
Neural Networks 25 (2012) 122–129
Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Comparing error minimized extreme learning machines and support vector
sequential feed-forward neural networks✩

Enrique Romero a,∗, René Alquézar b
a Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Barcelona, Spain
b Institut de Robòtica i Informàtica Industrial, CSIC Universitat Politècnica de Catalunya, Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 23 June 2010
Received in revised form 16 May 2011
Accepted 16 August 2011

Keywords:
Error minimized extreme learning
machines

Support vector sequential feed-forward
neural networks

Sequential approximations

a b s t r a c t

Recently, error minimized extreme learning machines (EM-ELMs) have been proposed as a simple and
efficient approach to build single-hidden-layer feed-forward networks (SLFNs) sequentially. They add
random hidden nodes one by one (or group by group) and update the output weights incrementally to
minimize the sum-of-squares error in the training set. Other very similar methods that also construct
SLFNs sequentially had been reported earlier with the main difference that their hidden-layer weights
are a subset of the data instead of being random. These approaches are referred to as support vector
sequential feed-forward neural networks (SV-SFNNs), and they are a particular case of the sequential
approximation with optimal coefficients and interacting frequencies (SAOCIF) method. In this paper, it
is firstly shown that EM-ELMs can also be cast as a particular case of SAOCIF. In particular, EM-ELMs can
easily be extended to test some number of random candidates at each step and select the best of them,
as SAOCIF does. Moreover, it is demonstrated that the cost of the computation of the optimal output-
layer weights in the originally proposed EM-ELMs can be improved if it is replaced by the one included
in SAOCIF. Secondly, we present the results of an experimental study on 10 benchmark classification and
10 benchmark regression data sets, comparing EM-ELMs and SV-SFNNs, that was carried out under the
same conditions for the twomodels. Although bothmodels have the same (efficient) computational cost, a
statistically significant improvement in generalization performance of SV-SFNNs vs. EM-ELMs was found
in 12 out of the 20 benchmark problems.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Feed-forward neural networks (FNNs) are a popular machine
learning approach for classification and regression problems with
very interesting properties (see, for example, Bishop, 1995). As
a specific type of FNNs, the single-hidden-layer feed-forward
networks (SLFNs) play an important role in practical applications.
Since the optimal number of hidden nodes is problem dependent
and unknown in advance, users often choose the number of hidden
nodes by trial-and-error. Once the architecture is fixed, an iterative
learning algorithm such as back-propagation gradient descent is
normally applied to adjust the weights in the output and hidden
layers simultaneously.

There exist, however, FNN models that construct the network
sequentially, so that the number of hidden units is a result

✩ This work was supported in part by the Ministerio de Ciencia e Innovación
(MICINN), under project TIN2009-13895-C02-01.
∗ Corresponding author.

E-mail addresses: eromero@lsi.upc.edu (E. Romero), ralquezar@iri.upc.edu
(R. Alquézar).

0893-6080/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2011.08.005
of the learning process rather than being fixed a priori. For a
review of constructive FNNs see, for example, (Kwok & Yeung,
1997). Recently, error minimized extreme learningmachines (EM-
ELMs) have been proposed as a simple and efficient approach to
build SLFNs sequentially (Feng, Huang, Lin, & Gay, 2009). EM-
ELMs are an incremental extension of the previously presented
extreme learning machines (ELMs) (Huang, Zhu, & Siew, 2006).
Both methods use random hidden nodes and find the output
weights to minimize the sum-of-squares error in the training set
by solving a linear system of equations. The specific features of
EM-ELMs with respect to ELMs are that they add random hidden
nodes one by one (or group by group) and update the output
weights incrementally in an efficient way by taking advantage of
the incremental construction of the hidden-layer output matrix
involved in the linear system. Other recent extensions of ELMs can
be found in Liang, Huang, Saratchandran, and Sundararajan (2006)
and Miche et al. (2010).

Very similar methods that also construct SLFNs sequentially
had been reported earlier (Chen, Cowan, & Grant, 1991; Romero
& Alquézar, 2006; Vincent & Bengio, 2002). They all find the
optimal linear weights of the output layer by solving the same
linear system. In fact, the idea of adding random hidden units

http://dx.doi.org/10.1016/j.neunet.2011.08.005
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:eromero@lsi.upc.edu
mailto:ralquezar@iri.upc.edu
http://dx.doi.org/10.1016/j.neunet.2011.08.005


E. Romero, R. Alquézar / Neural Networks 25 (2012) 122–129 123
was already stated in the sequential approximation with opti-
mal coefficients and interacting frequencies (SAOCIF) algorithm
(Romero & Alquézar, 2002, 2006) as a possible strategy to be used
and, as shown in Romero and Alquézar (2006), the solution of
the linear system can be computed efficiently thanks to the incre-
mental construction of the hidden-layer output matrix. The EM-
ELMs and SAOCIF with random selection strategy can easily be
shown to be essentially equivalent (see Section 2), although it will
be demonstrated in Section 3.1 that the cost of the output-layer
weight computation described in Feng et al. (2009) is greater than
the cost of the corresponding one in SAOCIF described in Romero
and Alquézar (2006).

Another strategy proposed in Romero and Alquézar (2002,
2006) to be used within SAOCIF was to take hidden-layer weights
always as a subset of the data (input strategy). In this case, the
resulting method is equivalent to the orthogonal least squares
learning (OLSL) algorithm (Chen et al., 1991) and to kernel
matching pursuit with pre-fitting (KMP-prefit) (Vincent & Bengio,
2002). All of them select the hidden-layerweights among the input
vectors, a property shared with support vector machines (SVMs)
(Vapnik, 1995). By this reason, these approaches are referred to
as support vector sequential feed-forward neural networks (SV-
SFNNs) (Romero & Toppo, 2007).

