
Pattern Recognition Letters 105 (2018) 217–225

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Modeling perceptual categories of parametric musical systems

Iván Paz, Àngela Nebot ∗, Francisco Mugica, Enrique Romero

Computer Science Department BarcelonaTech, C/ Jordi Girona 1-3. Omega 005, Barcelona 08034, Spain

a r t i c l e i n f o

Article history:

Available online 11 July 2017

MSC:

41A05

41A10

65D05

65D17

Keywords:

Musical system

Modeling

Classification

Rule base system

a b s t r a c t

In computer music fields, such as algorithmic composition and live coding, the aural exploration of pa-

rameter combinations is the process through which systems’ capabilities are learned and the material for

different musical tasks is selected and classified. Despite its importance, few models of this process have

been proposed. Here, a rule extraction algorithm is presented. It works with data obtained during a user

auditory exploration of parameters, in which specific perceptual categories are searched. The extracted

rules express complex, but general relationships, among parameter values and categories. Its formation is

controlled by functions that govern the data grouping. These are given by the user through heuristic con-

siderations. The rules are used to build two more general models: a set of “extended or Inference Rules”

and a fuzzy classifier which allow the user to infer unheard combinations of parameters consistent with

the preselected categories from the extended rules and between the limits of the explored parameter

space, respectively. To evaluate the models, user tests were performed. The constructed models allow to

reduce complexity in operating the systems, by providing a set of “presets” for different categories, and

extend compositional capacities through the inferred combinations, alongside a structured representation

of the information.

© 2017 Elsevier B.V. All rights reserved.

1

m

m

h

l

o

E

e

g

p

a

l

e

v

o

t

l

r

t

a

t

s

r

h

v

[

a

i

m

t

o

p

h

s

p

o

t

l

[

t

d

h

0

. Introduction

Computer music is the application of computer technology in

usic composition [10] , either to program computers that create

usic automatically, like algorithmic composition [20] , or to help

uman composers to program music in real time, as is the case in

ive coding [6,16,28] . In these activities, parametric systems capable

f generating different types of musical material are used [2,25] .

xamples of parametric musical systems include sound synthesiz-

rs and signal processors, as well as melodic or rhythmic sequence

enerators. To develop a clearer idea of the wide range of possible

arametrical musical systems, and therefore motivate the need for

 methodology that creates a structured model of their capabilities,

et us consider a couple of examples: In the first one, McCormack

t al. [18] discuss the granular synthesis system “Chaos-Synth”, de-

eloped by Miranda [19] for wind instruments. It consists of a bank

f oscillators, whose individual frequencies and durations are con-

rolled by the arithmetic mean of groups of cells taken from a cel-

ular automata. In this case, the granular synthesis engine is pa-

ameterized by the cell states. The control parameters of the sys-

em, once the set of rules for the automata is written, are the cells,

nd the parameter space is the set of initial conditions with which
∗ Corresponding author.

E-mail addresses: ivanpaz@cs.upc.edu (I. Paz), angela@cs.upc.edu (À. Nebot).

u

p

a

ttp://dx.doi.org/10.1016/j.patrec.2017.07.005

167-8655/© 2017 Elsevier B.V. All rights reserved.
he automata can be initialized. As a second example, consider a

imple synthesis system based on two oscillators controlled by di-

ectly changing the values of their parameters. Suppose the system

as two parameters: frequency 1 and frequency 2 both in Hz, with

alues ranging from a to b . In this case the system has an [a, b] x

 a, b] space of possibilities, controlled by parameters frequency 1

nd frequency 2. Even though these constructions can be framed

n general structures (e.g, in additive or granular synthesis), they

ay have small changes or particular characteristics that modify

heir response. For example, they could have a different number

f oscillators or envelope types, as well as different ranges in their

arameters. Therefore, although there is a general idea of the be-

avior of the different architectures, it is necessary to test a new

ystem to explore its possibilities.

By changing their parameters, the musician interacts with the

arametric musical systems. Therefore, in all cases, the exploration

f the different combinations of parameter values is the process

hrough which the system’s capabilities are learned, and the se-

ection and classification of the musical material is performed. In

11] the commercial and cultural roles that specific parameter set-

ings (called “presets”) have had when they become sound “stan-

ards” is analyzed. Examples of presets include the classic config-

rations of an equalizer labeled as “Funk, Rock or Classical”, digital

lug-ins that mimic iconic instruments and new programs for the

utomatic audio mastering of a song depending on its genre. In a

http://dx.doi.org/10.1016/j.patrec.2017.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.07.005&domain=pdf
mailto:ivanpaz@cs.upc.edu
mailto:angela@cs.upc.edu
http://dx.doi.org/10.1016/j.patrec.2017.07.005

218 I. Paz et al. / Pattern Recognition Letters 105 (2018) 217–225

Fig. 1. General methodology.

S

c

e

a

S

c

2

2

c

t

T

t

t

i

u

a

i

p

r

p

r

t

s

p

d

g

v

c

p

t

2

c

s

r

u

m

p
similar way, in algorithmic composition and live coding the selec-

tion of parameter configurations has to do with selecting settings

that produce musical material with specific perceptual categories.

Examples of this selection process are: given a system with two

variable-frequency oscillators, to find all the frequency combina-

tions that produce a consonant output (in acoustics a sound with

harmonic partials), or a sound with “rough” quality. Although the

exploration of parameter combinations in search of perceptual cat-

egories is a common activity in computer music, there have been

few attempts to formalize the information produced during this

process with the aim of using it for different musical tasks, such as

the automatic creation of variations within a part of a piece while

playing in front of an audience (live performance), or the execution

of generative music algorithms [2] .

Nonetheless, there are excellent examples of methods for find-

ing sets of parameters that successfully produce entities with spe-

cific perceptual properties. For example, Collins [4] , 5], Dahlstedt

[8] applied interactive evolution [9] , which uses human evaluation

as the fitness function of a genetic algorithm for system parame-

ter optimization. In [8] , this technique was applied to sound syn-

thesis and pattern generation tasks, while in [4,5] , it was used for

searching successful sets of arguments controlling algorithmic rou-

tines for audio cut procedures.

The present work is inspired by the methodologies of [5,8] , and

further focuses on structuring the information that is produced

during the exploration process to build tools intended for the fol-

lowing objectives:

1. To provide a structured representation of how the values of the

parameters are related with the user-selected perceptual cate-

gories.

2. To reduce the cognitive and operational complexity of the algo-

rithms by providing a set of organized “presets” for the differ-

ent preselected categories which can be used to automate some

musical tasks, such as live coding.

3. To extend the compositional capacities by inferring new un-

heard (unexplored) parameter combinations consistent with the

perceptual categories.

