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Abstract—Machine learning (ML) methods have shown great
potential for the analysis of data involved in medical decisions.
However, for these methods to be incorpored in the medical
pipeline, they must be made interpretable not only to the data
analyst, but also to the medical expert. In this work, we have
applied a combination of feature transformation, selection and
classification using ML and statistical methods to differentiate
between control (untreated) and Temozolomide (TMZ)-treated
tumour tissue from a glioblastoma (brain tumour) murine model.
As input, we have used T2 weighted magnetic resonance images
(MRI) and spectroscopic imaging (MRSI). Radiomics features
have been extracted from the MRI dataset, while convex Non-
negative Matrix Factorization (Convex-NMF) was used to extract
sources from the MRSI dataset. Exhaustive feature selection has
revealed parsimonious feature subsets that facilitate the expert
interpretation of results while retaining a high discriminatory
ability.

Index Terms—radiomics, machine learning, preclinical
glioblastoma, therapy follow-up, feature selection, convex-NMF

I. INTRODUCTION

Medical decision making is a well-honed combination of
human expertise and available medical evidence. Due to tech-
nological and scientific advance, though, medicine is swiftly
becoming a data-centered discipline. From a point-of-care
viewpoint, this is exemplified by the standardization of the use
of electronic health and medical records and by the intensive
monitorization of the patient.

This datafication process risks unbalancing the subtle com-
bination described above by adding more weight to the data-
based medical evidence part, but also becomes a unique oppor-
tunity for quantitative data analysis based on statistics and ML.
It has been argued that ML and similar approaches should only
be used as an expert companion in the human expert decision
making process. This is because, beyond providing enhanced
accuracy, medical decision support systems must comply with
existing guidelines, medical ethics and current legislation [1].

It has been claimed that for ML and similar methods to be
accepted, legally compliant and put to work in the medical
domain, they must be interpretable for the medical expert,



so that the expert can explain, at least to some extent, the
reasoning behind the algorithm’s decision [2].

In this paper, we implemented an analytical pipeline for
a preclinical problem that involves distinguishing between
treated and control (untreated) mice bearing GL261 glioblas-
toma (GB) tumours in a noninvasive way using magnetic
resonance data, both in the modalities of imaging (MRI) and
spectroscopic imaging (MRSI). The ultimate goal is making
that distinction interpretable for the radiology expert in the
hope that such interpretation reveals something new about
the problem itself. Previous research [3]–[5] proved that the
metabolomics pattern provided by MRSI could distinguish
between treated/responding and control murine GL261 GB,
but no attempt was made to investigate whether using MRI
data could improve results. Accordingly, the data available in
this study included both MRI and MRSI inputs. The pipeline
includes two different data transformations: the regions of in-
terest (RoI) of the images (see section II) were quantified using
Radiomics [6], while the MRSI spectra were transformed using
Convex-NMF [7]. Transformed data subsequently underwent
feature selection, in the hope of finding an as parsimonious as
possible selection of transformed features that both accurately
distinguishes between treated tumour and control and remains
interpretable for the radiologist.

II. MATERIALS AND METHODS

A. Data

The data used in this paper were acquired from 30 mice,
in which tumours were induced by stereotactical injection
of GL261 GB cells. Each individual receives a unique code
(CXXX, being XXX a sequential number). Mice were divided
into control subjects (untreated, n = 13) and TMZ-treated
mice (n = 17) (see [3] for details on TMZ administration
route and schedule). Therapy started eleven days after tumour
generation. Tumour volume evolution was followed by MRI,
and MRSI was acquired at chosen time points. Mice were
euthanized and histopathological validation performed at end-
point or chosen datapoints, depending on the case. All studies
were approved by the local ethics committee (Comissió d’Ètica
en l’Experimentació Animal i Humana (CEEAH)), according
to the regional and state legislations.

