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Machine Learning (ML) and related methods have of late made significant contributions to solving

multidisciplinary problems in the field of oncology diagnosis. Human brain tumor diagnosis, in

particular, often relies on the use of non-invasive techniques such as Magnetic Resonance Imaging (MRI)

and Spectroscopy (MRS). In this paper, MRS data of human brain tumors are analyzed in detail.

The high dimensionality of the MR spectra makes difficult both their classification and the

interpretation of the obtained results, thus limiting their usability in practical medical settings. The use

of dimensionality reduction techniques is therefore advisable. In this work, we apply feature selection

methods and several off-the-shelf classifiers on various 1H-MRS modalities: long and short echo times

and an ad hoc combination of both. The introduction of bootstrap resampling techniques permits the

obtention of mean performance estimates and their variability. Our experimental findings indicate that

the feature selection process enhances the classification performance compared to using the full set of

features. We also show that the use of combined information from the different echo times is a better

strategy for small numbers of spectral frequencies; however, the use of ever greater numbers of short

echo time frequencies permits the obtention of many models with similar performance. The final

induced models offer very attractive solutions both in terms of prediction accuracy and number of

involved spectral frequencies, which are also amenable to metabolic interpretation. A linear

dimensionality-reduction technique that preserves class discrimination capabilities is used for

visualizing the data corresponding to the selected frequencies.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Over the last decade, ML has made significant inroads in the
fields of bioinformatics and biomedicine. One particular applica-
tion area that has attracted the attention of both medical
practitioners and data analysts is that of human oncology [1]. In
this work we are specifically interested in quantitative informa-
tion in the form of patients’ biological signals. We analyze data
corresponding to different types of human brain tumors, obtained
by single-voxel proton magnetic resonance spectroscopy
(1H-MRS), with the purpose of developing reliable tools for the
support of medical expert diagnostic decision making. Decisions
in this area are extremely sensitive and are usually based on
information obtained by non-invasive measurement techniques.

The analyzed data belong to a multi-center international
database that contains cases of a number of brain tumor
ll rights reserved.

he-Muñoz).
pathologies [2]. MRS provides a detailed metabolic fingerprint of
the tumor-affected tissue that varies according to the echo time of
the acquisition and can be used to characterize these pathologies.
The echo time is a relevant parameter of 1H-MRS measurement,
given that, at short-echo times (SET), some of the metabolites are
better resolved—although numerous overlapping resonances
exist, making the spectra difficult to interpret [3]. The use of a
long echo time (LET) yields less clearly resolved metabolites but
also less baseline distortion, resulting in a more readable
spectrum.

The available data have been acquired both at SET and LET and
bundled into three groups or super-classes as described below;
they are scarce and of high dimensionality, making their
discrimination a non-trivial undertaking. Therefore, the need
arises for the use of dimensionality reduction methods (feature
selection and/or extraction) in order to reduce the overall
complexity of the problem. We use an entropic filtering algorithm
for feature selection as a fast method to generate relevant subsets
of spectral frequencies. An in-depth feature selection study is
performed, not only in LET and SET data, but in a combination of

www.elsevier.com/locate/neucom
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both echo times. Bootstrap resampling techniques are used to
yield mean performance estimates and their variability, and thus
a more reliable measure of predictive ability. The combination of
feature selection and classification aims at obtaining simple
models (in terms of low numbers of features) capable of good
generalization.

We report experimental results that support the practical
advantage of combining robust feature selection and classification
in this application, as accurate classification is obtained with
parsimonious and interpretable subsets of spectral frequencies.
We also aim to progress in the comparison of performances for
MRS data acquired at different echo times, as well as in the
comparison of these with data that combine both echo times.

Of special importance in a practical medical setting is the
interpretability of the solutions in terms of these spectral
frequencies, something that limits the applicability of methods
such as PCA or ICA (whose solutions involve weighted combina-
tions of frequencies, instead of individual frequencies). Moreover,
even if interpretable by mere inspection of the involved features,
the final selection of spectral frequencies may still provide few
clues about the structure of the classes (tumor types). In this
medical context, data visualization in a low-dimensional repre-
sentation space may become extremely important, as it would
help radiologists to gain insights into this complex and highly
sensitive domain. A linear dimensionality reduction technique
that provides a data projection—while preserving the class
discrimination achieved by a classifier—is also used in our study.
The goal of combining feature selection and visualization is to
increase the intuitive interpretability of the classifier results.
2. Literature review

Early attempts to study 1H-MRS data in assessing human brain
tumors in vivo can be traced back two decades [4]. This pioneering
research showed that spectra corresponding to normal brain
spectra and tumors differ significantly in terms of the presence/
absence of different metabolites. Even though no ML analysis of
spectra was done in establishing these differences, it was
concluded that 1H-MRS may help to differentiate tumors for
diagnostic and therapeutic purposes, limiting the need for
invasive and risky diagnostic procedures such as biopsies. This
same line of research was followed by several other studies, e.g.
[5–8]. Further work has shown that it is possible to employ ML
techniques successfully for the diagnosis and grading of adult
brain tumors [9], and for distinguishing between different brain
tumor pathologies [10,11]. As explained in the introduction,
1H-MRS data can be acquired at different echo times. There are
few studies comparing the classification potential of different data
acquisition modalities, and the existing ones give, overall, a slight
advantage to using SET information (see e.g. [3,12]). Only recent
works have attempted to use the information contained in both
echo times simultaneously [13,14].

