
Benchmarking the Selection of the Hidden-layer
Weights in Extreme Learning Machines

Enrique Romero
Department of Computer Science

Universitat Politècnica de Catalunya
Spain.

Abstract—Recent years have seen a growing interest in neural
networks whose hidden-layer weights are randomly selected,
such as Extreme Learning Machines (ELMs). These models are
motivated by their ease of development, high computational
learning speed and relatively good results. Alternatively, con-
structive models that select the hidden-layer weights as a subset
of the data have shown superior performance than random-
based ones in some cases. In this work, we present a comparison
between original ELMs (i.e., ELMs where the hidden-layer
weights are selected randomly, that we will call ELM-Random)
and a modified version of ELMs where the hidden-layer weights
are a subset of the input data (that we will call ELM-Input). We
will focus our comparison on the behavior of both strategies for
different sizes of the training set and different network sizes.
The results on several benchmark data sets for classification
problems show that ELM-Input has superior performance than
ELM-Random in some cases and similar in the rest. In some
cases, this general trend is observed for all sizes of the training
set and all network sizes. In other cases, it is mostly observed
when the size of the training set is small. Therefore, the strategy
of selecting the hidden-layer weights among the data can be
considered as a good alternative or complement to the standard
random selection for ELMs.

I. INTRODUCTION

Single-hidden-layer feed-forward neural networks
(SLFNNs) are well-known approaches for classification
and regression problems (see [1], for example) with many
practical applications. In these models, the architecture
(number of hidden units, activation functions, etc) is usually
fixed a priori, whereas the weights are learned during the
training process. The most common methods to learn the
weights are gradient-based iterative algorithms, such as
gradient descent or conjugate gradients, where the gradient is
usually computed with the back-propagation algorithm [2].
In these methods, the weights in the hidden and output layers
are adjusted simultaneously.

There exist, however, SLFNN models where the learning
of the weights is not based on gradient methods. In these
models, the weights are typically adjusted in two steps. In the
first one, the hidden-layer weights are selected. In the second
one, the output-layer weights are computed. The selection of
the hidden-layer weights is done heuristically, since the non-
linear optimization problem cannot be solved analytically in
the general case [3]. The optimal output-layer weights can
usually be obtained by solving a linear equations system [4].

One of these methods is Extreme Learning Machines
(ELMs, [5], [6]), where the hidden-layer weights are selected

randomly and the output-layer weights are computed with the
pseudo-inverse of a matrix that is a function of the data and the
hidden-layer weights. Similar ideas to those of ELMs had been
previously proposed in [7]–[9], for example. Recent years have
seen an important growth of ELMs, mainly because of their
ease of development, high computational learning speed and
relatively good results. This growth can be seen both in new
ELM-based developed models and practical applications. For
an extensive review on ELMs, see [10], [11] and references
therein.

ELMs are closely related to constructive SLFNNs [12],
which are models that construct the network sequentially,
usually adding one hidden unit at a time, so that the number
of hidden units is also a result of the learning process.
Several constructive SLFNNs (see [13]–[16], for example) find
the optimal output-layer weights by solving the same linear
system than ELMs. In [16], the Error Minimized Extreme
Learning Machines (EM-ELMs) is presented, a constructive
version of ELMs which results in a faster method with similar
generalization performance. In other constructive models [13]–
[15], the hidden-layer weights are taken to be a (usually
randomly selected) subset of the data. This strategy is called
Input strategy (in contrast to the Random strategy used by
ELMs), and its models are named Support Vector Sequential
Feed-forward Neural Networks (SV-SFNNs) [17] by their
analogy with Support Vector Machines (SVMs) [18], where
the support vectors (the hidden-layer weights) are also a subset
of the data. The rationale of the Input strategy is that choosing
the hidden-layer weights among the input vectors is more
related to the underlying distribution of the data than the
Random strategy, leading to more informative weights (such
as prototypes, border points, etc). This idea is also present
in vector quantization, since it is guaranteed that densely
populated areas of the input space are well represented [19].
In the context of kernel learning, the Input strategy can yield
better generalization error bounds and results than random
Fourier features [20].

The aforementioned models use different strategies to select
the hidden-layer weights (Random for ELMs and EM-ELMs
or Input in SV-SFNNs) and the number of hidden units (fixed
a priori for ELMs or incrementally obtained in EM-ELMs
and SV-SFNNs). Some of these strategies have been compared
among them and with SVMs. In [7], small-scale experiments
with synthetic data are performed comparing both strategies

and back-propagation. In [21], an ELM-based random version
of SVMs is described, where the feature space is constructed
with random vectors instead of with a subset of the data.
Experimental results show that the ELM-based approach is
faster than SVMs with comparable results. In [22], ELMs are
compared to SVMs. The main conclusions are that ELMs
tend to have lower generalization ability than SVMs for
smaller samples but generalizes as well as SVMs for larger
samples, with lower computational cost (differences in the
computational cost are larger for larger-scale problems). SV-
SFNNs are compared with SVMs in [17], obtaining similar ac-
curacies than SVMs with simpler models. In [23], EM-ELMs
are compared with SV-SFNNs, concluding that selecting the
hidden-layer weights as a subset of the input data (i.e., with
the Input strategy) outperforms the random selection made by
EM-ELMs, with the same computational cost.

These recent results motivate the work presented in this
paper. The superior performance of SV-SFNNs over EM-
ELMs in [23] may be caused not only by the Input strategy, but
by the combination of the Input strategy with a constructive
scheme. Except for the preliminary results in [7], to the best
of our knowledge it is unknown whether the Input strategy
is also able to improve the Random selection of hidden-layer
weights in non-constructive ELMs or not, which is the aim of
this paper. More specifically, this work shows a comparison
between the original ELMs, that we will call ELM-Random
and a modified version of ELMs that we will call ELM-
Input. In ELM-Random the hidden-layer weights are selected
randomly, as in [6]. ELM-Input can be considered as ELMs
with the Input strategy, where the hidden-layer weights are a
subset of the data. ELM-Input is similar to [17] except for the
fixed a priori number of hidden units.