The data included both MRI and MRSI information. For this
work, the available MRI was a T2 weighed (T2w) acquisition
of the mouse brain, producing an image of 256× 256 pixels.
This was the basis for choosing the most suitable zone for
MRSI acquisition. The whole MRSI grid is composed by a
set of 32 × 32 voxels, that can be treated as pixels in the
analytical pipeline, over the MRI image where each element
of the grid is associated with one spectrum (Fig. 1). A smaller
grid of 10×10 was defined as the Volume of Interest (VoI) to
optimize and acquire the MRSI data, covering mostly the tu-
mour/peritumoral zone, and was used as the input for this part
of the study. Before applying the designed analytical pipeline,
raw spectra were processed with 3D Interactive Chemical Shift
Imaging software (version 1.9.11, Columbia University) and
normalized with Dynamic MRSI Processing Module (DMPM,

GABRMN-Universitat Autònoma de Barcelona [8]), while
MRI was used without any further transformation. In summary,
for each of the 30 mice, we had a 256 × 256 MRI image
that matched the MRSI acquisition slice, and 100 spectra
distributed in a grid of 10× 10 covering most of the tumoral
zone.

Fig. 1. Example of T2w MRI image and the 32 × 32 grid superimposed
over it from case C234. Green spectra belong to the VoI (yellow square) of
10×10 enclosing data used in this work. The rest of spectra are in red. Blue
lines separate all grid pixels.

B. Radiomics

Radiomics is an emerging technique used in radiology that
aims to extract quantitative information features from medical
images that potentially bear descriptive and predictive capa-
bilities [9]. This type of feature extraction or transformation
is able to predict characteristics of different type of diseases
and has already been applied to GB for survival prediction
and patient stratification [10]. Radiomic features are calculated
over a whole Region of Interest (RoI) that can be in 2D or
3D [9].

Fig. 2. Example of RoI extraction in a mouse (case C179). A: Raw image
of the T2w MRI. B: Mask of the manually performed tumour segmentation,
used for the calculation of the Minkowski functions. C: Smallest rectangle of
the MRI image that contains the whole mask of image B, used for texture
matrices and features calculation.

In this study, information to distinguish whether mice
belong to the control or TMZ-treated groups comes mostly
from the tumor tissue, reducing the region used to extract



Fig. 3. Example of a 9 levels Minkowski threshold over a tumor mask (C234).

the Radiomics metrics and thus avoiding the inclusion of
peritumoral/normal tissue. To achieve that, a manual segmen-
tation of the tumor was performed (See Fig. 2) with expert
supervision. Two types of Radiomic features were extracted
to amplify the available mineable information: texture features
and Minkowski functions.

First, 42 texture features were obtained using a Radiomics
MATLAB toolbox [11] that extracts them from four texture
matrices (See Table I), namely: Gray Level CoOcurrence
Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM),
Gray Level Run Length Matrix (GLRLM) and Neighbouring
Gray Tone Difference Matrix (NGTDM). In order to obtain
texture matrices, an initial rectangular matrix is required as
input. Since the segmented tumor does not have this shape, an
additional step of automatic selection of the smallest rectangle
that contains the whole tumor region was applied.

TABLE I
FEATURES EXTRACTED FROM EACH TEXTURE MATRIX

GLCM
Energy, Contrast, Entropy, homogeneity, Correlation,
SumAverage, Variance, Dissimilarity, Autocorrelation

GLRLM
SRE, LRE, GLN, GLNN, RLN, RLNN, RP, LGRE,

HGRE, SRLGE, SRHGE, LRLGE, LRHGE, GLV,RLV

GLSZM
SZE, LZE, GLN, ZSN, ZP, LGZE, HGZE,

SZLGE, SZHGE, LZLGE, LZHGE, GLV, ZSV

NGTDM Coarseness, Contrast, Busyness, Complexity, Strength

Second, Minkowski functions were obtained directly from
the segmented tumor mask. They are morphological and struc-
tural descriptors of image heterogeneity that can characterize
the tumor [12], [13]. A number N of levels is selected, and N
auxiliary binary images are created with N thresholds that are
equally spaced along the range of intensities of the mask (See
example in Fig. 3). The area, perimeter and Euler parameter

of the binarized object are then calculated, resulting in 3N
features. From now on, these features will be referred to
as Area#, Perimeter# or Euler#, being # the number of the
threshold level associated to that feature. This transformation
was performed using a specific MATLAB toolbox [14] and
a range of different values of N was explored, settling for a
value of 16 and, therefore, generating 48 features. The whole
Radiomics set (texture + Minkowski functions) thus consisted
of 90 features.