SV-SFNNs and SVMswere compared experimentally in Romero
and Toppo (2007). Very similar accuracies were found, although
computational times were lower for SVMs. Regarding the number
of support vectors, SV-SFNNs constructed models with less hidden
units than standard SVMs and in the same range as ‘‘sparse’’
SVMs (Keerthi, Chapelle, & DeCoste, 2006). On the other hand,
EM-ELMs were compared in Feng et al. (2009) with other
sequential algorithms, namely resource allocation networks (RAN)
(Platt, 1991) and minimum resource allocation networks (MRAN)
(Yingwei, Sundararajan, & Saratchandran, 1997), as well as with
the original ELMs (Huang, Zhu et al., 2006). EM-ELMs obtained
better performance and less training time than RAN and MRAN,
and a similar performance but less training time than ELMs.

This work shows a comparison between EM-ELMs (i.e. SAOCIF
with random strategy) and SV-SFNNs (i.e. SAOCIF with input
strategy). An experimental study on 10 benchmark data sets for
classification problems and 10 benchmark data sets for regression
problems is presented in which the two methods are compared
in the same conditions and using the same software. Since both
approaches can be adjusted to have the same computational cost
(each candidate weight vector for a hidden unit is either generated
randomly or selected randomly among the input vectors), the goal
is finding out whether there is any difference in generalization
performance between EM-ELMs and SV-SFNNs. In other words,
does the use of inputs (support vectors) as hidden unit weights
provide any advantage over pure random selection?

Intuitively, the input strategy should perform better than the
random one, since the input strategy samples the weights from
the underlying distribution of the data. This information is lost in
the random strategy, that ignores the statistical properties of the
data. By contrast, the random strategy could take profit of its high
flexibility to explore areas of the space of weights that the input
strategy cannot. The growing interest in models that randomly
select the weights of the hidden units (see Feng et al., 2009; Liang
et al., 2006; Liu & Wang, 2010; Miche et al., 2010, and references
therein) makes the comparison of the input and random strategies
relevant. Moreover, it should be noted that, on one hand, EM-ELMs
have been proposed to build SLFNs as a superior alternative (due
to their simplicity, efficiency and effectiveness) to common neural
net approaches like back-propagation gradient descent (Feng et al.,
2009) and, on the other hand, input vectors are rarely used as
hidden-layer weights in SLFNs, especially in the case of additive
units (i.e. two-layer perceptrons).
2. Background

The output function of an SLFN (i.e. a fully connected FNN with
a single hidden layer of Nh units and m linear output units) can be
expressed as a linear combination of simple (basis) functions:

fNh(x) = λ0 +

Nh−
i=1

λiϕ (ωi, bi, x) (1)

where ωi ∈ Rn and bi ∈ R are the learning parameters of the
hidden units, λi ∈ Rm are the output-layer weights connecting the
i-th hidden unit to the m output units, ϕ is the activation function
of the hidden units, ϕ(ωi, bi, x) is the output of the i-th hidden unit
with respect to the input x, and λ0 ∈ Rm denotes the bias terms (if
any) of the linear output units.

Although a lot of activation functions ϕ (even not neuron alike)
can be used that allow universal approximation capability, the
more usual choices are the Gaussian RBF applied to a distance
between an input vector and a center

ϕ (ωi, bi, x) = exp

−bi‖x − ωi‖

2/2


(2)

and the sigmoid (e.g. hyperbolic tangent) applied to a scalar
product of the input and weight vectors (this will be referred to
as a sigmoid additive unit (Feng et al., 2009))

ϕ (ωi, bi, x) = tanh (ωi · x + bi) . (3)

For Gaussian RBF units, ωi ∈ Rn and bi ∈ R+ are the center and
the impact factor of the i-th RBF unit. For sigmoid additive units,
ωi ∈ Rn is the weight vector connecting the input layer to the i-th
hidden unit and bi ∈ R is the bias of the i-th hidden unit. In our
experiments presented in Section 3, a third activation function has
also been tested, the sine applied to the scalar product (i.e. a sine
additive unit)

ϕ (ωi, bi, x) = sin (ωi · x + bi) . (4)

For a given set of training examples {(xj, tj)}Lj=1 ⊂ Rn
× Rm, if

the outputs of the network are equal to the targets, we have

fNh(xj) =

Nh−
i=1

λiϕ

ωi, bi, xj


= tj, j = 1, . . . , L. (5)

Eq. (5) can be written compactly as

Hλ = T (6)

whereH is an L×Nh matrix called thehidden-layer outputmatrix of
the network


Hji = ϕ


ωi, bi, xj


, λ is anNh×mmatrix containing

the output-layer weights, and T is an L × m matrix containing the
target values in the training set. The output layer biases can be
added by including in H a first column with a fixed value of 1 (and
increasing Nh by 1).