An experimental study on several benchmark data sets for
classification problems is presented where ELM-Input and
ELM-Random are compared in the same conditions. We will
focus our comparison on the behavior of both strategies for
different sample sizes (by varying the percentage of examples
in the training set), as in [22], and different network sizes
(by varying the number of hidden units). Since the only
difference between the two compared methods is the strategy
to select the hidden-layer weights, the results will help to
understand whether the use of input data as hidden-layer
weights provides any advantage over pure random selection or
not. The growing interest in models that randomly select the
weights of the hidden units makes this comparison relevant,
since it is expected that similar conclusions hold for other
ELM-based models.

II. EXTREME LEARNING MACHINES

The output function of an SLFNN (i.e. a fully connected
FNN with a single hidden layer of Nh units) with n input
units and m linear output units can be expressed as a linear
combination of simple functions:

fNh
(x) = λ0 +

Nh∑
i=1

λi ϕ (x,ωi, bi) (1)

where ωi ∈ Rn and bi ∈ R are the hidden-layer weights of the
hidden units, λi ∈ Rm are the output-layer weights connecting
the i-th hidden unit to the m output units, ϕ is the activation
function of the hidden units, ϕ(x,ωi, bi) is the output of the
i-th hidden unit with respect to the input x, and λ0 ∈ Rm

denotes the bias terms (if any) of the linear output units.
The most common models of SLFNNs are Multi-Layer

Perceptrons (MLPs) and Radial Basis Function (RBF) net-
works, which mainly differ in the activation function ϕ used
in equation (1). MLPs typically use any sigmoidal activation
function applied to the scalar product of the input and weight
vectors (e.g. the logistic function, that will be referred to as a
logistic MLP)

ϕ (x,ωi, bi) =
1

1 + exp (−ωi · x− bi)
(2)

The activation function mostly used in RBF networks is the
Gaussian function applied to a distance between an input
vector and a center, that we will call Gaussian RBF

ϕ (x,ωi, bi) = exp
(
−bi ||x− ωi||2/2

)
, (3)

although many other activation functions can be used to have
universal approximation capability.

For logistic MLP units, ωi ∈ Rn is the weight vector
connecting the input layer to the i-th hidden unit and bi ∈ R
is the bias of the i-th hidden unit. For Gaussian RBF units,
ωi ∈ Rn and bi ∈ R+ are the center and the impact factor of
the i-th RBF unit.

For a given set of training examples {(xj , tj)}Lj=1 ⊂ Rn ×
Rm, if the outputs of the network were equal to the targets,
we would have

fNh
(xj) =

Nh∑
i=1

λi ϕ (xj ,ωi, bi) = tj , j = 1, . . . , L. (4)

Equation (4) can be written compactly as

Hλ = T (5)

where H is an L ×Nh matrix called the hidden-layer output
matrix of the network (Hji = ϕ (xj ,ωi, bi)), λ is an Nh ×m
matrix containing the output-layer weights, and T is an L×m
matrix containing the target values in the training set. The
output layer biases can be added by including in H a first
column with a fixed value of 1 (and increasing Nh by 1).

Normally, the number of training examples L will be much
greater than the number of hidden units Nh and an exact
solution of (5) cannot be expected. Then, a usual cost function
is the sum-of-squares error

E =
1

2

L∑
j=1

||fNh
(xj)− tj ||2 =

1

2
||Hλ− T||2. (6)

It is well known (see [1], for example) that, in order to min-
imize E, the optimal output-layer weights can be computed
as

λ̂ = H†T (7)

where H† is the pseudo-inverse (aka Moore-Penrose general-
ized inverse) of the hidden-layer output matrix H. The pseudo-
inverse always exists, is unique and, when HT H is invertible,
can be computed as

(
HT H

)−1
HT . The sum-of-squares error

of a hidden-layer output matrix can be expressed as

E(H) =
1

2
||Hλ̂− T||2 =

1

2
||HH†T− T||2. (8)

Huang et al. [5] showed that SLFNNs with random weights
in the hidden layer have universal approximation capability
for many different choices of the activation function, including
the ones stated in equations (2) and (3). Based on this result,
the ELMs learning algorithm, described in algorithm 1, was
proposed [6]. We will call ELM-Random to this algorithm.

Although the original method proposed in [6] only was
tested with MLP units, we will extend it to be used with
Gaussian RBF units (see section IV-D).

III. EXTREME LEARNING MACHINES WITH THE INPUT
STRATEGY

The algorithm for ELM-Input is described in algorithm
2. The only difference between ELM-Random (algorithm 1)
and ELM-Input (algorithm 2) is the selection of the hidden-
layer weights: whereas in ELM-Random they are selected
in a purely random manner, in ELM-Input they are selected
to be a subset of the data. It may be argued that selecting
the hidden-layer weights from the data should perform better
than selecting them at random, since the former strategy
samples the weights from the underlying distribution of the
data. This information is lost if the hidden-layer weights are
selected without looking at the statistical properties of the
data (randomly, for example). However, a random selection of
the hidden-layer weights has more flexibility and can obtain
weights that, being far away from any data, may be useful for
the task.

Algorithm 2 is mainly motivated by the work in [23],
where EM-ELMs [16] is compared with SV-SFNNs [17]. EM-
ELMs is a constructive version of ELM which results in a
faster method with similar generalization performance. SV-
SFNNs is a constructive method similar to EM-ELMs with
the main difference that the hidden-layer weights are always
taken to be a subset of the data. SV-SFNNs are equivalent
to the Orthogonal Least Squares Learning algorithm [13],
Kernel Matching Pursuit with pre-fitting [14] and SAOCIF
with the Input strategy [15]. The name SV-SFNNs comes from
the property shared with SVMs of selecting the hidden-layer
weights among the input vectors.

The main conclusion in [23] is that SV-SFNNs outperform
EM-ELMs, indicating that the strategy of selecting the hidden-
layer weights as a subset of the input data may be better than
the random selection made by EM-ELMs. The experiments in
this work are devoted to see if that conclusion also holds for
the original ELMs.

