Charting Perceptual Spaces with Fuzzy Rules

Ivén Paz
Soft Computing research group at Intelligent Data Science
and Artificial Intelligence Research Center
Universitat Politéecnica de Catalunya-BarcelonaTech
Barcelona, Spain
ivanpaz @cs.upc.edu

Enrique Romero
Soft Computing research group at Intelligent Data Science
and Artificial Intelligence Research Center
Universitat Politécnica de Catalunya-BarcelonaTech
Barcelona, Spain
eromero@cs.upc.edu

Abstract—Algorithmic music nowadays performs domain spe-
cific tasks for which classical algorithms do not offer optimal
solutions or require user’s expertise. Among these tasks is the
extraction of models from data that offer an understanding of the
underlying behavior, providing a quick and easy to use way to
explore the data for first (sometimes on-the-fly) insights. Learning
rules from examples is an approach often used to achieve this
goal. However, together with the aforementioned requirements
algorithmic composition needs to create new material so that it is
perceived as consistent with the material of the data. In addition,
the input data sets are usually small because the human is the
bottleneck when generating them. In this contribution we present
a fuzzy rule induction algorithm focused on generalizing a set
of data, complying with the previous requirements, that offers
good results for small data sets. For its evaluation -in a field
where there are no benchmarks available - data sets obtained
during user tests were used. The visual representation offered
by the fuzzy chart helps to reduce the cognitive complexity of
the devices used in algorithmic music. The results obtained show
that this approach is promising for future developments.

Index Terms—fuzzy rules, algorithmic music, perceptual
spaces, classification, parametric devices

I. INTRODUCTION

Algorithmic composition experienced a rebirth from the
moment when laptops were powerful enough to run programs
that allow changing them as they run [1], [2]. Accompanying
this process, new needs inherent of the application domain
arose. For example, in sound design (crafting sound with
specific characteristics using tools such as synthesizers, audio
processors, generative algorithms, etc.) interpretable models
that show the relationships between devices’ parameter values
and the produced sound are required [3]. In live coding
(live interaction with code to produce music or visuals [4])
quick and easy to use ways to explore data (produced by
algorithms) for first insights are required. Although learning
rules from examples is an approach often used to create

This research was supported by the National Council of Science and
Technology of Mexico (CONACyT) 240514, and project TIN2016-79576-R.

978-1-5386-1728-1/19/$31.00 ©2019 IEEE

Angela Nebot
Soft Computing research group at Intelligent Data Science
and Artificial Intelligence Research Center
Universitat Politéecnica de Catalunya-BarcelonaTech
Barcelona, Spain
angela@cs.upc.edu

Francisco Mugica
Soft Computing research group at Intelligent Data Science
and Artificial Intelligence Research Center
Universitat Politécnica de Catalunya-BarcelonaTech
Barcelona, Spain
fmugica@cs.upc.edu

interpretable models, it has not been used whitin these con-
texts. This is due to the fact that many algorithms require
user’s expertise, or produce poor results for small datasets
(for example approaches to extract fuzzy rules from clusters
[5]). Other complicated structures offer greater flexibility but
are often computationally expensive [6], [7]. Algorithms that
offer good results for small data depend on the order of the
input variables, and require prior knowledge of the explored
system to give optimal results [8], [9]. On the other hand, rule
learning algorithms have been little explored lately, in part
by the focus on results offered by algorithms such as neural
networks [10], which nevertheless produce good results, are
not very interpretable.

In this contribution we present an algorithm that extracts
fuzzy rules by working on the top of the rule learning
algorithm [11] “RuLer” (Section II-A). It extracts interpretable
models from data that generalize the input and cover the whole
input space (unlike the RuLer), also offering good results
for small data sets. The algorithm works on combinations of
parameters that, when applied to a device, produce an output
to which a perceptual label is associated. Thus, the result
can be seen as a chart of the perceptual space. To evaluate
the model, user tests were carried out since there are no
benchmarks available. This is not a lack of data but rather a
restriction inherent to the field. For example, in sound design
parameter devices are tweaked while searching for interesting
sounds. As discussed in [3], a problem when creating sound
is the diversity of objectives: “How does one codify what is
beautiful, good, or suitable (for the context)? Maybe some
ugly music is wanted to provide contrast, and at another time
something beautiful (whatever that means).”

