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Visual data mining with virtual reality spaces is used for the representation of data and symbolic knowl-
edge. High quality structure-preserving and maximally discriminative visual representations can be
obtained using a combination of neural networks (SAMANN and NDA) and rough sets techniques, so that
a proper subsequent analysis can be made. The approach is illustrated with two types of data: for gene
expression cancer data, an improvement in classification performance with respect to the original spaces
was obtained; for geophysical prospecting data for cave detection, a cavity was successfully predicted.
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1. Introduction

Knowledge discovery is the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable pat-
terns in data (Fayyad, Piatesky-Shapiro, & Smyth, 1996). In general,
data under study may be described in terms of collections of heter-
ogeneous properties, typically composed of properties represented
by nominal, ordinal or real-valued (scalar) variables, as well as by
others of a more complex nature, like images, time-series, etc. In
addition, the data comes with different degrees of precision, uncer-
tainty and information completeness (missing data is quite com-
mon). Patterns to discover are also of different kinds
(geometrical, logical, behavioral, etc.).

Technological advancements in recent years are enabling the
collection of large amounts of data in many fields. For example,
in the field of Bioinformatics, high-throughput microarray gene
expression experiments are possible, leading to an information
explosion. The increasing rates of data generation require the
development of data mining procedures facilitating the in-depth
understanding of the internal structure of data more rapidly and
intuitively.

The complexity of many data analysis procedures makes it more
difficult for the user to extract useful information out of results.
Classical data mining and analysis methods are sometimes difficult
to use, the output of many procedures may be large and time con-
suming to analyze, and often their interpretation requires special
expertise. Moreover, some methods are based on assumptions
about the data which limit their application, specially for the pur-
sevier Ltd. All rights reserved.
pose of exploration, comparison, hypothesis formation, etc. that
are typical of the first stages of scientific investigation.

The role of visualization techniques in the knowledge discovery
process is well known. The human brain still outperforms the com-
puter in understanding complex geometric patterns, thus making
the graphical representation of complex and abstract information
directly appealing. A virtual reality (VR) technique for visual data
mining on heterogeneous, imprecise and incomplete information
systems was introduced in Valdés (2002b, 2003). Several reasons
make VR a suitable paradigm for visual data mining: different rep-
resentation models according to human perception preferences
can be chosen, it allows immersion, it creates a living experience,
it is broad and deep, and for using VR the user needs no mathemat-
ical knowledge and no special skills.

The purpose of this paper is twofold. First, to explore the con-
struction of high quality VR spaces for visual data mining using a
combination of neural networks and rough sets techniques. Sec-
ond, to use the high quality constructed VR spaces for classification
tasks. The whole process is, in turn, divided into two steps. In the
first one, both data and symbolic knowledge are transformed into
VR spaces where their structure and properties can be visually in-
spected and quickly understood. In the second step, a proper sub-
sequent analysis is made within the constructed VR spaces with
the aim of obtaining good classification results. This latter analysis
depends on the problem at hand. The approach is illustrated with
two types of data: gene expression cancer data and geophysical
prospecting data for cave detection.

Three two-class gene expression cancer data sets were selected,
representative of three of the most important types of cancer in
modern medicine: liver, stomach and lung. They are composed of
samples from normal and tumor tissues, described in terms of tens
of thousands of variables, related to the gene expression intensities
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measured in microarray experiments. In the first step, neural net-
works for Sammon’s projection (SAMANN) (Jain & Mao, 1992; Mao
& Jain, 1995) are used for unsupervised structure-preserving map-
ping to low-dimensional feature spaces, where the corresponding
VR spaces are constructed. Despite the very high dimensionality
of the original patterns, high quality visual representations in the
form of structure-preserving virtual spaces are obtained for every
data set, which enables the differentiation of cancerous and non-
cancerous tissues: the projected 3D spaces are polarized with
two distribution modes, each one corresponding to a different
class. In the second step, linear Support Vector Machines are con-
structed in the respective projected spaces, leading to an improve-
ment in classification performance with respect to the original
spaces.

A case of geophysical prospecting for underground caves is also
studied. It is not the typical two-class presence/absence problem
because only one class is known with certainty. In contrast, this
is a problem with partially defined classes: the existence of a cave
beneath a measurement station is either known for sure or un-
known. In the first step, SAMANN and Non-linear Discriminant
Analysis (NDA) networks (Mao & Jain, 1993, 1995; Webb & Lowe,
1990) are constructed. SAMANN networks are used for unsuper-
vised mapping to low-dimensional feature spaces, obtaining high
quality structure-preserving visual representations. NDA networks
are used for supervised mapping to low-dimensional feature
spaces where objects belonging to different classes are maximally
differentiated. In the second step, the VR spaces and the NDA re-
sults allow the derivation of fuzzy cave membership function and
the prediction of unknown objects to the cave class. In one of the
areas with higher values, a borehole drilled actually hit a cavity.
Rough sets methods are applied for evaluating the information
content of the original descriptor variables and for the extraction
of symbolic rules from the data. The general properties of the sym-
bolic knowledge can be found with greater ease in the virtual real-
ity space, and the structures of the knowledge base and the data
were found to be very similar.
2. Virtual reality spaces for visual data mining

Information systems were introduced in Pawlak (1991). They
have the form S = hU,Ai where U is a non-empty finite set called
the universe and A is a non-empty finite set of attributes, such that
each a 2 A has a domain Va and an evaluation function fa. The Va are
not required to be finite. More generally, heterogeneous and incom-
plete information systems should be considered (Valdés, 2002a).