In [24], a kernel version of ELM is described, where the
hidden-layer output matrix H is implicitly defined and HHT

is replaced by the kernel matrix. The resulting architecture

Algorithm 1 Algorithm for ELM-Random.
Given a set of training examples {(xj , tj)}Lj=1 ⊂ Rn × Rm,

the hidden-layer activation function ϕ (x,ω, b),
and Nh number of hidden units fixed a priori

1a. Randomly assign hidden-layer weights {ωi}Nh
i=1

from a certain distribution
1b. Randomly assign hidden-layer bias {bi}Nh

i=1

from a certain distribution
2. Calculate the hidden-layer output matrix H
3. Calculate the output-layer weight matrix λ with (7)

Algorithm 2 Algorithm for ELM-Input.
Given a set of training examples {(xj , tj)}Lj=1 ⊂ Rn × Rm,

the hidden-layer activation function ϕ (x,ω, b),
and Nh number of hidden units fixed a priori

1a. Randomly assign hidden-layer weights {ωi}Nh
i=1

from the data: ωi = xj (ωi1 6= ωi2 for i1 6= i2)
1b. Randomly assign hidden-layer bias {bi}Nh

i=1

from a certain distribution
2. Calculate the hidden-layer output matrix H
3. Calculate the output-layer weight matrix λ with (7)

is equivalent to a network with L hidden units where every
hidden-layer weight is an input example. In [25], the L × L
kernel matrix is replaced by a rectangular matrix, whose
columns are selected randomly. The resulting algorithm is
similar to algorithm 2 with the additional restriction of using
kernel functions.

IV. EXPERIMENTS

This section explains the methodology followed in the
experiments and discusses the obtained results.

A. Data Sets

The classification benchmark data sets used for the compar-
ison were: Australian Credit, Car Evaluation, Splice-junction
Gene Sequences, German Credit, Ionosphere, Landsat Satellite
(Satimage), Image Segmentation, Sonar and Vehicle Silhou-
ettes, that can be found in the UCI repository [26]. A brief
description of these data sets is summarized in Table I.

B. Preprocessing

Categorical attributes were codified with a 1-of-C encoding
(the p different categories were represented with p input
variables, so that only the input variable associated to its
category is one, and all others are zero). Subsequently, all
the attributes were scaled to mean zero and variance one.

C. Activation Functions

Two different activation functions were used: logistic MLP
(2) and Gaussian RBF (3). The main reasons for choosing
these activation functions were: i) the logistic MLP activa-
tion function was originally tested in [6], and it has been
the most widely used activation function for ELMs; ii) the

TABLE I
DESCRIPTION OF THE BENCHMARK DATA SETS. #INPUTS IS THE NUMBER
OF INPUT UNITS OF THE NETWORK, AFTER CODIFYING THE #FEATURES

ORIGINAL FEATURES.

Data Set #Data #Features #Inputs #Classes
Australian 690 14 43 2
Car Evaluation 1728 6 21 4
Gene 3175 60 240 3
Ionosphere 351 34 34 2
Satimage 6435 36 36 6
Segmentation 2310 16 16 7
Sonar 208 60 60 2
Vehicle 846 18 18 4

Gaussian RBF activation function has been the most widely
used in models whose hidden-layer weights are a subset of
the data, such as SVMs. The parameters bi were set to 0
and 1 for logistic MLP and Gaussian RBF respectively (the
comparative results are expected to be independent of the
particular selection of these parameters). In order to have
more flexibility, a multiplicative positive parameter γ was
introduced. Specifically, γ multiplies the scalar product ωi · x
in logistic MLP units and the distance ||x− ωi|| in Gaussian
RBF units (γ is equivalent to bi for Gaussian RBF units, but
in this way we can work with the two activation functions in
the same manner).

D. Compared Methods
The methods compared were:
• ELM-Random (algorithm 1): ELM with random hidden-

layer weights, i.e. the original method proposed in [6],
and extended to Gaussian RBF units with the following
particular decisions:

– For MLP units, select the hidden-layer weights uni-
formly in [−1, 1].

– For RBF units, select the hidden-layer weights uni-
formly in [−1, 1] and normalize them so as to have
the same mean and variance than the training data.

• ELM-Input (algorithm 2): ELM where the hidden-layer
weights are selected from the input data as follows:

– Select a random subset of the input examples of size
Nh (the number of hidden units).

– For MLP units, normalize them to zero mean and
variance one.

– For RBF units, normalize them so as to have the
same mean and variance than the training data.

Therefore, the only difference between the two compared
methods is the selection of the hidden-layer weights: either
they are randomly generated (ELM-Random) or randomly
obtained from the input patterns (ELM-Input). Clearly, both
methods have the same computational cost. This allows to
make a fair comparison between them, since they work in the
same conditions.

E. Experimental Setting
The aim of the paper is to perform an exploratory analysis

of both methods. To this end, we constructed several models

with different number of hidden units and using training sets
of different sizes. More particularly, we constructed models
with 10, 20, 30, 40, 50, 60, 70, 80, and 90 hidden units, each
one trained with training sets of sizes 10%, 30%, 50%, 70%
and 90% of the original data set.

In order to get an adequate value for the γ parameter, which
may be problem-dependent, a search was performed with the
following values for γ: 0.001, 0.002, 0.005, 0.01, 0.02, 0.05,
0.1, 0.2, 0.5, 1.0, 2.0, 4.0, 8.0. The same search was performed
for all the models, and repeated for every activation function.

For every data set and method, therefore, we have a combi-
nation of four parameters: the activation function, the number
of hidden units, the percentage of examples in the training set
and the value of γ.

F. Model Training and Final Results

For every data set and method, every combination of pa-
rameters was trained and tested over 30 different training-test
random partitions of the whole data set. The percentage of
training examples was a parameter of the experimental setting,
as previously explained.

Let us define a configuration as a tuple composed of five
elements: data set, method (ELM-Random or ELM-Input),
activation function (logistic MLP or Gaussian RBF), number
of hidden units and percentage of examples in the training set.
For every configuration, its final result was the lowest average
accuracy in the test sets for the different values of γ.

G. Software

The experiments were performed in Matlab, based on a
publicly available version of ELM 1, modified to set the
parameters as explained in the previous sections.

H. Results

Tables II to IX show the final results (lowest average test
accuracies among all γ) for the two compared methods (ELM-
Random and ELM-Input) in the classification data sets studied
and the configurations previously described. In the tables,
underlined figures show differences between ELM-Random
and ELM-Input ranging from 2% to 5%. Bold figures indicate
differences ranging from 5% to 10%. Differences greater
than 10% are marked in bold and underlined. The standard
deviations (not shown in the tables) were, although slightly
lower for ELM-Input, quite similar for both methods. Empty
results for ELM-Input correspond to configurations where the
number of training examples was less than the number of
hidden units (see section IV-E) and therefore the ELM-Input
method described in algorithm 2 cannot compute the output-
layer weights (missing hidden-layer weights could be obtained
in different ways, but it was preferred not to change the
original algorithm 2).