Previous work analyzing the same LET 1H-MRS data used in
this study resorted to PCA followed by a linear discriminant (LDC)
to distinguish only between high-grade malignant tumors and
meningiomas, obtaining a mean AUC (area under the ROC curve)
of 0.94, using the first 6 principal components (PC) and a (2/3, 1/3)
train/test partition repeated 200 times [11]. The same method
was used to distinguish between high-grade malignant tumors
and astrocytomas Grade II (part of the low-grade gliomas super-
class described in Section 3.1), obtaining a mean AUC of 0.92, also
using the first 6 PCs. Two drawbacks of PCA in this setting are that
all the spectra may participate in the PCs, and the fact that the
linear combination may mix both positive and negative weights,
which might partly cancel each other. A further disadvantage is
the lack of physical meaning of the extracted components. In [9],
LDC with 6 spectral frequencies (3.72, 3.04, 2.31, 2.14, 1.51 and
1.20 ppm) achieved a 83% of correct classification on one
independent test set, this time using exactly the same three
super-classes that we have analyzed in this study.

For SET data alone, previous existing work analyzing the same
1H-MRS data using 10 PCs obtained at most 85% of correct
classification [10]. In the task of separating high-grade malignant
tumors from meningiomas, a mean AUC of 0.95, (slightly better
than that for LET) with 4 PCs was achieved, and a mean AUC of
0.97 with 3 PCs for separating high-grade malignant tumors from
astrocytomas Grade II [11]. In this study it is was also reported
that kernel-based methods present good results even without any
feature reduction, but in general there are no significative
differences among the classification techniques. In [9], LDC with
5 spectral frequencies (3.76, 3.57, 3.02, 2.35, 1.28 ppm) yielded
89% accuracy in an independent test set.

In one of the first studies to explicitly compare LET and SET
information [3], it was found that SET yielded better results
(81% of accuracy with LDC) than LET (78%), in agreement with
[11]. From this setting, a natural step forward is the combination

of echo times, as a way to boost classification results. A recent
such investigation, using PCA and Relief [15] to reduce dimen-
sionality, reported experimental results (using LDC) achieving
88.7% of accuracy, using between 12 and 22 spectral frequencies;
with LET only, 82.50% using between 7 and 14 frequencies; and
with SET only, 88.82% using between 5 and 11 frequencies [12].

In previous work by the authors, the 1H-MRS LET data were
analyzed with the purpose of obtaining classification models
showing good generalization ability after a strong dimensionality
reduction process [16]. In the present study we are interested in
performing a more in-depth feature selection study in both LET
and SET types of data by the introduction of bootstrap resampling
techniques as well as confidence intervals for generalization error.
It is important to point out that LET and SET spectral points are
considered as two separate sets of features. Specifically, we are
interested in assessing which spectral representation (LET, SET or
their combination) is the most adequate for prediction purposes.
As stated in the introduction, the final goal is the obtention of a
reduced set of spectral frequencies that can be amenable to
visualization and interpretation for radiologists or oncologists.
3. Materials and methods

3.1. The 1H-MRS data

1H-MRS is by no means a novel technique for the exploration
of the brain, but its use for the routine diagnostic examination of
brain abnormal tissue is far for standard in clinical practice.
Among the reasons to explain this situation is that a simple visual
interpretation of 1H spectra does not easily lead to a clear
diagnosis. Moreover, few radiologists (to whom the diagnostic
decision pertains) are trained to use and make sense of this
technique [17]. Instead, they often resort to magnetic resonance
imaging (MRI) for diagnostic characterization. MRI has excellent
spatial resolution but bad frequency resolution. On the contrary,
single-voxel 1H-MRS has poor spatial resolution but excellent
frequency resolution, making it a rich source of metabolic
information.

The echo time is an influential parameter in 1H-MRS spectra
acquisition. In SET spectra (20–40 ms) some metabolites are
better resolved (e.g. lipids, myo-inositol, glutamine and gluta-
mate). However, there may be numerous overlapping frequencies
(e.g. glutamate/glutamine at 2.2 ppm and NAA at 2.01 ppm),
making metabolic interpretation difficult [3]. The use of LET
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Fig. 1. Example mean spectra for a long echo time 1H-MRS data set.
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(270–288 ms) yields less clearly resolved metabolites but also less
baseline distortion, resulting in a more readable spectrum. An
example of a long echo time 1H-MRS data set is depicted in Fig. 1.