A virtual reality (VR) space for the visual representation of infor-
mation systems (Valdés, 2002b, 2003), is defined as ! ¼ hO;G;B;
Rm; go; l; gr ; b; ri. O is a relational structure composed by objects
and relations (O = hO,Cvi, Cv ¼ hcv

1 ; . . . ; cv
q i; q 2 Nþ and the o 2 O

are objects), G is a non-empty set of geometries representing the
different objects and relations. B is a non-empty set of behaviors
(i.e. ways in which the objects from the virtual world will express
themselves: movement, response to stimulus, etc.). Rm � Rm is a
metric space of dimension m (the actual VR geometric space). The
other elements are mappings: go : O ? G, l : O! Rm, gr : Cv ? G,
b : O ? B, r is a collection of characteristic functions for selecting
which of the original relations will be represented in the virtual
world. The representation of an information system bS in a virtual
world requires the specification of several sets and a collection of
extra mappings: bSv ¼ hO;Av

;Cv i, O in !, which can be done in
many ways. A desideratum for bSv is to keep as many properties
from bS as possible. Thus, a requirement is that U and O are in
one-to-one correspondence (with a mapping n : U ? O). The struc-
tural link is given by a mapping f : bHn ! Rm. If u ¼ hfa1 ðuÞ; . . .
; fan ðuÞi and n(u) = o, then lðoÞ ¼ f ðnðhfa1 ðuÞ; . . . ; fan ðuÞiÞÞ ¼ hfav
1
ðoÞ;

. . . ; fav
m
ðoÞi (fav

i
are the evaluation functions of Av).

Humans perceive much information through vision, in large
quantities and at very high input rates. The human brain is extre-
mely well qualified for the fast understanding of complex visual
patterns, and still outperforms computers. Several reasons make
VR a suitable paradigm: (i) it is flexible (it allows the choice of dif-
ferent representation models to better suit human perception pref-
erences), (ii) allows immersion (the user can navigate inside the
data, and interact with the objects in the world), (iii) creates a liv-
ing experience (the user is not merely a passive observer, but an ac-
tor in the world) and (iv) VR is broad and deep (the user may see the
VR world as a whole, and/or concentrate on specific details of the
world). Of no less importance is the fact that in order to interact
with a virtual world, only minimal skills are required (Simoff,
Bhlen, & Mazeika, 2008).

3. Neural networks for the construction of virtual reality spaces

The typical desiderata for the visual representation of data and
knowledge can be formulated in terms of minimizing information
loss, maximizing structure preservation, maximizing class separa-
bility, or their combination, which leads to single or multi-objec-
tive optimization problems. In many cases, these concepts can be
expressed deterministically using continuous functions with well
defined partial derivatives. This is the realm of classical optimiza-
tion where there is a plethora of methods with well known prop-
erties. In the case of heterogeneous information the situation is
more complex and other techniques are required (see, for example
(Valdés, 2004; Valdés & Barton, 2005)).

In the unsupervised case, the function f mapping the original
space to the VR (geometric) space Rm can be constructed as to
maximize some metric/non-metric structure preservation criteria
(Lee & Verleysen, 2007) as is typical in multidimensional scaling
(Borg & Lingoes, 1987), or minimize some error measure of infor-
mation loss (Sammon, 1969). A typical error measure is:

