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Abstract— The development, implementation and use of
computer-based medical decision support systems (MDSS)
based on pattern recognition techniques holds the promise
of substantially improving the quality of medical practice in
diagnostic and prognostic tasks. In this study, the core of a
decision support system for brain tumour classification from
magnetic resonance spectroscopy (MRS) data is presented. It
combines data pre-processing using Gaussian decomposition,
dimensionality reduction using moving window with variance
analysis, and classification using artificial neural networks
(ANN). This combination of techniques is shown to yield
high diagnostic classification accuracy in problems concerning
diverse brain tumour pathologies, some of which have received
little attention in the literature.

I. INTRODUCTION

Decision making in neuro-oncology is a sensitive
undertaking. In this area, in which most diagnostic
techniques must be non-invasive, clinicians may benefit
from the second opinion provided by automated computer-
based MDSS. The availability of such second opinion
may reduce the inherent uncertainty in the diagnosis and
prognosis of tumours and, thus, facilitate medical practice

[1].

This study addresses the problem of human brain tumour
diagnosis from the biological signal obtained by MRS. This
is a signal in the frequency domain that peaks at specific
frequencies or frequency bands most of which are known
to correspond to the resonances of specific chemical and
biochemical components of the tissue. The wave profile is
an indication of the quantities in which the components
are present. Therefore, those substances that are present in
big quantities in the tissue will have higher peaks asso-
ciated than those present in lower concentrations. In this
study, we analyze a set of MRS data from the multi-centre,
international INTERPRET database [2]. We do so using
several methodologies that involve signal processing, feature
selection and classification, namely and in turn: Gaussian
Decomposition (GD) to transform the signal in terms of
coefficients of amplitude, standard deviation, and translation
[3]; moving window with variance analysis (MWVA) [4] for
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feature selection; and ANN classifiers with Bayesian regu-
larization [5]-[7].The proposed combination of techniques
is shown to yield high diagnostic classification accuracy for
a broad range of brain tumour pathologies, some of which
have seldom been analyzed in this setting.

II. ANALYZED DATA

This study relies on a database created under the frame-
work of the European project INTERPRET [2], an interna-
tional collaboration of centers from four different countries.
The database includes a set of single-voxel proton MRS
(SV 'H MRS), measured at short time of echo (STE: 273
patients). A total of 195 frequency intensity values (measured
in parts per million (ppm), an adimensional unit of relative
frequency position in the data vector), were considered for
analysis. Class labeling was performed according to the
World Health Organization (WHO) system for diagnosing
brain tumours by histopathological analysis of a biopsy
sample. The analyzed spectra are part of this database, and
include the classes listed in Table I: nine tumour pathologies,
plus abscesses and normal brain tissue.

TABLE I
ANALYZED CLASSES FROM THE INTERPRET DATABASE

Tumour class Number of cases

a2: Astrocytomas, grade 1T 22
a3: Astrocytomas, grade III 7
ab: Brain abscesses 8
gl: Glioblastomas 86
ly: Lymphomas 10
me: Metastases 38
mm: Meningiomas grade I 58
no: Normal cerebral tissue, white matter 22
oa: Oligoastrocytomas grade II 6
od: Oligodendrogliomas grade II 7
pn: Primitive neuroectodermal tumours

and medulloblastomas 9

III. METHODOLOGY AND RESULTS

A. Gaussian Decomposition

Given the nature of the analyzed spectral signals, which
are the combination of several sources, it is reasonable
to address the problem of their processing through GD
(illustrated in Fig. 1). In GD, we assume that a segment
of spectral signal (delimited by the [A1, Ao] interval) can be
modeled as:
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where P = {A, k,u}, k = —1/202, and P € R" contains
the amplitude (A), standard deviation (o), and translation
(u) of each one of the n Gaussians.

If we let Y; = F(z;, P) be the observed function and
Y; = F(x;, P), the estimated function, GD attempts to solve
the optimization problem

min (o)) =3 (v, - ¥,(P))’

7j=1

3)

So, the goal is finding the P that minimizes o(P),
evaluated over all the m measured wavelengths z;. For
this, plenty of deterministic optimization methods (e.g.
Powell, Flectcher-Reeves, Dandon, Levenberg Marquardt,
Nadler, etc.) and non-deterministic ones (e.g. ANN, Genetic
Algortihms, Differential Evolution, etc.) are available [8].

To minimize P, we used the Levenberg-Marquardt (LM),
Trust-Region Dogleg (TR) and Gauss-Newton (GN) [9]
methods, aiming to find the algorithm that best adjusts the
spectral signal with Gaussians functions. Different tests, not
reported here for the sake of brevity, were carried out to
evaluate the performance and accuracy of the fitting. These
tests showed TR was the best choice to fit our signals.