In this research, a methodology based on rules is developed for

the modeling of perceptual properties. Our particular interest in

a rule-based model relies on its interpretability. Rule models, in

contrast with subsymbolic approaches (like neural net classifiers),

are human readable information, which make them especially at-

tractive for applications in the context of computer music. In ad-

dition, a rule-based model naturally functions as a set of presets,

by encoding user associations (between parameter configurations

and perceptual category). Furthermore, it is possible to extend this

model to explore new regions of the space consistent with the as-

signed classes of the rules. An early version of the methodology

can be found in [22] .

The proposed methodology consists of four parts, shown in

Fig. 1 , together with their respective evaluation processes. The

methodology has a data acquisition stage which is performed

through a parametric exploration of a musical system, while

searching for predefined perceptual categories (see # 1 in Fig. 1).

During this process, the parameter combinations are labeled with

their respective perceptual categories. Then, the data is grouped

according to specific patterns, as explained in detail in Section 2 .

The resulting structures are called “Strict Rules” (see # 2 in Fig. 1).

These rules are used to build a more general model, which extends

the validity of the Strict Rules from points in the space to inter-

vals. The result of this process, described in Section 3 , is a set of

“Inference Rules” (see # 3 in Fig. 1). Then, a next level generaliza-

tion based on the set of Inference Rules is made through the de-

sign of a fuzzy classifier (# 4 in Fig. 1). This classifier covers the

complete explored space and is presented in depth in Section 3 .
ections 4 and 5 describe, respectively, the model evaluation pro-

ess and the experiments performed to validate the different mod-

ls. Section 5 also describes in detail the data acquisition process

nd the user interface used for the parametric exploration. Finally,

ections 6 and 7 present, in turn, the discussion followed by the

onclusions and further work.

. Strict Rules extraction

.1. Algorithm design considerations

The Strict Rules extraction algorithm was designed to identify

omplex but general relationships among the values in the sys-

em parameters and the perceptual categories assigned by the user.

he idea is to reorder the data to make visible specific patterns. In

his way, it produces a “structured” and interpretable representa-

ion of the input data. In Section 3 , this representation is used to

nfer new combinations of parameters consistent with any of the

ser-defined perceptual categories. The algorithm was inspired by

 rule extraction algorithm developed by Castro et al. [3] . However,

t has two fundamental differences. First, the result does not de-

end on the order of the data. Second, the algorithm can create

ules requiring fewer conditions. These are discussed in Section 2.3 .

The input data are organized as data pairs (parameter values,

erceptual category), which are seen as deterministic input-output

elations. In these data, the algorithm searches iteratively for pat-

erns. Specifically, it looks for combinations of parameters with the

ame category that differ only in one parameter value (let us say

 j). In that case, if the absolute difference of the p j values that

iffer is less than a certain threshold (t), the combinations are

rouped together into one structure. This structure has the same

alues of the grouped combinations in all its parameters, the same

ategory and a set in p j that contains the values that differ. Before

resenting the algorithm let us define the function that calculates

he thresholds.

.1.1. Threshold function

The thresholds are calculated through functions that are de-

lared in advance by the user. These are based on heuristic con-

iderations, i.e. on a priori knowledge of the variables that the pa-

ameters represent. For example, the frequency or the number of

pper harmonics added to a signal. Some ideas on how to auto-

ate this process are presented in Section 7 . For each parameter

 j a threshold function t p j (x) is declared. It assigns a threshold to

I. Paz et al. / Pattern Recognition Letters 105 (2018) 217–225 219

Table 1

Consider the parameter combinations X 1 , X 2 and X 3 all with class

(or perceptual category) rough and differing only in the j th param-

eter p j . i.e., x 1 ,k = x 2 ,k = x 3 ,k ∀ k � = j. Suppose that x 1 , j = 7 , x 2 , j = 11 ,

x 3 , j = 25 . The result of grouping this combinations using the Tresh-

old function of Eq. (1) and combining the respective thresholds using

g(t p j (x 1) , t p j (x 2)) = Min (t p j (x 1) , t p j (x 2)) are shown at the bottom of the

Table. Note that in RuleX 1 X 2 entrance x 1 −2 ,k = x 1 ,k = x 2 ,k ∀ k .
Combination p 1 . . . p j . . . p N Class

X 1 x 1, 1 . . . x 1 , j = 7 . . . x 1, N rough

X 2 x 2, 1 . . . x 2 , j = 11 . . . x 2, N rough

X 3 x 3, 1 . . . x 3 , j = 25 . . . x 3, N rough

Result

RuleX 1 X 2 x 1 −2 , 1 . . . {7, 11} . . . x 1 −2 ,N rough

X 3 x 3, 1 . . . x 3 , j = 25 . . . x 3, N rough

e

i

|

g

M

t

g

O

t

S

X

o

x

s

o

M

1

2

|

i

u

p

s

g

d

i

p

I

a

c

w

2

t

d

u

t

c

s

r

m

b

t

F

s

2

2

p

t

t

o

c

o

p

e

e

d

o

t

0

{

c

x

i

d

t

R

c

r

b

p

o

r

2

ach value x of the parameter p j . Given x 1 , x 2 , they will be grouped

n a set if Eq. (1) is satisfied.

 x 1 − x 2 | < g(t p j (x 1) , t p j (x 2)) (1)

 is a function of two variables, that can be defined as

ax (t p j (x 1) , t p j (x 2)) or Min (t p j (x 1) , t p j (x 2)) or a constant func-

ion, for example g(t p j (x 1) , t p j (x 2)) = in f ∀ x, etc. Functions t and

 control, for each parameter, how values are grouped into sets.

Example: Let p j be a parameter that controls a frequency (Hz).

ne possible definition of the function t p j (x) could be as in Eq. (2) .

 p j (x) =

{
10 if x ≤ 20 Hz
80 if x > 20 Hz

(2)

uppose that we have the parameter combinations X 1 , X 2 and

 3 , shown at the top of Table 1 . They differ only in the value

f parameter p j , i.e., x 1 ,k = x 2 ,k = x 3 ,k ∀ k � = j. Suppose also that

 1 , j = 7 , x 2 , j = 11 , x 3 , j = 25 . The bottom of Table 1 shows the re-

ult of grouping this combinations using the Threshold function

f Eq. (2) and combining the thresholds using g(t p j (x 1) , t p j (x 2)) =
in (t p j (x 1) , t p j (x 2)) . For the first two values, x 1 , j = 7 and x 2 , j =

1 , we have t p j (7) = 10 and t p j (11) = 10 . For the values 11 and

5, t p j (11) = 10 and t p j (25) = 80 . As | 7 − 11 | < Min (10 , 10) and

 11 − 25 | ≮ Min (10 , 80) the combinations X 1 and X 2 are grouped

nto RuleX 1 X 2 and X 2 is not grouped with X 3 , so X 3 remains alone.

