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A comparative study is carried out in the problem of selecting a subset of basis functions in regression

tasks. The emphasis is put on practical requirements, such as the sparsity of the solution or the

computational effort. A distinction is made according to the implicit or explicit nature of the selection

process. In explicit selection methods the basis functions are selected from a set of candidates with a

parameters are computed in such a way that several of them become zero. The former methods have the

advantage that both the sparsity and the computational effort can be controlled. We build on earlier

work on Bayesian interpolation to design efficient methods for explicit selection guided by model

evidence, since there is strong indication that the evidence prefers simple models that generalize fairly

well. Our experimental results indicate that very similar results between implicit and explicit methods

can be obtained regarding generalization performance. However, they make use of different numbers of

basis functions and are obtained at very different computational costs. It is also reported that the

models with the highest evidence are not necessarily those with the best generalization performance.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

In regression tasks we are given a data set consisting of input
vectors fxng

N
n¼1 and their corresponding target values ftng

N
n¼1,

where tn 2 R. The goal is to infer a function yðxÞ that underlies the
training data and makes good predictions on unseen vectors. A
very common sort of function is obtained as a linear basis
expansion with M fixed basis functions fi:

yðx;wÞ ¼
XM
i¼1

oifiðxÞ, (1)

where w ¼ ðo1;o2; . . . ;oMÞ
T are the model parameters. Since the

model is linear with respect to the output of the basis functions,
the parameters wi are typically estimated with maximum
likelihood or Bayesian techniques. The main problem lies on the
selection of the M basis functions (where M is unknown a priori)
from a dictionary. For instance, selected from a set of Gaussian
radial basis functions (RBF) centered at the input vectors:

fiðxÞ ¼ exp �
XD

d¼1

ðxd � xidÞ
2

r2
d

 !
,

ll rights reserved.

du (L. Belanche).

here the sun never hides.
where D is the dimension of the input vectors and there is a width
rd for every dimension.

This problem has been tackled in different ways, according to
the implicit or explicit nature of the selection process. In implicit
selection methods, the model with the whole set of basis
functions is considered and the parameters are computed in such
a way that several of them become zero. An example of such
method is the relevance vector machine (RVM) [26], which
assumes a particular prior on the parameters of a linear model,
so that making inference implicitly produces sparse solutions.
Other examples are the support vector machine (SVM) [28], basis
pursuit (BP) [5] or the least absolute shrinkage and selection
operator (LASSO).

In explicit selection methods a search is carried out guided by
the minimization of some cost function. This category includes
matching pursuits [13], orthogonal least squares [4], kernel
matching pursuit [29] or some Gaussian process approximations
[23,17]. Some approaches to the SVM in classification tasks use an
explicit selection to control sparsity [8].

Explicit selection methods have two criteria: an objective

function that conducts the search (e.g., the sum-of-squares error in
the training set) and an evaluation criterion that checks model
performance (e.g., the sum-of-squares error in a validation set).
This evaluation criterion can then be used with other information
(e.g., current number of basis functions in the expansion) to stop
the process. However, minimizing the first criterion does not
necessarily entail the minimization of the second. This fact
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hinders the use of more sophisticated search strategies, because
they could lead to an overfit solution. Actually, all the mentioned
explicit methods use forward selection as the search strategy.

The objective of this work is to ascertain to what extent explicit
search methods are able to obtain competitive results when
compared to those of the well-established implicit methods, as
the RVM or the SVM. A further goal of the paper is to make
practical use of the evidence theory. Within a Bayesian approach,
the use of the evidence has been suggested to compare different
models [11], given that it penalizes complex models and there is
some (anti)correlation between model evidence and general-
ization error [10]. MacKay did not consider sparse solutions, but
showed instead that the evidence prefers simple models that
generalize fairly well. The benefits of evidence maximization rely
in that it takes into account not only a reasonable fit to the
training data, but in that it penalizes over-complex or over-simple
models. However, evidence and generalization error are not quite
the same thing.

