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Abstract—The diagnosis of human brain tumours from non-

invasive signal measurements is a sensitive task that requires 

specialized expertise. In this task, radiology experts are likely to 

benefit from the support of computer-based systems built 

around robust classification processes. In this brief paper, a 

method that combines data pre-processing using wavelets with 

classification using Artificial Neural Networks is shown to yield 

high diagnostic classification accuracy for a broad range of 

brain tumour pathologies. 

I. INTRODUCTION 

uman brain tumours are complex and often aggressive  

pathologies of low prevalence but significant social 

impact. The accurate diagnosis of these tumours is 

essential in order to provide a prognosis of tumour 

development: life expectancy largely depends on the 

accurate estimation of the tumour type and grade.  

 

This study addresses the problem of human brain tumour 

diagnosis on the basis of biological signal data obtained by 

Magnetic Resonance Spectroscopy (MRS). MRS has a role 

in providing biochemical information to aid the radiological 

diagnosis of brain tumours [1], enabling the quantification of 

metabolite concentrations non-invasively, and thereby 

avoiding serious risks of brain damage. Clinicians are often 

not trained to make sense of the MR spectral signal. 

Additionally, the natural high dimensionality of the spectra, 

the presence of noise and artefacts, and the low amount of 

data usually available for specific brain tumour types, all 

complicate their diagnostic-oriented classification. As a 

result, the computer-based, semi-automated processing, 

analysis and interpretation of the MRS spectra should be 

valuable as support for medical decision makers. 

 

In this study, we analyze a set of MRS data from the multi-

centre, international INTERPRET database [2], using 

several methodologies that involve signal processing, feature 

selection and classification. Often, the most determinant step 

in this computer-based data analysis is data pre-processing. 

For this, we first use the Discrete Wavelet Transform 
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(DWT) and a filtering process, together with data 

compression, for the decomposition of the spectra in terms 

of approximation and detail coefficients, in a change of 

representation of the spectra that entails minimum loss of 

relevant information. This decomposition by itself does not 

alleviate the high dimensionality of the data. For this reason, 

dimensionality reduction is implemented using Moving 

Window with Variance Analysis (MWVA) [3] for feature 

selection and Principal Components Analysis (PCA) for 

feature extraction. The processed data are classified using 

Artificial Neural Networks (ANN) with Bayesian 

regularization. The proposed combination of methodologies 

is shown to yield high diagnostic classification accuracy for 

a broad range of brain tumour pathologies, some of which 

have seldom been analyzed in this setting. 

II. ANALYZED DATA 

This study relies on a database created under the framework 

of the European project INTERPRET [2], an international 

collaboration of centers from four different countries. The 

database includes a set of single-voxel proton MRS (SV 1H-

MRS), measured at short echo time (SET: 273 patients). A 

total of 195 frequency intensity values (measured in parts 

per million (ppm), an adimensional unit of relative 

frequency position in the data vector), were considered in 

this study. Class labeling was performed according to the 

World Health Organization (WHO) system for diagnosing 

brain tumours by histopathological analysis of a biopsy 

sample. The analyzed database includes the classes listed in 

Table I, which consist of nine tumour pathologies, plus 

abscesses and normal brain tissue. 

III. METHODOLOGY AND RESULTS 

A. Wavelet Transform 

 

The Wavelet Transform (WT) is a linear operation that 

decomposes a signal into components at different scales [4]. 

The WT of a function f (t) for a wavelet function ψ(t) is 

given by (1),  where a is the scale and τ the position of the 

wavelet{a,τ:   R}. The inverse transform is given by (2). 
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An important development for the application of wavelet 

theory in Discrete Signal Processing was presented by 

Mallat [5] using Multirresolution Analysis (MA). In this 

context, the WT in a discrete domain is implemented via an 

octave filter bank, as a cascade of low- and high-pass filters, 

followed by sub-sampling, as illustrated in Figure 1. The 

reconstruction procedure, except for rounding errors, leads 

to the restoration of the original signal if no coefficient is 

altered. 