The thresholds allow the user to define how “close” two val-

es can be in order to be placed in the same rule. For exam-

le, suppose that for a specific parameter (p j), the threshold is

et equal to infinity for all of their values. I.e., t p j (x) = in f ∀ x and

(t p j (x 1) , t p j (x 2)) = in f . Then, all parameter combinations in the

ata, differing only in the value of that parameter will be grouped

nto a single rule no matter how “separated” they are. This could

roduce great variability in the combinations described by the rule.

n contrast, suppose that a threshold t(x) = constant < in f is set for

ll the values. The result would then be a set of rules, each of them

ontaining values that, when ordered from minimum to maximum,

ill not be separated from each other by more than that constant.

.1.2. Considerations on thresholds applications

Thresholds determine, for each parameter, the maximum dis-

ance between two adjacent grouped values, and can be used for

ifferent purposes. For example, to create small transitions when

sing the rule instances that have been grouped with a small

hreshold, or big transitions (to create contrast) in the opposite

ase. For a discussion of how stepwise perceptual transitions (or

mall perceptual changes in the sound) have played an essential

ole in music composition, from Gregorian chant to 20th century

usic, see [7] . Furthermore, structures to visualize relationships

etween parameters and perceptual categories, as the rules can be

hought of, can also be interesting from an analytical point of view.
or example, they can be used for computational modeling of mu-

ical styles [23] .

.2. Algorithm inputs

The inputs for the algorithm are:

1. data : { X 1 , X 2 , ..., X m

}, where each X i = ((x i 1 , x i 2 , ..., x in) , y i) , x ij
denotes the value of the j th parameter of the i th combination

explored, and y i denotes the perceptual category. Index i satis-

fies that 1 ≤ i ≤ m and n is the number of parameters.

2. thresholds : Array containing, for each parameter, a function

t p j (x) that calculates the threshold for each value, and the func-

tion g (defined in Section 2.1.1) to combine the thresholds.

.3. Algorithm

The algorithm is currently implemented in the SuperCollider

rogramming language [17,29] since it can also be used as a syn-

hesis engine to implement the sound generators. As mentioned,

he algorithm searches, parameter by parameter, instances differing

nly in one parameter value and belonging to the same perceptual

ategory. Given that the result of such search depends on the order

f parameters, the algorithm starts by calculating all the possible

arameter permutations of the data. Then it applies the search to

ach permutation and the independent results are aggregated by

liminating the redundant and repeated rules at the end. This is a

ifference with the algorithm proposed in [3] that searches using

nly the initial order of the data.

The search is performed as follows:

1. For each column index the corresponding column is excluded

from the data and identical rows are searched. Two rows are

identical if they are equal entry-to-entry. If the entries are

“sets”, they are considered identical if they contain the same

elements.

2. Then, the values of the excluded column for the selected (iden-

tical) rows are taken.

3. These values are sorted from min to max and used to form sub-

sets. Each subset contains all the subsequent values whose ab-

solute difference is less or equal to their corresponding thresh-

old (distance).

4. Finally, the algorithm creates one rule for each created subset.

The rules have the values of the selected rows in all the param-

eters, and a set with all the values of the subset in the index

of the excluded column. The rows used to create the rules are

eliminated from the data and the rules are added.

As an example of set and rule creation suppose a constant

hreshold of 0.2 for parameter k . If we have values = {0.1, 0.3,

.5, 0.8, 0.9, 1.1}, we will have the sets: {0.1, 0.3, 0.5} and

0.8, 0.9, 1.1}. As we have excluded column k , the new rules

reated will be : x 1 , x 2 , ..., x k −1 , { 0 . 1 , 0 . 3 , 0 . 5 } , x k +1 , ...x n , y k , and

 1 , x 2 , ..., x k −1 , { 0 . 8 , 0 . 9 , 1 . 1 } , x k +1 , ...x n , y k . As the process of creat-

ng all the permutations is computationally expensive, the user can

ecide the order of the parameters and avoid this step. Note that,

hrough the process of constructing and separating sets, the Strict

ules algorithm allows the grouping of rules starting from sets

ontaining only two instances. Unlike [3] algorithm in which, for a

ule to be formed, it is required that the set contains all the possi-

le values that the analyzed parameter can take. Therefore in one

arameter we may have different rules covering different ranges

f values. This gives the algorithm the necessary flexibility to find

egularities with different levels of generality.

.3.1. Algorithm pseudocode

1. permutations = array with the possible permutations of the pa-

rameter indexes (excluding the output)

220 I. Paz et al. / Pattern Recognition Letters 105 (2018) 217–225

Table 2

Extension of a Strict rule into an Inference rule. The list of values in

parameter p j is extended to the interval between the minimum (a) and

maximum (b) values.

Rule Type p 1 . . . p j . . . p n Class

Strict Rule x k , 1 . . . { a, b, c, d } . . . x k, N rough

Inference Rule x k , 1 . . . [a − d] . . . x k, N rough

Fig. 2. Membership function for the classifier. The values v k, j and w k, j are, respec-

tively, the minimum and maximum values of parameter j in rule k . The parameter

γ controls the “slopes”.

3

l

d

w

I

t

r

μ

t

i

p

f

e

a

c

c

fi

t

m

t

τ

O

s

r

C
2. For each permutation:

temporal_data = copy of data

For each index j in permutation (j from 0 to # parameters):

Exclude column permutation[j] from temporal_data

For each row (in temporal_data):

a. Look for identical rows

b. Collect from the identical rows the values located at the

excluded column

c. Create sets and new rules with the collected values (See

Section 2.3.2)

d. Eliminate the identical rows

e. Add the new rules to temporal_data

Add temporal_data to sets_of_rules

3. Eliminate redundant and repeated rules from sets_of_rules

4. Return sets_of_rules (array to store the result of the algorithm ap-

plied to each permutation)

2.3.2. Create sets and rules

Create sets

To create the new sets proceed as follows:

1. Sort set (array)

2. Split the set in subsets S i such that ∀ x i , x i +1 ∈ S i | x i − x i +1 |≤ t ∗

Where t ∗ is the assigned threshold for elements x i , x i +1 by the

functions g, t (described in Section 2.1.1) of parameter j (located

at thresholds [j]).

Create rules

To create the new rules proceed as follows:

1. Take the current row (set of parameters) used to look for identical

rows.

2. For each of the sets created in the previous step (Create sets) build

a new rule by replacing the excluded column (j) by the selected

set.