In summary, the results look similar between ELM-Random
and ELM-Input in some cases and a superior performance of
ELM-Input can be appreciated in the rest. In our experiments,
ELM-Random did not obtain significantly better results than

1Available at http://www.extreme-learning-machines.org

ELM-Input for any configuration. Although we do not claim
that our results are optimal for the tested data sets, they are
competitive with the results of other popular state-of-the-art
methods (see [27], [28], for example).

In some cases (Gene, Ionosphere and Sonar), this general
trend is observed for all percentages of examples in the
training set and all number of hidden units. For the Ionosphere
data set it is more clearly observed for the Gaussian activation
function, which is the activation function that obtains better
results for this data set. For the Sonar data set, in addition,
the differences between the best results of ELM-Random and
ELM-Input among all the configurations are quite large.

For the Satimage data set, the differences between ELM-
Random and ELM-Input are more marked for small numbers
of hidden units. In other cases (Australian, Car Evaluation,
Segmentation and Vehicle), it is mostly observed when the
percentage of examples in the training set is small.

Regarding the activation function, the Gaussian RBF obtains
usually better results than the logistic MLP, but with no
significant difference of behavior between ELM-Random and
ELM-Input, except for the Ionosphere and Sonar data sets,
where the differences between ELM-Random and ELM-Input
are larger for the Gaussian RBF activation function than for
the logistic MLP one. Anyway, the results seem to indicate that
the Input strategy is superior to the Random one independently
of the activation function used.

A summary of the differences between ELM-Input and
ELM-Random is shown in Figure 1. The gray level of every
cell indicates the mean differences between the results of
ELM-Input and ELM-Random in tables II to IX: in position
(i, j) we have the mean (over all data sets and the two
activation functions tested) of the differences between the
results of ELM-Input and ELM-Random for the percentage
of training data indicated in row i and number of hidden
units indicated in column j. The main conclusion in Figure
1 is that differences are greater when the number of the
number of hidden units is small or (more remarkably) when
the percentage of examples in the training set is small. Note
that all mean differences are greater than 1.

In the experiments, the maximum number of hidden units
was fixed a priori. In some cases (see Car Evaluation, Gene,
Satimage or Segmentation for example), it seems clear that
better accuracies can be obtained if more hidden units are
allowed in the models. The experiments performed with more
hidden units (up to 500) showed a similar behavior than those
of tables II to IX, although the differences decrease when the
number of hidden units grows.

V. CONCLUSIONS AND FUTURE WORK

The main conclusion of this work is that selecting the
hidden-layer weights as a subset of the input data experimen-
tally outperforms a purely random selection for ELMs with the
same computational cost. This is more remarkably observed
when there are few examples in the training set, a conclusion
that was also observed in [22] when ELMs were compared
to SVMs. These results are also consistent with those in [29],

where it is experimentally shown that, for imbalanced data
with a small number of examples, the results obtained by
ELM-Random are highly variable. Therefore, it seems that
when the number of examples is small, selecting the hidden-
layer weights among the data should be preferred to selecting
them at random. In other cases, it can be considered as a
complement to the standard random selection for ELMs, since
it could be also possible to construct mixed models, where
random and Input weights can be selected in the same network.

In the data sets with higher number of variables (see Table
I), the aforementioned behavior was also observed for all
hidden units and all percentages of examples in the training
set. Although this could be justified by the difficulty of finding
good hidden-layer weights in a purely random manner, further
validation in future studies is needed.

As previously mentioned, one of the reasons that can justify
the better performance of ELM-Input over ELM-Random is
the fact that choosing the hidden-layer weights among the
input vectors is related to the underlying distribution of the
data, so that it is expected to obtain better candidates than
sampling them randomly (recall that the main objective in this
paper is generalization). In this sense, it would be interesting
to compare the effect of random and Input weights inde-
pendently for approximation and generalization. Intuitively,
random weights could be more suitable for approximation
since they have more flexibility. For generalization, random
weights could lead to models with larger variance that do not
compensate the potentially smaller bias.

Although it is expected that similar conclusions hold for
other ELM-based models, it should also be the subject of
future work.

ACKNOWLEDGMENT

This work was supported in part by the Ministerio de
Ciencia e Innovación (MICINN), under project TIN2016-
79576-R.

REFERENCES

[1] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press Inc., New York, 1995.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal
Representations by Error Propagation,” in Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition (vol. 1), D. E.
Rumelhart and J. L. McClelland, Eds. MIT Press, 1986, pp. 318–362.

[3] V. Kurková, “Incremental Approximation by Neural Networks,” in
Dealing With Complexity: A Neural Network Approach, M. Karny,
K. Warwick, and V. Kurková, Eds. Springer-Verlag, London, 1998,
pp. 177–188.

[4] N. I. Achieser, Theory of Approximation. Frederick Ungar Pub. Co.,
New York, 1956.

[5] G. B. Huang, L. Chen, and C. K. Siew, “Universal Approximation using
Incremental Constructive Feedforward Networks with Random Hidden
Nodes,” IEEE Transactions on Neural Networks, vol. 17, no. 4, pp.
879–892, 2006.

[6] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme Learning Machine:
Theory and Applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–
501, 2006.

[7] W. Schmidt, M. Kraaijveld, and R. Duin, “Feedforward Neural Networks
with Random Weights,” in IAPR International Conference on Pattern
Recognition Methodology and Systems, 1992, pp. 1–4.