The rest of the paper is structured as follows: Section II
presents the algorithm, Section III presents the user tests, and
Section IV discusses the results and present the conclusions
together with some possible paths for further research.

II. ALGORITHM

The algorithm presented here extracts fuzzy rules from
logical if-then rules obtained by the ‘“RuLer” rule learning
algorithm [11]. A brief description of “RuLer” is presented
in Section II-A. Starting from the rules derived from this
algorithm, in this investigation we extend these linguistic rules
in fuzzy rules by means of the conformation of the cores and
the supports of said rules. It first learns the cores of the fuzzy
rules from the input, and then adjusts their supports. These
processes are explained in Sections II-B1 and II-B2.

A. Rule Learning Algorithm “RuLer”

The rule learning algorithm “RuLer” extracts logical if-then
rules from data. Each input datum is a combination of values
that, when applied to the parameters of a particular device,
produce sound selected by the user for a specific musical
context. A linguistic label that describes the characteristics of
the sound (e.g. calm, harsh) or the musical context in which
the combination is used (e.g. intro, break), is assigned to each
combination. The algorithm works as follows:

1) The algorithm represents each categorized parameter
combination as an array of size N. The first NV —1 entries
contain the set of possible values of the corresponding
parameter, and the last entry contains the category
(or class) assigned to the combination. Each datum is
considered a single rule. For example, a rule r = [{3},
{5}, intro] is a single rule. A rule r = [{1,2,3}, {7}, . .
., {3}, intro] sould be interpreted as r[1] = 1 OR 2 OR
3,1[2] =7, ..., label = intro. The algorithm iteratively
searches for patterns among the rules. It iterates until
no new rules are created. This is done in the following
way:

a) Take the first rule of the rule set.

b) Compare the selected rule with the other rules
using the dissimilarity function (Section II-Al). If
a pattern is found, i.e the dissimilarity between
the two rules is less or equal that a threshod
established by the coder, create a new rule using
the create_rule function (Section II-A2).

¢) Eliminate the redundant rules from the current set.
A rule rq is redundant with respect to a rule ro (of
the same class) if Vi € {0, . . . N-1}, m[i] is a
subset of r3[i]. Note that this eliminates those rules
from which the new rules were created.

2) Add the created rules at the end of the rule set.
3) It solves the contradictions following a maximum vol-
ume heuristic.

1) dissimilarity Function: The disimilarity function re-
ceives two rules (ri,r2) together with a threshold d € N
and returns True in case the rules have the same category and
dissimilarity(r1,72) < d. It returns False otherwhise.

The dissimilarity function used counts the number of empty
intersections between the corresponding entries in the rules.

For example, if r1 = [{1}, {3,5}, intro] and ro = [{1,3},

{7,11}, intro], dissimilarity(ri,r2) = 1.

2) create_rule Function: This function verifies that no
contradictions (i.e rules with the same parameter values but
different label) are created during the generalization process.
It also allows the user to control the generalization level by
defining a percentage of the cases contained in any created
rule that should be present in the original data. The function
receives two rules and creates a new rule if both conditions
are met. The function used creates a new rule by taking the
unions of the corresponding sets of the rules received.

3) Domain Specific Functions: Note that the dissimilarity
and create_rule finctions can be changed according to the
compared objects and the desired generalization. For example,
for harmonic objects, we probably want to use a dissimilarity
that looks at the harmonic content. For rhythms, temporal
factors need to be addressed. See for example [12] for a
comparison of rhythmic similarity measures. However, the
dissimilarity presented in Section II-A1 works well for the
objects considered in the performed experiment (Section III).

B. Fuzzy Rules

From the logical rules, the cores and supports of the fuzzy
rules are determined by means of the Building cores and
Building supports functions, respectively, that are explained
below.

1) Building cores: The cores of the fuzzy rules are build
by extending the sets contained at the entries of the rules
to intervals between its respective maximum and minumim
values. For example the rule r; = [{1}, {3,5}, intro] wold be
r1 = [[1], [3, 5], intro], and will include all the values in the
intervals [1] (only one value) and [3,5].