The analyzed 1H-MRS data were extracted from a database [2]
resulting from the International Network for Pattern Recognition of

tumors Using Magnetic Resonance (INTERPRET) European research
project. For details on data acquisition and processing, and on
database characteristics, please refer to [18] and [2]. Pathology
(class) labeling was performed according to the World Health
Organization (WHO) system for diagnosing brain tumors by
histopathological analysis of a biopsy sample. The three data sets
are detailed as follows:
�
 217 SET (PRESS 30–32 ms) single voxel 1H-MR spectra
acquired in vivo from brain tumor patients. They include 58
meningiomas (mm), 86 glioblastomas (gl), 38 metastases (me),
22 astrocytomas grade II (a2), 6 oligoastrocytomas grade II
(oa), and 7 (SET) and 5 (LET) oligodendrogliomas grade II (od).

�
 195 LET (PRESS 135–144 ms) single voxel 1H-MR spectra

acquired in vivo from brain tumor patients. They include 55
meningiomas (mm), 78 glioblastomas (gl), 31 metastases (me),
20 astrocytomas grade II (a2), 6 oligoastrocytomas grade II
(oa), and 5 oligodendrogliomas grade II (od).

�
 195 items built by combination (through concatenation) of

single voxel 1H-MR spectra measured at two echo times (SET
and LET). We call LSET the combined LET plus SET 1H-MRS data
set.

In the experiments included in this study, spectra were bundled
into three groups or super-classes, namely: G1: low grade gliomas

(a2, oa and od); G2: high grade malignant tumors (me and gl); and
G3: meningiomas (mm). Only the clinically relevant regions of the
spectra were analyzed. They consist of frequency intensity values
measured in parts per million (ppm), an adimensional unit of
relative frequency position in the data vector, starting at
4.25 ppm. These frequencies become the data features in all cases.

3.2. Entropic filtering

Information-theoretic measures have been used with success
as a criterion for feature selection in ML tasks (see e.g. [19] for a
recent compilation). Specifically, mutual information measures
the mutual dependence of two random variables. In this work we
use this concept embedded in a fast algorithm that computes the
mutual information between a subset of variables and the class
variable by generating first a ‘‘super-feature’’, obtained consider-
ing the concatenation of each combination of possible values of its
forming features. In symbols, let X ¼ fX1; . . . ;Xng be the original
feature set and consider a subset t¼ ft1; . . . ; tkg. A single feature
Vt can be obtained uniquely, whose possible values are the
concatenations of all possible values of the features in t (for
completeness, define V| ¼ |). The conditional entropy between Vt
and the class feature Y is then:

HðY jt1; . . . ; tkÞ ¼HðY jVtÞ ¼�
X

vAVt

X
yAY

pðv; yÞlog
pðv; yÞ

pðyÞ
: ð1Þ

Proceeding in this way, mutual information can be determined
as a simple bivariate case: IðVt;YÞ ¼HðYÞ�HðY jVtÞ. An index of

relevance of the feature XiAX to a class Y with respect to a subset
t� X is given by

RðXi;Y jtÞ ¼
IðXi;Y jVtÞ
HðY jVtÞ

¼
HðY jVtÞ�HðY jXi;VtÞ

HðY jVtÞ
: ð2Þ

This measure RðXi;YjtÞ can be regarded as a conditioned
coefficient of constraint [20,21]. It takes values between zero
(no relevance) and one (maximum relevance). This way of
calculating feature subset relevance is used to evaluate subsets
of spectra, embedded into a filter forward-search strategy,
conforming the Entropic Filtering Algorithm or EFA (Algorithm 1).
The use of the super-feature allows faster computations, that are
not essential for its understanding. A detailed implementation can
be found in [22].

Algorithm 1. Entropic Filtering

F’|
repeat

Z’arg max
Xi AX\F

fRðXi;Y jFÞg

F’F [ fZg

������
until RðZ;Y jFÞ ¼ 1 or F¼ X;

The algorithm outputs a collection of solutions Fi of the same
size. This is because, in the last step of the loop, there may be
more than one possibility of reaching maximum relevance. In this
study it was decided to generate them all and choose that solution
S with minimum redundancy, by defining the function:

I ðFÞ ¼
X

aabAF

Iða; bÞ ð3Þ

and setting S¼ argminFi
I ðFiÞ. Note that no normalization is

necessary, given that all the summations in (3) have the same
number of terms.

In order to apply Algorithm 1, a discretization process is
needed. Many dimensionality reduction studies use discretization
schemes as a way to favor classification tasks (such as [23,24]).
This change of representation does not often result in a significant
loss of accuracy (sometimes significantly improves it); it also
offers large reductions in learning time. The CAIM algorithm [25]
is a discretization method that analyzes possible cut-points by
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computing a metric that measures the interdependence between
the target class and the discretized feature. It is herein selected
because it is able to work with supervised data and does not
require the user to specify the number of intervals for each
feature.

