d).
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results are supported by findings reported by other authors: GLCM, which is a method that describes how 
similar neighboring voxels are by their gray values, was determinant to distinguish between progression and 
pseudoprogression in human GB patients treated with the current standard treatment, spotting tumors that were 
truly responding to therapy34. Other authors have used GLCMs in order to distinguish GBM phenotypes (i.e. 
Necrosis, Active Tumor, Edema)35, while authors in36 have used texture features such as GLCM to study local and 
regional heterogeneity and their role in the survival stratification of patients with GB. Other radiomic variables 
such as GLRLM and GLSZM also ranked in high positions in this work. This agrees with the available literature, 
for example, Ref.37 describes features such as GLRLM correlating with histopathological features such as Ki67 
in high-grade glioma. Recent work38 also described the value of GLRLM and GLSZM for evaluating response to 
therapy in GB, being able to distinguish pseudoprogression from true progression.

Recent results6 suggest that treated GL261 tumors responding to TMZ treatment present significantly higher 
immune system elements within the tumor region. The local effects of these cells against the GB mass may also 
cause local changes that could be spotted by MRI, although further work would be needed to establish a proper 
correlation between MRI features and immune system elements presence/action. Among cases that had poor 
classification in radiomics approach, we find mice C975 and C1451 (both treated cases misclassified as controls 
with the radiomics approach). These cases proved to have mixed heterogeneous pattern of response/no response 

Figure 6.   Examples of nosological visual representation of the classification results for MRSI data from their 
extracted sources. They are meant to provide radiologists with an intuitive interpretation tool. They consist of 
horizontal T2w MRI images of GL261 GB afflicted mice at different treatment/evolution day, superimposed with 
representative nosological maps of the classification reliability in different tumor regions for the SVM classifier 
with linear kernel and 10 features (sources) selected by t-test. The color-coding (see scale on the right) shows 
how reliable the model classification output can be considered and it represents a classifier output posterior 
probability. The lighter the color, the more reliable and vice versa. The red contour over some of the voxels 
represents those that were misclassified by that model. (a) C1465-day15, (b) C1109-day11, (c) C1412-day23, 
(d) C1474-day14, (e) C1320-day18, (f) C1026-day23. The color bars at the bottom represent the true class of the 
case, whereas the color bars at the top represent the percentage of voxels classified either as treated or as control 
for each case.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19699  | https://doi.org/10.1038/s41598-020-76686-y

www.nature.com/scientificreports/

when studied with semi-supervised approaches as in8 and case C975 presented only a slight response to TMZ 
administration. In this sense, it is not surprising its misclassification with radiomics as well, since local tissue 
effects may have a clear impact on MRI features. In this respect, it is wise to mention here that MRSI features 
detected from treated GL261 mice have been found to oscillate along time6,9, with a ca. 6-day period. This lon-
gitudinal heterogeneity, unless taken into account in the analysis, may cause errors in the classification due to 
the use of single time point data. Case C1456 was a treated case misclasified as a control both in radiomics and 
MRSI-based approaches. This case had no remarkable features that could justify such misclassification, except 
for being a slow-growing case, with a borderline tumor volume at the time of examination, which could point to 
a limit in the sensibility of different approaches when the studied zone, and, accordingly, the available informa-
tion decreases significantly.

One of the challenges still hampering proper comparison between different Radiomics-based studies is the 
lack of standardization39. Due to the well known contrast-enhancement characteristics of GB tumors, some 
authors emphasize the potential of contrast-based imaging modalities29, but since contrast agents are not recom-
mended for some patients (e.g. with kidney diseases), a reliable method based on T2w MRI would be of great 
interest for its translational potential.

MRSI study.  The results reported in Fig. 5 for the MRSI data show us two things. First, that they are overall 
better than those achieved by the best model (LR) applied to the radiomic features; and, second, that they are far 
more stable in their evolution over the selection of features (sources in this case). The results with the t-test selec-
tion begin deteriorating faster than with the wrapper approach. The wrapper is able to keep accuracy over 80% 
in the voxel classification method and over 90% in the VVS method with as little as 8 sources (two of them are 
shown in Fig. 8, for illustration). With less than 8 sources, the performance quickly deteriorates, meaning that 
the removal of any of these 8 sources has a significantly negative impact on the discrimination between treated 
and control cases, but also meaning that any further addition of sources does not benefit such discrimination.