Normally, the number of training examples L will be much
greater than the number of hidden units Nh and an exact solution
of (6) cannot be expected. Then, the usual cost function in SLFNs
(and in general in FNNs) is the sum-of-squares error

E =
1
2

L−
j=1

‖fNh(xj) − tj‖2. (7)

It is well known (e.g. Bishop, 1995) that, to minimize E, the
optimal output-layer weights can be computed as

λ̂ = HĎT where HĎ
=


HTH

−1 HT (8)

is the pseudo-inverse (or Moore–Penrose generalized inverse) of
the hidden-layer output matrix H. The sum-of-squares error can
be expressed as

E(H) =
1
2
‖Hλ − T‖2

=
1
2
‖HHĎT − T‖2. (9)



124 E. Romero, R. Alquézar / Neural Networks 25 (2012) 122–129
Fig. 1. Algorithm for EM-ELMs.
2.1. Error minimized extreme learning machines (EM-ELMs)

Huang, Chen, and Siew (2006) have shown that SLFNs with
randomweights in the hidden layer have universal approximation
capability for many different choices of the activation function,
including the ones stated in Eqs. (2)–(4). Based on this result, they
propose the ELMs learning algorithm (Huang, Zhu et al., 2006),
which can be summarized as follows:

Algorithm for ELMs: Given a set of training examples {(xj, tj)}Lj=1
⊂ Rn

× Rm, the hidden-layer activation function ϕ (ω, b, x), and
an a-priori fixed number Nh of hidden units:
(1) Randomly assign hidden-unit parameters (ωi, bi), i = 1, . . . ,

Nh.
(2) Calculate the hidden-layer output matrix H.
(3) Calculate the output-layer weight matrix λ using (8).

In order to avoid the need of setting in advance the number Nh
of hidden units and to reduce the training computational time, a
fast sequential extension of the ELMs algorithm called EM-ELMs
has been recently reported by Feng et al. (2009). The EM-ELM is
described in Fig. 1.

In the reported experiments, both ELMs and EM-ELMs sample
the random values for the weights from the uniform distribution.

2.2. Sequential approximation with optimal coefficients and interact-
ing frequencies (SAOCIF)

A rather general constructive method for SLFNs, called SAOCIF,
was proposed in Romero and Alquézar (2002, 2006). The specific
features of SAOCIF are: (i) the optimal (in a least squares sense)
output-layer weights are recalculated each time a hidden unit
is added by solving a linear equation system, and (ii) the added
hidden unit is selected among a set of candidates taking into
account its interaction with the previously added hidden units
(i.e. tominimize together the training error). The SAOCIF algorithm
is described in Fig. 2.

Note that if we set Cmax = 1 and the candidates are generated
with a random strategy, then the resulting particularization of
SAOCIF is essentially equivalent to EM-ELMs with δNk = 1 (for
all k). In this case, N in SAOCIF is equivalent to both k and Nk in
EM-ELMs.

It might be argued that EM-ELMs add hidden nodes one by one
(δNk = 1, for all k) or group by group (δNk > 1), while SAOCIF does
not mention group based addition. Although this last statement
is certainly true, it is obvious that in the original EM-ELMs
formulation adding a group of δNk > 1 hidden units is completely
equivalent to δNk additions of one hidden unit. This is because
EM-ELMs only select one candidate (Cmax = 1) for every hidden
unit. However, if several candidates per hidden unit are allowed
(Cmax > 1, something that EM-ELMs do not foresee) then it is clear
that one-by-one and group-by-group additions are not equivalent.
Anyway, it is also quite obvious that SAOCIF may work for group
addition (see Section 3.1), in the same way as EM-ELMs.

2.3. Support vector sequential feed-forward neural networks (SV-
SFNNs)

Apart from the random strategy, other possibilities are allowed
in the SAOCIF approach to generate candidates. In particular, let us
define the input strategy as the one in which the candidates are
only selected among the input examples in the training set; more
precisely, ω = xj, for some j not already used, and b is a constant
depending on the activation function (e.g. b = 1 for RBF units
and b = 0 for additive units). Then, if we set Cmax = L − N + 1
and the candidates are generated using the input strategy, the
resulting method selects the best of the input examples as the
hidden-layer weights of the new hidden unit. This method, which
has been called SV-SFNNs (Romero & Toppo, 2007), is equivalent to
the OLSL algorithm (Chen et al., 1991) and to KMP-prefit (Vincent
& Bengio, 2002). Actually, OLSL was only proposed for RBF units
andKMP-prefit for kernel-based activation functions,while SAOCIF
with input strategy permits as well any other activation function
with universal approximation capabilities (e.g. sinusoidal additive
units).

3. Comparing EM-ELMs and SV-SFNNs

This section compares EM-ELMs with SV-SFNNs and explains
the methodology followed in the experiments.

3.1. Analysis of the computational cost

The computational complexity of the algorithm for EM-ELMs
is dominated by the computation of Dk and Uk, which involves,
as intermediate steps, the computation of L × L matrices, that is



E. Romero, R. Alquézar / Neural Networks 25 (2012) 122–129 125
Fig. 2. Algorithm for SAOCIF.
expensive in terms of time and memory. Since L will normally be
much larger thanNmax, and assuming thatNk−1 > δNk, the compu-
tational cost to obtainDk andUk is O(L2 ·Nk−1). However, this com-
putation can be done with lower computational cost, as explained
next.

Defining A = HT
k−1Hk−1, v = HT

k−1δHk,u = δHT
kδHk, α =

HT
k−1T and β = δHT

kT, it is very easy to verify that

DkT =

u − vTA−1v

−1 
β − vTA−1α


= η (10)

UkT = A−1(α − vη) (11)

that is a generalization (form outputs and adding δNk hidden units
in the same step) of the incremental method described in Romero
and Alquézar (2006) for the addition of one hidden unit. To check
this, simply replace in (10) u by γ, v by a and α by b, and you will
obtain Eq. (6) in Romero and Alquézar (2006). The computation of
(10) and (11) is faster than those of the original algorithm for EM-
ELMs because its computational cost is O(L · N2

k−1).
Therefore, although the computational cost of the original

algorithms EM-ELMs and SV-SFNNs is not the same, they can be
easily made equivalent.