3.3. The bootstrap

Bootstrap methods can be used to select the best model
according to a certain prediction criterion [26]. Usually, model
selection is associated with parameter estimation and the bootstrap
samples can be used for both model selection and inference applied
to the selected model [27]. Bootstrap methods are also well-suited
for the construction of standard error estimates and confidence
intervals (CI) when sample size is small, as in our case, or the
distribution of the statistic is unknown. In particular, the percentile

method uses the entire bootstrap distribution, allows for asymmetric
distributions of the statistic and is invariant to transformations [28].
Assuming we have a data set S¼ fðxi; yiÞgi ¼ 1�p, we draw bootstrap

samples S�1; . . . ; S
�
B of size p by sampling S with replacement and refit

a model to each of the S�b;b¼ 1�B. A statistic of interest ŷ ¼ yðSÞ can
be estimated in the usual way, e.g.:

y
�
¼

1

B

XB

b ¼ 1

y�b; Varðy�Þ ¼
1

B�1

XB

b ¼ 1
ðy�b�y

�
Þ
2

ð4Þ

are the mean and variance of the bootstrap distribution of ŷ, and
y�b ¼ yðS�bÞ. An estimation for the bias of ŷ can be obtained as y

�
�ŷ.

The leave-one-out (LOO) estimate of prediction error is, for the
classification case:

Err� ¼
1

p

Xp

i ¼ 1

1

jS�ij

X
bA S�i

I½yia f �b ðxiÞ�; ð5Þ

where IðzÞ is 1 when z is true and 0 otherwise, S�i is the set of
indexes of the bootstrap samples that do not contain observation xi

and f �b is the model developed in S�b. Similarly, the resubstitution
error is estimated as

e� ¼
1

p

Xp

i ¼ 1

1

jSij

X
bASi

I½yia f �b ðxiÞ�; ð6Þ

where Si ¼ f1�Bg\S�i. In both cases, if an index set is empty, the
term is skipped and the formula is renormalized accordingly.
The 0.632-bootstrap estimate is defined by

Errð0:632Þ
¼ 0:368e�þ0:632Err�: ð7Þ

Intuitively, this formula pulls the LOO bootstrap estimate
down toward the training error, thereby reducing its likely
upward bias [27]. CIs can be obtained by the percentile method,
as follows: let fy�bg1�B denote again the bootstrap distribution
on the samples S�b. The a�level CI is constructed by ordering
these values in ascending order and choosing critical value
observations y�ðLÞ; y

�

ðUÞ as the endpoints of the CI, such that
Prfy�ðLÞryry�ðUÞg ¼ 1�a. For instance, for B¼ 1000, observations
26 and 975 are the endpoints of the 95% CI.

3.4. The classifiers

Several well-known classifiers were chosen: the Naı̈ve Bayes

classifier (NB), a Linear Discriminant classifier (LDC), a Quadratic

Discriminant classifier (QDC), Logistic Regression (LR), and the
Support Vector Machine (SVM) with linear kernel (SVM-L) and
quadratic kernel (SVM-2), both with parameter C (the regulariza-
tion constant) as well as with a radial kernel (SVM-R), that also
needs the setting of the width g¼ s�2. A description of all these
techniques can be found in [29].
3.5. Low-dimensional data visualization with scatter matrices

As mentioned in the introduction, the high dimensionality of
the analyzed spectra makes the interpretation of the results a
non-trivial undertaking, which potentially limits their usability in
a practical decision-making context such as brain tumor diag-
nosis. This may still be the case even after a feature selection
process such as the one described in Section 3.2. In this medical
context, data visualization in a low-dimensional representation
space may become extremely important, helping radiologists to
gain insights into what undoubtedly is a complex domain.

Low-dimensional visualization methods generally fall into
three categories. Purely linear methods frequently utilize singular
values spanning the largest variance in the data, for instance the
widely used PCA-based bi-plots [30]. This approach is useful to
visually verify known correlations between attributes, but it is
generally the case that the first two or three PCs explain a
relatively small proportion of the variance in the data, with the
consequence that true compact groups of data (be them clusters
or, if labels are available, classes) are severely mixed due to the
loss of information incurred by the projection.

A second approach is to relax the linearity assumption and to
define a non-linear projection to optimize the difference between
distances in the original input space and the corresponding
distances in the two-dimensional projections of the individual
data points, such as in Multi-Dimensional Scaling (MDS) [31] or
Sammon’s mapping [32]. These maps can be too sensitive to noise
in the data, radically altering the data projections even when only
a small number of points vary or are added or removed from the
data set.

A third approach generates topographic maps by projecting
data onto a curved surface weaving through the data and cutting
through noise, such as in Self-Organizing Maps (SOM) [33] or in
Generative Topographic Mapping (GTM) [34]. Although these are
powerful methods for the simultaneous clustering and visualiza-
tion of intrinsically non-linear data (and, therefore, able to
produce more faithful representations), their non-linearity can
make the interpretation of the obtained results difficult.

The method proposed for the task at hand is linear in nature,
making it easier to use in a real decision-making process that
requires an intuitive representation of results. It is based on the
decomposition of the scatter matrix, a method that has for long
been known to be a valuable alternative for the visualization of
data groups [35], with the remarkable property of maximizing the
separation between the projections of compact groups of data
(tumor classes, in this work). It has been recently improved by a
process that involves the sphering of the data followed by a
projection onto the space defined by the class means. It leads to
the definition of low-dimensional projective spaces that preserve
the discrimination between classes obtained by the classifiers,
even when the data covariance matrix is singular [14]. A brief
explanation follows.