TABLE II
FINAL RESULTS FOR THE Australian DATA SET AND THE LOGISTIC (TOP) AND GAUSSIAN (BOTTOM) ACTIVATION FUNCTIONS (LEFT/RIGHT:

ELM-RANDOM/ELM-INPUT)

Logistic 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 84.11 / 86.47 86.38 / 87.10 86.67 / 86.62 87.15 / 86.57 86.67 / 86.71 87.20 / 87.25 86.47 / 86.76 86.23 / 86.43 85.85 / 86.43
70% Training 84.56 / 85.70 87.29 / 86.84 86.46 / 86.43 85.86 / 86.04 86.38 / 85.85 85.88 / 86.10 86.05 / 85.57 85.19 / 85.44 85.33 / 85.35
50% Training 84.02 / 85.64 86.22 / 86.35 86.28 / 85.98 85.84 / 86.22 85.91 / 85.64 84.97 / 85.61 84.76 / 85.12 84.27 / 84.70 84.63 / 84.59
30% Training 83.52 / 85.41 86.22 / 85.95 85.38 / 85.64 84.84 / 85.46 84.14 / 85.05 83.91 / 84.53 82.84 / 84.00 81.58 / 83.55 80.55 / 82.89
10% Training 81.85 / 83.47 83.66 / 84.82 80.49 / 83.54 77.91 / 81.92 72.71 / 80.96 65.38 / 78.69 57.35 / – 65.19 / – 69.36 / –
Gaussian 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 84.78 / 85.99 87.05 / 87.15 87.15 / 86.62 86.71 / 87.29 87.25 / 87.05 87.10 / 87.97 86.47 / 87.58 87.29 / 87.73 86.57 / 86.91
70% Training 84.03 / 85.65 86.67 / 87.00 86.44 / 86.60 86.89 / 86.80 86.31 / 86.33 86.84 / 86.91 86.49 / 86.70 85.86 / 86.78 85.68 / 86.39
50% Training 83.57 / 85.25 86.56 / 86.62 86.38 / 86.49 86.14 / 86.21 86.10 / 86.39 85.44 / 86.17 85.61 / 86.05 85.34 / 85.63 84.74 / 85.67
30% Training 83.24 / 85.12 86.11 / 85.96 85.86 / 85.96 85.11 / 85.94 85.06 / 85.40 84.49 / 85.21 83.66 / 84.80 82.60 / 84.73 81.73 / 83.78
10% Training 82.25 / 83.93 83.94 / 84.47 81.19 / 83.72 77.93 / 82.95 73.57 / 82.34 67.40 / 81.75 64.15 / – 65.38 / – 64.94 / –

TABLE III
FINAL RESULTS FOR THE Car Evaluation DATA SET AND THE LOGISTIC (TOP) AND GAUSSIAN (BOTTOM) ACTIVATION FUNCTIONS (LEFT/RIGHT:

ELM-RANDOM/ELM-INPUT)

Logistic 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 75.99 / 75.97 84.76 / 84.39 84.55 / 84.51 84.20 / 84.78 84.22 / 84.45 84.43 / 84.51 84.82 / 84.82 84.70 / 85.51 85.03 / 84.99
70% Training 75.22 / 75.43 84.26 / 84.53 84.01 / 84.17 83.87 / 84.34 84.02 / 84.53 84.18 / 84.66 84.23 / 84.33 84.62 / 84.73 84.48 / 84.86
50% Training 75.45 / 74.79 83.95 / 83.82 83.69 / 83.92 83.44 / 83.90 83.55 / 84.12 83.72 / 84.04 83.76 / 84.32 83.84 / 84.39 84.08 / 84.69
30% Training 75.02 / 75.37 83.43 / 83.53 82.87 / 83.56 82.70 / 83.34 82.59 / 83.36 82.41 / 83.79 82.44 / 83.63 82.65 / 84.14 82.55 / 84.09
10% Training 74.46 / 74.85 81.08 / 81.36 80.06 / 81.76 79.10 / 82.03 78.07 / 82.08 77.03 / 82.14 75.69 / 82.24 75.33 / 82.22 73.40 / 82.52
Gaussian 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 75.61 / 75.24 84.24 / 83.80 83.78 / 84.43 84.76 / 84.76 85.38 / 85.09 86.84 / 86.86 87.80 / 87.34 88.59 / 88.15 89.85 / 89.85
70% Training 74.92 / 74.75 83.79 / 83.71 84.03 / 83.85 84.74 / 84.31 85.49 / 85.08 86.06 / 86.38 87.61 / 87.06 88.54 / 88.26 89.65 / 89.65
50% Training 74.94 / 74.94 83.88 / 83.49 83.58 / 83.58 84.22 / 84.06 84.85 / 85.06 86.13 / 85.71 86.75 / 86.79 88.00 / 87.75 89.08 / 88.96
30% Training 74.54 / 74.70 83.13 / 83.14 83.23 / 83.02 83.51 / 83.66 84.32 / 84.35 84.99 / 85.31 86.16 / 86.31 87.07 / 87.05 88.39 / 88.33
10% Training 74.16 / 74.70 80.96 / 80.99 80.39 / 81.78 80.88 / 81.59 80.94 / 82.42 80.90 / 82.71 81.45 / 82.81 81.22 / 83.20 81.23 / 83.48

TABLE IV
FINAL RESULTS FOR THE Gene DATA SET AND THE LOGISTIC (TOP) AND GAUSSIAN (BOTTOM) ACTIVATION FUNCTIONS (LEFT/RIGHT:

ELM-RANDOM/ELM-INPUT)

Logistic 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 57.18 / 59.95 63.14 / 68.48 69.18 / 74.03 72.64 / 78.55 77.00 / 81.83 79.78 / 85.45 82.59 / 86.26 84.75 / 88.03 86.82 / 90.07
70% Training 56.75 / 59.69 63.10 / 67.95 68.45 / 74.04 73.22 / 78.15 76.53 / 82.06 79.17 / 84.24 82.07 / 86.35 84.28 / 88.23 86.49 / 89.33
50% Training 57.08 / 59.62 62.71 / 67.47 68.06 / 74.19 73.16 / 77.93 76.10 / 81.20 79.29 / 83.96 81.54 / 86.26 83.94 / 87.33 85.97 / 88.97
30% Training 56.66 / 59.94 62.99 / 67.02 67.74 / 72.89 71.49 / 77.30 74.97 / 80.98 78.22 / 83.16 80.74 / 85.07 83.21 / 86.95 84.48 / 87.96
10% Training 55.58 / 58.41 61.08 / 65.46 65.39 / 70.94 68.42 / 74.11 71.24 / 77.26 73.87 / 78.72 75.82 / 80.46 77.15 / 81.81 78.34 / 82.41
Gaussian 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 57.74 / 60.72 64.29 / 69.97 69.79 / 75.05 74.30 / 79.50 78.13 / 82.24 81.69 / 85.05 84.52 / 87.53 85.66 / 89.10 87.71 / 90.38
70% Training 57.51 / 60.57 64.36 / 69.32 69.76 / 75.33 73.99 / 78.99 77.63 / 82.53 81.02 / 85.22 83.35 / 87.19 85.33 / 88.75 87.45 / 89.97
50% Training 57.94 / 60.67 64.33 / 68.67 69.74 / 75.44 73.63 / 79.01 77.55 / 82.72 80.21 / 84.62 82.86 / 86.75 85.02 / 88.18 86.93 / 89.61
30% Training 56.96 / 60.92 63.69 / 68.39 68.92 / 74.04 73.76 / 78.06 76.72 / 81.47 79.20 / 84.04 82.23 / 85.96 83.98 / 87.34 85.94 / 88.50
10% Training 56.28 / 59.91 61.72 / 66.58 66.55 / 72.24 69.94 / 75.83 72.52 / 78.73 75.36 / 80.33 76.75 / 81.74 78.53 / 82.89 79.42 / 83.48