 
 

Figure 1. Decomposition algorithm of the DWT with two decomposition 

levels, the original signal x(n) is passed through the high-pass filters G(Z) 

and low-pass filters H(Z). 

 

The application of Mallat’s model [5] together with 

Donoho’s approach for signal filtering by thresholding [6] 

and statistical coefficients for data compression permit 

reducing the noise level, as well as representing the MRS 

signal without loss of relevant information, while keeping 

the dimensionality of the system as low as possible. 

 

B. Wavelet Filtering with Threshold or Shrinkage 

 

 Frequently, the observed signal X(t) can be considered to 

consist of a real signal S(t) plus additive white noise N(t). 

Shrinkage filtering aims to denoise the observed signal X(t) 

and recover an estimate of S(t), or Ŝ(t). The suggested model 

allows this through the use of WT as described in (3), where 

 

            

                                               

         
      

D(.,λ) is the filtering operator for threshold λ and  W
(ψ, j) 

(.) 

and W
−1

(ψ, j) 
(.) denote, in turn, the WT and its inverse, with 

wavelet function ψ and j decomposition levels. The 

denoising of the available MRS spectra was carried out 

according to the following three consecutive steps [4], each 

described in its own sub-section.  
 
B.1. Threshold calculation 

 

Three alternative choices of threshold were considered in the 

experiments, according to the following statistical estimators 

developed by Donoho [6]: 

 

- Universal threshold (Sqtwolog): The threshold is chosen to 

be              , where n represents the length of the 

signal. 

 

- Threshold applying the principle of Stein’s Unbiased Risk 

(Rigrsure): The procedure requires obtaining a new vector 

NV(k), rearranging data from minimum to maximum and 

taking the square root. 

 

- Threshold Minimax: The threshold is selected following 

the minimax principle, commonly used in statistics to design 

estimators (see [7]). 

 

Sqtwolog, Rigrsure and Minimax are function names taken 

from Matlab® wavelet toolbox. 

  

B.2. Threshold scaling 

 

The thresholds are usually weighted by a factor σ, a scaling 

of the mean absolute deviation based on the wavelet 

decomposition level. Three types of weighting are 

considered: 

 

- One: The weighting term is scalar (e.g., σ = 1). 

 

- Sln: The weighting is computed by averaging the detail 

coefficients of the first level of decomposition, divided by 

0.6745. 

 

-Mln: As Sln but with the calculation of detail coefficients 

level by level. 

 

B.3. Implementation of the threshold 

 

 Once the threshold is calculated and scaled, the thresholding 

process D(Y,λ) is implemented through two alternative 

methods: Hard thresholding (Dh(Y,λ)) and Soft thresholding 

(Ds(Y,λ)) according to (4). 

 

         
                                      
                                      

   

                                                                                                

           
                      

                                       
  

 

TABLE I 

CLASSES IN THE INTERPRET DATABASE 

Tumour  Class  Number of Cases 

  

a2: Astrocytomas, grade II 22 

a3: Astrocytomas, grade  III. 7 

ab: Brain abscesses 8 

gl: Glioblastomas 86 

ly:  Lymphomas 10 

me: Metastases 38 

mm: Meningiomas grade I 58 

no: Normal cerebral tissue 22 

oa:Oligoastrocytomas grade II 6 

od:Oligodendrogliomas grade II 7 

pn: Primitive neuroectodermal 

tumours and medulloblastomas 

9 
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C. Wavelet Mother Selection for MRS Data 

 

The DWT was applied to the original signal data, making the 

decomposition to the maximum allowable level (see Section 

III.A). It was implemented with different mother wavelets, 

ranging from different orders of Biorthogonals (1.1, 1.3, 1.5, 

2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7,3.9, 4.4, 5.5, 6, 8), Coiflet 

(1 to 5), Daubechies (1 to 43), and Symlet (1 to 25). For 

every mother wavelet, the absolute values of each 

decomposition coefficient were sorted in descending order, 

and the signal of each spectrum was reconstructed by adding 

consecutive coefficients. The average Mean Square Error 

(MSE) and Signal-to-Noise Ratio (SNR) were calculated 

over the whole set of patients for each wavelet order r, 

together with the Number of Decomposition Coefficients 

(NDC). Finally, Q1 the index was computed as follows: 

 

      
         

     

         
               

     
               

 

where r is the order analyzed, and the Re subindex 

corresponds to the rescaled data between 1 and 3. The 

maximum values of Q1 indicate the orders with the best 

reconstruction error using the minimum NDC. The 2 highest 

values of Q1 in each wavelet function are shown in Table II. 