It is well-known that the overall variance of the data, AT , can be
decomposed into the sum of two terms, known as the scatter
matrices, which calculate the variance referred to the mean of each
data group and between the group mean vectors [36,37] generating
a within-cluster matrix, AW , and a between-cluster matrix, AB,
namely: AT ¼ AWþAB. For a d� N data matrix D¼ fxigi ¼ 1�N

comprising d-dimensional data points of overall mean m,

AT ¼
XN

i ¼ 1

fðxi�mÞðxi�mÞTg; ð8Þ

AW ¼
XNc

j ¼ 1

XNj

i ¼ 1

fðxj
i�mjÞðx

j
i�mjÞ

T
g; ð9Þ
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AB ¼
XNc

j ¼ 1

Njfðmj�mÞðmj�mÞTg; ð10Þ

where the data are partitioned into Nc groups (tumor classes in this
study), each with Nj points and mean mj. Scalar merit figures for the
separation between classes are readily obtained by taking the traces
of the scatter matrices, defining sum-of-squares within- and
between-classes. These partial sums are sensitive to linear transfor-
mations of the data (for instance, relative scaling of the axes),
introducing an element of arbitrariness that is not necessary. This
leads to the definition of an invariant scatter matrix M¼ A�1

W AB and
an invariant class separation index J¼ trðMÞ. This merit figure
suggests that the eigenvalues of the scatter matrix contain useful
information about the structure of the data once partitioned into
classes.

Given the importance of the class means as representatives for
the classes themselves, it is natural to project the data onto the
sub-space spanned by these means. This is readily achieved by
defining an orthonormal set of basis vectors fcigi ¼ 1�Nc

(for
instance, by Gram-Schmidt orthogonalization), generating the
first compact projective representation in this method, Dc ¼ CT D,
where C ¼ ½c1; . . . ; cNc

�. Reducing the dimensionality of the data to
be visualized from its original value to Nc now requires a drop in
rank by just one unity for the scatter matrix calculated in the
space of class means, namely:

Ac
W ¼

XNc

j ¼ 1

XNj

i ¼ 1

fðxc
i�mc

j Þðx
c
i�mc

j Þ
T
g; ð11Þ

Ac
B ¼

XNc

j ¼ 1

Njfðm
c
j�mcÞðmc

j�mcÞ
T
g ð12Þ

and Mc ¼ ðAc
W Þ
�1Ac

B. Diagonalization of the new scatter matrix Mc

shows, typically, that the trace of the matrix is contained in the
largest few eigenvalues, whose eigenvectors form the basis for a
2-D or 3-D visualization of the data. In addition, whitening
(sphering) of the data prior to the projection onto the space
spanned by the class means exactly preserves the separation
index J.
1 For the experiments, we use a MATLAB implementation; specifically, for the

SVMs we use the MATLAB interface to LIBSVM [38].
4. Methodological setup

Feature selection can often be considered part of model
selection and becomes an important step, specially when the
number of observations roughly matches the number of features.
Performing model selection in the joint space of features and
parameters in this situation is at best a delicate task that entails a
very high risk of overfitting. In this work feature selection and
classifier selection are carried out in an interleaved way. First,
feature selection is done in a classifier-independent way in the
bootstrap samples; then a set of classifiers is developed on the
bootstrap samples using the previously selected sets of features.
The outcome is the selection of a specific classifier (and its
parameters, if any) for each data type. A final model (the model
parameters and the final feature subset) is obtained using again
the bootstrap samples using an iterative procedure. The remain-
der of this section describes these steps in detail.

4.1. Selection of a set of frequencies

The three distinct 1H-MRS data sets S are used separately to
build B¼ 1000 bootstrap samples S�1; . . . ; S

�
B for each data type,

that will play the role of training sets. This procedure is done
separately and independently for SET, LET and LSET data. We
denote T�b ¼ S\S�b the corresponding test sets. The EFA filter method
(Section 3.2) is then applied to every bootstrap sample S�b,
yielding a collection of solutions S�1; . . . ;S

�
B for each data type.

Recall that this algorithm is applied to the discretized 1H-MRS
data.
4.2. Selection of a classifier and its parameters

The tested classifiers include: NB, LDC, QDC, LR, SVM-L, SVM-2
(with C ¼ 10k, k running from �2 to 2 in steps of 0.25) and SVM-R
(also with g¼ 2k, k running from �15 to 15).1 These classifiers are
built in the (bootstrap) training sets using the original continuous
frequencies, in such a way that a model developed in S�b uses only

the features in S�b. A single classifier (and its parameters, if any)
per data type is selected: that having the smallest bootstrap
estimate of prediction error as given by formula (7). We denote
such selections C�SET , C�LET and C�LSET , respectively. For comparative
purposes, the classifiers are also built using the full sets of
frequencies.
4.3. Selection of specific models for the data types

The final step is the development of a specific model for every
data type. Once the bootstrap feature sets S�1; . . . ;S