3. Inference Rules and Fuzzy Rules model

3.1. Construction of the Inference Rules

As mentioned, the Strict Rules do not describe unheard param-

eter combinations. They only structure the data by grouping the

regularities found. This allows us to separately perform the process

of structuring the existing information and the process of building

a model able to infer new, unheard combinations, consistent with

the preselected perceptual categories. To do this, a set of Inference

Rules is created. These rules are extensions of the Strict Rules cre-

ated with the algorithm described in Section 2 . To extend the rules,

the values of the sets contained in their parameters are replaced

by the intervals between the minimum and maximum values for

each set . For example, let us suppose that we have the rule shown

in Table 2 , containing values { a, b, c, d } in parameter p j . Without

the extension, this rule only describes the cases formed with the

combinations of the values in the set and the values of the other

parameters (which could also be a set). To build the inference rule,

we substitute the set for the interval [a − d] , a and d being the

minimum and maximum values of the set , respectively. The ex-

tended rule comprises the combinations of the parameter values

with all the values in the interval.
.2. A fuzzy classifier based on Inference Rules

To extend the model to cover all the space within the explored

imits, a fuzzy if-then classifier, based on the Inference Rules, was

esigned. It was built as follows:

First, consider the trapezoidal membership function of Eq. (3) ,

hich is represented in Fig. 2 .

μk, j (p j) =

1
2

[max (0 , 1 − max (0 , γ ∗ min (1 , p j − w k, j)))
+ max (0 , 1 − max (0 , γ ∗ min (1 , v k, j − p j)))]

(3)

n this function [14] the index k represents the rule number and

he index j counts the parameters. The values v k, j and w k, j are,

espectively, the minimum and maximum values with membership

(x) = 1 of the k th rule j th parameter. The parameter γ controls

he “slopes” of the trapezoid and is calculated so that the slopes

ntersect the x-axis at the minimum and maximum values of the

arameter.

To build the classifier, all features are scaled into [0, 1]. Then,

or each rule R k , a trapezoidal membership function is assigned to

ach parameter p j in the following way:

1. If the parameter contains an interval, let us say [a − b] , then

v k, j = a and w k, j = b. In this case, the trapezoidal member-

ship function has maximum membership values between the

extremes of the interval.

2. If the parameter contains a single value, then v k, j = w k, j . Thus,

we obtain a triangular membership function centered at that

value.

To classify a new parameter combination, the classifier operates

s follows: Let P be the combination sent to the classifier. P is a

ombination of p j parameter values. Then, for each rule R k , it cal-

ulates the membership values μk, j (p j) for each parameter p j . The

ring strength τ k (P) [14] of a rule R k , which measures the degree

o which the rule matches the input parameters, is defined as the

inimum of all the membership values obtained for the parame-

ers (see Eq. (4)), i.e:

k (P) = min { μk, j (p j) } (4)

nce the firing strength has been calculated for all rules, the as-

igned class (i.e. category; Eq. (5)) will be equal to the class of the

ule with maximum firing strength.

lass (P) = Class of R c where C = arg max
k

{ τk (P) } (5)

I. Paz et al. / Pattern Recognition Letters 105 (2018) 217–225 221

Fig. 3. Example of the classification process for a system of two rules with two parameters p 1 and p 2 . A new combination P = (p 1 , p 2) is sent to the classifier. For the

first rule μ(p 1) = a and μ(p 2) = b. The minimum of these values is a . In the case of the second rule μ(p 1) = c, μ(p 2) = d and min (c, d) = d. Finally, the max (a, d) = a and

therefore the class assigned to the instance is Class i , which is the class associated with the first rule.

A

w

r

s

e

l

t

p

i

t

4

P

m

f

i

t

t

s

p

c

d

b

P

s

(

n

S

s

s

u

t

o

t

T

b

u

d

c

c

4

t

d

s

i

4

T

t

O

t

e

p

a

i
n example of the classification process for a hypothetical system

ith only two rules and two parameters is shown in Fig. 3 . The pa-

ameter combination P = (p 1 , p 2) is sent to the classifier. To clas-

ify this combination, for each rule, the degree of membership of

ach p i given by the i th membership function of the rule is calcu-

ated and the minimum of these values is taken. Then, a set con-

aining the minimum value of each rule is formed. Finally, the out-

ut of the system is the class associated with the rule correspond-

ng to the maximum value of that set. If more than one rule has

he same firing strength, a random decision is taken.

. Model evaluation

The model evaluation was based on the ideas suggested by

earce et al. [23] . They discuss specific motivations for the develop-

ent of programs for composing music, suggesting specific criteria

or its evaluation depending on the case. They identify four activ-

ties: algorithmic composition, the design of compositional tools,

he computational modeling of musical styles and the computa-

ional modeling of music cognition. Although the algorithms pre-

ented here were originally designed for personal compositional

urposes and therefore could be cataloged within the algorithmic

omposition activity, the further development of the system was

esigned to be a compositional tool, i.e. it is a tool intended to

e used by composers other than the designers. As proposed by

earce et al. [23] , we therefore performed evaluation tests to en-

ure that the behavior of the software satisfies the requirements

unit tests), as well as to examine its performance in different sce-

arios (application tests).

The different models presented were evaluated as follows: The

trict Rules were validated in experiments through user visual in-

pection, that is, the extracted rules were grouped in classes and

hown to the user for its validation (in question 2.1 of the Eval-

ation questionnaire below). The Inference Rules were evaluated

hrough user testing. In this case, the users evaluated, whether

r not, random combinations produced from the generalized in-

ervals were consistent with the preselected perceptual categories.

o evaluate the Fuzzy Rules model, users evaluated random com-

inations covering the whole range of parameter values. The eval-
ation of the users was compared with the results of the classifier

escribed in Section 4.2 . Finally, the accuracy of the classifier was

alculated using the latter data and the standard technique 10-fold

ross-validation. The details are presented below.

.1. Evaluation questionnaire

The tests results were registered through a questionnaire. As

he system has different components that relate with the user in

ifferent ways (user interface, extracted rules and generalization

tage) these were addressed in separate sections. The questionnaire

s shown below.

.1.1. Assessment questionnarie

The data and threshold functions were saved for each user.

1. Data acquisition process

(a) Interface evaluation: Do you consider that the interface is

intuitive and suitable for exploring the space of parameter

combinations?

(b) Instructions evaluation: Do you feel the instructions given

by the interviewer are an efficient way to explore changes

in the parameters?

2. Extracted rules

(a) Do the rules give you interpretable information about the

relationship of the parameter values with the perceptual

category of the output?

3. Generalization

(a) Consistency: Do you perceive the produced parameter com-

bination to be consistent with the selected category?