Data transformation using Radiomics still yields a large
number of features and, accordingly, there would be risk of
data overfitting [6]. This risk may be even higher in settings
with a low cases-to-features ratio, such as the one described
in this work. One way to decrease such risk is through
dimensionality reduction in the form of feature selection, as
described in the following sections.

C. Convex-NMF
Although Radiomics and Minkowski functions are suitable

approaches for tumour characterization, they are not directly
applicable to MRSI. This is because MRSI, although ac-
quired in a spatial way, is a group of spectral vectors with
metabolomic information from which texture matrices cannot
be extracted. These spectra are complex signals and it can be
assumed that they are the result of the combination of different
sources (paradigmatic spectra). Accordingly, methods of blind
source separation are suitable to extract those sources as a
method of data transformation.

In this study, we used Convex-NMF [7], an unsupervised
method for matrix factorization that extracts individual sources
from a signal that results from a combination of those sources
through a mixing matrix. This variant of NMF allows non-
negative components in both source and mixing matrices.

NMF and Convex-NMF are not new to the neuro-oncology
domain, where they have been used to differentiate abnormal
masses [15]; to distinguish non-tumoral, responding tumoral
and non responding tumoral tissue in glioblastoma through
source extraction in a semi-supervised way [16]; for tumour
type classification [17]; or for spectral data quality control
[18], to name just a few applications.

Here, as in the Radiomics-based approach, only information
extracted from tumor regions were considered and only spectra
that represent completely the tumor region were selected based
on the manual segmentation of the tumor (see an example in
Fig. 4). This reduces the initial 3,000 available spectra to a
subset of 1,313.

Convex-NMF was therefore applied to the 1,313 spectra to
extract 20 source vectors. These sources can be qualitatively
analyzed by radiology experts in terms of different metabolite
contribution. On the other hand, the mixing matrix may inform
of how these sources are combined to create each spectrum.
Source weights were used as features in the subsequent
models.

D. Feature selection
High data dimensionality increases the risk of model over-

fitting, while irrelevant and redundant features increase the



Fig. 4. Representation of selected spectra (blue contour) from the 10 × 10
grid (red) on the basis that they consist completely of tumor tissue from case
C179.

search space and make the pattern detection difficult. This
problem can be solved either with an exponential increase
of the number of samples or with dimensionality reduction
methods. Feature selection is an important step to extract more
consistent knowledge from our data that are relevant to the
problem, discarding irrelevant or redundant features [19].

Although the choice of the optimal feature selection algo-
rithm is data-dependent, wrapper feature selection methods
usually obtain good results, even though at the expense of a
high computational cost. In the wrapper scheme, the accuracy
of the classifier is used to gauge the relevance of a subset
of features, unlike in the filter scheme, where the classifier
is built only after the features are already selected. In the
embedded scheme, the internal structure of the classifier allows
to assign the importance of every feature. These three schemes
can be applied with different search algorithms (exponential,
sequential, etc). See [20] for further details.

In the present study, feature selection was used in two
distinct situations. In MRI analysis, where there is a low cases-
to-features ratio (30-90), feature selection must be performed
in combination with a not-too-complex classifier to ensure
model generalization and reliability. This is different from the
source extraction analysis in MRSI. In this case, even if the
data dimensionality does not force us to apply feature selec-
tion, it should lead us to a better quantitative and qualitative
understanding of which sources are most responsible for the
differentiation of control and treated cases.