The aforementioned sources represented in Fig. 8 show the expected changes in metabolites previously 
described in8 as relevant for distinguishing among control and responding GL261 murine GB, such as poliun-
saturated fatty acids (PUFA), lactate (Lac), glutamate-glutamine (Glx) and alanine (Ala). It is worth noting that 
the appearance of PUFAs after preclinical brain tumor treatment has been described by other authors such as 
Refs.40,41, probably reflecting local apoptosis as a consequence of therapeutic protocols. Authors in Ref.41 also 
describe Alanine as a distinctive trait between untreated and treated mice. It is also worth mentioning that such 
metabolomic pattern changes have been also seen during transient responses to a variable set of therapeutic 
approaches: TMZ in standard or metronomic schedules9, CPA6, immunotherapy alone or in combination42, 
hinting that changes are not restricted to TMZ treatment.

Metabolomic studies based in MRS/MRSI also proved useful when assessing GB therapy response in 
clinical settings. Namely, Lactate/Lipids were found useful for differentiation between GB relapse and 
pseudoprogression43 and estimation of overall survival in GB after treatment44. The glutamate/glutamine region 
(Glx) was also studied as a potential therapy response biomarker45. PUFAs were also reported as an apoptosis 
biomarker with in vivo MRS46. Overall, data seems to point that metabolomics studies are indeed relevant in 

Figure 7.   Examples of control (left, mouse C583) and treated, transiently responding to TMZ according 
to histopathological parameters (right, mouse C574) murine GL261 GB tumors. Note the appearance of 
hypointense zones (red circles) in T2w MRI from the treated mouse, noticeably different from the more 
homogeneous appearance observed in the control case.
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therapy response studies, but most of the reported work in therapy response assessment is focused on few 
metabolites or metabolite ratios. The novelty provided by the pattern recognition studies is the consideration 
of the whole pattern changes.

All in all, this means that, for the proposed pipeline, we favour the use of the combination of an SVM clas-
sifier and the wrapper feature selection method, on the basis of MRSI data, and where results of the Radiomics 
approach only add useful knowledge in terms of the selection of the most discriminating features of the image.

Most importantly, one of the benefits from the MRSI per-voxel analysis is the possibility to ascertain how 
each part of the tumor is responding, allowing us to unravel its heterogeneity. Even if considering a mouse as 
responding to a specific therapy as a whole, we still cannot be sure whether the tumor is consistently and homo-
geneously responding to therapy or not. The key advantage of our analytical pipeline is that the classification 
results come with a quantification of the certainty of the classification prediction that is anatomically bounded. 
This means that we can graphically represent, using nosological images, such level of certainty over the anatomy 
of the tumor, as exemplified by the images in Fig. 6. These images include not only the nosological representation 
of the level of certainty of the classifier prediction, together with the highlighting of the misclassified voxels, but 
also the information about the true and predicted classes. The latter allows the expert to know whether the case 
is treated or control and whether the classifier prediction is treated or control using the VVS method. Merging 
the information about classifier case prediction with the anatomically-distributed information about such clas-
sification certainty should create the type of knowledge extraction synergy that only visualizations can provide47, 
making it an interpretability-enhancing tool at medical expert disposal. These nosological maps can intuitively 
be interpreted and explained by a trained radiologist, even if not familiarized with MRSI interpretation. They 
are the cornerstone of the analytical pipeline, to which we can add the knowledge provided by the overall clas-
sification itself and the feature relevance (Radiomics and sources) results.