Sammon Error ¼ 1P
i<jdij

X
i<j

ðdij � fijÞ2

dij
ð1Þ

where dij is a dissimilarity measure between any two objects i, j in
the original space, and fij is another dissimilarity measure defined
on objects i, j in the VR space (the images of i, j under f). Usually,
the mappings f obtained using approaches of this kind are implicit
because the images of the objects in the new space are computed
directly. However, a functional representation of f is highly desir-
able, specially in cases where more samples are expected a poste-
riori and need to be placed within the space. With an implicit
representation, the space has to be computed every time that a
new sample is added to the data set, whereas with an explicit rep-
resentation the mapping can be used to compute directly the im-
age of the new sample. As long as the incoming objects can be
considered as belonging to the same population of samples used
for constructing the mapping function, the space does not need
to be recomputed. Neural networks are natural candidates for con-
structing explicit representations due to their universal function
approximation property. If proper training methods are used, neu-
ral networks can learn structure-preserving mappings of high
dimensional samples into lower dimensional spaces suitable for
visualization (2D, 3D). Such an example is the SAMANN network.
This is a feedforward network and its architecture consists of an
input layer with as many neurons as descriptor attributes, an out-
put layer with as many neurons as the dimension of the VR space
and one or more hidden layers. The classical way of training the
SAMANN network is described in Jain and Mao (1992) and Mao
and Jain (1995). It consists of a gradient descent method where
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the derivatives of the Sammon error are computed in a similar
way to the classical backpropagation algorithm. Different from
the backpropagation algorithm, the weights can only be updated
after a pair of examples is presented to the network. As previously
mentioned, the advantage of using SAMANN networks is that,
since the mapping f between the original and the VR space is ex-
plicit, a new sample can be easily transformed and visualized in
the VR space. The same networks could be used as non-linear fea-
ture generators in a preprocessing step for other data mining pro-
cedures. A recent application of SAMANN networks for data
visualization can be found at Dzemyda, Marcinkevičius, and
Medvedev (2011).

In the supervised case, a natural choice for representing the f
mapping is an NDA neural network (Mao & Jain, 1993, 1995; Webb
& Lowe, 1990). The NDA network is also feedforward with an input
layer with as many neurons as descriptor attributes, an output
layer with as many neurons as classes contain the decision
attribute, a last hidden layer with a number of neurons equal to
the dimension of the VR space and optionally other hidden layers.
The NDA network is trained in a standard way (Mao & Jain, 1993,
1995) to minimize the mean squared error.

4. Support vector machines for classification

Support vector machines (SVMs) for classification can be de-
scribed as follows (Vapnik, 1995): the input vectors are mapped
into a (usually high-dimensional) inner product space through
some non-linear mapping /, chosen a priori. In this space (the fea-
ture space), an optimal separating hyperplane is constructed. By
using a (positive definite) kernel function K(u,v) the mapping be-
comes implicit, since the inner product defining the hyperplane
can be evaluated as h/(u),/(v)i = K(u,v) for every two vectors
u;v 2 RN . In the SVM framework, an optimal hyperplane means a
hyperplane with maximal normalized margin for the examples of
every class (the normalized margin is the minimum distance to
the hyperplane). When the data set is separable by a hyperplane
(either in the input space or in the feature space), the maximal nor-
malized margin hyperplane is called the hard margin hyperplane.
When the data set is not separable by a hyperplane (neither in
the input space nor in the feature space), some tolerance to noise
is introduced in the model, associated to a parameter C that allows
to control the trade-off between the margin and the errors in the
data set. By setting C =1, the hard margin hyperplane is obtained.

To fix notation, consider the classification task given by a data
set X = {(x1,y1), . . . , (xL,yL)}, where each instance xi belongs to the in-
put space RN , and yi 2 {�1,+1}. Using Lagrangian and Kuhn–Tucker
theory, the maximal margin hyperplane, for a binary classification
problem given by a data set is a linear combination of simple func-
tions depending on the data:

fSVMðxÞ ¼ bþ
XL

i¼1

yiaiKðxi; xÞ ð2Þ

where the vector ðaiÞLi¼1 is the (1-norm soft margin) solution of the
following constrained convex optimization problem:

Maximizea

XL

i¼1

ai �
1
2

XL

i;j¼1

yiaiyjajKðxi; xjÞ

subject to
XL

i¼1

yiai ¼ 0 ðbias constraintÞ

0 6 ai 6 C i ¼ 1 . . . L:

ð3Þ

The points xi with ai > 0 (active constraints) are named support
vectors. The most usual non-linear kernel functions K(u,v) are Gauss-
ian, polynomial or wavelet kernels (Ozer, Chen, & Cirpan, 2011).
5. Symbolic knowledge via rough sets and its representation
with virtual reality

The rough set theory (Pawlak, 1991) bears on the assumption
that in order to define a set, some knowledge about the elements
of the data set is needed, in contrast to the classical approach
where a set is uniquely defined by its elements. In the rough set
theory, some elements may be indiscernible from the point of view
of the available information and knowledge is understood to be the
ability of characterizing all classes of the classification (Peters,
Lingras, Śle�zak, & Yao, 2012).