For Cmax > 1,A can be computed for the first candidate, kept in
memory and recovered for the rest of candidates. Therefore, the
computational cost for Cmax > 1 is lower than Cmax times the com-
putational cost for Cmax = 1. More precisely, with this optimiza-
tion the computational cost of the first iteration in the inner loop
of SAOCIF is O(L · N2

k−1), and O(L · Nk−1 · max(δNk,m)) for the rest
of iterations.

3.2. Compared methods and settings

At first, the original algorithms for EM-ELMs and SV-SFNNs can
only be directly compared if we set Cmax = 1, just because in EM-
ELMs the inner loop of SV-SFNNs (While c < Cmax) is not carried
out. However, that choice would limit the flexibility of SV-SFNNs.
Since the aim of this paper is to make a general comparison
between the random and input strategies, two settings have been
defined.

In the former, Cmax = 1, so the original EM-ELMs are confronted
with a very limited version of SV-SFNNs in which only one
randomly selected input (not the best) yields the single candidate.
In the latter, Cmax = 59, so an extended version of EM-ELMs (with
the upgrade of selecting the best random candidate among Cmax at
each step) is confronted with a not so limited version of SV-SFNNs
in which not the best of the remaining candidates but the best
of a randomly selected subset (of size Cmax) is added. The choice
of Cmax = 59 is justified because, in order to obtain a candidate
that is with probability 0.95 among the best 5% of all candidates, a
random subset of size ⌈log 0.05/ log 0.95⌉ = 59 suffices (Smola &
Schölkopf, 2000).

For every setting, the only difference resides on whether the
candidates are randomly generated or taken randomly from the
input patterns. These settings allow to make a fair comparison of
EM-ELMs and SV-SFNNs, since they work in the same conditions
and take the same computation time.

3.3. Software

We have used our own implementation in C setting the
algorithmparameters as explained in the preceding paragraph. The
optimal output-layer weights were computed using (10) and (11).

3.4. Data sets

The comparison was performed using 20 benchmark data
sets, 10 for classification and 10 for regression problems. The
classification data sets were Australian Credit, Splice-junction
Gene Sequences, German Credit, Ionosphere, Iris, Landsat Satellite
(Satimage), Image Segmentation, Sonar, Vehicle Silhouettes and
Wine, and can be found in the UCI repository (Asuncion &
Newman, 2007). The features of these data sets are summarized
in Table 1. The regression data sets were Abalone, Auto Price,
Boston Housing, California Housing, Census House, Delta Ailerons,



126 E. Romero, R. Alquézar / Neural Networks 25 (2012) 122–129
Table 1
Features of the classification benchmark data sets.

Data set #Inputs #Exa. #Classes

Australian 43 690 2
Gene 120 3175 3
German 56 1000 2
Ionosphere 34 351 2
Iris 4 150 3
Satimage 36 6435 6
Segmentation 16 2310 7
Sonar 60 208 2
Vehicle 18 846 4
Wine 13 178 3

Table 2
Features of the regression benchmark data sets.

Data set #Inputs #Exa. Target mean StdDev

Abalone 8 4177 9.93 3.22
Auto Price 15 159 11445.73 5877.85
Boston Housing 13 506 22.53 9.20
Calif. Housing 8 20640 206854.97 115395.58
Census House 8 22784 50073.10 52846.16
Delta Ailerons 5 7129 −0.000007 0.0003
Delta Elevators 6 9517 −0.000133 0.0023
Machine CPU 6 209 105.62 160.83
Servo 4 167 1.39 1.56
Stock 9 950 46.99 6.54

Delta Elevators, Machine CPU, Servo and Stock, that can be found
at http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html. The
features of these data sets are summarized in Table 2.

3.5. Methodology

• Preprocessing. Categorical attributes were converted to dummy
variables (the p different categories were represented with p
input variables, so that only the input variable associated to its
category is one, and all others are zero). The rest of the attributes
(including the target variable for regression data sets) were
scaled to mean zero and variance one.

• Random weights. In the random strategy, hidden-layer weights
were uniformly chosen within the same range of values that
the input values (after scaling). In this way, the ranges of the
hidden-layer weights were the same for both strategies.

• Activation functions. Three types were used: Gaussian RBF (2),
sigmoid additive (3) and sine additive (4) units, but with a
further multiplicative positive parameter γ introduced for a
wider search. Specifically, γ multiplies the distance ‖x−ωi‖ in
the RBF units and the scalar product ωi · x in the additive units.

• Parameters and model selection. A hidden-unit candidate weight
vector was not considered valid if the associated linear
equations system could not be solved or if the 1-norm of the
solution (the output-layer weights) was greater than a certain
valueM . This can be seen as a form of regularization.M was set
to 1024. We fixed Nmax = 99 and ϵ = 0, so that Nmax hidden
units were always added. These values were selected according
to our previous experience with these models (recall that the
aim of the experiments is to compare EM-ELMs and SV-SFNNs
under the same conditions for the two models). In order to get
an adequate value for the γ parameter, much more problem-
dependent, a search was performed ranging γ from 2−10 to 25.
The same searchwas performed for all themodels, and repeated
for every activation function.

• Model training and testing. Themethodswere trained and tested
over 30 training-validation-test different random partitions
(80% training, 10% validation, 10% test) of the whole data set.
For every configuration (defined by a given strategy, Cmax,
activation function and γ ), the networks with the lowest errors
Table 3
Comparison of average test accuracy for classification data sets—one candidate.