Similar feature selection approaches were applied to both
pipelines. First, a univariate t-test allowed to establish a rough
rank of their singular importance in the separation of control
and treated cases, following a filter scheme [21]. In a second
experiment, we applied a recursive feature elimination (RFE)
search scheme which starts with the whole set of features
and removes one feature (the one considered less relevant)
at every step. For the MRSI data, a standard wrapper RFE
was applied. For the MRI data, a wrapper RFE did not allow
to distinguish the relevance of the features (most accuracies
were equal in the first steps) and, therefore, an embedded RFE
with linear classifiers was performed instead, and over the
selection of the embedded method in another step a wrapper

feature selection is applied aiming to reduce even more the
size of the subset. In this scheme, the relevance of a feature
was computed as follows. Suppose that we have trained K
linear classifiers with different data partitions (as in a K-fold
cross validation), so that every classifier can be expressed as
fj(x) = g

(∑N
i=1 ωijxi

)
, where N is the number of features

and g is some monotonic function (such as the linear function
or the logistic function for the logistic regression classifier).
Then, the relevance of a feature i can be expressed as the
mean of {|ωij |}Kj=1. This idea is based on the hypothesis that
irrelevant features produce smaller variations in the output
values than relevant ones. Hence, a natural way to compute
the relevance of a feature i in the trained model fj(x) is to
compute the absolute value of the derivative of fj(x) with
respect to xi, which is

∣∣∣g′ (∑N
i=1 ωijxi

)
ωij

∣∣∣. If we only want
to compare the relevance between two features, we can ignore
the term g′

(∑N
i=1 ωijxi

)
.

III. EXPERIMENTS

In a first stage of the analysis, the relevance of MRI and
MRSI features was ranked according to a univariate t-test and
preliminary classified using LDA, Logistic Regression, SVM
and KNN models, using a grid search for finding the optimal
parameters. In the MRI pipeline, results for subsets of features
ordered according to the relevance ranking varying from 1 to
30 are presented (Table II); that is, the remaining features are
directly discarded. In the MRSI pipeline, all 20 sources are
considered in the ranking. Results are reported through Area
Under the ROC Curve (AUC) values in a leave-one-out cross
validation procedure. In a second stage, the multivariate and
more exhaustive RFE approach described in section II-D was
implemented.

TABLE II
RANKING OF RADIOMICS FEATURES ACCORDING TO A t-TEST.

1 GLCMEnergy 11 Perimeter10 21 GLCMHomo

2 GLCMEntropy 12 Perimeter6 22 GLRLMRLN

3 GLRLMGLN 13 Euler7 23 GLSZMZP

4 Perimeter9 14 GLRLMSRHGE 24 GLRLMRP

5 GLSZMGLN 15 GTDMContrast 25 Perimeter4

6 Perimeter8 16 Euler6 26 Euler2

7 GLCMVariance 17 Perimeter5 27 GLSZMSZHGE

8 GLRLMRLV 18 Euler12 28 GLRLMHGRE

9 Perimeter7 19 Euler5 29 GLCMAutoCorr

10 GLRLMGLNN 20 GLRLMSRE 30 GLSZMHGZE

A. Results

AUC classification values for different classifiers and for
different feature subsets following the t-test ranking are shown
in Tables III and IV and in Figs. 5 and 6 for MRI and MRSI,
respectively.

In MRI studies, the performance of classifiers varied both
with the number of features selected and the classifier used.
It is worth noting that performance of linear and non-linear