We build on earlier work on Bayesian interpolation to design
efficient explicit methods guided by the maximization of model

evidence. The search strategies are borrowed from the feature
selection field, exchanging features for basis functions. We call such
methods as search strategy guided by the evidence (SSGE). The
developed methods have the added advantage that both the sparsity
and the computational effort can be under tighter control by choosing
different search strategies, which is very difficult or not possible in the
RVM or the standard SVM. Sparsity control may certainly enhance
interpretability since the chosen basis functions might be of interest
for the application at hand. It also entails reduced storage require-
ments, which can be an issue for real-time embedded systems.

In order to experimentally assess these goals in a controlled way,
our study makes use and includes data sets from the DELVE
environment [21]. Our results show that the generalization perfor-
mance is very similar between implicit and explicit methods.
However, they make use of different numbers of basis functions
and are obtained at different computational costs. In particular, some
SSGEs are able to find very compact models that are competitive with
state-of-the-art implicit techniques, such as SVMs and RVMs. More
sophisticated SSGEs tend to find even more compact models, at the
expense of a slightly worse generalization rate. Parenthetically, it is
found that the models with the highest evidence are not necessarily
those with the best generalization performance. In addition, in some
cases sparsity is shown to be a computational necessity.

The rest of this work is organized as follows. In Section 2 the
selection of basis functions for linear models is reviewed. In
Section 3 the Bayesian approach for regression with linear models
is described. In Section 4 the used search strategies for basis
function selection are introduced. Section 5 develops algorithms
and a fast implementation for the SSGEs. The experimental study
comparing explicit and implicit methods is carried out in Section
6, the results of which are discussed in Section 7.
2. Selection of basis functions for linear models

In machine learning, using a dictionary of basis functions (BFs)
centered at known data usually gives good results [24]. A line can
be drawn between the methods that additionally require the
satisfaction of Mercer’s condition (viz. kernel methods) and those
that do not.

2.1. Implicit methods

Implicit selection methods set the parameters of the unneces-
sary BFs to zero (or close to), therefore obtaining sparse models.
This is the case of the RVM, the SVM or BP, among others.
The SVM for regression tasks tries to approximate the data up to
some given precision � (allowing for some errors) while minimizing
the Euclidean norm of the model parameters in feature space. This
optimization problem can be solved in a dual space with quadratic
programming techniques. The solution is sparse because in the dual
space only the support vectors, outside the �-tube, have non-zero
parameters (the Lagrange multipliers). The selection of BFs is thus
implicitly done: only those associated with the support vectors are
present in the final model. The BFs need to be related to a dot product
in some feature space (i.e., kernels centered at the input data).

BP fits the data exactly while minimizing the ‘1 norm of the
model parameters. This requires the solution of a convex, non-
quadratic optimization problem which can be reformulated as an
equivalent linear program. Basis pursuit de-noising (BPDN)
considers data with Gaussian noise (some residual errors are
allowed in the fit). The problem can be reformulated as a
perturbed linear program and is similar to an SVM minimizing
the ‘1 norm. BP and BPDN produce sparse solutions in which there
are no requirements about the candidate BFs.

Sparse Bayesian learning (SBL) [26] assumes a Gaussian prior
probability for the parameters and assigns one hyper-parameter
(controlling the scale) for each parameter. The value of each
hyper-parameter is optimized in the second level of Bayesian
inference by maximizing the marginal likelihood. Most of the
hyper-parameters tend to infinity, and their corresponding
parameters tend to zero. The RVM is a special case of SBL where
the model has identical functional form to the SVM, that is, the
BFs are kernels centered at the input data.

2.2. Explicit methods

Explicit selection methods perform a search to select the most
relevant BFs, mostly using forward selection. Some popular
methods are projection pursuit (PP) [6], matching pursuit (MP)
[13], orthogonal least squares (OLS) [4] or some approximations to
Gaussian processes (GP approx.) [17].

MP and PP add at each step the BF that best approximates the
residual error. The parameter corresponding to this BF is then set
while the others are kept fixed. The BFs do not have to satisfy any
restriction. Optionally, MP recalculates the parameters of the
whole model after several steps.

OLS adds at each step the BF that reduces the most the sum-of-
squares error. The BFs are Gaussians centered at the input data.
Kernel matching pursuit with pre-fitting (KMPP) [29] minimizes
the same cost function than OLS using kernel BFs. Sequential
approximation with optimal coefficients and interacting frequen-
cies (SAOCIF) [22] generalizes OLS and KMPP to non-input or non-
kernel BFs. To avoid the problem of overfitting the cost function
can be adjusted with regularization, as in regularized forward
selection (RFS) [14] and regularized OLS (ROLS) [3].