In order to do this, it is necessary to solve the contradictions
produced by the possible intersections between intervals that
can be created as a result of this process. To solve the
contradictions, the algorithm identifies the groups of rules that
intersect. Two rules r; and r, intersect if for all ¢ there exists
x in ri[i] such that y; < x < yo with y1, yo € rofi]. If
two rules with different class intersect, it is enough to “break”
one parameter to solve the contradiction. For example, the
contradiction between the rules (see Fig. 1):

r1 = [{1,5},{2,4}, calm)

and
ro = [{2}, {3}, harsh]

can be solved either as (see Fig. 2 top):
r1a = [{1}, {2, 4}, calm)
ro = [{2}, {3}, harsh]

r1p = [{5}, {2, 4}, calm)]

or as (see Fig. 2 bottom):
ria = [{1,5}, {2}, calm)]
ro = [{2}, {13}, harsh]

r1p = [{1,5}, {4}, calm)]

Interval rules

PARAMETER 2

PARAMETER 1

Fig. 1. Rule [{2}, {3}, harsh] intersects rule [{1,5}, {2,4}, calm].

To select the partition, the volume of each set of rules is
calculated and the one with maximum volume is selected.

Volume of a Rule Set: The volume of a single rule has
two components: Volume (V) and dimension, defined as in
Equation 1.

N-1
V= V;, where V; = |max; — min,|
; (D

dimension = Number of V; for which Vi # 0.

In Equation (1), for each entrance ¢ in the rules, the absolute
value between the maximum an minimum values of the set
is calculated. For example, if some ¢ has {11,13,15}, V; = 4,
that is |15 — 11]. If it has {3} V; = 0. The volume of a set
of rules collects the volumes of the individual rules adding
those who have the same dimension. It is expressed as an
array containing the volume for each dimension. See Table I
for an example. When two volumes are compared the greatest
dimension wins. For example (Volume = 1, dimension 2) >
(Volume = 4, dimension 1). In the same way (Volume = 1,
dimension 3) > (Volume = 100, dimension 2; Volume = 100,
dimension 1).

Partition 1

PARAMETER 2

T T
2 3

PARAMETER 1

Partition 2

PARAMETER 2

T T
2 3

PARAMETER 1

Fig. 2. Two possible ways of solving the contradiction that appears in Fig.

TABLE I

EXAMPLE OF VOLUME AND DIMENSION FOR A SET OF RULES

Rules and Parameter values and category

Volumes | parameter 1 | parameter 2 category
rule 71 {1,3} {2} calm

Volume 71 Vi=2 Vo =0 Volume 2, dimension 1
rule 7 {5} {1,3} harsh

Volume 2o V1=0 Vo =2 Volume 2, dimension 1
rule 73 {5,7} {5.7} calm

Volume 73 V=2 Vo =2 Volume 4, dimension 2

Global volume: volume 4, dimension 2; volume 4, dimension 1

2Note that rules with different categories contribute to the global volume.

2) Building supports: To build the supports of the fuzzy
rules, trapezoidal membership functions are used. Consider
the trapezoidal membership function of Equation (2) drawn in
Figure 3.

1
Nk,i(pi) = i[mal‘(oal - max(077 * mzn(l,pz - wk,i)))

+max(0,1 —max(0,y * min(1l,ve,; — pi)))]
2

In this function the index k represents the rule number and
the index 7 counts the parameters. The values vy ; and wy ;
are, respectively, the minimum and maximum values of the k*"
rule 5" parameter. The parameter -y controls the “slope” of the
trapezoid. Then, for each rule rg, a trapezoidal membership

— Y e — Y e

Fig. 3. Membership function for the classifier. The values vy, ; and wy ; are,
respectively, the minimum and maximum values of parameter ¢ in rule k. The
parameter -y controls the “slopes”.

function is assigned to each parameter p; in the following way:

1) If the parameter contains an interval, let us say [a — b],
then vy ; = a and wy,; = b. The trapezoidal membership
function has maximum membership values between the
extremes of the interval.

2) If the parameter contains a single value, then vy ; =
wy, ;. Thus, we obtain a triangular membership function
centered at that value.