Some of the results found in these prediction reliability maps are striking. Crucially, the voxels misclassified by 
our models are not distributed individually and randomly all over the tumor, but mostly grouped in contiguous, 
compact regions; they are also to be found mostly in the external region of the tumor and, furthermore, they 
consistently show a lower reliability score than the average for that zone. Still, we cannot discard that part of this 
lack of reliability would be due to poorer homogeneity in spectra from edges of the MRSI grid, in which several 
of these voxels are located. This reliability score issue is telling us that, even if classification is binary in nature, 
our misclassified zones are, in general, less certain that the correctly classified cases. This could be interpreted 
in the sense that a voxel that is not classified as responding to treatment, does not necessarily fully fit the non-
responding pattern, which could mean that that region of the tumor might still be responding, but to a lower 
extent than other regions, or other mice.

Moreover, regarding the misclassified voxels reported in Fig. 6, case C1026 is worth singling out for discus-
sion. This case, also reported in Ref.9, proved to be a heterogeneous case with a mix of responding/unresponsive 
pattern in MRSI, and also presented unexpectedly high Ki67 immunostaining values considering that it was a 

Figure 8.   Examples of two selected sources relevant for distinguishing spectra from control and treated, 
responding murine GL261 GB tumors. Some relevant metabolites have been indicated [Polyunsaturated fatty 
acids (PUFA), Lactate (Lac), Alanine (Ala) and the signals overlapped from Glutamate-glutamine, alanine and 
glycine (labeled as Glx)]. The green source shows some of the typical features seen in MRSI pattern of treated, 
responding tumors such as visible PUFA and relative increase in Lac, while the red source did not show (or only 
barely visible) PUFA, in addition to increased Glx signals and a more clear Ala presence in comparison with the 
green source.
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TMZ-treated case in transient growth arrest. Therefore, it is not surprising that some zones are misclassified 
with the approach described in this work.

Also, it should be mentioned that two subjects (C1110 and C1111) have shown abnormal behaviour in all the 
sources-based classifiers, being consistently misclassified with high-reliability scores. These cases were checked 
manually looking for any artifact or abnormality in their data, but nothing was found. Given the reduced sample 
size under analysis, this situation negatively impacts classification scores, which indicates the importance of 
conducting additional studies including more mice.

Last but not least, our preliminary data show that timing is a relevant factor while evaluating tumour response 
to therapy6,9, and our time points were validated by MRSI, growth arrest and, in some cases, histopathological 
data. Since MRSI can provide earlier data and inform about tumour relapse before tumour volume changes8, 
this may be used in future studies to improve MRI information and refine prediction of whether a tumour is 
properly responding to therapy or will relapse in a near future. The applicability of this methodology to other 
clinically relevant treatment approaches in which immune response may be also involved, such as radiotherapy, 
may be tackled in future studies.

Conclusions.  Both Radiomics and source extraction show potential in therapy response assessment, with 
advantages and limitations. Source extraction over MRSI offers a higher accuracy and very good anatomical 
detail that helps extracting knowledge about the tumor behaviour, but its reproducibility over new cases is lim-
ited because the weights used are based on sources extracted previously, which means that the whole process 
should be repeated to analyze new cases.

MRI did not show such level of successful results but, on the other hand, since only a T2w MRI is enough 
for proper classification, it would be extremely reproducible along different clinical centers if a future clinical 
application is launched. Still, all clinical centers are able to perform T2w MRI acquisitions, while MRSI is not 
fully incorporated in the clinical pipeline, either due to software issues and challenges in processing and inter-
pretation. Further studies may consider the joint MRI/MRSI categorization, and to search for correlations in 
MRI aided/guided by MRSI rich information.

The analytical pipeline presented in this paper has led us to a very compact and intuitive visualization of 
results that summarizes, in an anatomically recognizable representation, a complex combination of feature selec-
tion and classification based on MRI Radiomics and MRSI, together with prediction certainty. The ultimate goal 
is making this visual representation not just a summarization of results, but also a source of inductive reasoning 
for medical experts, as a tool that may lead to the generation of new hypothesis for the problem of response to 
therapy for glioblastoma.

Data availability
MRI and MRSI data files from mice will be made publicly available from the UAB digital repository database, 
accessible from URL: https​://ddd.uab.cat.
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