(b) Novelty: Do you find novelty in the unheard patterns?

o answer the questions, we adopted a user-focused evaluation

hrough Likert scale feedback [15] as proposed by Wanderley and

rio [27] . With the following categories: strongly agree, agree, neu-

ral, disagree, and strongly disagree. We used this approach to

valuate the data acquisition process (interface and parameter ex-

loration methodology), the interpretability of the extracted rules,

nd the novelty of the unheard parameter combinations created

n the generalization step. To evaluate if the category of the new

222 I. Paz et al. / Pattern Recognition Letters 105 (2018) 217–225

Fig. 4. Interface used to explore the parametric space and to collect data. The left

side allows to boot the system, initialize the data, tweak the parameters and classify

the combinations into three categories. The central part performs the rule extrac-

tion process. The right side allows the user to listen the Strict Rules (Play buttons)

or the Inference Rules (Try buttons), as well as to reclassify the instances (Class

buttons).

I

w

l

n

t

S

c

e

d

5

s

c

T

t

a

5

l

t

i

t

e

c

s

a

t

i

s

t

a

f

5

f

m

a

t

n

t

m

t

t
unheard combinations perceived by the user was consistent with

the selected category (question 3.1), a consistency score was used,

similar to the musical Turing Test presented in [26] . The general

idea is that, in computer music, we may desire the systems to be-

have in a human-like fashion. In our case, the produced examples

should emulate patterns that would be selected by the human user

as belonging to a particular category. Therefore, as Stowell et al.

[26] pointed out, “the degree of observed confusion between hu-

man and automated response is an appropriate route for evaluating

systems which perform human-like tasks”. In the tests, the Infer-

ence Rules generated new parameter combinations, and the users

evaluated whether they were consistent, or not, with the requested

category. If so, we had a success and otherwise a failure.

4.2. Evaluation of the fuzzy model

Two tests were performed to evaluate the fuzzy model. First,

parameter combinations (from the entire observed space) were

produced, and the classifications of the model and the user

were compared. Second, we used the classifier described in the

Section 3.2 to estimate the model accuracy. A 10-times cross-

validation standard technique was used on the data acquired dur-

ing these experiments.

5. Experiments

The experiments were conducted with students of the Real

Time Interaction Class of the Master’s Degree in Sound and Music

Computing of the Pompeu Fabra University (winter term of 2016–

2017), as well as with computer music composers and audio tech-

nology developers. The systems and the collected data are available

at [21] . Individual sessions were held in which the surveyed were

introduced to the system interface and functionalities. After that,

the participants were given time to become familiarized with the

system before beginning the experiment.

For the user-tests, an analytic interface (shown in Fig. 4) as de-

scribed by Hunt and Kirk [13] was designed. It allowed the users to

listen, tweak and perceptually categorize (into three classes given

the perceptual categories of the systems described in Section 5.2)

the parameter combinations while seeing their values in a display.
t also allowed the captured data to be reviewed. Once the data

ere collected, the user executed the rule extraction algorithm and

istened to parameter combinations in the following modalities:

1. Patterns contained in the generated Strict Rules, such that they

had already been heard and categorized by the user.

2. Patterns inferred through the Inference Rules, i.e, assumed to

be within some predefined perceptual category, but which had

not been heard.

Users were asked to collect at least thirty categorized combi-

ations by following the instructions shown in Section 5.1 . After

his, the rule extraction process was performed and the obtained

trict Rules were inspected by the users. Finally, twenty unheard

ombinations were produced with the Inference Rules. These were

valuated as being consistent or not with the categories that they

escribed, as well as whether or not they showed novelty.

.1. Instructions for exploring the parametric space

In order to favor rule formation and to avoid having many in-

tances not grouped in any rule, users were provided with spe-

ific instructions to vary the parameters while exploring the space.

hese instructions allow to explore the space in an ordered way, so

hat changes occur in one parameter at a time. Participants were

sked to explore the space as follows:

1. Without restrictions, vary the system parameters until a new

point is found within the desired perceptual category. Save the

parameter values with its associated category.

2. From that point, tweak one parameter at a time while keeping

the others constant. If the new combinations belong to any of

the desired categories save them with its respective label. In

this way, changes in one or more parameters can be explored.

3. When enough has been explored around the combination,

freely vary the parameters until a new point with a desired per-

ceptual category is found.

.2. Sound generators

For the experiments, two different sound generators were se-

ected. The first system, was a single band limited impulse oscilla-

or with well defined acoustic properties of its different possibil-

ties (Section 5.2.1). The second was a slightly more complex sys-

em for additive synthesis for which an arbitrary perceptual prop-

rty was chosen (Section 5.2.2). The first system, was selected be-

ause of the great amount of psychoacoustics documentation de-

cribing the human perception of their different aural possibilities,

llowing the validation of the obtained results (rules). Moreover,

he simplicity of the system made it an excellent candidate for the

nterviewees to become familiar with the methodology. The second

ystem was chosen given that consonance is a well defined percep-

ual property, and considering that, as additive synthesis is gener-

lly the first synthesis technique to be studied, the users were also

amiliar with this system.

.2.1. Single band limited impulse oscillator

The single band limited impulse oscillator “Blip”, produces a

undamental frequency to which a certain number of upper har-

onics, all with equal amplitude, are added [1] . It is available

s a unit generator (UGen) in SuperCollider. It has three parame-

ers: freq , the fundamental frequency; numharm which controls the

umber of upper harmonics added; and amp , the output’s ampli-

ude. The parameters can range in the following way: the funda-

ental frequency can take values from 0Hz, with no audible result,

o 20 KHz which is the upper audible limit. However, as the audi-

ion capacity is reduced with age and environmental factors, the

I. Paz et al. / Pattern Recognition Letters 105 (2018) 217–225 223

u

o

q

h

b

q

1

C

l

4

p

p

i

b

s

p

p

i

a

n

p

b

p

p

a

i

t

u

q

o

t

d

w

s

a

n

a

F

o

t

5

S

w

w

t

t

i

C

v

f

t

t

f

a

t

s

w

s

a

fi

p

p

d

t

R

i

t

d

j

c

b

5

T

q

a

f

f

c

t

5

S

w

t

o

r

e

p

d

a

w

i

r

T

s

a

t

5

p

a

g

l

m

b

c

p

6

e

p

h
pper limit is sometimes considered around 15 KHz. The number

f added harmonics range from 0, which leads to a pure tone fre-

uency of the chosen fundamental, to any (theoretical) number of

armonics. However, considering the aliasing processes, this num-

er is limited by the sample rate and the chosen fundamental fre-

uency. Finally, the signal amplitude is normalized between 0 and

.

onfiguration for the experiments

For the experiments, the values were restricted within the fol-

owing ranges. The frequency took values in the interval [0Hz,

00Hz], the number of upper harmonics in [0, 100], and the am-

litude in [0, 1]. This is a bounded space where the perceptual

roperties (described next) are clearly expressed. Although this

s a simple generator, the different aural possibilities produced

y its parameter combinations clearly define distinct perceptual

ubspaces. For the experiment, we worked with three perceptual

roperties. These are outputs perceived as rhythmic, rough , and

ure-tone . For further reference of the Blip generator, the reader

s referred to [24] .