�
B are obtained,

there is an inherent difficulty: the selection process yields a
different (though in many cases quite similar) solution for every
sample. Stability analysis for the outcome of feature selection is
an incipient field nowadays, and still there is no consensus on
how to derive a single solution [39]. We develop in this work a
specific strategy to obtain what we call a bootstrap feature

sequence, as described next.
Let I denote the indicator function, i.e., IAðzÞ ¼ IðzAAÞ. First

create the set S� as the union of all the S�b and define the frequency

of a feature f as jðf Þ ¼ B�1
P

1rbrBIS�b ðf Þ. Assuming that the
feature selection algorithm has captured most of the relevant
features (with the inevitable variability due to random sub-
sampling), the main difficulty is the redundancy across the sets S�b.
This is why a simple frequency-based greedy selection is likely to
be suboptimal because it will capture too much redundancy,
negatively affecting performance. Rather, the most dominant
peaks in the frequency distribution of selected spectral points can
be visually selected (Figs. 2–4). The idea is to generate a sequence
fsig of nested feature subsets, as s0 ¼ | and siþ1 ¼ si [ ffiþ1g. For
every element of the sequence, jsiþ1j ¼ jsijþ1 and thus jsij ¼ i.
Associated to it, a second sequence fe�i g is formed, where e�i is the
bootstrap estimate of prediction error given by formula (7),
evaluated using the features in si (this time the same features

across all the bootstrap samples S�b).
The strategy devised to form the fsig sequence is described

next. Under the hypothesis that similar frequencies carry similar
information, groups are formed around the peaks, configuring a
partition G1; . . . ;GK of S�. This is done differently and indepen-
dently for the three types of data. Let f1 be the feature showing the
highest frequency across all the groups. Let f1AGi1 . Then choose f2

as the feature showing the highest frequency across all groups
except Gi1 (f2AGi2 ); then choose f3 as the feature showing the
highest frequency across all groups except Gi1 ;Gi2 , etc. This
procedure is repeated until all groups have been visited. Then
fKþ1 can be chosen again freely among the groups. This selection
is repeated until all the frequencies have been picked. We call this
simple procedure Iterative Frequency Selection (IFS), depicted in
Algorithm 2.
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F.F. González-Navarro et al. / Neurocomputing 73 (2010) 622–632 627
Algorithm 2. Iterative frequency selection
Procedure IFS ðS�; fG1; . . . ;GKgÞ

s0’|; i’0
repeat

A’|

for g’1 to max ðK ; jS�j�jsijÞ do

fiþ1’arg max
f AS�\ð[a A AaÞ

jðf Þ

A’A [ arg max
1rkrK

IGk
ðfiþ1Þ

� �

siþ1’si [ ffiþ1g

i’iþ1

66666666664

������������������
until jsij ¼ jS�j;
The IFS method was used in conjunction with the previously
selected C�SET , C�LET and C�LSET classifiers. The final model for each
data type is that having a lower e�i along its bootstrap feature
sequence fsig.
5. Experimental results

The frequency distributions of spectral points selected by the
EFA in the bootstrap samples (Section 4.1) are shown in Figs. 2–4.

The results on classifier construction using the previously
selected sets of features (also developed in the bootstrap samples,
see Section 4.2) are displayed in Table 1. These are the bootstrap
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estimates of prediction error as given by formula (7), translated to
accuracy percentages for ease of reading. Additionally, 95% CIs for
the mean are reported in Table 2. As it turns out, the selected
C�SET ; C�LET and C�LSET classifier is the SVM-R, for all the data types.
The parameter values found by model selection are C ¼ 4; g¼ 8
(LET), C ¼ 8; g¼ 8 (SET) and C ¼ 4; g¼ 8 (LSET). The results of using
these selected classifiers with the full sets of frequencies are also
shown (column NR in Tables 1 and 2), for comparative purposes.

Boxplots of bootstrapped performance (Fig. 5) of the best
classifier configuration (among those listed in Section 4.2) are
Table 1
0.632-Bootstrap classification performance (in percentage) for all the 1H-MRS data

sets (LSET refers to the combined LET plus SET data set); NR stands for no feature

reduction using the SVM-R.

Data NR NB LDC QDC LR SVM-L SVM-2 SVM-R

LET 72.1 80.9 81.7 82.0 82.8 83.0 82.8 85.5

SET 72.9 83.3 87.1 86.3 86.6 86.9 87.1 88.2

LSET 72.1 82.9 85.9 85.6 85.5 85.8 85.6 87.2

Table 2
95% CIs of classification performance for all three 1H-MRS data sets (LSET refers to the co