A decision table is any information system of the form S = hU,Ai
where A = A0 [ {d}, A0 are the condition attributes and d is the deci-
sion attribute. The lower approximation of a concept consists of all
objects, which surely belong to the concept, whereas the upper
approximation consists of all objects, which possibly belong to
the concept. For any B # A an equivalence relation IND(B) defined
as IND(B) = {(x,x0) 2 U2j"a 2 B, fa(x) = fa(x0)}, is associated. A reduct
is a minimal set of attributes B # A such that IND(B) = IND(A)
(i.e. a minimal attribute subset that preserves the partitioning of
the universe). The set of all reducts of an information system S is
denoted RED(A) (reduct computation is NP-hard, and several heu-
ristics have been proposed (Thangavel & Pethalakshmi, 2009;
Wróblewski, 2001)). Reduction of knowledge consists of removing
superfluous partitions such that the set of elementary categories in
the information system is preserved, in particular, with respect to
those categories induced by the decision attribute. Minimum re-
ducts (those with a small number of attributes) are extremely
important, as decision rules can be constructed from them (Bazan,
Skowron, & Synak, 1994). The algorithms for computing reducts
and rules used in this paper are those of the Rosetta system
(Øhrn & Komorowski, 1997).
6. Experiments with gene expression cancer data sets

According to the World Health Organization, cancer is a leading
cause of death worldwide (http://www.who.int/cancer/en). From
a total of 58 million deaths in 2005, cancer accounts for 7.6 million (or
13%) of all deaths. The main types of cancer leading to overall cancer
mortality are (i) lung (1.3 million deaths/year), (ii) stomach (almost 1
million deaths/year), (iii) liver (662,000 deaths/year), (iv) colon
(655,000 deaths/year) and (v) breast (502,000 deaths/year).

6.1. Data sets description

Three microarray gene expression cancer databases were se-
lected, representative of three of the most important types of can-
cer in the world: liver, stomach and lung cancer. They share the
typical features of these kind of data: a small number of samples
(in the order of tens) described in terms of a very large number
of attributes (in the order of tens of thousands), related to the gene
expression intensities measured in microarray experiments.

6.1.1. Liver Cancer
The data were those used in Lam et al. (2006), where zebrafish

liver tumors were analyzed and compared with human liver tu-
mors. First, liver tumors in zebrafish were generated by treating
them with carcinogens. Then, the expression profiles of zebrafish
liver tumors were compared with those of zebrafish normal liver
tissues using a Wilcoxon rank-sum test. The original database
had 20 samples (10 normal,10 tumor) and 16,512 attributes. As a
result of this comparison, a zebrafish liver tumor differentially ex-
pressed gene set consisting of 2315 gene features was obtained.
This data set was used for comparison with human tumors. The re-
sults suggest that the molecular similarities between zebrafish and

http://www.who.int/cancer/en


Table 1
Parameters used for the SAMANN networks with cancer data sets.

Parameters Liver

Neurons in the hidden layer {10,30}
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human liver tumors are greater than the molecular similarities be-
tween other types of tumors (stomach, lung and prostate). The data
can be found at http://www.ncbi.nlm.nih.gov/projects/

geo/gds/gds_browse.cgi?gds=2220.

Weights ranges {(10,5), (10,10), (15,5)}
Learning rates {(.1, .01), (.2, .01), (.2, .02)}
Momentum {0, .5, .7}
Number of iterations {200,500,1000}
Random seed Four different values
Presented pairs at every iteration (All,50,100)

Parameters Stomach

Neurons in the hidden layer {10,30}
Weights ranges {(10,5), (10,10), (15,5)}
Learning rates {(.5, .1), (1, .1), (2, .1)}
Momentum {0, .5, .7}
Number of iterations {200,500,1000}
Random seed Four different values
Presented pairs at every iteration (All,50,200)

Parameters Lung

Neurons in the hidden layer {10,20}
Weights ranges {(50,5), (50,10), (60,5)}
Learning rates {(.005, .0005), (.01, .001), (.02, .002)}
Momentum {0, .5, .7}
Number of iterations {200,500,1000}
Random seed Four different values
Presented pairs at every iteration (All,50,200)
6.1.2. Stomach cancer
The data were those used in Hippo et al. (2002), where a study

of genes that are differentially expressed in cancerous and noncan-
cerous human gastric tissues was performed. The original database
contained 30 samples (22 tumor,8 normal) that were analyzed by
oligonucleotide microarray, obtaining the expression profiles for
6936 genes (7129 attributes). Using the 6272 genes that passed a
prefilter procedure, cancerous and noncancerous tissues were suc-
cessfully distinguished with a two-dimensional hierarchical clus-
tering using Pearson’s correlation. However, the clustering results
used most of the genes on the array. To identify the genes that
were differentially expressed between cancer and noncancerous
tissues, a Mann–Whitney’s U test was applied to the data. As a re-
sult of this analysis, 162 and 129 genes showed a higher expression
in cancerous and noncancerous tissues, respectively. In addition,
several genes associated with lymph node metastasis and histolog-
ical classification (intestinal,diffuse) were identified. The data can
be found at http://www.ncbi.nlm.nih.gov/projects/geo/

gds/gds_browse.cgi?gds=1210.
6.1.3. Lung cancer
The data were those used in Spira et al. (2004), where gene