Top: Ilustration of MR spectra: mean =+ standard deviation of

D
2

B. Selection of the Optimal Number of Gaussians

There is no general consensus about which methodology
is the most adequate to decompose and select the optimal
number of Gaussians in the signal fitting process [10], due
to the many aspects of the problem to be considered (e.g.
fitting technique, algorithms, methods to choose the starting
points, etc.).

In order to choose a criterion for the choice of this
optimal number, an illustrative experiment with 5 artificial
Gaussians was carried out. These Gaussians were added,
resulting in one single signal, which was then fitted with
an increasing number of Gaussians, up to 20 (i.e. the first
fitting is done with one Gaussian, the second with two,
and so on, until fitting with 20 Gaussians). In each trial ¢
of the reconstruction, the fitting signal Yi, formed with 7
gaussians, was compared with the original signal Y through
different quality measures: Mean Square Error (MSE),
Power Distortion (PD) and Energy Preservation (EP), with
results reported in figure 2.
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Fig. 2. MSE, EP and PD of the artifitial signal generated, and fitted with
a maximun of 20 gaussians

These results indicate that neither MSE nor PD have
monotonically decreasing trends (which is plausible because
the signal was generated with a given small number of
Gaussians). In addition, the selection of starting parameters
(initial P) may lead to convergence to local minima. To
avoid this problem, the fitting should be performed with
as many trials as possible, and increasing in each trial the
number of Gaussians, with different starting points. Figure 2
shows that the PD is 24.12% when 5 Gaussians were used
to fit the spectra, whereas a PD of 0.00028% was obtained
when 14 Gaussians were used. Therefore, the algorithm
requires a redundant number of Gaussians to obtain adequate
parameter estimates. Performing the fitting with a redundant
number of Gaussians results in a precise estimation of the
original parameters, while the less relevant Gaussians are left
with very small amplitude, standard deviation and translation
values, a situation that has also been observed in previous
work [10].
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C. Filtering and Baseline Correction

The quality of the decomposition can be improved by
adjusting the baseline and filtering the spectra. The TR
algorithm is robust enough for fitting a signal with two
Gaussians, but the method does not yield adequate results
when the signal is potentially composed of a large number
of Gaussians. Typical inadequate results include negative
magnitudes for the spectra and signal distortion, resulting
in the loss of relevant information and misclassification.
Because of this, baseline adjustment was performed to
those spectra with original negative magnitudes, adding the
absolute value of the minimum value found in each one.

As a pre-processing stage, a half-band wavelet filtering
was performed using the Biorthogonal 3.3 mother wavelet.
The adequacy of this mother wavelet has been shown in a
previous study, where it achieved a decomposition of the
spectra with the minimum number of coefficients, while
keeping the MSE to a minimum and yielding the highest
signal-to-noise ratio and the lowest PD [11]. Figure 3 ex-
emplifies this process with a brain tumour spectrum, which
was fitted using baseline correction and wavelet filtering.
The TR algorithm was applied with the following settings:
a) the starting values of the translation p,, defining the
center of each Gaussian, were equally spaced in each trial;
b) each initial Gaussian amplitude A, was computed as the
average of those 3 consecutive sample values closer to the
associated translation value; and c) the starting value of
standard deviation 9, was set to 1.

Original Signal
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Fig. 3. Top: original example MR spectrum. Middle: reconstructed signal
without preprocessing. Bottom: reconstructed signal with the pre-processing
procedure described in the main text (filtering and baseline correction).

Since each MRS in the study has a total of 195
clinically relevant frequency intensity values, and there
are 3 coefficients (amplitude, standard deviation and
translation) to describe each Gaussian, the maximum

number of Gaussians allowed by the algorithm, for a given
spectrum, is 65. For each trial (that is, for each of the
reconstructions with a different number of Gaussians), the
statistics MSE, PD and EP were computed, taking the
minimum PD of the 65 trials for each spectrum as the
representative solution. The mean (£ standard deviation)
of the obtained PD was 8.09 &+ 11.95 for fittings of raw
data, while a PD of 3.87 + 1.88 was obtained for fittings of
pre-processed data. This result illustrates the better accuracy
of the pre-processing procedure followed by the Gaussian
Decomposition method to fit the spectra.

The individual area of each Gaussian in the trial with
minimum PD was computed. These areas were subsequently
ranked in descending order. The ranked Gaussians were then
added sequentially, reconstructing the spectra and calculating
the MSE after each addition. The differentials in MSE
between consecutive samples were computed and normal-
ized, so as to produce a maximum value of 100%. The
addition of Gaussians stopped when the differential MSE
improvement was lower than 1%, and the remaining ones
were eliminated. The MSE for the complete MRS data set
before this selection of Gaussians resulted in a mean =+
standard deviation of 0.14 & 0.30; the corresponding values
after it were 0.16 £ 0.31, suggesting that the reconstruction
of the signal was not significantly affected by this process.