TABLE III
AUC FOR SUBSETS OF RADIOMICS FEATURES ACCORDING TO t-TEST

RANKING SELECTION

NFeatures LDA Log Regression SVM KNN

1 0.85 0.83 0.85 0.80

3 0.83 0.82 0.83 0.82

3 0.81 0.80 0.82 0.82

4 0.87 0.81 0.90 0.85

5 0.83 0.81 0.89 0.83

6 0.83 0.78 0.89 0.86

7 0.79 0.73 0.88 0.84

8 0.91 0.76 0.90 0.86

9 0.90 0.81 0.89 0.84

10 0.89 0.80 0.86 0.86

11 0.84 0.80 0.85 0.85

12 0.89 0.84 0.85 0.87

13 0.86 0.92 0.84 0.86

14 0.83 0.83 0.89 0.90

15 0.79 0.84 0.90 0.89

16 0.76 0.76 0.89 0.90

17 0.70 0.83 0.89 0.90

18 0.70 0.75 0.89 0.92

19 0.65 0.70 0.88 0.92

20 0.68 0.69 0.91 0.90

21 0.58 0.67 0.92 0.91

22 0.64 0.71 0.92 0.90

23 0.58 0.68 0.92 0.90

24 0.57 0.63 0.93 0.91

25 0.47 0.56 0.93 0.90

26 0.46 0.56 0.93 0.91

27 0.48 0.62 0.93 0.90

28 0.59 0.59 0.94 0.90

29 0.57 0.44 0.94 0.90

30 0.63 0.56 0.94 0.90

Fig. 5. Representation of different classifiers performance (AUC) depending
on the number of Radiomics features selected from the t-test ranking.

Fig. 6. Representation of different classifiers performance (AUC) depending
on the number of Source features selected from the t-test ranking.

TABLE IV
AUC FOR SUBSETS OF CONVEX-NMF FEATURES ACCORDING TO t-TEST

RANKING SELECTION

Nº Features LDA Log Regression SVM KNN

1 0.70 0.70 0.62 0.68

2 0.82 0.82 0.73 0.80

3 0.81 0.81 0.82 0.84

4 0.84 0.85 0.85 0.89

5 0.84 0.85 0.88 0.89

6 0.86 0.86 0.89 0.90

7 0.90 0.90 0.94 0.95

8 0.90 0.90 0.94 0.95

9 0.91 0.91 0.95 0.96

10 0.92 0.93 0.95 0.97

11 0.92 0.93 0.96 0.97

12 0.93 0.94 0.96 0.98

13 0.94 0.95 0.97 0.98

14 0.94 0.95 0.98 0.98

15 0.94 0.95 0.98 0.98

16 0.94 0.95 0.98 0.98

17 0.94 0.95 0.99 0.98

18 0.94 0.95 0.99 0.99

19 0.95 0.95 0.99 0.99

20 0.94 0.95 0.99 0.98

classifiers varied in a noticeable manner with the increase of
the number of included features. The performance of linear
methods such as LDA and Logistic regression deteriorates
when the number of features increases beyond 10-15. On the
other hand, the non-linear ones, SVM and KNN, improve their
solution until reaching a maximum AUC value of 0.94.

In the MRSI analysis, all classifiers improve as the number
of sources in the subset increases, with performance stalling
at ca. 12 sources, even if the peak of performance is reached
when employing 19 sources (0.95 AUC in linear classifiers
and 0.99 in non-linear ones).

These preliminary results clearly indicate that we can dis-



criminate the classes with great accuracy. In the second ex-
perimental stage, we investigated the multivariate embedded-
wrapper feature selection approach, in which the ultimate
target is finding the most parsimonious selection of features
retaining an optimal discrimination accuracy between control
and treated cases. For the sake of brevity, only the leave-one-
out results of the best performing models are presented. Fea-
ture selection was performed with KNN, Logistic Regression
and SVM with polynomic kernel.

For the MRI radiomics data, KNN results were compara-
tively poor and are not presented here. Both Logistic Regres-
sion and SVM achieved 96.67% accuracy. Importantly, these
results were obtained in the SVM for a polynomial of degree
one, that is, a linear model. Logistic Regression with em-
bedded feature selection retained a 96.67% accuracy (0.9729
AUC) with 9 features, namely Perimeter10, Euler1, Euler16,
GLRLMSRE, GLRLMRLN, GLRLMSRHGE, GLRLMRLV,
GLSZMSZLGE and GLSZMLZHGE and a 93.33% (0.9593
AUC) with just 7 of them: Perimeter10, Euler1, GLRLM-
SRE, GLRLMRLN, GLRLMSRHGE, GLRLMRLV, GLSZM-
LZHGE. Similar results (96.67% accuracy, 0.9683 AUC) were
obtained with an alternative selection of 9: Area16, Perime-
ter10, Euler1, GLCMEnergy, GLRLMSRE, GLRLMSRHGE,
GLRLMRLV, GLSZMSZLGE, GLSZMLZHGE, and 7 of
them (93.33% accuracy, 0.9502 AUC): Perimeter10, Euler1,
GLCMEnergy, GLRLMSRE, GLRLMSRHGE, GLRLMRLV,
GLSZMLZHGE. In comparison, the performance of the linear
SVM deteriorates quickly when removing features.