Generally speaking, outputs perceived as rhythmic are char-

cterized by low fundamental frequencies (less than 15 Hz). The

umber of upper harmonics controls the pitch of the produced

ulse (or beat). A low number of harmonics produce constant

eats with low pitch, while a higher number of upper harmonics

roduce the same constant beating, but with higher pitch. Outputs

erceived as rough have fundamental frequency values between 15

nd 35 Hz. The number of upper harmonics plays a similar role as

n the case of rhythmic outputs. Finally, outputs perceived as pure-

ones are produced by any frequency greater that 20 Hz without

pper harmonics. However, combinations of low-mid to high fre-

uencies (e.g greater than 80 Hz) with medium to high number

f upper harmonics (for example, between 40 and 50) can some-

imes be perceived as pure-tones. This phenomenon is accentuated

ue to the effects of comparison on the perception. For example,

hen hearing something highly rough and afterwards hearing a

lightly rough combination, the latter can be perceived more like

 pure tone. Also, it is worth saying that the regions described are

ot crisp, and the perception may vary from one user to another,

s well as with the mentioned perception by comparison effect.

or the experiments, g(t p j (x 1) , t p j (x 2)) = t p j (x 1) ∀ p j . The thresh-

ld functions for the parameters were set, for all x , as in Eq. (6) .

 p j (x) =

{

in f for any freq

in f for any numharm

1 for any amp

(6)

.2.2. Sawtooth wave additive synthesis

As a second sound generator, a simple Additive Sawtooth Wave

ynthesizer was selected. It consisted of four sawthooth waves

ith frequencies freq1, freq1 - 1, freq2, freq2 + 1 measured in Hz,

ith a general normalized amplitude, amp . The system parame-

ers were: freq1, freq2 and amp . The system output is the sum of

he four frequencies times the amplitude. This synthesizer was also

mplemented in SuperCollider.

onfiguration for the experiments

For the experiments, the frequencies took values in the inter-

al [0Hz,300Hz]. The sought perceptual property was defined as

ollows: The frequency space was divided in ranges of 100 Hz. At

he first range [0Hz, 00Hz] freq1 was set to 50 Hz. Then, freq2 was

weaked and all the outputs that exhibited consonance between

req1 and freq2 were selected at the discretion of the user. For ex-

mple, frequencies 50 Hz and 100 Hz given that one is the octave of

he other. For ranges [10 0Hz, 20 0Hz] and [20 0Hz,30 0Hz] freq1 was

et equal to 200 Hz and 300 Hz respectively, and values of freq2
ere searched in the same way. Consonant values were freely cho-

en by the users. They were able to select, for example, only 50

nd 100 Hz at the first interval, or 50, 100 and 75 Hz (the perfect

fth of 50), and so on. These values could be chosen guided sim-

ly by audition or analytically by using the interface. For the ex-

eriments g(t p j (x 1) , t p j (x 2)) = t p j (x 1) ∀ p j and the thresholds were

efined as in Eq. (7) .

 p j (x) =

{

10 for any freq1

10 for any freq2

1 for any amp

(7)

emember that consonance can be defined, acoustically, consider-

ng the coincidence of partials [12] and the combined spectral dis-

ribution of the sound. There are also subjective variations depen-

ent on the cultural context. Nevertheless, in this case, each sub-

ect evaluates its own material and therefore only changes in per-

eption produced by the memory of past events (as the ear works

y comparison) influence perception.

.3. Results of the experiments

Ten subjects were interviewed, and all tested both generators.

he evaluation of the systems was done through the presented

uestionnaire. The results evaluating the Strict and Inference Rules

re presented in Table 3 . Table 4 presents examples of Strict Rules

or the Blip system. And Table 5 presents the evaluation of the

uzzy model. This includes the accuracy of the classifiers and the

oincidence degree of the classes assigned to the new combina-

ions by the users and the classifier.

.3.1. Evaluation of the Strict and Inference Rules

Table 3 contains the results of the questionnaire evaluating the

trict and Inference Rules models, for the experiments carried out

ith both generators. The numbers below the five quantifiers of

he Likert scale indicate the number of users who selected that

ption. In the case of the Inference Rules consistency (column 2,

ows 8 and 9), the numbers after “Consistent” and “Inconsistent”

xpress the average of the percentages calculated for the twenty

roduced combinations. An example of the Strict Rules obtained

uring the experiments is shown in Table 4 . The second row shows

 rule for the Rhythmic category. It should be read in the following

ay: If Frequency is 2.3 OR 3.94 AND Number of upper harmon-

cs is 87.9 AND Amplitude is 4.7 THEN the combination is catego-

ized as rhythmic. As can be seen, the rules obtained and shown in

able 4 coincide with the ranges for the perceptual properties de-

cribed in Section 5.2.1 . For example, for the output to be perceived

s Tone the Number of upper harmonics should be low, or zero in

his case.

.3.2. Evaluation of the fuzzy model

The results of the experiments evaluating the fuzzy model are

resented in Table 5 . The second row contains the mean accuracy

nd standard deviation for the classifiers built for each data set

enerated by the users during the tests. The accuracy was calcu-

ated by using 10-fold cross-validation. The third row shows the

ean percentage of coincidence between the categories assigned

y the user and the classifier to new unheard combinations. Such

ombinations were taken randomly from the whole considered

arametric space.

. Discussion

For the purposes of this work, we were mostly interested in the

valuation of the perception of the Strict Rules in terms of inter-

retability, and the ability of the Inference Rules to produce un-

eard combinations consistent with the categories and the novelty

224 I. Paz et al. / Pattern Recognition Letters 105 (2018) 217–225

Table 3

Synthesis of the questionnaire results for the Blip and Sawtooth generators. The numbers below the quantifiers of the Likert scale denote the number

of users that selected such option. The percentages in 3.1, are the average percentages of the numbers assigned by the users to the consistency of

the twenty combinations produced by the Inference Rules.