D. Dimensionality Reduction and Classification

Having pre-processed the MR spectra through GD, and
after reconstructing the signal using an adequate number of
Gaussians, two vectors with the values of amplitude and
standard deviation of each Gaussian were created. These
values were positioned at the coordinates of the translations
of their corresponding Gaussian. The cardinality of these
vectors (lower than the 195 of the original spectra) was then
set to 195 by setting to zero the values corresponding to
translations other than those of the Gaussians. This proce-
dure also served to identify repetitions in the translations
(by repetition here we understand two translations within
the same integer interval). When one such a repetition in
translation was identified, the lowest of both translations
was moved the closest lower integer value, whereas the
highest of both was moved to the closest higher integer
value, thus avoiding the overlapping. Having re-arranged the
data this way, feature selection was carried out using the
MWVA technique [4], [11], from the re-scaled amplitude
and standard deviation vectors. A modification of MWVA
was implemented, with the dissimilarity index matrix (DIM)
obtained in each experiment. This was accomplished by
concatenating the amplitude and standard deviation DIM’s.
Once the new DIM was obtained, feature selection was
carried out using the energy criterion described in [4].

E. Classification and Results

Classification problems in the context of this study
are binary in nature (one tumour class against another,
as multiple-class approaches are hindered by the limited
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number of MRS cases available; also, and as remarked in
[12], in medical practice, doctors frequently face situations
of doubt between two alternative diagnosis, that is, two
types of tumour).

Feed-forward ANNs were used in the classification
experiments, starting from the features selected and
extracted following the procedures described in the previous
sections. Different ANN architectures, with between 5 and
40 units in the single hidden layer, were employed. Given
that all classifications are binary, one unit in the output layer
does suffice. In order to avoid data overfitting, the networks
were trained with Bayesian regularization [5] as part of
a back-propagation process. The adaptive weights and
biases were updated according to the Levenberg-Marquardt
algorithm [13].

One run of a 5-fold cross-validation was performed for
each network, allowing a maximum of 500 epochs. Table
IT summarizes the results for 20 classification experiments,
where G1 (low-grade gliomas) is the union of tumour types
a2, oa and od, and G2 (high-grade malignant tumours) is the
union of tumour types gl and me. Several quality indicators
are reported, including the accuracy (ACC), and the area
under the ROC curve (AUC), for the concatenated (CO)
DIMs. Most classification problems yield very accurate
results, with the worst ones being for diagnostic problems
of well-known difficulty, such as me vs. gl, or G1 vs. G2.

TABLE 11
MEAN == STANDARD DEVIATION OF AUC AND ACCURACY VALUES FOR
ALL CLASSIFICATION EXPERIMENTS.

FExperiments CO Accuracy CO AUC
G1vs G2 87.35 £8.45 | 0.91+£0.08
G1 vs mm 89.75+£9.78 | 0.99 £0.03

a2 vs a3 96 £+ 8.94 1.00 £ 0.00
a2 vs G2 91.8+0.18 0.96 + 0.07
a2 vs ly 100£0 1.00 £ 0.00
a2 vs oa 96 4+ 8.94 1.00 £ 0.00
a3 vs pn 86.67 & 18.26 | 1.00 £ 0.00
G2 vs mm 88.13£6.86 | 0.94 £0.04
gl vs a3 94.92 £5.26 | 1.00 £ 0.00
gl vs ab 97.42 £3.54 | 1.00 £ 0.00
gl vs ly 96.25 £ 3.42 | 0.99 £0.03
gl vs me 779+ 237 0.87 £0.10
gl vs no 96.67 £3.04 | 0.99+0.03
gl vs pn 98.75 + 2.8 1.00 + 0.00
me vs ly 90 £+ 10.46 1.00 + 0.00
me vs mm 95+ 8.15 0.99 4+ 0.02
me vs no 100+ 0 1.00 £ 0.00
me vs pn 100 £0 1.00 + 0.00
mm vs ab 98.18 £4.07 | 1.00 £ 0.00
od vs a2 96 4+ 8.94 1.00 £+ 0.00

IV. CONCLUSIONS

In this study, the Gaussian Decomposition signal process-
ing technique was used to break down a given MR spectrum

into its component coefficients of amplitude, standard devia-
tion and translation of its constituent tones. These coefficients
of the constituents tones, which can be associated to specific
metabolites, in conjunction with the axis of transforma-
tion and the the concatenation of amplitude and standard
deviation DIM’s, yielded encouraging results in terms of
diagnostic discriminatory binary classification. These results
are of special relevance for experiments involving tumour
types seldom dealt with in the existing literature, such as ly
or pn.
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