C. Fuzzy Classifier

To test the extracted models a fuzzy classifier was built.
For that purpose, all features are scaled into [0, 1]. To classify
a new parameter combination proceed as follows: Let P be
the combination sent to the classifier. P is a combination of
p; parameter values. Then, for each rule ry, it calculates the
membership values py, ;(p;) for each parameter p;. The firing
strength 7 (P), defined in [13], of a rule ry, which measures
the degree to which the rule matches the input parameters, is
defined as the minimum of all the membership values obtained
for the parameters (see Equation (3)), i.e:

Te(P) = min { pxi(p:) } 3)

Once the firing strength has been calculated for all rules, the
assigned class (i.e. category; Equation (4)) will be equal to the
class of the rule with maximum firing strength.

Class(P) = Class of R, where C = argmaz {1,,(P)} (4)
k

An example of the classification process for a hypothetical
system with only two rules and two parameters is shown in
Figure 4. The parameter combination P = (p1,p2) is sent to
the classifer. To classify this combination, for each rule, the
degree of membership of each p; given by the i*” membership
function of the rule is calculated and the minimum of these
values is taken. Then, a set containing the minimum value of
each rule is formed. Finally, the output of the system is the
class associated with the rule corresponding to the maximum
value of that set. If more than one rule has the same firing
strength, a random decision is taken.

III. MODEL EVALUATION

As mentioned in section I, there are no benchmarks avail-
able in this field, since the parameter combinations that codify
what is beautiful, good, or suitable depend on the specific
context. Therefore, to evaluate the extracted models the data
generated during the user test described in [14], was used. It
is available at [15]. The device explored was a single band
impulse oscillator. In the data collection, 10 students of the
Real Time Interaction class of the Master’s Degree in Sound
and Music Computing of the Pompeu Fabra University (winter
term of 2016-2017) were involved.

Single Band Limited Impulse Oscillator: The single band
limited impulse oscillator “Blip”, produces a fundamental
frequency to which a certain number of upper harmonics, all
with equal amplitude, are added [16]. It is available as a unit
generator (UGen) in the SuperCollider programing language.
It has three parameters: freg, the fundamental frequency;
numharm which controls the number of upper harmonics
added; and amp, the output’s amplitude. The parameters can
range in the following way: the fundamental frequency can
take values between OHz and 20KHz which is the upper audi-
ble limit. The number of added harmonics range from 0, which
leads to a pure tone frequency of the chosen fundamental, to
any (theoretical) number of harmonics. However, considering
the aliasing processes, this number is limited by the sample
rate and the chosen fundamental frequency. Finally, the signal
amplitude is normalized between 0 and 1.

Configuration for the Experiments: For the experiments
the values were restricted within the following ranges. The
frequency took values in the interval [0Hz,400Hz|, the
number of upper harmonics in [0, 100], and the amplitude in
[0, 1]. This is a bounded space where the perceptual properties
(described next) are clearly expressed. Although this is a
simple generator, the different aural possibilities produced by
its parameter combinations clearly define distinct perceptual
subspaces. For the experiment, three perceptual properties
were used. These are outputs perceived as rhythmic, rough,

Classification of a hypothetical P=(P1,P2) by two rules.

Antecedent 1 Antecedent 2 Consequent
2 i
Rule1: IF ¢ AND b THEN Class i
- EEE R e a NIy
= 1
: min(ab)=a Quiput
max(ad)=a Class i
C
P | min(cd)=d
Rule2: IF £ AND f THEN Classj
3V R S d
o i

Fig. 4. Example of the classification process for a system of two rules with two parameters p; and p2. A new combination P = (p1,p2) is sent to the
classifier. For the first rule u(p1) = a and p(p2) = b. The minimum of these values is a. In the case of the second rule p(p1) = ¢, u(p2) = d and
min(c,d) = d. Finally, the max(a,d) = a and therefore the class assigned to the instance is Class 4, which is the class associated with the first rule.

and pure-tone. For further reference of the Blip generator, the
reader is referred to [17].

Perception Limits of the Perceptual Properties: Generally
speaking, outputs perceived as rhythmic are characterized by
low fundamental frequencies (less than 20Hz). The number
of upper harmonics controls the pitch of the produced pulse
(or beat). A low number of harmonics produce constant beats
with low pitch, while a higher number of upper harmonics
produce the same constant beating, but with higher pitch.
Outputs perceived as rough have fundamental frequency values
between 15 and 35 Hz. The number of upper harmonics plays
a similar role as in the case of rhythmic outputs.