Data NR NB LDC QDC

LET 66.0–77.4 74.1–87.0 74.8–87.8 75.3–88.1

SET 67.1–78.7 77.7–88.0 82.1–91.2 81.3–90.6

LSET 66.6–77.9 77.1–88.1 80.0–90.3 80.0–90.4

NB LDC QDC

0.7

0.8

0.9

0.
63

2 
Bo

ot
st

ra
p

Long 

NB LDC QDC
0.7

0.8

0.9

0.
63

2 
Bo

ot
st

ra
p

Short 

NB LDC QDC
0.7

0.8

0.9

0.
63

2 
Bo

ot
st

ra
p

Long + Sh

Fig. 5. Boxplots of 0.632-Bootstrap classification performance fo
reported, separately for the LET, SET and combined LSET 1H-MRS
data sets. Kolmogorov–Smirnov normality tests for the error
distributions indicate that the hypothesis of normality cannot be
sustained. Therefore, a non-parametric Wilcoxon signed-rank test is
used for the (null) hypothesis that the median of the differences
between the errors of these selected classifiers and another
classifier’s error is zero. This hypothesis has to be rejected at the
95% level when the SVM-R is compared against all other classifiers,
remarkably for all three data types. Specifically, the greatest p-values
found are 7.62e�91 for LET (against SVM-L), 1.45e�37 for SET
(against SVM-2) and 2.09e�47 for LSET (against LDC). This ends
step two of the process (Section 4.2). As explained in Section 4.3, the
last step is the selection of specific models for all the data types. The
results of running the IFS algorithm on the selected C�SET C�LET and
C�LSET classifiers are shown in Fig. 7, with indication (numbers in
brackets) of the size of the subset with best performance and its
performance; 95% percentile CIs for these final accuracy results are
87.0–95.7 (LET), 87.6–95.4 (SET) and 87.0–95.1 (LSET). The obtained
subsets of spectral frequencies are detailed in Table 3; these will be
subject of visualization as well as metabolic interpretation in the
following sections.
mbined LET plus SET data set); NR stands for no feature reduction using the SVM-R.

LR SVM-L SVM-2 SVM-R

75.4–89.0 74.1–89.5 75.8–89.4 78.4–91.3

81.7–90.8 82.2–91.1 80.3–92.4 82.7–93.0

79.8–89.8 80.2–90.2 79.0–91.5 81.2–92.4

LR SVM−L SVM−2 SVM−R

Echo Time

LR SVM−L SVM−2 SVM−R

Echo Time

LR SVM−L SVM−2 SVM−R

ort Echo Time

r each of the three 1H-MRS data sets and all the classifiers.
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Table 3
Final subsets of spectral points that yield the maximum 0.632-Bootstrap mean

classification performance, separated for the three 1H-MRS data sets.

Data Subset size Spectral frequencies (in ppm)

LET 10 1.27, 3.76, 3.03, 1.53, 2.14, 2.33, 3.36, 2.79, 0.70, 1.21

SET 18 2.37, 3.05, 1.32, 3.60, 3.81, 2.12, 3.26, 0.98, 2.84, 1.86

4.15, 2.41, 3.03,1.30, 3.58, 3.79, 2.14, 3.32

LSET 7 S2.37, S3.05, S1.27, L2.14, S3.55, L2.94, L1.19

Left-right and then top-bottom reading of the selected frequencies indicates their

relevance ranking along their sequence siFsee Fig. 7. For the LSET data set, the

origin is indicated by a prefix (L- or S-).
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5.1. Discriminatory visualization of selected features

At this point, data visualization is still a challenge for the
obtained numbers of dimensions. The use of a dimensionality
reduction strategy based on feature extraction prior to classifica-
tion would bring about the inconvenience that each of the
extracted features would still be a combination of the whole
spectrum of frequencies. This would make its practical inter-
pretation a very difficult undertaking, if possible at all. Moreover,
if classification accuracy was the only relevant outcome of a brain
tumor diagnosis—on the basis of the available data—then feature
selection would become a redundant process. Indeed, the
interpretability of the results is a compulsory requirement in this
problem.

This possibility is made easier if the results can be explained in
terms of a parsimonious subset of spectral frequencies, which is
what feature selection achieves. Nonetheless, even if interpretable
by mere inspection, the final selection of spectral frequencies may
still provide few clues about the distribution of the classes (tumor
types). It could be argued that visualization can be obtained
regardless of whether feature selection is used or not; however,
using feature selection as a starting point for the visualization
method ensures that the latter will not be affected by the use of
information that is not relevant in terms of classification.

The visualization of the data is herein achieved using the
method described in Section 3.5 and illustrated by the plots in
Fig. 6. These are scatter plots of 2-D projections of the three
classes (using the first two eigenvectors of Mc).
5.2. Interpretation of the obtained metabolites

The selection of features resulting from the methodology
described in Sections 3 and 4 is amenable to at least partial
metabolic interpretation by an expert radiologist, making it useful
in clinical diagnosis.

For the 10 selected LET frequencies listed in Table 3, we find,
among others, five main regions of relevance: 3.76 corresponding
to Glutamate/Glutamine-containing compounds and Alanine;
3.36 in the Taurine area; 3.03 corresponding to Creatine; 2.14
and 2.33 that belong to an area defining a different subtype of
Glutamate/Glutamine compounds; 1.53 near the Alanine peak;
and 1.21 and 1.27 corresponding to the presence of Lipids.