Data set Gaussian RBF Sine MLP Sigmoid MLP
Input Rand. Input Rand. Input Rand.

Australian 83.86 83.00 83.67 83.14 84.25 83.48
Gene 84.71 83.38 84.75 83.13 84.82 82.95
German 77.37 78.23 77.73 77.20 77.83 77.10
Ionosphere 93.87 90.19 90.10 88.67 90.19 88.67
Iris 100 99.11 100 99.78 100 99.56
Satimage 82.98 80.57 79.17 77.73 79.40 77.62
Segmentation 86.62 81.65 86.42 86.08 86.70 86.39
Sonar 89.84 80.83 77.17 76.17 77.50 75.83
Vehicle 85.48 85.52 86.11 84.80 85.87 85.20
Wine 99.61 100 99.80 100 100 100

Table 4
Comparison of average test accuracy for classification data sets—best of 59
candidates.

Data set Gaussian RBF Sine MLP Sigmoid MLP
Input Rand. Input Rand. Input Rand.

Australian 84.49 83.48 83.77 83.43 85.02 83.82
Gene 86.60 86.05 86.34 85.86 86.36 85.92
German 77.13 78.33 77.60 77.30 78.03 77.37
Ionosphere 93.90 90.67 89.52 88.67 90.00 88.83
Iris 100 100 100 100 100 100
Satimage 86.35 83.31 82.83 77.56 81.73 77.50
Segmentation 88.56 83.39 86.61 86.64 87.30 86.83
Sonar 96.50 81.83 87.67 76.67 75.00 74.17
Vehicle 86.67 85.56 86.87 86.11 86.75 86.63
Wine 100 100 100 100 100 100

in the validation subsets were selected as the final models. For
classification data sets, the accuracies of the final models were
given by the average accuracies measured in the test subsets.
For regression data sets, the performance of the final models
wasmeasured by the following normalized squared error (NSE)
(Bishop, 1995):

NSE =

K∑
j=1

‖f (xj) − tj‖2

K∑
j=1

‖t − tj‖2

,

where K is the number of examples in the test subset, f (x) is the
final model and t is themean target value in the test subset. The
sizes of the final models are defined by their average number of
hidden units.

3.6. Experimental results

Tables 3 and 4 show the average accuracies of the best final
models (among all γ ) for the two strategies (input and random) and
the three activation functions tried (Gaussian RBF, sine additive,
sigmoid additive) using the methodology previously described
for the 10 classification data sets studied. Table 3 displays the
results of the methods for Cmax = 1, where the input strategy is
fully comparable to EM-ELMs, and Table 4 displays the results for
Cmax = 59. For the 10 regression data sets studied, Tables 5 and 6
show the average NSE of the best final models for Cmax = 1 and
Cmax = 59 respectively. Tables 7–10 show the average number of
hidden units in the final models selected for each combination of
strategy and activation function for Cmax = 1 and Cmax = 59.

It can be observed that Iris and Wine data sets correspond
to easy problems that have been learned perfectly using both
strategies. For the other data sets, test results look similar between
the two strategies in some cases and a superior performance of the
input strategy can be appreciated in the rest, except for the Stock
data set. Not surprisingly, the best values for each strategy and data

http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html


E. Romero, R. Alquézar / Neural Networks 25 (2012) 122–129 127
Table 5
Comparison of average test NSE for regression data sets—one candidate.

Data set Gaussian RBF Sine MLP Sigmoid MLP
Input Rand. Input Rand. Input Rand.

Abalone 0.517 0.526 0.521 0.553 0.514 0.550
Auto Price 0.341 1.570 0.270 0.870 0.280 0.917
Boston Housing 0.725 0.726 0.941 1.166 0.871 1.162
Calif. Housing 0.344 0.369 0.367 0.367 0.367 0.366
Census House 0.404 1.070 0.484 0.580 0.457 0.502
Delta Ailerons 0.292 0.297 0.305 0.301 0.304 0.302
Delta Elevators 0.376 0.377 0.375 0.377 0.376 0.376
Machine CPU 0.364 0.404 0.358 0.394 0.330 0.378
Servo 0.214 0.248 0.228 0.329 0.246 0.337
Stock 1.689 1.689 2.023 9.883 8.897 7.796

Table 6
Comparison of average test NSE for regression data sets—best of 59 candidates.

Data set Gaussian RBF Sine MLP Sigmoid MLP
Input Rand. Input Rand. Input Rand.

Abalone 0.512 0.524 0.512 0.537 0.511 0.537
Auto Price 0.177 0.840 0.275 0.456 0.299 0.517
Boston Housing 0.657 0.620 0.762 0.898 0.745 0.921
Calif. Housing 0.332 0.345 0.368 0.366 0.369 0.365
Census House 0.383 0.508 0.425 0.528 0.403 0.470
Delta Ailerons 0.293 0.295 0.303 0.303 0.299 0.301
Delta Elevators 0.375 0.376 0.374 0.375 0.375 0.375
Machine CPU 0.299 0.348 0.370 0.385 0.345 0.380
Servo 0.158 0.206 0.185 0.289 0.171 0.300
Stock 1.714 1.608 2.896 2.147 3.318 1.807

Table 7
Average number of hidden units for classification data sets—one candidate.

Data set Gaussian RBF Sine MLP Sigmoid MLP
Input Rand. Input Rand. Input Rand.