 

Once the initial set of wavelet orders were chosen, as shown 

in Table II, the filtering methodology explained in section B 

was used to denoise the spectrum signal and to eliminate 

irrelevant information. In order to determine the 

appropriated scaling, Donoho [6] recommends the MSE as a 

measure of performance for each of the experiments. 

Therefore, the MSE was calculated for each spectrum of the 

reconstructed signal following the scheme described in (3), 

implementing all the options allowed by the combination of 

threshold estimation (Sqtwolog, Rigrsure and Minimax), 

threshold scaling (Sln, One and Mln), and Hard 

thresholding. The Hard function was used because it often 

yields smaller MSE than the Soft one, and also because it 

preserves the magnitudes of the MRS spectra. The results 

obtained show that, for all wavelets, the lower MSE is 

achieved when applying the Sln weighting scheme, 

regardless of the threshold calculation. The MSE of the three 

types of thresholds when Sln scaling is applied are compared 

in Figure 2, showing that the Rigrsure-Sln-Hard procedure 

produces the best results among all combinations.  

 

To determine the final wavelet, the average value of several 

statistics was computed for the Rigsure-Sln-Hard 

combination. They include: SNR, Preserved Energy (EP), 

Percentage of Distortion (PRD) and Compression Ratio 

(CR), expressed as follows: 

 

   
          

   

         
   

                                       

 

          
               

   

         
   

            

                                                                  

where    is the reconstructed signal, Lo is the cardinality of 

the decomposition coefficients of the original signal, and Lc 

is the cardinality of decomposition coefficients different to 

zero. This set of statistics has been used to choose the 

optimal wavelet in previous related works concerning ECG 

signal filtering [8] and classification tasks [9], among others. 

For a more objective criterion in choosing the optimal 

wavelet function, the index Q2 was computed: 

 

       
         

             
             

  

         
               

     
            

 

The Q2 values for the wavelet functions of Table II are 

shown in Table III. It can be observed that the maximum 

value for this index is given by the Biortogonal (3.3). 

Therefore, this wavelet was chosen as optimal for our study. 

 

D. Dimensionality Reduction and Classification 

 

After processing the MR spectra with wavelet Biortogonal 

(3.3) and filtering it with the combination Rigsure-Sln-Hard, 

we proceeded to reduce the dimensionality of the data using 

MWVA and PCA, taking as input variables the 

decomposition coefficients. The MWVA is a feature 

selection filter method proposed in [3]. For PCA, principal 

components were added one at a time until the differential 

cumulative variance between two consecutive components 

was less than 1%. An average of 10.15 and 13 variables 

were obtained for MWVA and PCA respectively 

 
Figure 2. Comparison of the MSE for the three thresholds when Sln is 

applied. 

.  

  

TABLE II 

PERFORMANCES INDEX FOR OPTIMAL WAVELET SELECTION  

Wavelet MSE  SNR  NDC Q1 

Symlet  (2)        0.65    191.43 213 0.91 

Symlet  (3) 0.70 193.58 216 0.95 

Coiflet (1) 0.66 192.75 216 0.50 

Coiflet (2) 0.75 193.9 238 0.37 

Daubichie ( 2) 0.62 191.58 213 0.93 

Daubichie  (3) 0.66 193.97 216 0.98 

Biortogonal (1.3) 0.77 228.38 216 0.62 

Biortogonal (3.3) 0.64 217.38 221 0.65 
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Feed-forward ANN with one hidden layer were used in the 

classification experiments. Each network was trained using 

5, 10, 30 and 40 units in the hidden layer and one unit in the 

output layer. The networks were trained with Bayesian 

regularization and back-propagation, updating the weights 

and bias according to the Levenberg-Marquardt algorithm 

[10]. One run of a 5-fold cross-validation was performed for 

each network, with a maximum of 500 epochs.  