In a second-level process, wrapper feature selection was
used to further reduce the dataset dimensionality, retaining the
96.67% accuracy (0.9638 AUC) with two subsets of features of
size 6: Euler16, GLRLMRLN, GLRLMSRHGE, GLRLMRLV,
GLSZMSZLGE, GLSZMLZHGE, or even only 5 (0.9638
AUC): Euler1, GLRLMSRE, GLRLMSRHGE, GLRLMRLV,
GLSZMLZHGE. This hints to the existence of a resilient core
of just 3 features: GLRLMSRHGE, GLRLMRLV, GLSZM-
LZHGE. Note that a 96.67% accuracy means that a single
mouse has been misclassified. It happens to be always the
same one: case C529, which the models consistently predict
to be TMZ-treated when, in fact, it happens to be a control.

For the MRSI sources extracted with Convex-NMF, the
first experiments hinted that non-linear classifiers performed
better than linear ones. KNN, Logistic Regression, SVM with
polynomic and Gaussian kernels were used. Given the data
availability, 10-fold cross-validation was used this time. The
SVMs clearly outperformed the other methods and only their
results are presented. A polynomial SVM of 4th degree and a
Gaussian SVM both achieved a 97.72% accuracy (with AUC
values of 0.9966 and 0.9943, respectively). A wrapper feature
selection then increases the accuracy to 98.09% (0.9972
AUC) with 14 sources (shown in Fig. 7) using the polynomial
kernel, and 98.10% (0.9973 AUC) with 17 sources using the
Gaussian.

Fig. 7. Convex-NMF sources selected by RFE. Y axes: arbitrary units; X
frequency axes: (parts per million, or ppm). Text inside plots, Lac: lactate,
PUFA: Polyunsaturated Fatty Acids of some of the sources shown. In source
4, an expansion of the 4.1-2.8 ppm zone is shown for a better observation of
the highlighted metabolites. See Discussion for more details

B. Discussion

Radiomics study



The study of tissue morphology is used in oncology to
detect the presence of disease and also to follow treatment.
The qualitative neuroimaging analysis is usually hampered
by a lack of reproducible and objective measures, although
approaches such as the VASARI features have been attempted
[22]. In this sense, quantitative assessment of tissue morphol-
ogy in an automated pipeline could be of great interest. MRI-
based studies using radiomics are currently found to predict
survival/progression, or follow response to therapy [6], [12],
[23], [24].

Malignant brain tumours usually have an heterogeneous
appearance in MRI, due to presence of necrosis and/or
haemorraghic foci. Moreover, the architecture of the tissue
can change upon treatment [28], [29]; at the histopathological
level, transient response to TMZ, detected in our preclinical
GB model under different protocols, leads to the appearance
of giant cells, decrease of the proliferative rate and increase of
acellular spaces [4]. Altogether, this may have a clear impact
on MRI and its associated features.

Amongst the Radiomics features consistently selected
for distinguishing treated from control tumours, we found
GLRLM and GLSZM. The former indicates the coarseness
of a texture, while the latter quantifies gray level zones in
an image (the number of connected voxels sharing the same
gray level intensity). Both measure, to a certain extent, aspects
of tissue homogeneity, which may change upon therapy (Fig.
8). Moreover, changes in tumour properties such as ischemia,
angioedema and avascular necrosis, might be more obvious
on T2w MRI, reinforcing the potential of this approach
alone for a radiomics-based therapy response analysis. On
the other hand, Minkowski functions have been described as
useful in analyzing heterogeneity of peritumoral hyperintensity
of glioblastoma, demostrating prognostic value in predicting
survival [25].

Fig. 8. Examples of control (left, mouse C583) and treated, transiently
responding to TMZ according to histopathological parameters (right, mouse
C574) murine GL261 GB tumours. Note the appearance of hypointense zones
(red circles) in T2w MRI from the treated mouse, noticeably different from
the more homogeneous appearance observed in the control case.

