
September 2016

Classifying and Generalizing Successful
Parameter Combinations for Sound

Design

Iván PAZ 1, Àngela NEBOT FranciscoMÚGICA and Enrique ROMERO
Soft Computing Research Group, Computer Science Department, BarcelonaTech

Abstract. Operating parametic systems in the context of sound design imposes
cognitive and practical challenges. The present contribution applies rule extraction
to analyze and to generalize a set of parameter combinations, which have been
preselected as successfully producing a specific perceptual category. Then, it is
discussed how and under which conditions these generalizations can be used, for
example, for the automation of specific tasks.

Keywords. rule extraction sound design parametric systems generalizing data sets

1. Introduction

Computer music is a growing field. Ever since its origins around the middle of the twen-
tieth century, when the first musical notes were generated by a computer programmed
by Alan Turing, new systems for making music by means of computer technology con-
stantly appear. This tendency increased during the last years as personal computers began
to be affordable for a wider public (see, for example, references [1] and [2] published
respectively, in 2009 and 2018).

Within computer music, sound design is responsible for generating and processing
the sound until it acquires the desired characteristics. Generally speaking, this “shaping”
process is done through systems of many different architectures (including synthesizers
and signal processors). Regardless their specific characteristics, they are all controlled
by parameters whose different combinations determine its sonic possibilities. However,
such parametric spaces are sometimes so large or complex that, for example, when sys-
tems (like sintesizers or signal processors) are sold commercially, a bank of presets (pre-
selected human-categorized combinations) is included to facilitate its use [3,4]. In addit-
tion, when synthesizers or signal processors are implemented in software (a very com-
mon practice in fields such as algorithmic composition or live coding), for the musician
to know a priori how the different parameter combinations will sound, she would require
background in acoustics, signal processing and computer programming. For this reason,

1Corresponding Author: C/ Jordi Girona 1-3, Omega 005, 08034 Barcelona, Spain; E-mail:
ivanpaz@CS.upc.edu

September 2016

methodologies helping the user to explore the space, finding successful combinations of
parameters satisfying a musical idea in mind have been proposed [5,6]. They use genetic
algorithms and interactive evolution [7] which uses human audition to guide the search
and to label the combinations with their exhibited perceptual categories (as perceibed by
the subject). Examples of perceptual categories can be consonance, dissonance, or more
abstract conceptions such as chaos or tension. Although these methodologies allow to
explore the space finding successful presets, they do not allow neither the generation of
interpretable models describing the relationships between parameter values and percep-
tual categories, nor induction (generalization) to find new points or regions of the space
producing the same acoustic impresion (perceptual category). Achieving this last task
would be very useful, since the process of interactive evolution requires the subject to
listen and evaluate each of the examples, so the number of presets obtained is limited.
For this reason, in [8,9], the authors proposed a methodology designed to work with per-
ceptually labeled presets and to extract rule models with different levels of generaliza-
tion. The base of presets can come from an assisted search as the proposed in [5,6], or
they can be those used in any existing piece. The methodology addresses the following
objectives:

• To extract interpretable models of the relationships between the parameter values
and the assigned categories.

• To extend the bank of presets, when possible, by including unexplored regions
of the space but which are expected to produce acoustic outputs within a chosen
perceptual category.

• To facilitate specific musical tasks, such as automate the creation of constant vari-
ations during a performance, and to suggest new lines of research. For exam-
ple, until which point the proposed methodology can support compositional ap-
proaches as the one described in [10].

The present contribution presents and discusses the aforementioned objectives throught
a concrete case of study, using the Rulex algorithm [9] to analyze and to extend (by in-
cluding new unheard parameter combinations) an existent set of presets in the context
of sound design. The rest of the paper is structured as follows: In section 2 the Rulex
algorithm is introduced, section 3 applies the algorithm to a real set of presets and an-
alyzes the extracted rules from the perspective of its aplicability to different musical
tasks, section 4 presents the results and the discussion and finally, section 5 introduces
the conclusions and presents possible further work.

2. Rulex algorithm

Rulex is a rule extraction algorithm (hence its name) designed to extract patterns form
labelled data. In the context of this research, the labels describe specific perceptual cate-
gories assigned by the user. The extracted models (the identified patterns) generalize, to
different levels, the relationships between the categories and the parameter values. For
this, the algorithm structures the input data into patterns defined in terms of the Hamming
distance. According to the selected distance, the extracted rules may or may not include
new unheard combinations which are assumed to be consistent with their associated la-
bel, or category.