Australian 43.53 30.33 25.17 37.40 61.33 44.90
Gene 97.07 98.87 97.40 98.60 97.20 98.00
German 40.47 43.23 44.53 33.87 36.77 36.80
Ionosphere 73.10 40.63 19.40 24.30 14.97 24.60
Iris 55.97 31.63 3.87 3.60 3.87 3.67
Satimage 95.30 96.80 97.93 97.13 95.47 97.73
Segmentation 41.53 25.90 63.10 74.30 53.40 82.07
Sonar 66.53 64.00 47.67 43.97 38.13 42.10
Vehicle 74.77 38.00 67.30 61.73 64.03 63.97
Wine 11.57 11.77 7.73 10.00 7.90 10.90

Table 8
Average number of hidden units for classification data sets—best of 59 candidates.

Data set Gaussian RBF Sine MLP Sigmoid MLP
Input Rand. Input Rand. Input Rand.

Australian 50.63 23.33 15.53 32.67 24.93 21.77
Gene 95.23 89.87 90.33 87.07 88.33 84.80
German 12.20 12.20 12.97 14.23 13.83 16.90
Ionosphere 65.73 29.03 10.40 12.10 12.53 12.67
Iris 19.13 4.50 3.87 2.97 3.97 2.77
Satimage 97.67 89.73 96.23 96.83 95.40 97.43
Segmentation 95.83 32.00 75.33 63.57 91.87 68.27
Sonar 88.27 55.43 31.17 10.57 25.13 21.13
Vehicle 81.73 37.13 44.80 50.77 58.37 54.27
Wine 4.90 7.13 5.00 6.13 5.13 6.23

set are included in Tables 4 and 6 (i.e. they have been obtained
using Cmax = 59) except, again, for the Stock data set. Note that
the low number of hidden units of the best final models for the
Stock data set (see Tables 9 and 10) is a clear indication of a strong
tendency to overfitting in this data set.

Although we do not claim that our results are optimal for the
tested data sets, they are competitive with the results of other
state-of-the-art methods (see, for example Van Gestel et al., 2004
for classification data sets and Yu, Zhou, & Ting, 2007 for regression
data sets).
Table 9
Average number of hidden units for regression data sets—one candidate.

Data set Gaussian RBF Sine MLP Sigmoid MLP
Input Rand. Input Rand. Input Rand.

Abalone 55.60 22.27 61.13 10.17 78.23 78.70
Auto Price 8.40 5.07 7.43 10.70 7.53 10.80
Boston Housing 18.57 23.23 4.03 5.00 3.80 4.50
Calif. Housing 36.40 34.13 8.10 30.17 8.67 31.43
Census House 87.67 6.00 94.70 82.80 93.03 92.20
Delta Ailerons 81.40 51.63 32.03 39.70 33.67 36.33
Delta Elevators 66.10 80.33 52.10 50.37 58.00 64.13
Machine CPU 4.33 5.73 7.63 4.97 7.50 5.17
Servo 60.43 42.27 65.67 14.40 65.50 14.57
Stock 1.07 1.07 1.80 4.53 3.20 2.97

Table 10
Average number of hidden units for regression data sets—best of 59 candidates.

Data set Gaussian RBF Sine MLP Sigmoid MLP
Input Rand. Input Rand. Input Rand.

Abalone 34.60 48.17 54.67 40.13 31.70 56.23
Auto Price 7.37 4.20 3.47 5.43 3.00 4.87
Boston Housing 11.93 14.90 1.53 2.33 1.30 8.80
Calif. Housing 88.87 54.00 7.57 19.07 7.10 14.47
Census House 95.13 37.00 96.43 36.97 91.23 78.27
Delta Ailerons 54.73 34.43 21.83 30.07 72.20 72.20
Delta Elevators 40.17 57.90 31.50 28.97 36.20 29.20
Machine CPU 5.37 3.97 5.97 3.07 5.27 3.53
Servo 61.57 21.17 54.00 32.47 57.37 30.63
Stock 4.93 1.00 1.10 2.07 1.13 1.33

In order to obtain an objective statisticalmeasure, a Student’s t-
test was applied to each data set to check if the difference between
the best mean results of the two strategies was statistically
significant (p-value = 0.05, i.e. confidence of 95%). The test was
applied to the best models obtained with Cmax = 59, which are
marked in bold (all of them are the best results for each strategy
and data set, except for the Stock data set). Results of the test
are shown in Table 11. In six of the classification data sets
(Australian Credit, Gene, Ionosphere, Satimage, Segmentation, Sonar)
and six of the regression data sets (Auto Price, California Housing,
Census House, Delta Elevators, Machine CPU, Servo) the t-test gave
a significant difference with a superior mean accuracy of the
input strategy, whereas no significant difference was found in
the other ones (German Credit and Vehicle for classification and
Abalone, Boston Housing, Delta Ailerons and Stock for regression).
Small differences (see Gene, California Housing, Delta Elevators, for
example) are sometimes more significant than larger ones (Stock,
for example) because the former have very small variances.

Although no clear trend is observed about the number of hidden
units selected by both strategies (it depends quite a lot on the
specific activation function), the input strategy seems to needmore
units than the random strategy in the case of Gaussian RBF hidden
units (this can be seen easily in Table 8). Regarding the number
of candidates, final models obtained with Cmax = 1 normally have
more hidden units than those obtained with Cmax = 59.

As a reference, the mean execution times to obtain every final
model were 58.8 s for Satimage and 99 s for Census House (carried
out in a node of a computation cluster with Intel r⃝ Xeon r⃝ CPUs at
2.66 GHz).