System Question Strongly agree Agree Neutral Disagree Strongly Disagree

Blip 1.1 Interface evaluation 2 5 2 1 –

Sawtooth 1.1 Interface evaluation 2 5 2 1 –

Blip 1.2 Instructions 3 5 2 – –

Sawtooth 1.2 Instructions 3 5 2 – –

Blip 2 Strict Rules evaluation 6 3 1 – –

Sawtooth 2 Strict Rules evaluation 7 2 1 – –

Blip 3.1 Consistency of Inference Rules combinations Consistent: Inconsistent: 90% 10%

Sawtooth 3.1 Consistency of Inference Rules combination Consistent: Inconsistent: 85% 15%

Blip 3.2 Novelty – 4 4 2 –

Sawtooth 3.2 Novelty 2 6 2 – –

Table 4

Example of the Strict Rules obtained during the experiments for the Blip generator.

Category Frequency Number of harmonics Amplitude

Rhythmic 2.3 OR 3.94 87.9 4.7

Rough 14.8 22 OR 47,9 OR 100 0.35

Pure-Tone 218.5 OR 323.7 OR 386.7 OR 400 0 0.12

Table 5

The second row contains the mean accuracy ± standard deviation for the clas-

sifiers build with the data collected during the experiments using 10 fold cross-

validation. For each user, a classifier was build and tested. The third row shows

the mean percentage of coincidence between the classifier and the user, in the

classification of new combinations of parameters (taken over all parameter input

space).

System Blip Sawtooth

Mean accuracy ± Standard deviation 0.955 ± 0.0 0 08 0.930 ± 0.0024

Coincidence user and classifier 93% 88%

t

t

t

t

m

a

w

t

f

t

t

r

t

r

e

c

7

t

i

w

t

t

t

m

o

b

s

g

u

c

w

w

o

c

c

i

t

c

of these combinations. The evaluation of the interface and the in-

structions for exploring the space (questionnaires 1.1 and 1.2), let

us know that the collected data actually has the desired structure.

That is: a combination of parameters associated with a particular

perceptual category. If we see the numbers from second to fifth

rows of Table 3 , we can say that both the interface and the instruc-

tions to explore the space were considered appropriate for the data

collection.

The results evaluating the Strict Rules, sixth and seventh rows

of Table 3 , show that the structure with which the rules are pre-

sented, effectively allowed the user to have an image of the value

regions (within the parameters) that “codify” for a certain category.

In many cases, the visualization of the rules allowed the users to

verbalize some general ideas to describe its own behavior.

The eighth and ninth rows of Table 3 , that describe the consis-

tency of the Inference Rules, show that, in the case of the ana-

lyzed systems, it is possible to use the proposed generalization to

extend the grouped values (sets) to regions maintaining their per-

ceptual properties. In the case of the second generator, the con-

sistency values are slightly lower, but the combinations are per-

ceived with novelty. However, looking at the novelty evaluation of

the Blip, the produced combinations exhibit moderate novelty. This

is due in part to the homogeneity in the perception of this system.

One way to overcome this would be to produce more risky com-

binations, for example by extending the cover regions by grouping

adjacent intervals. However, when informal tests were performed,

it was clear that, by doing this, there is a higher risk of leaving the

perceptual categories. So, it is necessary to define a criterion for

when the adjacent intervals can be grouped together.

This problem is directly related to the choice of the thresholds,

that at the moment it is the user’s complete responsibility. During
he experiments it was clear that the consistency associated with

he Inference Rules depends on the thresholds used. Since this de-

ermines how “separated” the numbers within the sets are, and

herefore the “length” of the generalization interval. In the experi-

ents the thresholds were initially set by heuristic considerations

nd then used to process all users’ data. Therefore, developing a

ay to obtain the appropriate thresholds from the data is impor-

ant for the quality of the Inference Rules, and to free the user

rom the responsibility of tuning the thresholds. In the next sec-

ion we discuss work in progress to automate this process.

Table 5 presents the results that compare the category assigned

o new combinations by the user and the Fuzzy Rules model (third

ow). It also presents the accuracy of the classifiers obtained with

he standard 10-fold cross-validation (second row). Given that the

esults are similar between them, this allows us to have a positive

valuation of the Inference Rules model extended to Fuzzy Rules

overing the whole space.

. Conclusions and further work

In this paper, we present a methodology for modeling percep-

ual categories in parametric musical systems. It begins by group-

ng the variations that can occur in the value of a parameter

ithout changing the perceptual category associated with the sys-

em output. The result of this analysis is an interpretable struc-

ure (Strict Rules) that was validated through user tests. Based on

he Strict Rules, we constructed the first generalization. The new

odel extends the coverage of each Strict Rule. For this, the sets

f values contained in their parameters are extended to intervals

etween the minimum and maximum values of each set. The re-

ulting rules are called Inference Rules. These were validated by

enerating random combinations from the rules, which were eval-

ated by users as consistent or not with the expected perceptual

ategory.

A second generalization was then constructed, covering the

hole space by associating a trapezoidal membership function

ith each entry of the Inference Rules. For a new entrance, the

utput of the model was calculated by using the rules in a fuzzy

lassifier. This model was validated by generating new parameter

ombinations of the whole considered space and then, by compar-

ng, for each combination, the categories assigned by the users and

he model. In addition to this, the accuracy of the classifiers was

alculated by using the 10-fold cross-validation method.

I. Paz et al. / Pattern Recognition Letters 105 (2018) 217–225 225

b

t

t

f

o

o

c

s

g

a

c

i

a

s

t

t

t

t

n

a

A

r

p

i

w

o

R

[

[

[

[

[

[

[

[
The presented models allow to codify the existing relationships

etween the parameter values combinations of the generative sys-

ems, and the perceptual categories assigned. However, the effec-

iveness of the model, highly depends on the selection of functions

or calculating the thresholds. In this case, this responsibility lies

n the user, so it is necessary to be familiar with the systems in

rder to choose the thresholds properly. Our current research fo-

uses on a way to automatically find these functions. A possible

olution would be to use the information given by the data for the

rouping of the values. For example, once we have put together

ll the combinations that differ only in one parameter, and the set

ontaining the different values has been formed, we split the set

nto subsets by grouping the values regardless of how distant they

re. This is possible as long as there is no value between them that

hares values in the other parameters, but has a different percep-

ual category associated. If this is the case, we group the values in

wo subsets to the “left” and “right” of that value. By doing this,

he grouped rules will be naturally split into subsets without con-

aining examples with a different label. This would eliminate the

eed for thresholds for data grouping, leaving them for more cre-

tive processes.

cknowledgments

The kind help of Angel Faraldo and the Befaco collective for the

ealization of the tests must be acknowledged. This work was sup-

orted by the National Council of Science and Technology of Mex-

co (CONACyT) 240514. We also thank the anonymous reviewers

hose wise feedback has been essential for improving the reading

f this contribution.

eferences

[1] Blip, Blip, 2016, (http://doc.sccode.org/Classes/Blip.html). Accessed: 2017-01-

25.
[2] A .R. Brown , A . Sorensen , Interacting with generative music through live coding,

Contemp. Music Rev. 28 (1) (2009) 17–29 .