TABLE V
FINAL RESULTS FOR THE Ionosphere DATA SET AND THE LOGISTIC (TOP) AND GAUSSIAN (BOTTOM) ACTIVATION FUNCTIONS (LEFT/RIGHT:

ELM-RANDOM/ELM-INPUT)

Logistic 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 82.78 / 86.76 86.94 / 88.15 88.43 / 87.78 87.50 / 88.15 87.50 / 87.59 86.20 / 87.41 88.15 / 87.50 87.59 / 86.94 86.11 / 88.43
70% Training 82.80 / 85.82 85.82 / 87.17 86.79 / 87.55 86.07 / 86.70 85.72 / 86.79 85.57 / 86.29 85.16 / 86.51 84.37 / 86.32 83.68 / 85.47
50% Training 83.43 / 85.08 85.30 / 86.88 86.16 / 86.25 85.55 / 86.10 84.53 / 85.53 84.49 / 85.27 83.11 / 84.79 82.27 / 83.98 81.40 / 83.03
30% Training 82.66 / 84.84 84.31 / 85.54 84.12 / 84.72 82.59 / 83.04 81.15 / 82.10 80.22 / 81.79 78.17 / 80.64 76.41 / 80.20 75.73 / 79.62
10% Training 78.65 / 82.45 79.07 / 79.50 73.57 / 75.01 73.60 / – 75.81 / – 78.23 / – 79.62 / – 79.28 / – 80.13 / –
Gaussian 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 82.41 / 86.20 87.13 / 88.06 87.31 / 88.98 88.98 / 91.02 88.43 / 91.20 89.17 / 90.65 88.70 / 90.65 87.59 / 92.13 87.59 / 90.74
70% Training 82.99 / 85.82 86.16 / 89.06 87.74 / 88.52 87.52 / 89.75 87.55 / 89.87 87.01 / 90.44 87.67 / 89.84 86.73 / 90.09 87.26 / 90.41
50% Training 82.80 / 85.51 85.78 / 87.48 86.52 / 88.43 86.10 / 88.71 85.63 / 88.62 85.19 / 89.13 84.70 / 88.60 83.84 / 89.00 82.88 / 88.35
30% Training 82.97 / 84.86 84.35 / 86.56 84.42 / 86.22 83.41 / 86.49 82.53 / 86.41 82.15 / 86.48 80.08 / 86.22 78.16 / 85.85 74.81 / 86.44
10% Training 79.19 / 81.48 78.55 / 81.36 72.54 / 82.20 72.19 / – 76.19 / – 76.56 / – 80.17 / – 78.64 / – 78.95 / –

TABLE VI
FINAL RESULTS FOR THE Satimage DATA SET AND THE LOGISTIC (TOP) AND GAUSSIAN (BOTTOM) ACTIVATION FUNCTIONS (LEFT/RIGHT:

ELM-RANDOM/ELM-INPUT)

Logistic 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 75.61 / 79.60 80.48 / 83.27 82.49 / 84.73 83.45 / 85.46 84.33 / 86.37 84.98 / 86.87 85.53 / 87.03 85.81 / 87.29 86.32 / 87.80
70% Training 75.76 / 79.81 80.16 / 83.47 82.24 / 84.63 83.54 / 85.52 84.29 / 85.97 84.72 / 86.77 85.33 / 87.13 85.89 / 87.39 86.27 / 87.75
50% Training 75.54 / 79.65 80.10 / 83.55 81.85 / 84.89 83.74 / 85.41 84.18 / 86.25 84.80 / 86.54 85.33 / 87.00 85.82 / 87.23 86.22 / 87.54
30% Training 75.41 / 79.99 80.00 / 83.57 82.31 / 84.45 83.11 / 85.28 84.13 / 86.06 84.67 / 86.47 85.20 / 86.85 85.66 / 87.10 85.86 / 87.33
10% Training 75.36 / 79.94 80.25 / 83.23 82.09 / 84.27 82.79 / 84.88 83.47 / 85.22 83.99 / 85.67 84.35 / 85.94 84.64 / 86.11 84.86 / 86.24
Gaussian 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 75.90 / 80.63 79.78 / 83.97 81.85 / 84.83 83.55 / 85.65 84.33 / 86.74 85.49 / 86.99 85.56 / 87.15 86.52 / 87.60 86.22 / 87.65
70% Training 76.23 / 80.64 80.25 / 83.83 81.74 / 85.01 83.48 / 85.75 84.25 / 86.21 85.10 / 86.78 85.70 / 87.34 86.19 / 87.39 86.29 / 87.63
50% Training 76.01 / 80.35 79.85 / 83.51 82.08 / 85.03 83.36 / 85.81 84.30 / 86.32 85.08 / 86.83 85.64 / 87.15 86.02 / 87.48 86.38 / 87.72
30% Training 75.18 / 80.68 80.30 / 83.84 81.92 / 85.02 83.09 / 85.70 84.23 / 86.23 84.99 / 86.55 85.55 / 86.96 85.84 / 87.23 86.19 / 87.47
10% Training 75.72 / 80.40 79.85 / 83.63 81.41 / 84.62 82.90 / 85.27 83.85 / 85.80 84.47 / 86.03 84.52 / 86.27 84.74 / 86.44 84.97 / 86.42

TABLE VII
FINAL RESULTS FOR THE Segmentation DATA SET AND THE LOGISTIC (TOP) AND GAUSSIAN (BOTTOM) ACTIVATION FUNCTIONS (LEFT/RIGHT:

ELM-RANDOM/ELM-INPUT)

Logistic 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 75.92 / 76.72 82.73 / 84.30 84.04 / 85.05 85.17 / 86.18 85.32 / 86.62 86.15 / 87.85 86.09 / 88.04 87.40 / 88.53 87.16 / 88.74
70% Training 76.43 / 77.50 82.68 / 84.02 83.75 / 85.32 84.67 / 86.12 85.11 / 86.50 85.87 / 86.90 86.43 / 87.68 86.53 / 87.77 87.45 / 88.42
50% Training 75.70 / 76.15 82.09 / 83.91 83.84 / 85.18 84.27 / 85.75 85.02 / 86.22 85.63 / 86.85 86.01 / 87.49 86.58 / 87.96 86.99 / 88.01
30% Training 75.78 / 76.30 81.86 / 83.39 83.01 / 84.85 83.68 / 85.34 84.29 / 85.60 85.03 / 86.11 85.57 / 87.07 85.69 / 87.17 86.23 / 87.36
10% Training 75.78 / 75.91 80.39 / 82.01 81.35 / 82.32 81.66 / 83.29 81.78 / 84.10 81.66 / 83.64 81.59 / 83.88 81.37 / 83.73 81.34 / 82.70
Gaussian 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 77.53 / 77.14 83.81 / 85.02 85.21 / 86.45 85.86 / 87.53 86.98 / 88.57 87.32 / 89.38 88.18 / 89.37 88.24 / 89.71 89.16 / 89.96
70% Training 78.32 / 78.45 83.60 / 84.48 84.98 / 86.15 85.73 / 87.15 86.65 / 87.94 87.37 / 88.76 87.65 / 89.11 88.30 / 89.50 88.46 / 89.88
50% Training 77.66 / 77.58 83.59 / 84.48 84.80 / 86.15 85.58 / 86.91 86.66 / 87.89 86.95 / 88.63 87.33 / 88.87 87.81 / 89.29 88.18 / 89.58
30% Training 76.98 / 78.88 83.26 / 84.08 84.25 / 85.60 85.08 / 86.71 85.77 / 87.64 86.59 / 88.15 86.85 / 88.61 86.96 / 88.71 87.26 / 89.15
10% Training 76.95 / 76.83 81.63 / 82.98 82.83 / 84.38 83.38 / 84.69 83.92 / 85.54 83.49 / 85.89 83.11 / 85.69 82.74 / 85.42 82.08 / 85.13

TABLE VIII
FINAL RESULTS FOR THE Sonar DATA SET AND THE LOGISTIC (TOP) AND GAUSSIAN (BOTTOM) ACTIVATION FUNCTIONS (LEFT/RIGHT:

ELM-RANDOM/ELM-INPUT)

Logistic 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 72.70 / 76.51 74.13 / 76.35 77.14 / 77.30 77.62 / 78.41 78.10 / 78.41 76.51 / 78.10 78.10 / 76.51 76.03 / 78.41 74.92 / 77.94
70% Training 70.38 / 75.86 75.11 / 75.54 74.84 / 75.16 74.73 / 76.02 75.11 / 74.68 73.98 / 75.00 74.41 / 76.40 73.23 / 75.00 71.99 / 75.11
50% Training 69.81 / 74.16 72.63 / 75.43 72.41 / 74.16 72.57 / 73.24 71.11 / 72.98 70.92 / 72.13 68.63 / 71.37 66.83 / 69.56 64.16 / 70.73
30% Training 67.17 / 73.29 70.57 / 73.04 68.86 / 70.73 66.58 / 68.63 64.16 / 64.91 58.36 / 59.95 60.59 / – 64.25 / – 65.73 / –
10% Training 64.83 / 68.95 57.29 / 67.79 64.17 / – 65.60 / – 65.86 / – 66.77 / – 67.81 / – 68.82 / – 67.81 / –
Gaussian 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 71.11 / 75.08 76.98 / 79.68 76.67 / 80.95 76.83 / 81.43 78.73 / 81.75 79.37 / 84.76 79.37 / 83.33 76.83 / 85.40 77.78 / 85.56
70% Training 71.40 / 75.16 73.71 / 77.53 76.34 / 79.35 75.86 / 81.08 75.75 / 83.01 76.02 / 82.96 75.54 / 85.05 75.97 / 84.73 73.71 / 85.43
50% Training 69.11 / 73.84 73.14 / 76.51 72.79 / 77.87 72.76 / 80.48 73.14 / 80.29 71.81 / 81.49 70.98 / 83.75 68.48 / 84.25 65.59 / 84.60
30% Training 67.92 / 73.36 70.41 / 75.91 68.74 / 76.62 66.28 / 79.79 64.63 / 79.34 57.74 / 81.85 62.05 / – 64.43 / – 64.06 / –
10% Training 63.16 / 71.23 57.36 / 71.30 62.41 / – 64.31 / – 65.72 / – 65.99 / – 66.19 / – 66.76 / – 66.49 / –

TABLE IX
FINAL RESULTS FOR THE Vehicle DATA SET AND THE LOGISTIC (TOP) AND GAUSSIAN (BOTTOM) ACTIVATION FUNCTIONS (LEFT/RIGHT:

ELM-RANDOM/ELM-INPUT)