September 2016

2.1. Presets, Rules and Patterns

An input datum is named “preset” evoking the way pre-programmed settings on musi-
cal instruments (for example a synthesizer patch) are named. A preset is equivalent to
an example, in the sense of classification tasks [11], in which the variables are the pa-
rameter values of a musical system, and the class is the perceptual category assigned to
the combination. The Rulex algorithm takes as input a set of “presets” and searches for
patterns. When a pattern among presets is found they are grouped and represented as a
single data. The output is a set containing the groupings that occurred, as well as the
presets that were not grouped. All the output data is represented in “Rule format”. Rules
are lists containing sets in each of the entries corresponding to the parameters and a class
in the last one. Next, preset, rule and pattern are defined.

2.1.1. Preset

A preset is a labeled parameter combination. It is represented in a list in which the first
n−1 entries are parameter values, and the nth entry contains the perceptual category (or
class) associated with the combination. E.g. [p1, p2, ...pn−1,c j].

2.1.2. Rule

Is a labeled list in which the initial n− 1 entries contain sets whose elements are pa-
rameter values. The sets may contain one or more elements. The nth entry contains a
perceptual category. E.g. [{p1}, {p2, p′2, p′′2},{p3, p′′3},{pn−1},c j].

2.1.3. Pattern

Let r1 and r2 be two rules of the same category. We say that a pattern between them
exists if when comparing their n−1 entries corresponding to the parameters, the number
of different entries is less or equal than a given distance threshold d ∈ N.

For a complete documentation of the algorithm the reader is refered to [8,9]. Next,
its operation is introduced intuitively by means of an example.

2.2. Rule Extraction Example

Consider the set of presets presented in Table I. They describe the values of the param-
eters of a synthesizer and the perceptual category associated to each combination. The
synthesizer consists of a couple of square wave generators, each of which has parameters
frequency and pulse width. They are represented respectively, by freq1 and freq2 for the
frequencies (both measured in Hz) and by width1 and width2 for the pulse widths of
the waves (the pulse width ratio ranges from zero to one, 0.5 making a square wave).
The two waves are added and the output is controlled by a general normalized amplitude
(amp). The SuperCollider implementation is:
Ndef(\synthesizer1,{
arg freq1, freq2, width1, width2, amp;
var sig;
sig=Pulse.ar(freq1,width1,amp)+Pulse.ar(freq2,width2,amp)});

The labels “intro and break” (at the end of each preset in Table I) are the perceptual
categories, representing in this case the section of the piece for which the combinations
were selected.

September 2016

Table 1. Presets describing parameter combinations of a synthesizer and the perceptual category associated to
each one

Preset Parameter values and perceptual category
Number freq1 freq2 width1 width2 amp Category

1 82.5 55.25 0.5 0.5 0.23 intro
2 660 221 0.3 0.5 0.23 intro
3 330 221 0.3 0.5 0.23 intro
4 165 218 0.3 0.5 0.23 break
5 660 110.5 0.3 0.5 0.23 intro

The extracted rules when searching for patterns with distances d = 1, 2 and 3 are
shown in Table II.

Table 2. Extracted rules from the set of presets presented in Table I, when searching for patterns setting the
distance d = 1, 2 and 3

Rule Parameter values and perceptual category
d freq1 freq2 width1 width2 amp Category

d = 1
r2,3 {660,330} {221} {0.3} {0.5} {0.23} intro
r2,5 {660} {221,110.5} {0.3} {0.5} {0.23} intro
r1 {82.5} {55.25} {0.5} {0.5} {0.23} intro
r4 {165} {218} {0.3} {0.5} {0.23} break

d = 2
r1 {82.5} {55.25} {0.5} {0.5} {0.23} intro

r2,3,5 {330, 660} {221, 110.5} {0.3} {0.5} {0.23} intro
r4 {165} {218} {0.3} {0.5} {0.23} break

d = 3

r1,2,3,5
{330,
660,82.5}

{221,
110.5,
55.25}

{0.3,
0.5} {0.5} {0.23} intro

r4 {165} {218} {0.3} {0.5} {0.23} break
aSubindexes indicate the presets composing the rule.