[3] F. Castro , À. Nebot , F. Mugica , On the extraction of decision support rules from
fuzzy predictive models, Appl. Soft Comput. J. 11 (4) (2011) 3463–3475 .

[4] N. Collins , Experiments with a new customisable interactive evolution frame-
work, Organised Sound 7 (3) (2002) 267 .

[5] N. Collins , Interactive evolution of breakbeat cut sequences, Proceedings of Cy-
bersonics, 2002 .
[6] N. Collins , A. McLean , J. Rohrhuber , A. Ward , Live coding in laptop perfor-
mance, Organised Sound 8 (3) (2003) 321 .

[7] D. Cope, Algorithmic Music Composition, Springer Netherlands, Dordrecht, pp.
405–416.

[8] P. Dahlstedt , Creating and exploring huge parameter spaces: interactive evolu-
tion as a tool for sound generation., ICMC, 2001 .

[9] R. Dawkins , The Blind Watchmaker: Why the Evidence of Evolution Reveals
AUniverse Without Design, WW Norton & Company, 1986 .

[10] R.T. Dean , The Oxford Handbook of Computer Music, Oxford Handbooks, Ox-

ford University Press, 2009 .
[11] S. Goldmann , Presets - Digital Shortcuts to Sound, The Bookworm, an imprint

of The Tapeworm, 2015 .
[12] H. Helmholtz , On the Sensations of Tone, Dover Publications, INC., New York,

1954 .
[13] A. Hunt , R. Kirk , Mapping strategies for musical performance, in: Trends Ges-

tural Control Music, 21, 20 0 0, pp. 231–258 .

[14] L. Kuncheva , Fuzzy Classifier Design, Physica-Verlag Heidelberg, 20 0 0 .
[15] R. Likert , A technique for the measurement of attitudes, The Science Press,

New York, 1932 . Ph. D. Columbia University, Archives of psychology, no. 140.
[16] T. Magnusson , Herding cats: observing live coding in the wild, Comput. Music

J. 38 (1) (2015) 8–16 .
[17] J. McCartney , SuperCollider: a new real time synthesis language, in: Proceed-

ings of International Computer Music Conference, International Computer Mu-

sic Association, 1996, pp. 257–258 .
[18] J. McCormack, A. Eldridge, A. Dorin, P. McIlwain, 2011. Generative Algorithms

for Making Music: Emergence, Evolution and Ecosystems, Oxford University
Press,New York, pp. 354–379.

[19] E.R. Miranda , Granular synthesis of sounds by means of a cellular automaton,
Leonardo 28 (4) (1995) 297–300 .

20] G. Nierhaus , Algorithmic Composition: Paradigms of Automated Music Gener-

ation, Springer Science & Business Media, 2009 .
[21] I. Paz, Parametric perceptual exploration, 2017, (https://github.com/ivan-paz/

parametric-perceptual-exploration).
22] I. Paz , M. Nebot , E. Romero , F. MÃºgica , A. Vellido , A methodological ap-

proach for algorithmic composition systems’ parameter spaces aesthetic ex-
ploration., in: IEEE Congress on Evolutionary Computation., in: CEC ’2017, 2017,

pp. 1317–1323 .

23] M. Pearce , D. Meredith , G. Wiggins , Motivations and methodologies for au-
tomation of the compositional process, Music. Sci. 6 (2002) 119–147 .

24] C. Roads , Sound composition with pulsars, J. Audio Eng. Soc 49 (2001)
134–147 .

25] J. Rohrhuber , A. de Campo , Improvising formalisation: conversational program-
ming and live coding, New Comput. Paradig. Comput. Music. Sampzon, Fr. De-

latour (2009) .

26] D. Stowell , A. Robertson , N. Bryan-Kinns , M. Plumbley , Evaluation of live hu-
man-computer music-making: quantitative and qualitative approaches, Int. J.

Hum. Comput. Stud. 67 (2009) 960–975 .
[27] M. Wanderley , N. Orio , Evaluation of input devices for musical expression: bor-

rowing tools from HCI, Comput. Music J. 26 (2002) 62–76 .
28] G. Wang , P. Cook , On-the-fly programming: using code as an expressive mu-

sical instrument, in: Proceedings of 2004 Conference on New Interfaces Musi-
calExpression, in: NIME ’04, 2004, pp. 138–143 .

29] S. Wilson , D. Cottle , N. Collins , The Supercollider Book, MIT Press, Cambridge,

MA, 2011 .

http://dx.doi.org/10.13039/501100003141
http://doc.sccode.org/Classes/Blip.html
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0001
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0001
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0001
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0002
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0002
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0002
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0002
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0003
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0003
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0004
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0004
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0005
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0005
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0005
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0005
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0005
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0006
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0006
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0007
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0007
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0008
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0008
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0009
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0009
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0010
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0010
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0011
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0011
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0011
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0012
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0012
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0016a
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0016a
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0016a
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0013
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0013
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0014
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0014
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0015
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0015
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0016
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0016
https://github.com/ivan-paz/parametric-perceptual-exploration
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0017
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0017
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0017
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0017
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0017
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0017
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0018
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0018
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0018
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0018
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0019
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0019
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0020
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0020
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0020
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0021
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0021
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0021
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0021
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0021
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0022
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0022
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0022
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0023
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0023
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0023
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0024
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0024
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0024
http://refhub.elsevier.com/S0167-8655(17)30237-4/sbref0024

	Modeling perceptual categories of parametric musical systems
	1 Introduction
	2 Strict Rules extraction
	2.1 Algorithm design considerations
	2.1.1 Threshold function
	2.1.2 Considerations on thresholds applications

	2.2 Algorithm inputs
	2.3 Algorithm
	2.3.1 Algorithm pseudocode
	2.3.2 Create sets and rules

	3 Inference Rules and Fuzzy Rules model
	3.1 Construction of the Inference Rules
	3.2 A fuzzy classifier based on Inference Rules

	4 Model evaluation
	4.1 Evaluation questionnaire
	4.1.1 Assessment questionnarie

	4.2 Evaluation of the fuzzy model

	5 Experiments
	5.1 Instructions for exploring the parametric space
	5.2 Sound generators
	5.2.1 Single band limited impulse oscillator
	 Configuration for the experiments
	5.2.2 Sawtooth wave additive synthesis
	 Configuration for the experiments

	5.3 Results of the experiments
	5.3.1 Evaluation of the Strict and Inference Rules
	5.3.2 Evaluation of the fuzzy model

	6 Discussion
	7 Conclusions and further work
	 Acknowledgments
	 References