expressions of severely emphysematous lung tissue (from smokers
at lung volume reduction surgery) and normal or mildly emphyse-
matous lung tissue (from smokers undergoing resection of pulmon-
ary nodules) were compared. The original database contained 30
samples (18 severe emphysema,12 mild or no emphysema), with
22,283 attributes. Genes with large detection P-values were filtered
out, leading to a data set with 9336 genes, that were used for subse-
quent analysis. Nine classification algorithms were used to identify a
group of genes whose expression in the lung distinguished severe
emphysema from mild or no emphysema. First, model selection
was performed for every algorithm by leave-one-out cross-valida-
tion, and the gene list corresponding to the best model was saved.
The genes reported by at least four classification algorithms (102
genes) were chosen for further analysis. With these genes, a two-
dimensional hierarchical clustering using Pearson’s correlation
was performed that distinguished between severe emphysema
and mild or no emphysema. Other genes were also identified that
may be causally involved in the pathogenesis of the emphysema.
The data can be found at http://www.ncbi.nlm.nih.gov/pro-
jects/geo/gds/gds_browse.cgi?gds=737.
Table 2
Statistics of the best 1000 SAMANN networks obtained for cancer data sets.

Data set Sammon error

Minimum Maximum Mean Std. dev.

Liver 0.03991 0.05564 0.04988 0.00362
Stomach 0.06295 0.07745 0.07286 0.00335
Lung 0.07924 0.10784 0.09469 0.00698
6.2. Experimental settings

Data preprocessing. For stomach and lung data, each gene was
scaled to mean zero and standard deviation one (original data were
not normalized). For liver data, no transformation was performed
(original data were already normalized).

Model training. For every data set, one-hidden layer SAMANN
networks were constructed to map the original data to a 3D VR
space. The Euclidean distance was the dissimilarity measure used
in the original (dij) and the VR (fij) spaces. The activation functions
were sinusoidal for the hidden layer and hyperbolic tangent for the
output layer. A collection of models was obtained by varying some
of the network controlling parameters (Table 1), for a total of 1944
SAMANN networks for every data set.
6.3. Results

6.3.1. Visualization of SAMANN Results
For every data set, we constructed the histograms of the Sam-

mon error for the obtained networks. The empirical distributions
were positively skewed (with the mode on the lower error side),
which is a good behavior. In addition, the general error ranges were
small. In Table 2 some statistics of the experiments are presented:
minimum, maximum, mean and standard deviation for the best
(i.e., with smallest Sammon error) 1000 networks.

Clearly, it is impossible to represent a VR space on printed med-
ia (navigation, interaction, and world changes are all lost). There-
fore, very simple geometries were used for objects and only
snapshots of the virtual worlds are presented. For simplicity, in
all of the VR-spaces presented G = {dark spheres, light spheres},
B = {static} and the l function is based on the representation of f gi-
ven by a SAMANN network. r is a single characteristic function for
the relation C with the equivalent classes such that objects of one
class will be represented as dark spheres and those of the other
class by light ones.

Figs. 1–3 show the VR spaces corresponding to the best ob-
tained networks for the liver, stomach and lung cancer data sets,
respectively. Although the mapping was generated from an unsu-
pervised perspective (i.e., without using the class labels), objects
belonging to different classes were represented in the VR space dif-
ferently for comparison purposes. Transparent membranes wrap
the corresponding classes, so that the degree of class overlap can
be easily observed. In addition, the wrapping allows one to look
for particular samples with ambiguous diagnostic decisions.

The low values of the Sammon error indicate that the spaces pre-
served most of the distance structure of the data, therefore giving a
good indication of the distribution in the original spaces. The three

http://www.ncbi.nlm.nih.gov/projects/geo/gds/gds_browse.cgi?gds=2220
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Fig. 1. VR space of the liver cancer data set (Sammon error = 0.03991, best out of
1944 experiments). The space was generated from an unsupervised perspective, but
classes are displayed for comparison purposes. Dark spheres: normal, light spheres:
cancerous samples.

Fig. 2. VR space of the stomach cancer data set (Sammon error = 0.06295, best out
of 1944 experiments). The space was generated from an unsupervised perspective,
but classes are displayed for comparison purposes. Dark spheres: normal, light
spheres: cancerous samples.

Fig. 3. VR space of the lung cancer data set (Sammon error = 0.07924, best out of
1944 experiments). The space was generated from an unsupervised perspective, but
classes are displayed for comparison purposes. Dark spheres: severe emphysema,
light spheres: mild or no emphysema. The boundary between the classes in the VR
space seem to be a low curvature surface.
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VR spaces are clearly polarized with two distribution modes, each
one corresponding to a different class. Note, however, that classes
are more clearly differentiated for the liver and stomach data sets
than for the lung data set, where a certain level of overlap exists.
The reason for this may be that mild and no emphysema were con-
sidered members of the same class (see section 6.1).