2.2.1. Extracted Rules Setting d = 1

The rules extracted by setting d = 1 show a “grouping” for each pair of presets of the
same category that differ, one from the other, in the value of one parameter. In this case,
it is possible to group presets 2 and 3 because they differ only in freq1 which is respre-
sented by r2,3. It is possible to group presets 2 and 5 into r2,5. The rules r1 and r4 that
can not be grouped with this criterion with any of the other presets are rules describing
only one example.

Using AND and OR notation r2,5 is read in the following way: IF freq1 = 660Hz
AND freq2 = 221Hz OR 110.5Hz AND width1 = 0.3 AND width2 = 0.5 AND amp =
0.23 THEN Category = intro.

September 2016

2.2.2. Extracted Rules Setting d = 2

Analogously when choosing d = 2, all the possible groupings are produced among the
presets that differ in ≤ 2 parameters. Notice that the algorithm operates sequencially,
i.e. adding preset by preset to a set containing the rules and then searching for patterns
between the added preset and the rules that exist there. In the example first the rule r2,3
is created and then grouped with preset 5 (as r2,3 and r5 differ from each other by 2
parameters) into r2,3,5.

Note also that, unlike when d = 1, the rules created by using d ≥ 2 can describe
cases that are not found in the original presets. For example, r2,3,5 has the combination
[330, 110.5, 0.3, 0.5, 0.23, intro] which is not included in the set of presets of Table I.
The result of this varies between the following two extremes: either it turns out that the
new added combination is perceived as belonging to the category of the rule or not. Both
cases and in which systems they occur is discussed in the Section II.D.

2.2.3. Extracted Rules Setting d = 3

As said, using greater distances the number of “new” included presets increases. For
example, the rule r1,2,3,5 contains 18 different combinations of which only 4 are part of
the original presets.

2.3. Analyzing the Extracted Rules

Interpreting the extracted rules requires musical knowledge. In particular, the function
of each parameter. In the example, r2,3 shows that two combinations differing only in
freq1 were used in the intro part. Furthermore, observing the values in freq1 these were
330 and its respective octave 660. In both cases, freq2 was set to 221. If we think this
from a musical point of view, it is expected that if the relation between the frequencies
330 and 221 worked, so does the relationship between 330’s octave and 221. In this
sense, rules r2,3 and r2,5 clearly show the use of the octave interval. Considering the
function that each parameter has in the definition of sound, we can select which of the
extracted rules to use in different contexts. To ilustrate this, consider again the rules of
Table II. We have mentioned that rules r2,3 and r2,5 describe variations in the fundamental
frequencies of the square wave generators. Whereas if we observe the rule r1,2,3,5, we
see that it also shows variations in parameter width1, which modifies the pulse width
(remember that width = 0.5 defines a square wave). Varying the pulse width modifies the
timbre of the signal but not its fundamental frequency (as does the freq parameter). Such
musical knowledge allows us, when choosing the rules, to know which parts of these
produce timbral variations and which harmonic variations. In this way, the algorithm
finds patterns, that would go unnoticed or require hours of work to be identified in larger
sets of presets, and presents such patterns to the user as a set of rules. Then, with the
necessary knowledge the user can interpret the patterns and select the preferred rules.

2.4. Generalization Using Parameter d

As mentioned, when using distances d ≥ 2, presets that are not found in the database
are included in the rules. This is a consequence of the algorithm design. However, not
in all the systems the new presets included are perceived as “belonging to the category
of the rule” when being heard by the user. To answer a priori in which systems this

September 2016

generalization will be effective and in which not is impossible since this depends on
the perceptual characteristic chosen by the user (and therefore subjective). However, a
simple example can help us to see that it is possible to have some intuition, i.e. once a
system is implemented and a perceptual feature chosen, the user can intuit what level of
generalization will work.

Let us consider the additive synthesis described in section 2.2 and a band limited
impulse oscillator consistsing of a fudamental frequency to which a certain number of
upper harmonics (all with the same amplitude) are added. The supercollider implemen-
tation of this synthesizer2 is as folows:
Ndef(\synthesizer2,{
arg freq, numharm;
var sig;
sig = Blip.ar(freq, numharm)})

It has tree perceptual regions (described in [12]) that can be described as perceived
like rhythmic, rugged and tone. User test using such perceptual categories are described
in [8]. A group of presets for each of these categories is shown in Table III. If we analyze

Table 3. Presets describing parameter combinations for synthesizer2 for perceptual categories rhythmic,
rugged and tone