Table IV shows the best resulting values of the area under 

the ROC curve (AUC) for each experiment. G1 (low grade 

gliomas) is the union of classes a2, oa and od. G2 (high-

grade malignant tumours) is the union of classes gl and me. 

In this table, a value of 1 in the SET column indicates 

experiments which have been reported in previous research 

with, at best, comparable results, while a value of 2 indicates 

experiments that, to the best of our knowledge, have not 

been previously investigated in a similar setting. 

 

The results of a Wilcoxon test show that the differences 

among the mean and median classification values for 

MWVA and PCA are statistically significant (p-value = 

0.011), in favour of MWVA. 

IV. CONCLUSIONS. 

 
In this study, a DWT procedure was applied to the pre-

processing of MR spectra corresponding to several brain 

tumour pathologies. This procedure yielded very 

encouraging results in terms of diagnostic discriminatory 

binary classification. In particular, they were quite good in 

the classification of pathologies for which few results, if any, 

had been previously reported. The results are of special 

relevance for the experiments gl vs me and a2 vs a3, which 

according to existing literature are specially difficult 

classification problems. 

 

The proposed methodology for selecting the optimal wavelet 

developed study concludes that the Biortogonal (3.3) 

wavelet, implemented with the combination Rigsure-Sln-

Hard, generates the best MR spectra representation without 

loss of relevant information. The dimensionality reduction 

performed using PCA and MWVA achieved an average data 

compression of 93.29% and 94.76% respectively.  
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TABLE III 

STATISTICS FOR THE  EVALUATION OF THE PERFORMANCE OF 

MOTHER WAVELETS  

Wavelet  

MSE SNR EP PRD CR 

 

Q2 

Coiflet (1) 0.037 190.81 99.86 3.30 1.61 2.51 

Coiflet (2) 0.033 192.86 99.86 3.08 1.43 2.78 

Symlet (2) 0.056 188.23 99.78 3.78 1.68 1.18 

Symlet (3) 0.042 191.94 99.83 3.28 1.63 2.10 

Daubichie ( 2) 0.056 188.23 99.78 3.78 1.68 1.18 

Daubichie (3) 0.042 191.94 99.83 3.29 1.63 2.10 

Biortogonal (1.3) 0.050 182.73 99.92 4.47 1.68 1.25 

Biortogonal (3.3) 0.032 193.62 99.81 3.02 1.55 3.20 

 

 TABLE IV 

MEAN AND STANDARD DEVIATION OF AUC VALUES FOR THE 

EXPERIMENTS IN WHICH DIMENSIONALITY WAS REDUCED 

USING MWVA AND PCA 

Experiments 

MWVA PCA 

SET   

G1 vs G2 0.97±0.03 0.92±0.06 1   
G1 vs mm 0.98±0.02 0.98±0.02 1   
a2 vs G2 0.99±0.01 0.94±0,07 1   
gl vs me 0.90±0.07 0.73±0.09 1   
a2 vs oa 1.00±0.00 0.95±0.05 1   
gl vs no 1.00±0.00 1.00±0.00 1   
G2 vs mm 0.99±0.01 0.97±0.02 1   
me vs mm 0.98±0.01 0.99±0.00 1   
me vs no 1.00±0.00 1.00±0.00 1   
a2 vs a3 0.89±0.11 0.90±0.07 2   
a2 vs ly 1.00±0.00 0.96±0.04 2   
a3 vs pn 1.00±0.00 0.70±0.00 2   
gl vs a3 0.97±0.03 0.92±0.06 2   
gl vs ab 0.99±0.01 0.75±0.04 2   
gl vs ly 0.91±0.08 0.95±0.03 2   
gl vs pn 0.97±0.06 0.93±0.06 2   
me vs ly 0.96±0.05 0.89±0.08 2   
me vs pn 1.00±0.00 0.98±0.02 2   
mm vs ab 1.00±0.00 1.00±0.00 2   
od vs a2 1.00±0.00 0.95±0.06 2   
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