Since the distance between any two objects is an indication of
their dissimilarity, a new point is more likely to belong to the same
class of its nearest neighbors. In the same way, outliers can be readily
identified, although they may result from the space deformation
inevitably introduced by the dimensionality reduction.
Table 3
Best leave-one-out cross-validation results for linear SVMs (C =1) with cancer data
sets for original (left) and projected (right) data.
6.3.2. Classification results with SVMs
Since the projected spaces are polarized with two distribution

modes, each one corresponding to a different class, a linear classifica-
tion model is suitable from a supervised perspective. In our case, SVMs
were used to that end, as explained next.

First, for every data set we obtained Sammon-projected data
with dimension values ranging from 3 to 20. For every dimension,
2500 Newton minimization procedures were applied varying the
initial point and the step size to obtain implicit representations
of the original data. Similar to SAMANN networks, the Euclidean
distance was the dissimilarity measure used in the original (dij)
and the VR (fij) spaces. The representations with smallest Sammon
error were selected. Then, for every dimension, a leave-one-out
cross-validation was performed to the projected data with hard
margin linear SVMs (C =1).

Table 3 shows the best leave-one-out cross-validation perfor-
mances obtained for every projected data set, together with the re-
sults obtained with the original dimensions. As it can be seen,
classification performance improves in the projected spaces (with
a very low dimension).

7. Experiments with geophysical prospecting data

The proposed approach was applied to the detection of under-
ground caves with geophysical data. Cave detection is a very
important problem in civil and geological engineering. Sometimes
the caves are opened to the surface, but typically they are buried
and geophysical methods are required to detect them. This task
is usually very complex.

7.1. Data set description

The studied area contained an accessible cave (see Fig. 8 right).
Geophysical methods complemented with a topographic survey
were used in the studied area with the purpose of finding their
relation with subsurface phenomena (Valdés & Gil, 1982).

The set of geophysical methods included (1) the spontaneous
electric potential (SPdry) at the surface of the earth in the dry



Table 4
Parameters used for the SAMANN and NDA networks with the cave-prp-data set.

Parameters SAMANN

Neurons in the first hidden layer {20,30,40}
Weights ranges {(10,5), (10,10), (15,15)}
Learning rates {(3.0,1.5), (2.0,1.0), (1.0,0.5)}
Momentum {0, .1, .2}
Number of iterations 200
Random seed Four different values
Presented pairs at every iteration All

Parameters NDA

Neurons in the first hidden layer {20,30,40,50,60}
Weights ranges ({.1, .5,1,3,5,7,9},1.0)
Learning rates .001,.001,.001
Momentum {.1, .2, .3}
Number of iterations {1000,2000,3000}
Random seed Four different values
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season, (2) the vertical component of the electro-magnetic field in
the VLF region of the spectrum, (3) the spontaneous electric poten-
tial in the rainy season (SPrain), (4) the gamma ray intensity (Rad)
and (5) the local topography (Alt). The raw data consist of these
5 fields (the attributes) on a spatial grid containing 1225 measure-
ment stations (the data objects).

This is not the typical two-class presence/absence problem be-
cause only one class is known with certainty. In contrast, this is a
problem with partially defined classes: the existence of a cave be-
neath a measurement station is either known for sure or unknown.
Note, however, that this is not a one class problem, because two
different classes exist. Since the classes are partially defined, a com-
bination of unsupervised and supervised approaches is required.

7.2. Experimental settings

Data preprocessing. In order to eliminate the data distortion
introduced by the different units of measure and to reduce the influ-
ence of noise and regional geological structures, a data preprocess-
ing process was performed consisting of: (i) conversion of each
physical field to standard scores. (ii) model each physical field f as
composed of a trend, a signal and additive noise: f(x,y) = t(x,y) +
s(x,y) + n(x,y) where t is the trend, s is the signal, and n is the noise
component. (iii) fit a least squares 2D linear trend t̂ðx; yÞ ¼
c0 þ c1xþ c2y and obtain the residual: r̂ðx; yÞ ¼ f ðx; yÞ �t̂ðx; yÞ. (iv)
convolve the residual with a low pass 2D filter to attenuate the noise
component: ŝðx; yÞ ¼

PN
k1¼�N

PN
k2¼�N hðk1; k2Þr̂ ðx� k1; y� k2Þ, where

ŝðx; yÞ is the signal approximation, and h(k1,k2) is the low-pass zero-
phase shift digital filter. (v) recompute the standard scores and add a
class attribute indicating whether there is a known cave below the
corresponding measurement station or if its presence is unknown.
The pre-processed data will be called cave-prp-data.

Reducts from the original data set. The cave-prp-data set was
discretized using the boolean reasoning algorithm and the reducts
were found by Johnson’s algorithm (Øhrn & Komorowski, 1997). A
single reduct was found, consisting of all of the 5 original variables,
proving that no proper subset of these variables exactly preserves
the discernibility relation of the original data. That is, no lower
dimensional space based on the power set of the original variables
is discernibility-preserving. Thus, lower dimensional spaces based
on non-linear combinations must be constructed for visualization.