Finally, outputs perceived as pure-tones are produced by
any frequency greater that 20Hz without upper harmonics.
However, combinations of low-mid to high frequencies (e.g
greater than 80Hz) with medium to high number of upper
harmonics (for example, between 40 and 50) can sometimes be
perceived as pure-tones. This phenomenon is accentuated due
to the effects of comparison on the perception. For example,
when hearing something highly rough and afterwards hearing
a slightly rough combination, the latter can be perceived more
like a pure tone. Also, it is worth saying that the regions
described are not crisp, and the perception may vary from one
user to another, as well as with the just mentioned perception
by comparison effect. A graph with the collected data is shown
in Fig. 5

A. Results

To evaluate the model the extracted rules were compared
with the perception windows defined in [17] for the perceptual
characteristics used in the experiments. Then, a fuzzy classifier
using the data for each user was build, and a 10-fold cross-
validation test performed. These results are shown in Sections
II-A1 and III-A2, respectively.

1000

750 [+
.

Category

+ puretone

a
=}
3
.
.
+

. * rough

Harmonics
.
.
.

B>
¥

A rythmic

>

o
'd
+

250

o
.
.

N
[
.
+

io

o

250 500 750 1000
Frequency

Fig. 5. Data captured during the user tests for the Blip. The x coordinate
represent the frequency and the y the number of upper harmonic added.

1) Extracted Rules: Examples of the extracted rules, for the
different categories, are shown in Table II. Looking at the rules
in Table 1II, it can be seen that its parameter values match the
expected perceptual windows defined in [17] for each category.
The second rule, shows that some users still perceived the
output as rough for higher frequencies. It can be interpreted
as follows: as long as the number of upper harmonics remain
low (3.7), the fundamental frequency can be either 30 or 54
for the combination to be perceibed as rough. This is still
acceptable if we consider the effect of the upper harmonics.

If we look at the first rule considering the interval [15.8,
18.15], the possible combinations of the values within this

TABLE II
EXAMPLES OF THE EXTRACTED RULES. THE FIRST THREE ARE RULES
EXTRACTED USING d = 1. IT CAN BE SEEN THAT THE PARAMETER RANGES
MATCH THE EXPECTED PERCEPTUAL INTERVALS. THE LAST TWO RULES
WERE EXTRACTED WITH d = 2. IT CAN BE SEEN THAT THE NEW
COMBINATIONS ARE STILL WITHIN THE EXPECTED RANGES

Number
of
harmonics
15.8 OR 18.15 3.7
30 OR 54 3.7
94 OR 154 OR 188 | 0.37
15.8 OR 18.15 3.7 OR
59 OR
34 OR
28.4
3.7 OR
20 OR
28.4 OR
6.36

Category Frequency Amplitude

Rhythmic d = 1
Rough d = 1
Pure-Tone d = 1
Rhythmic d =2

0.25
0.25
0.25
0.25

Rough d =2 30 OR 54 0.25

interval and the rest of the parameters remain within the
perceptual window for the category. In this way, the extracted
rules are an interpretable model of the relationships between
the parameter values and the categories.

2) Fuzzy Classifier: Table III contains the results of a 10-
fold cross-validation for different classifiers using the data
collected during the experiments. The configuration for each
classifier is shown in the third column. The fuzzy classifier

TABLE III
RESULTS OF A 10-FOLD CROSS-VALIDATION FOR DIFFERENT CLASSIFIERS
USING THE DATA COLLECTED DURING THE EXPERIMENTS. FOR EACH
CLASSIFIER ITS CONFIGURATION IS SHOWN

Accuracy Algorithm Configuration
93.714286 SVM_Gaussian (g=0.00000100 C=1000.0)
92.714286 RandomForest (NTrees=500)
89.785714 k-NearestNeighbour (k=1)

89.738095 | RuLer fuzzy classifier | d = 1, ratio = 1, gamma = 1
87.809524 SVM_Lineal (C=10.0)
86.000000 SVM_Poly2 (g=0.001 C=1.0)
80.571429 NaiveBayes (nb=50)

built on the top of the RuLer is located just below the k-
Nearest Neighbor (configured with k = 1) and on the SVM
with the Linear kernel (C = 10). These results are promising
considering that for these tests the same gamma was used
for all the trapezoidal functions. At this moment modules to
calculate independent gammas as well as different forms of
aggregation for the results of the triggered rules are being
implemented. However, the result is good if we consider that
the extracted rules can be easily read as shown above III-Al.