3.7. Discussion

There are several reasons that can explain why the input
strategy performs better than the random one, as explained next.
On the one hand, the structural riskminimization principle defines
a trade-off between the quality of the approximation to the
data and the complexity of the model (Vapnik, 1995). According
to this principle, given two models with the same empirical



128 E. Romero, R. Alquézar / Neural Networks 25 (2012) 122–129
Table 11
Student’s t-test for all data sets—best of 59 candidates and best activation function.

Data set Input Random t-test
Mean Std Mean Std p-value

Australian 85.02 1.6304 83.82 1.3237 0.002616
Gene 86.60 0.9905 86.05 0.8409 0.022246
German 78.03 1.9205 78.33 2.0398 0.559828
Ionosphere 93.90 1.9466 90.67 2.7003 0.000002
Iris 100 0.0 100 0.0 –
Satimage 86.35 0.6592 83.31 1.2996 0.000000
Segmentation 88.56 0.9289 86.83 0.8342 0.000000
Sonar 96.50 8.6253 81.83 9.6921 0.000000
Vehicle 86.87 2.3103 86.63 3.2014 0.744651
Wine 100 0.0 100 0.0 –

Abalone 0.511 0.0118 0.524 0.0348 0.053008
Auto Price 0.177 0.0619 0.456 0.3090 0.000032
Boston Housing 0.657 0.1101 0.620 0.0954 0.172238
Calif. Housing 0.332 0.0092 0.345 0.0182 0.000894
Census House 0.383 0.0045 0.470 0.0323 0.000000
Delta Ailerons 0.293 0.0057 0.295 0.0031 0.057887
Delta Elevators 0.374 0.0020 0.375 0.0020 0.023594
Machine CPU 0.299 0.0431 0.348 0.0981 0.015547
Servo 0.158 0.0308 0.206 0.0538 0.000116
Stock 1.714 0.0004 1.608 0.5498 0.298702

risk, the model with lower complexity (approximation capability)
should be preferred. In our experiments we did not observe
differences between the empirical risks of the input and random
strategies, although it is clear that the random strategy has greater
approximation capability than the input one. On the other hand,
choosing the hidden-layer weights among the input vectors is
more likely to obtain better candidates (in the sense of informative
candidates, such as prototypes, border points, etc.) than sampling
it randomly. In some sense, choosing the hidden-layer weights
among the input vectors is related to sampling the underlying
distribution.

4. Conclusions and future work

First, it has been shown that EM-ELMs can be cast as a particular
case of the SAOCIFmethod (with Random strategy) for constructing
SLFNs. The only two real differences between the original EM-
ELMs proposed in Feng et al. (2009) and the SAOCIF method with
Random strategy proposed in Romero and Alquézar (2006) are:
(i) the incremental method in which the same optimal (in a least
squares sense) output-layer weights are recalculated each time
a random hidden unit is added (or tested), and (ii) the number
of random candidates tested for each hidden unit. Regarding the
first difference, it has been demonstrated in Section 3.1 that the
cost of the computation described in Feng et al. (2009) is greater
than the corresponding one in the (generalized) method described
in Romero and Alquézar (2006). Since both methods compute
the same optimal output-layer weights, there is no problem in
using the more efficient one also for EM-ELMs, thus removing the
difference. The second difference can also be eliminated either by
restricting SAOCIF to test a single candidate at each step (as the
original EM-ELMs do) or extending EM-ELMs to test some number
of random candidates at each step and select the best of them
(as SAOCIF does). Both possibilities have been explored in the
experimental study carried out in this work.

Seemingly, a third difference between EM-ELM algorithm and
SAOCIF with Random strategy is that the former allows group
by group addition of hidden units whereas the latter does not.
However, this is not a real difference, because when a single
random candidate is used per hidden unit, adding a group of N
hidden units is completely equivalent to N additions of one hidden
unit, and SAOCIFmay also perform group addition in the sameway
that EM-ELMs. Note, however, that if several candidates per hidden
unit are allowed (something that EM-ELMs do not foresee) then
one-by-one and group-by-group additions are not equivalent. We
affirm that it is much more significant to allow several candidates
per unit in one-by-one addition than adding single-candidate units
group by group.

Second, we have claimed that an alternative sequential method
to construct SLFNs can be based on selecting the hidden-layer
weights among the input vectors in the training set. This method,
which has been referred to as SV-SFNNs (Romero & Toppo, 2007)
or SAOCIF with Input strategy (Romero & Alquézar, 2006), is
essentially equivalent to the OLSL algorithm and to KMP-prefit. In
order to assess the relative performance of both approaches (EM-
ELMs vs. SV-SFNNs) in a fair manner, an empirical study has been
realized on twenty benchmark data sets, 10 for classification and
10 for regression, under the same conditions and using the same
software.

The experimental comparison between EM-ELMs and SV-
SFNNs presented in the paper draws two interesting conclusions
that can be further investigated in future research. The first one
is that selecting the hidden-layer weights as a subset of the input
data, even if this selection is done randomly, yields better general-
ization results than selecting the hidden-layer weights in a purely
random manner from scratch (like EM-ELMs do). As discussed at
the end of Section 1, this is not an obvious result. Indeed, no sta-
tistically significant difference between the average performances
obtained by the two strategies was found in eight of the bench-
mark problems, but SV-SFNNs showed a statistically significant
improvement in generalization performance in the other twelve.
One might ask whether there is any noticeable difference between
these two groups of problems. For classification problems, data
sets with a higher number of variables (see Table 1 and imagine
for instance an arbitrary threshold of 20 inputs) were the ones in
which SV-SFNNs outperformed EM-ELMs (with the exceptions of
the German credit and the Segmentation problems). Although this
can be considered as a reasonable result, which may be justified
by the difficulty in finding adequate decision boundaries in high-
dimensional input spaces from randomly distributed hidden-layer
weights, the underlying hypothesis needs further validation in fu-
ture studies. For regression problems this trend is not so clear.