Preset Parameter values and perceptual category
Number freq numharm amp Category

1 11.354432 20 0.6 rhythmic
2 10.203962 20 0.6 rhythmic
3 5.504405 20 0.6 rhythmic
4 1.854298 230 0.6 rhythmic
5 7.653983 230 0.6 rhythmic
6 15.012693 230 0.6 rhythmic
7 4.294679 230 0.6 rhythmic
8 20.425354 260 0.6 rugged
9 24.548191 260 0.6 rugged
10 21.10586 260 0.6 rugged
11 21.10586 67 0.6 rugged
12 21.10586 370 0.6 rugged
13 21.10586 26 0.6 rugged
14 99.598908 7.928433 0.6 tone
15 99.598908 14.141092 0.6 tone
16 55.781054 7.807612 0.6 tone
17 55.781054 1.90927 0.6 tone

Rules using d = 1
r1,2,3 {5.504405, 10.203962, 11.354432} 20 0.6 rhythmic

r4,5,6,7 1.854298, 4.294679, 7.653983, 15.012693 230 0.6 rhythmic
r8,9,10 {20.425354, 21.10586, 24.548191} 260 0.6 rugged

r11,12,13 21.10586 {26, 67, 260, 370} 0.6 rugged
r14,15 99.598908 {7.928433, 14.141092} 0.6 tone
r16,17 55.781054 {7.807612, 1.90927} 0.6 tone

from a musical point of view the tables I and III, it can be seen that, while in the case of

September 2016

synthesizer1 the variations in freq1 and freq2 describe octave intervals (defined by the
relation f ′ = 2 f), in the case of the synthesizer2 the numharm parameter (that defines
the number of upper harmonics added to the fundamental frequency) does not drastically
change the perception of the output, which is defined by the value of freq. Therefore it is
expected that rules extracted using larger values of distance (d) will be more effective in
the case of the synthesizer2 than in the case of synthesizer1. I.e. The perception does not
depend on the interrelation of the parameters but rather it is defined by the freq. Why to
keep the second parameter during the rule extraction? Because of the timbre variability
that it produces. Adding new combinations increases the variability of the timbre in this
case. For the rules that add new combination among parameters in the synthesizer1 to
be effective, it is necessary that the added combinations among freq1 and freq2 produce
effective results, for example, consonance if this were the case.

3. Applying the algorithm to sound design preset sets

This section presents how the Rulex algorithm can be used, given an existing dataset,
to analyze it and to explore possibilities of recombining/extending the existing material.
The cases in which it is possible to add variability to the existing presets are pointed out,
as well as those in which the algorithm suggests new regions to be explored, predicted
to be consisentes with some category. Also, it is discussed how the user needs to analyze
the possibilities and decide how to use the extracted rules. Keep in mind that the idea
of the algorithm is to extend the composer capabilities and not to replace them. In this
sense, the algorithm deliberately seeks to detonate synergies by interacting with the user
rather than purely returning a non-interpretable or non-modifiable model performing a
single task.

3.1. Synthesizers

The synthesizers from which the parameter combinations were selected are the synthe-
sizer1 (same as in section 2.2) and synthesizer3 (shown below). Their SuperCollider im-
plementation is:
Ndef(\synthesizer3,{
arg freq3 1, freq3 2, amp3;
var sig;
sig=Mix(Saw.ar([freq3 1,freq3 1+1], amp3)+Saw.ar([freq3 2,freq3 2-1], amp3))});

Synthesizer3 is composed of two sawtooth wave generators controlled by freq3 1
and freq3 2 respectively. One more sawtooth with frequency ±1 Hz is added to each
generator. The synthesizer has a general amplitude amp3. Table IV shows a set of presets
selected for synthesizer 1 and 3 as successful combinations for the sections denoted by
their classes.

Table V shows some rules extracted from the presets of Table IV using different
distances.