IV. CONCLUSIONS

In this contribution, a fuzzy rules extraction algorithm that
works on top of the logic rules extraction algorithm “RuLer”
(described in Section II-A) is presented. The algorithm allows
to extend the validity of the if-then rules extracted by the
RuLer. For this, it solves the contradictions that can emerge
when the if-then rules are extended and pass from describing

points in space to describing intervals. The result forms the
cores of the trapezoidal functions to which the supports are
added. The results inherit the interpretability of the original
rules, and allow to build a chart that offers a quick inside of the
distribution of the classes in the parameter space. The acuracy
of the fuzzy classifier built for model validation, with user
test data, gives promising results. Although the accuracy can
be improved, possible places to adjust it are the aggregation
of triggered rules and adding a variable gamma. However, the
interpretability of the resulting rules offers an extra feature
to consider the algorithm for computer music practice and
research.

REFERENCES

[11 A. McLean, & R. T. Dean, (Eds.). “The Oxford Handbook of Algorith-
mic Music.” Oxford University Press. 2018.

[2] J. Rohrhuber, & A. De Campo, “Improvising Formalisation: Conversa-
tional Programming and Live Coding.” New Computational Paradigms
for Computer Music. Delatour France/Ircam-Centre Pompidou. 2009.

[3] P. Dahlstedt, “Thoughts on creative evolution: A meta-generative ap-
proach to composition.” Contemporary Music Review, 28(1), 43-55.
20009.

[4] N. Collins, A. McLean, J. Rohrhuber, & A. Ward “Live coding in laptop
performance.” Organised sound, 8(3), 321-330. 2003.

[5] F. Klawonn, A. Keller “Fuzzy clustering and fuzzy rules”, in: Proceed-
ings of the 7th International Fuzzy Systems Association World Congress
(IFSA’97), vol. 1, Academia, Prague, 1997, pp. 193-198.

[6] B. Geva, “Hierarchical unsupervised fuzzy clustering”, IEEE Transac-
tions on Fuzzy Systems 7 (6) (1999) 723-733

[71 A. Shigeo, T. Ruck, “A fuzzy classifier with ellipsoidal regions”, IEEE
Transactions on Fuzzy Systems 5 (3) (1997) 358-368.

[8] F. Castro, A. Nebot, & F. Mugica “On the extraction of decision support
rules from fuzzy predictive models.” Applied Soft Computing, 11(4),
3463-3475. 2011.

[9] R. Berthold, “Mixed fuzzy rule formation.” International journal of
approximate reasoning, 32, 67-84. 2003.

[10] J. Engel, C. Resnick, A. Roberts, S. Dieleman, D. Eck, K. Simonyan,
& M. Norouzi, “Neural audio synthesis of musical notes with wavenet
autoencoders.” arXiv preprint arXiv:1704.01279. 2017.

1. Paz, A. Nebot, F. Mugica & E. Romero. “Generalizing successful
parameter combinations: directed sound design for algorithmic music”
Unpublished.

G. T. Toussaint, G. T. “A Comparison of Rhythmic Similarity Measures.”
In ISMIR.” 2004.

L. Kuncheva, “Fuzzy classifier design” (Vol. 49). Springer Science &
Business Media. 2000.

I. Paz, A. Nebot, F. Mugica, & E. Romero.“Modeling perceptual
categories of parametric musical systems.” Pattern Recognition Letters,
105, 217-225. 2018

Git Repository https://github.com/ivan-paz/in-construction accessed Jan-
uary 2019.

(11]

[12]
[13]

[14]

[15]

(16]
accessed January 2019.

C. Roads, “Sound composition with pulsars.” Journal of the Audio
Engineering Society, 49(3), 134-147. 2001.

(17]

Blip http://danielnouri.org/docs/SuperColliderHelp/UGens/Oscillators/Blip.html