Recent results [5] suggest that treated GL261 tumours
responding to TMZ treatment present significantly higher
immune system elements within the tumour region. The local
effects of these cells against the GB mass, may also cause local
changes that could be spotted by MRI. This is supported by
results described by others [26], in which radiomics features

such as GLRLM correlate with histopathological features
such as Ki67 in high grade glioma. Recent work [27] also
described the value of GLRLM and GLSZM for evaluating
response to therapy in GB, being able to distinguish pseu-
doprogression from true progression. Regarding case C529,
consistently misclassified in our radiomics-based approach, its
histopathological data suggest a slowly proliferating tumour
with an apoptotic rate more similar to the average in treated
cases [3]. This could partially explain the misclassification for
this case, because such parameters have an impact in local
tissue characteristics and, accordingly, in MRI.

One of the challenges still hampering proper comparison
between different radiomic-based studies is the lack of stan-
dardization [30]. Due to the well known contrast-enhancement
characteristics of GB tumours, some authors emphasize the
potential of contrast-based imaging modalities [24], but since
contrast agents are not recommended for some patients (e.g.
with kidney diseases), a reliable method based on T2w MRI
would be of great interest for its translational potential.

MRSI study

MRSI analysis was centered in the tumour zone. Ac-
cordingly, the sources in Fig. 7 show basically the GL261
GB characteristic spectral pattern, such as high choline-to-
creatine ratio, low N-acetyl containing compounds signal and
high mobile lipids content (see [3] and [4]). Most of the
extracted sources had good spectral quality, except by some
borderline homogeneity (sources 2 and 5) and signal-to-noise
ratio (source 15). This could be either due the presence
of local haemorrhage or presence of large acellular spaces,
not unexpected in this type of tumours, even more upon
TMZ treatment. Sources shown in figure 7 represent the
features mostly explaining differences between control and
treated tumours. We have previously described [3] that TMZ-
treated/responding cases presented differential spectral fea-
tures with respect to control cases, especially polyunsaturated
fatty acids (PUFA) at 2.8 ppm. Further differences were seen in
lactate (Lac) at 1.3 and 4.1 ppm, mobile lipids (ML) at 0.9 ppm
and myo-inositol/glycine (mI-Gly) at 3.55 ppm. The presence
of PUFA is expected in treated-responding cases, indicating
therapy-related metabolic changes such as apoptosis induced
by treatment, as already described elsewhere [31]. Sources
4, 7 and 11 show noticeable signals compatible with PUFA.
Sources 7 and 11 also show prominent signal from Lac at 4.1
ppm, clearly lower in sources 3 and 6. Since the approach
and the number of sources extracted is different from the ones
described in [3], direct comparison is not straightforward, but
essentially sources 4 and 7 have an overall spectral pattern
compatible with responding tumours such as described by
Delgado et al [3]; this agrees with the transient response
expected to take place with this preclinical model under such
therapeutic approaches. On the other hand, sources 3 and
20 show mostly features compatible with control/untreated
tumours.



IV. CONCLUSIONS

The accuracy achieved with the 6 to 9 radiomics features,
based only in T2w MRI was comparable with the accuracy
obtained with MRSI using 14 to 17 sources. Features extracted
from T2w MRI are probably reflecting substantial changes
in GB tumour tissue structure upon treatment (changes in
perfusion, apoptosis, cell death, acellular spaces, presence
of immune system elements). This radiomics-based approach
could bear a great potential either in preclinical and for
translational clinical studies, since T2w MRI can be acquired
at any available clinical scanner, is a fast acquisition (part of
the pipeline of patients during treatment) and does not require
any contrast administration. MRSI acquisitions are not widely
implemented in all clinical centers/scanners and still need
a consistent biochemical knowledge or sophisticated pattern
recognition approaches in order to interpret output. The com-
bination of data transformations and feature selection coupled
with ML-based classification has allowed a first approximation
to the characterization of the differences between treated and
untreated cases, thus opening the doors of interpretability
mediated by radiology experts in a problem that would have
been almost untractable from direct data inspection.
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