September 2016

Table 4. Presets describing parameter combinations of a synthesizers 1 and 3. The perceptual category as-
sociated with each combination represents the part of the piece in which the combination is intended to be
used

Preset Parameter values and perceptual category
freq3 1 freq3 2 amp3 freq1 width1 freq2 width2 amp Cat

1 200 159 0.2 161 0.4 160 0.5 0.27 Part A
2 200 150 0.23 150 0.3 160 0.5 0.3 Part B
3 200 150 0.26 150 0.3 160 0.4 0.3 Part B
4 200 150 0.23 150 0.3 161 0.5 0.3 Part B
5 20 150 0.25 101 0.3 102 0.5 0.33 Part C
6 200 150 0.28 150 0.6 160 0.4 0.38 Part C
7 100 100 0.25 100 0.6 102 0.4 0.33 Part C
8 20 150 0.25 101 0.3 102 0.5 0.33 Part D
9 200 150 0.28 150 0.6 160 0.4 0.38 Part D

10 100 100 0.25 100 0.6 102 0.4 0.33 Part D
11 20 150 0.25 101 0.3 102 0.5 0.33 Part E
12 200 150 0.28 150 0.6 160 0.4 0.33 Part E
13 100 100 0.25 100 0.6 102 0.4 0.33 Part E

Table 5. Examples of the rules extracted, using different distance values, from the presets of the Table IV. Note
that not all the rules extracted by the model are shown, only those that best illustrate the behavior we want to
highlight have been chosen.

Preset Parameter values and perceptual category
freq3 1 freq3 2 amp3 freq1 width1 freq2 width2 amp Cat

d = 3
r2,3,4 {200} {150} {0.23, 0.26} {150} {0.3} {160, 161} {0.5, 0.4} {0.3} Part B
d = 5
r12,13 {200, 100} {100, 150} {0.25, 0.28} {100, 150} {0.6} {160, 102} {0.4} {0.33} Part E

3.2. Analyzing and Selecting Rules for Specific Musical Tasks

The extracted rules can be used to solve different musical tasks. For example, to produce
slight automated variations, while live performing. This can be done by selecting a rule
(or a set of rules), producing parameter combinations by taking an element from each of
its sets, and setting them in the synthesizer. Next, the rules shown in Table V are ana-
lyzed, so that the reader can visualize how the selection process is carried out. Of course,
listening to the rules and selecting those that produce the expected results is the way to
do it, however the type of reasoning we show below suggests were to start when there are
many rules. To automate this process, signal descriptors could be used to indicate prox-
imity between the produced results. However, for small sets of presets dedicated users
prefer to inspect the material. Analyzing the rule r2,3,4 (obtained by using d = 3), it can be
seen that the parameters in which the sets have more than one element are: amp3, freq2
and width2. Analyzing the function of these parameters in the context in which they are
used, it can be said that: The variability that the parameter amp3 will produce, affects
only be the volume of synthesizer3, while the variability that parameter width2 will pro-
duce affects the timbre of synthesizer1. Then, it is expected that the parameter freq2 will

September 2016

produce the greatest variations (from a harmonic point of view) when interacting with
the other frequencies. However, we can see that all the combinations that can be formed
among the frequencies already appear in the original set of preset. So from this rule, if
accepted, we would expect it to produce slight variations of timbre and amplitude.

When analyzing the rule r12,13 we see that the parameters with sets having more
than one element are freq3 1, freq2 2, amp3, freq1 and freq2. In this case, unlike the
previous one, although some combinations of parameters (given the architecture of the
synthesizers) do not generate strong variations, exchanging the values of freq3 1 and
freq3 2, will produce combinations, for example those that can be formed with freq2,
that do not appear in the original set of presets. Among these combinations is [100, 100,
0.28, 100, 0.6, 160, 0.4, 0.33, Part E]. Would be the combination of freq3 2 = 100 with
freq2 = 160 effective? This will depend on how the perceptual category sought relates
to the relationship between these frequencies, which is decided by listening or signal
analysis.

4. Discussion

The extracted rules together with the knowledge of the functions (in this case in the
context of the sound design) of the parameters of the synthesizers, offer an interpretable
model that also allows the user to generalize the material already classified. The different
levels of generalization of the rules condition the contexts in which they can be used. For
example, in the search for new musical material large distances can be used. While in
the context of a live performance it is likely that smaller distances are preferred to only
automate the material generation. The described approach has been tested in different
contexts. User tests, using a previous version of the algorithm that only extracts rules
with d = 1, were performed to verify if the extracted rules offered an interpretable model
of the relationships between parameters and perceptual categories [8]. The test yielded
successful results. These tests were performed by thinking of the algorithm as a system
intended to be used by others appart from its programmer as suggested by [13]. The same
version of the algorithm used in a compositional context can be found in [14]. Again
accoring with [13] when a composer makes an algorithm to compose music, this can
only be evaluated in the way that music composition is traditionally evaluated. That is,
through sales, criticism and reviwes. The most recent of these can be found in [15].