Out of the 18 selected SET features, we find Glutamate–
Glutamine and Alanine at 3.79–3.81; myo-Inositol and Glycine at
3.58–3.60; Choline-containing compounds at 3.26; again Creatine
at 3.03–3.05; Glutamate-Glutamine and N-acetylaspartate at 2.12,
2.14 and 2.41; Lactate and Mobile Lipids at 1.30 and 1.32; a
narrow singlet at 2.37 ppm, most likely corresponding to Pyruvate
with a possible Glutamate contribution; and a possible macro-
molecule at 2.84. The rest of selected frequencies do not have an
immediate metabolic explanation.
An extraordinarily small subset of 7 spectral frequencies is
selected for the combination of SET and LET data. This makes this
subset especially suitable for its ease of interpretation in a real
clinical context. It includes some of the most relevant features
selected for each of the echo times separately (mainly for SET,
which are also found to include the most relevant frequencies
overall). At SET, Creatine, Glutamine, Lactate and Mobile Lipids
are again present, while at LET we again find Glutamate/
Glutamine compounds and Lipids, as well as a yet unidentified
relevant frequency at 2.94 ppm.

5.3. Summary and discussion of findings

In view of all these experimental results, several findings are
now summarily presented:
1.
 Feature selection appears to be a viable avenue for dimension-
ality reduction in this field: with less than a tenth of spectral
frequencies, mean performance of the finally selected classi-
fiers improves that achieved using the full frequency sets. This
behavior is remarkable, both for computational and scientific
reasons.
2.
 As stated in Section 2, most of the existing literature indicates
an advantage in using SET information over LET [3,12]. The
present work adds strong support for this finding, given that
all the classifiers obtained markedly better results for SET data
against LET—Tables 1 and 2 supply quite conclusive informa-
tion in this respect. For SET data, Table 3 also indicates that
some redundancy (presence of neighboring features) among
the chosen frequencies is necessary to obtain an improvement
on the performances reported in Table 1. This makes perfect
sense from a radiologist point of view, given that contiguous
spectral points in peak regions will usually be highly inter-
correlated. Correspondingly, full frequency intervals of high
relevance can be observed in Figs. 2–4.
3.
 It can be seen in Fig. 7 that, for all three data types, overall
performance increases rather rapidly, stabilizes and then drops
very gradually; in this sense, the IFS algorithm seems to work
well, as it produces rather sensible results. We have found that,
although the use of SET spectral frequencies is in general a
better classification strategy, the combined use of small
numbers of frequencies at both echo times permits the
obtention of much simpler models with similar performance.
4.
 The resulting sets of selected spectral frequencies (shown in
Table 3) have been subject of a medical interpretation in terms
of known metabolites. Of special importance is the smoothness
of relative frequency distribution of spectral points selected in
the bootstrap samples, for all the data types (Figs. 2–4). This is
consistent with the fact that neighboring frequencies may
correspond to the same metabolite or group of metabolites.
5.
 The discrimination ability of these sets can also be subject of
visual interpretation (which is paramount for the clinical use
of these methods), according to the comparative plots in
Figs. 6(a)–(f). Though discrimination is not perfect, in all three
cases it is very similar to that obtained using the full sets of
frequencies.

6. Conclusions and future work

MRS is yet to become a standard method for day-to-day
clinical diagnosis of brain tumors. This is despite it being a non-
invasive technique and one that provides rich information about
the biochemistry of the tumor pathology. Instead, MRI is often the
method of choice for diagnosis in practice, in spite of its
limitations. To become mainstream, the diagnosis based on MRS
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must be sufficiently robust and, for that, reliable tools for spectral
data analysis are required. In this study, algorithms for the
selection of spectral frequencies have been applied to a set of
bootstrap samples, in combination with several classifiers, for the
final obtention of a reliable set of interpretable and accurate
models of brain tumor diagnosis. The developed methodology has
shown to be able to provide a drastic reduction in dimensionality
while being competitive with or even improving on the
performance obtained using the full set of spectral frequencies.
This holds true for all the MRS acquisition modalities considered:
short and long echo times, and the combination of both by
concatenation of spectra. These results are extremely important
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as they make the diagnosis easily interpretable in terms of a
handful of spectral frequencies, most of them associated to
metabolites that are well-known in the biomedical field. We have
reached a step beyond feature selection in improving the
interpretability of the results by providing a visualization method
that preserves the discrimination capability of the obtained
classifier models. Our classification results also provide support
to similar studies in the literature as they show the comparative
advantage of using SET data or a combination of SET and LET data.
Future research will extend the use of the proposed methodology
to the analysis of other brain tumor classification problems
involving different pathologies and pathology groupings.
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Torres, S. Van Huffel, C. Arús, M. Robles, The influence of combining two echo
times in automatic brain tumor classification by Magnetic Resonance
Spectroscopy, NMR Biomed. 21 (10) (2008) 1112–1125.

[14] P.J.G. Lisboa, I.O. Ellis, A.R. Green, F. Ambrogi, M.B. Dias, Cluster-based
visualisation with scatter matrices, Pattern Recognition Lett. 29 (13) (2008)
1814–1823.

[15] K. Kira, L. Rendell, The feature selection problem: traditional methods and a
new algorithm, in: Proceedings of the National Conference on Artificial
Intelligence, 1992, pp. 129–134.
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