Model training. A collection of experiments was conducted
with one-hidden layer SAMANN networks in order to select ade-
quate models for the visualization. Two-hidden layer NDA net-
works were used to construct a space where objects belonging to
different classes are maximally differentiated. The activation func-
tions were sinusoidal for the first hidden layer and hyperbolic
tangent for the rest of the layers. For the SAMANN networks, the
Euclidean distance was the dissimilarity measure used in the origi-
nal (dij) and the VR (fij) spaces. A collection of models was obtained
by varying some of the network controlling parameters (Table 4),
for a total of 1260 for the NDA and 324 for the SAMANN networks,
respectively.
7.3. Results

7.3.1. Visualization of SAMANN Results
SAMANN networks mapped the original cave-prp-data 5-

dimensional space to a 3D VR-space from an unsupervised per-
spective. The distribution of the Sammon error is shown in Fig. 4.

It is skewed towards the smaller errors end, which is a good
behavior, with a mean of 0.0229 and a standard deviation of
0.0013 indicating that error values fluctuate within a narrow
range. As an illustration, the VR-space corresponding to experi-
ment 135 is shown in Fig. 5.
The low value of the Sammon error indicates that the space pre-
served most of the distance structure of the data, therefore, giving
a good idea about the distribution in the original space. The space
is clearly polarized with two distribution modes: one at the left
hand side composed exclusively of cave objects, and another at
the right hand side composed only of unknown objects. Since the
distance between any two objects is an indication of their dissim-
ilarity, objects of the unknown class closer to objects of the cave
class are more likely to correspond to measurement stations hav-
ing underground cavities than objects further away. In particular,
those objects of the unknown class contained within the convex
hull defined by the objects of the cave class are very interesting.
It is also evident that only a smaller proportion of the objects of
the unknown class are either contained, or close to the convex hull
of the cave class, as expected from the typical lognormal-like dis-
tribution of many geological features.

A hierarchical clustering using Euclidean distance and Ward’s
method (Anderberg, 1973) (Fig. 6) clearly reveals the existence of
two well defined clusters.

Their nature is explained by the 2�2 contingency table defined
by the membership with respect to the cave/unknown classes vs.
those corresponding to the two clusters emerging from the den-
drogram. The table has a highly significant v2 value (165.872),
indicating the high degree of association between the existing clas-
ses (specially the cave class) and the formed clusters. Cluster 2 cor-
responds to the cave class containing 120 of the 121 cave objects
and 419 unknown objects (likely candidates to belong to the cave
class). Clearly, those in cluster 1 correspond to locations less likely
to have underground cavities beneath.
Cluster 1
 Cluster 2
 Total
Unknown
 685
 419
 1104

Cave
 1
 120
 121
7.3.2. Visualization of NDA results and cave membership function
A structure preserving space is not necessarily class-discrimi-

nating and conversely. In a supervised situation, the information
available from the decision attribute is used for constructing a
space where objects belonging to different classes are maximally
differentiated. NDA networks were used for that purpose. The dis-
tribution of the classification error for the cave class is shown in
Fig. 4 (right) (the only determined class in the problem). The distri-
bution exhibits a skewed-multimodal characteristic with the
important modes shifted towards smaller error values (a good fea-
ture). Several networks have 0% classification error for the cave



Fig. 4. Left: distribution of the SAMANN error (324 experiments) using SAMANN networks with the cave-prp-data set. Right: distribution of the classification error of the cave
class (1260 experiments) using NDA networks.

Fig. 5. VR-space of the cave-prp-data set corresponding to experiment 135
(Sammon error = 0.0208). Objects of the cave class are dark. Objects of the unknown
class are light (this is for comparison purposes only, since the mapping generating
the space is unsupervised). Transparent membranes wrap the corresponding
classes.

Fig. 6. Dendrogram of the objects in the VR-space of Fig. 5 for the cave-prp-data set
(Ward’s method using Euclidean distance).

Fig. 7. VR-space maximizing class separability for the 1225 objects in the cave-prp-
data set according to the ðu � PÞ function. The classification error of the cave class is
0%.
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class and a representative of them is the one found in experiment
174.

A VR-space was built from a composition of the mapping func-
tion (u) represented by that network, with a principal components
transformation (P) given by f ¼ ðu � PÞ (Fig. 7).