Logistic 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 66.00 / 67.80 77.61 / 77.84 78.75 / 78.55 79.37 / 79.37 79.06 / 79.88 79.22 / 80.51 79.80 / 80.59 80.47 / 80.31 79.61 / 80.59
70% Training 65.22 / 67.61 76.51 / 77.56 78.39 / 78.43 78.50 / 79.20 78.75 / 79.00 78.83 / 79.16 78.54 / 79.16 78.92 / 79.66 79.06 / 79.37
50% Training 65.57 / 66.42 76.92 / 76.82 77.52 / 77.78 78.16 / 78.40 77.76 / 78.40 77.87 / 78.07 77.73 / 78.54 77.78 / 78.22 77.20 / 78.18
30% Training 63.74 / 65.88 76.12 / 76.28 76.71 / 76.66 76.17 / 76.69 75.63 / 76.82 75.34 / 76.54 74.80 / 76.11 74.74 / 75.91 74.12 / 75.27
10% Training 61.63 / 63.39 72.41 / 72.68 70.27 / 71.98 67.45 / 70.95 64.53 / 69.00 60.43 / 67.19 53.61 / 65.83 42.70 / 63.94 40.88 / –
Gaussian 10 Units 20 Units 30 Units 40 Units 50 Units 60 Units 70 Units 80 Units 90 Units
90% Training 66.59 / 66.59 78.08 / 77.45 78.39 / 78.75 80.63 / 79.69 81.33 / 81.57 82.43 / 82.24 83.76 / 82.82 83.80 / 82.24 83.69 / 83.61
70% Training 65.60 / 67.56 77.15 / 76.63 78.98 / 78.70 79.54 / 79.65 80.67 / 80.62 81.55 / 82.43 81.89 / 82.43 82.73 / 82.15 83.04 / 82.85
50% Training 64.89 / 65.97 76.78 / 75.91 78.36 / 78.28 78.51 / 78.81 79.90 / 79.86 80.33 / 80.83 80.75 / 80.86 81.45 / 81.34 81.46 / 81.71
30% Training 65.03 / 65.79 76.16 / 75.23 77.05 / 77.25 77.66 / 78.31 78.43 / 78.51 78.59 / 78.92 78.70 / 79.05 79.26 / 79.01 79.04 / 79.39
10% Training 62.30 / 63.20 72.64 / 72.30 71.56 / 72.50 70.74 / 72.69 69.01 / 72.23 63.89 / 71.12 57.04 / 69.92 46.91 / 69.70 42.89 / –

Fig. 1. Mean differences between ELM-Random and ELM-Input for the different data set and activation functions (see text for details).

[8] B. Igelnik and Y. H. Pao, “Stochastic Choice of Basis Functions in
Adaptive Function Approximation and the Functional-link Net,” IEEE
Transactions on Neural Networks, vol. 6, no. 6, pp. 1320–1329, 1995.

[9] E. Romero and R. Alquézar, “A New Incremental Method for Function
Approximation using Feed-forward Neural Networks,” in International
Joint Conference on Neural Networks, vol. 2, 2002, pp. 1968–1973.

[10] G. B. Huang, D. H. Wang, and Y. Lan, “Extreme Learning Machines:
a Survey,” International Journal of Machine Learning and Cybernetics,
vol. 2, pp. 107–122, 2011.

[11] G. Huang, G. B. Huang, S. Song, and K. You, “Trends in Extreme
Learning Machines: A Review,” Neural Networks, vol. 61, pp. 32–48,
2015.

[12] T. Y. Kwok and D. Y. Yeung, “Constructive Algorithms for Structure
Learning in Feedforward Neural Networks for Regression Problems,”
IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 630–645,
1997.

[13] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal Least Squares
Learning Algorithm for Radial Basis Function Networks,” IEEE Trans-
actions on Neural Networks, vol. 2, no. 2, pp. 302–309, 1991.

[14] P. Vincent and Y. Bengio, “Kernel Matching Pursuit,” Machine Learning,
vol. 48, no. 1-3, pp. 165–187, 2002.

[15] E. Romero and R. Alquézar, “A Sequential Algorithm for Feed-forward
Neural Networks with Optimal Coefficients and Interacting Frequen-
cies,” Neurocomputing, vol. 69, no. 13-15, pp. 1540–1552, 2006.

[16] G. Feng, G. B. Huang, Q. Lin, and R. Gay, “Error Minimized Extreme
Learning Machine with Growth of Hidden Nodes and Incremental
Learning,” IEEE Transactions on Neural Networks, vol. 20, no. 8, pp.
1352–1357, 2009.

[17] E. Romero and D. Toppo, “Comparing Support Vector Machines and
Feed-forward Neural Networks with Similar Hidden-layer Weights,”
IEEE Transactions on Neural Networks, vol. 18, no. 3, pp. 959–963,
2007.

[18] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer-
Verlag, NY, 1995.

[19] A. Coates and A. Y. Ng, “The Importance of Encoding versus Training
with Sparse Coding and Vector Quantization,” in International Confer-
ence on Machine Learning, 2011, pp. 921–928.

[20] T. Yang, Y. F. Li, M. Mahdavi, R. Jin, and Z. H. Zhou, “Nyström Method
vs Random Fourier Features: A Theoretical and Empirical Comparison,”

in Advances in Neural Information Processing Systems, vol. 25, 2012,
pp. 476–484.

[21] B. Frénay and M. Verleysen, “Using SVMs with Randomised Feature
Spaces: An Extreme Learning Approach,” in European Symposium on
Artificial Neural Networks, 2010, pp. 315–320.

[22] X. Liu, C. Gao, and P. Li, “A Comparative Analysis of Support Vector
Machines and Extreme Learning Machines,” Neural Networks, vol. 33,
pp. 58–66, 2012.

[23] E. Romero and R. Alquézar, “Comparing Error Minimized Extreme
Learning Machines and Support Vector Sequential Feed-forward Neural
Networks,” Neural Networks, vol. 25, pp. 122–129, 2012.

[24] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme Learning Ma-
chine for Regression and Multiclass Classification,” IEEE Transactions
on Systems, Man and Cybernetics, part B: Cybernetics, vol. 42, no. 2,
pp. 513–529, 2012.

[25] W. Deng, Q. Zheng, and K. Zhang, “Reduced Extreme Learning Ma-
chine,” in International Conference on Computer Recognition Systems,
2013, pp. 63–69.

[26] A. Asuncion and D. J. Newman, “UCI machine learning repository,”
2007, university of California, Irvine, School of Information and Com-
puter Science. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[27] T. Van Gestel, B. Suykens, J. A. K. Baesens, S. Viane, J. Van-
thienen, G. Ded ene, B. De Moor, and J. Vandewalle, “Benchmarking
Least Squares Support Vector Machine Classifiers,” Machine Learning,
vol. 54, no. 1, pp. 5–32, 2004.

[28] W. Duch, N. Jankowski, and T. Maszczyk, “Make it Cheap: Learning
with O(nd) Complexity,” in International Joint Conference on Neural
Networks, 2012, pp. 1–4.

[29] S. Suresh, S. Saraswathi, and N. Sundararajan, “Performance En-
hancement of Extreme Learning Machines for Multi-Category Sparse
Data Classification Problems,” Engineering Applications of Artificial
Intelligence, vol. 23, pp. 1149–1157, 2010.