5. Conclusions and further work

Although the presented algorithm allows to generate a model of the relationships be-
tween the combinations of parameter values and their associated perceptual category, its
interpretability (although human-readable) depends on the quantity and quality of the
rules. For example, on the variability that they present, it is not the same to have a set
in a parameter with the values {0.2,0.4,0.6,0.8,1}, that with values {110.3, 1548}. So
a higher level algorithm able to analyze the rules to generate a more compact model is
desirable. Regarding the generalization process, although it suggests the user new com-
binations (for example in section 2.2 the rule extracted with d = 3 offers 18 combinations
from 4 presets), compared to the dimension of the space these are few. So, more effi-

September 2016

cient mechanisms of generalization are also desirable. For example, in [8] a mechanism
that allows to generalize the sets that appear in the entries of the rules to the intervals
between their maximum and minimum elements is presented. Future work also includes
the extension of the rules, so that they cover larger regions of the space. A first version of
these extensions is presented in [8], in which the sets of values found in the parameters
of the rules are replaced for the intervals between the minimum and maximum values
of the respective set. For example, the set {3,5,8} is replaced by the interval [3-8]. The
algorithm that realizes this task solves the contradictions that could be formed between
the rules following a heuristic that looks for the set of rules covering the greater possi-
ble area. User test in which the users listened to material produced by these rules and
classified it as belonging or not to the category of the rule is found in [8].

Current research focuses on start form the rules with intervals in their parameters, to
build fuzzy rules that cover the entire space. For this, the intervals of the parameters are
used as the cores of trapezoidal membership functions, whose supports are then adjusted
by considering the other rules. In a similar way to the methodology presented in [16].
In this way, the observed space is fully classified. Finally, a deeper exploration of how
the algorithm can be used as creative tools in the compositional process, in the sense
in which [10] analyzes the genetic algorithms together with interactive evolution would
yield interesting results.

References

[1] M. Schedel, (2011). “Oxford Handbook of Computer Music”. Computer Music Jou rnal, 35(1), 105-107.
2011.

[2] A. McLean, R. Dean, (Eds.) “The Oxford Handbook of Algorithmic Music” Oxford University Press.
2018.

[3] S. Goldmann, “Presets digital shortcuts to soud” The Bookworm, an imprint of The Tapeworm, 2015.
[4] P. Dahlstedt, “Evolution in creative sound design”. In Evolutionary computer music (pp. 79-99).

Springer London. 2007.
[5] P. Dahlstedt, “Creating and exploring huge parameter spaces: Interactive evolution as a tool for sound

generation.” ICMC. 2001.
[6] N. Collins, “Interactive evolution of breakbeat cut sequences.” Proceedings of Cybersonica, Institute of

Contemporary Arts, London, England 2002.
[7] R. Dawkins, ”The blind watchmaker: Why the evidence of evolution reveals a universe without design”.

WW Norton & Company. 1986.
[8] I. Paz, À. Nebot, F. Mugica, & E. Romero, “Modeling perceptual categories of parametric musical

systems”. Pattern Recognition Letters. 2017.
[9] I. Paz,À. Nebot, F. Mugica, & E. Romero “RULEX: a rule extraction algorithm for charting perceptual

spaces” unpublished.
[10] P. Dahlstedt, “Thoughts on creative evolution: a meta-generative approach to composition.” Contempo-

rary Music Review 28.1 (2009): 43-55.
[11] J. Frnkranz, G. Dragan, L. Nada. “Foundations of rule learning”. Springer Science & Business Media,

2012.
[12] C. Roads, “Sound composition with pulsars.” Journal of the Audio Engineering Society 49.3. 134-147.

2001.
[13] Pearce, Marcus, D. Meredith, W. Geraint, “Motivations and methodologies for automation of the com-

positional process.” Musicae Scientiae 6.2: 119-147. 2002.
[14] I. Paz “Visions of Space” https://bohemiandrips.bandcamp.com/album/visions-of-space 2017.
[15] Bandcamp daily “Meet the artists using coding, AI, and machine language to make music”

https://daily.bandcamp.com/2018/01/25/music-ai-coding-algorithms/ 2018.
[16] M. Berthold, “Mixed fuzzy rule formation.” International journal of approximate reasoning 32.2-3: 67-

84. 2003.