The intrinsic dimensionality of this space is very close to one,
and its shape indicates an almost linear continuum within and be-
tween the two classes. Conceptually, the objects at the two ex-
tremes represent the maximum expression of a cavehood
property, and its opposite, the maximum expression of being solid
rock, in geological terms. In between there is a gradation of the
cavehood property, which is actually a fuzzy concept. Let om 2 O
be the object of the VR-space satisfying the property
ððu � PÞðomÞÞpc1

6 ððu � PÞðoÞÞpc1
for all o 2 O and let oM be the ob-

ject such that d(om,oM) > = d(om,o) for all o 2 O, where d is the
Euclidean distance and pc1 is the first principal component. Then,
a two dimensional membership function lc 2 [0,1] for caveness
can be constructed as lc(o) = (1 � (d(om,o)/d(om,oM))). Note that
although a supervised approach was used, this formulation is
based only on the information about the known class. The distribu-
tion of l within the investigated area is shown in Fig. 8 (left).

The behavior of l depicts a very consistent and realistic geolog-
ical pattern, where not only the known cave is correctly flagged
with maximal membership values, but also defines a collection of
halos around the known cave with progressively decreasing values.
In addition, other smaller areas with medium to high values are
indicated, suggesting locations where other underground cavities
could be expected. In particular, a borehole drilled at a location
within the white circle of Fig. 8 (left) actually hit a cavity.

7.3.3. Visualization of symbolic knowledge
Symbolic knowledge in the form of production rules was ex-

tracted from the cave-prp-data set using rough set techniques, as
explained in Section 5. Structure preserving VR-spaces represent-
ing an information system with rules as objects can be constructed
by minimizing the Sammon error (1). In this case the dissimilarity
measure used for the original attributes was dij ¼ ð1� ŝijÞ=ŝij,
where ŝij is Gower’s similarity coefficient (Gower, 1971). The
Euclidean distance was the measure used for fij in the VR space.
A set of 345 rules were generated. Two representative examples
are:

SPdryð½�0:16981; �ÞÞ & VLFð½�0:75462; �ÞÞ &

SPrainð½0:48744; �ÞÞ & Radð½�0:21015; �ÞÞ &

Altð½0:00346; �ÞÞ ) unknown ð123 objectsÞ

SPdryð½�;�1:50209ÞÞ & VLFð½�;�1:14882ÞÞ &

SPrainð½�;�0:46789ÞÞ & Radð½�;�1:54413ÞÞ &

Altð½�;�1:22398ÞÞ ) cave ð6 objectsÞ



Fig. 8. Right: map of the known cave. Left: fuzzy membership function lc of the
cave class computed from the VR-space obtained from the NDA network (Extreme
values: white = 1, black = 0). The white circle indicates the area where a borehole
hit a cavity, not opened to the surface.

Fig. 9. Left: VR-space with a representation of the 345 rules for the cave-prp-data
set. Right: VR-space with the 231 most representative rules (sizes are proportional
to the amount of similar rules at a given location). Dark objects: rules concluding
about the cave class. Light objects: rules concluding about the unknown class.
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The approach described in Valdés (2002b, 2003) for the con-
struction of VR-spaces representing symbolic knowledge in the
form of production rules was applied and the corresponding space
is shown in Fig. 9 (left). When compared with Fig. 5 it is clear that
the structures of the knowledge base and the data are very similar.
An even clearer distribution is obtained if the rule base is pre-pro-
cessed with the Leader clustering algorithm (Hartigan, 1975) in or-
der to select representatives for subsets of similar rules and work
with a smaller information system.

Such a space is shown in Fig. 9 (right) where the relative size of
an object at a particular location in the VR-space is proportional to
the number of similar rules within its neighborhood (therefore, of
data concentration in the original feature space).

This allows an easy identification of the most general rules from
the more specific ones and also of knowledge granules. From the
point of view of the distribution of the most important objects,
the space is strongly polarized, allowing the identification of the
rules describing the properties of the physical fields more accu-
rately identifying the presence of underground caves and also the
properties of the fields characterizing the areas most likely com-
posed of solid rock. At the same time it allows the identification
of the knowledge related with those objects of undetermined nat-
ure (i.e. from the undefined class).
8. Conclusions and future work

A combination of neural networks and rough set techniques
was used for constructing virtual reality spaces for visual data min-
ing suitable for representing data and symbolic knowledge. Good
neural network models were found with the use of distributed
computing techniques, that were used as mapping functions to
produce high quality VR spaces where the properties of data and
symbolic knowledge can be revealed.

For microarray gene expression cancer data sets, the obtained
results show that a few non-linear features can effectively capture
the similarity structure of the data and also provide a good differ-
entiation between the cancer and normal classes. Linear support
vector machines constructed in projected spaces lead to an
improvement in classification performance. However, in cases
where the descriptor attributes are not directly related to class
structure or where there are many noisy or irrelevant attributes
the situation may not be as clear. In these cases, feature subset
selection and other data mining procedures could be considered
in a preprocessing stage.

Problems with partially defined classes can be approached suc-
cessfully by combining unsupervised and supervised techniques. A
method for constructing membership functions in problems with
partially defined classes is proposed which can be used as a fore-
casting tool, as illustrated with an example from geophysical pros-
pecting. This approach can be extended to multiclass problems
with partially defined classes.
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