The second conclusion of the experimental study is that,
independently of the strategy used (input or random), the number
of candidates for the hidden-layer weights is a parameter that
controls the trade-off between the generalization performance, the
computational cost and the number of hidden units of the final
models. In general terms, by increasing the number of candidates
at each step of the sequential algorithm (recall that in the
originally proposed EM-ELMs this number is 1), the generalization
is improved and the final number of hidden units is reduced, at
the expense of a higher training time. However, as pointed in
Section 3.1, the computational cost of trying C candidates is lower
than C times the cost of trying a single candidate, due to the
incremental way in which the optimal output-layer weights are
calculated.

Both strategies can be further improved. The random strategy
could be modified so as to obtain the weights taking into account
the underlying distribution of the data. The input one could take
profit of sample selection methods (see Plutowski, Cottrell, &
White, 1996, for example) to select the input vectors in a better
way than randomly. In addition, regularization techniques can also
be used for both strategies.

References

Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. Uni-
versity of California, Irvine, School of Information and Computer Science.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Bishop, C. M. (1995). Neural networks for pattern recognition. New York: Oxford
University Press Inc.

http://www.ics.uci.edu/~mlearn/MLRepository.html


E. Romero, R. Alquézar / Neural Networks 25 (2012) 122–129 129
Chen, S., Cowan, C. F. N., & Grant, P. M. (1991). Orthogonal least squares learning
algorithm for radial basis function networks. IEEE Transactions on Neural
Networks, 2, 302–309.

Feng, G., Huang, G. B., Lin, Q., & Gay, R. (2009). Error minimized extreme
learning machine with growth of hidden nodes and incremental learning. IEEE
Transactions on Neural Networks, 20, 1352–1357.

Huang, G. B., Chen, L., & Siew, C. K. (2006). Universal approximation using
incremental constructive feedforward networks with random hidden nodes.
IEEE Transactions on Neural Networks, 17, 879–892.

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and
applications. Neurocomputing , 70, 489–501.

Keerthi, S. S., Chapelle, O., & DeCoste, D. (2006). Building support vector machines
with reduced classifier complexity. Journal of Machine Learning Research, 7,
1493–1515.

Kwok, T. Y., & Yeung, D. Y. (1997). Constructive algorithms for structure learning
in feedforward neural networks for regression problems. IEEE Transactions on
Neural Networks, 8, 630–645.

Liang, N. Y., Huang, G. B., Saratchandran, P., & Sundararajan, N. (2006). A fast and
accurate online sequential learning algorithm for feedforward networks. IEEE
Transactions on Neural Networks, 17, 1411–1423.

Liu, N. L., &Wang, H. (2010). Ensemble based extreme learningmachine. IEEE Signal
Processing Letters, 17, 754–757.

Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., & Lendasse, A. (2010). OP-
ELM: optimally pruned extreme learning machine. IEEE Transactions on Neural
Networks, 21, 158–162.
Platt, J. (1991). A resource-allocating network for function interpolation. Neural
Computation, 3, 213–225.

Plutowski, M., Cottrell, G., & White, H. (1996). Experience with selecting exemplars
from clean data. Neural Networks, 9, 273–294.

Romero, E., & Alquézar, R. (2002). A new incremental method for function
approximation using feed-forward neural networks. In International joint
conference on neural networks: Vol. 2 (pp. 1968–1973).

Romero, E., & Alquézar, R. (2006). A sequential algorithm for feed-forward
neural networks with optimal coefficients and interacting frequencies.
Neurocomputing , 69, 1540–1552.

Romero, E., & Toppo, D. (2007). Comparing support vector machines and feed-
forward neural networks with similar hidden-layer weights. IEEE Transactions
on Neural Networks, 18, 959–963.

Smola, A. J., & Schölkopf, B. (2000). Sparse greedymatrix approximation formachine
learning. In International conference on machine learning (pp. 911–918).

Van Gestel, T., Suykens, B., Baesens, J. A. K., Viane, S., Vanthienen, J., Ded ene, G., et al.
(2004). Benchmarking least squares support vectormachine classifiers.Machine
Learning , 54, 5–32.

Vapnik, V. N. (1995). The nature of statistical learning theory. NY: Springer-Verlag.
Vincent, P., & Bengio, Y. (2002). Kernel matching pursuit. In New methods for model

combination and model selection Machine Learning , 48, 165–187 (special issue).
Yingwei, L., Sundararajan, N., & Saratchandran, P. (1997). A sequential learning

scheme for function approximation using minimal radial basis function neural
networks. Neural Computation, 9, 461–478.

Yu, Y., Zhou, Z. H., & Ting, K. M. (2007). Cocktail ensemble for regression. In
International conference on data mining (pp. 721–726).


	Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks
	Introduction
	Background
	Error minimized extreme learning machines (EM-ELMs)
	Sequential approximation with optimal coefficients and interacting frequencies (SAOCIF)
	Support vector sequential feed-forward neural networks (SV-SFNNs)

	Comparing EM-ELMs and SV-SFNNs
	Analysis of the computational cost
	Compared methods and settings
	Software
	Data sets
	Methodology
	Experimental results
	Discussion

	Conclusions and future work
	References