Gaussian processes have been approximated with finite
generalized linear models [23], where the BFs forming the
covariance matrix are kernels centered at the input data. In [17]
the subset of BFs is selected with forward selection maximizing
the marginal likelihood. This approach has some connection with
the present work; however, the use of different assumptions leads
to a different marginal likelihood.

All these methods are categorized in Table 1 according to the
selection (implicit or explicit) and the requirements for the BFs
(kernel or non-kernel).
3. A Bayesian approach for linear models

In the Bayesian framework, three levels of inference can be
distinguished: the first considers the posterior distribution over
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Table 1
Classification of methods according to the sort of selection and the requirements

for the basis functions.

Selection Basis functions Method

Implicit Kernel SVM, RVM

Non-kernel BP, BPDN, SBL

Explicit Kernel GP approx., KMPP

Non-kernel MP, PP, SAOCIF, OLS, RFS, ROLS

‘Non-kernel’ means that the basis functions do not need to be kernels.
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the parameters, the second adapts the hyper-parameters that
control the parameters and the third allows the comparison of
different models [11]. For a regression task we consider the targets
to be deviated from the real underlying function by independent
additive noise:

tn ¼ yðxn;wÞ þ nn. (2)

We are working with linear models and the target values are
assumed to be

t ¼ Fwþ n, (3)

where t ¼ ðt1; t2; . . . ; tNÞ
T and F is the N �M design matrix with

elements Fij ¼ fjðxiÞ. If n is assumed to be zero-mean Gaussian
noise with variance s2, then the probability of the data given the
parameters (the likelihood of the parameters) is

Pðtjw;bÞ ¼NðFw;b�1
Þ, (4)

where b ¼ 1=s2. This probability should be Pðtjw;b; xÞ, but we
omit the conditioning on the input vectors throughout the work
for brevity.

3.1. The first level of inference

The process of finding the parameters that maximize the
likelihood may lead to overfitting [1]. In order to avoid it, the
smoothness of yðx;wÞ is controlled by the definition of a prior
distribution. A common choice is a zero-mean Gaussian prior
distribution over w,

PðwjaÞ ¼Nð0;a�1Þ, (5)

where a is the precision (inverse variance) of an overall prior from
which all parameters are sampled. This hyper-parameter mea-
sures how smooth yðx;wÞ is expected to be. Since the likelihood
and the prior are Gaussian, the posterior parameter distribution is
also Gaussian and it can be written as

Pðwjt;a;bÞ ¼ Pðtjw;bÞPðwjaÞ
Pðtja;bÞ

¼ ð2pÞ�M=2
jSj�1=2 expf�1

2ðw� mÞ
TS�1

ðw� mÞg, (6)

where

S ¼ ðbFTFþ aIÞ�1 and m ¼ bSFT t. (7)

The parameters w of the model are set to their most probable
value m, a solution equivalent to the minimization of a weight
decay error function (as in ridge regression) [1].

3.2. The second level of inference

The marginal likelihood Pðtja;bÞ ¼
R

Pðtjw;bÞPðwjaÞdw is the
convolution of Gaussians, which is also a Gaussian:

Pðtja;bÞ ¼ ð2pÞ�N=2
jb�1I þ a�1FFT

j�1=2

� expf�1
2tT ðb�1I þ a�1FFT

Þ
�1tg. (8)
In order to find the most suitable values for a and b, we make use
of Bayes’ formula:

Pða;bjtÞ ¼ Pðtja;bÞPða;bÞ
PðtÞ

. (9)

Assuming we have no prior idea of suitable values for a and b,
we consider the prior Pða;bÞ to be uniform on a logarithmic scale
log a and log b (improper prior). The most suitable values for a
and b are those that maximize Pðtja;bÞ. In order to do so, one can
make an arbitrary choice such that terms in (8) are independent in
the derivatives, differentiate (8) and set the result to zero. This
produces the re-estimation formulae as

anew ¼
g
kmk2

and bnew ¼
N � g
kt �Fmk2

, (10)

where

g ¼ M � a trS (11)

is known as the number of well-determined parameters [11].
Eqs. (10) are dependent on the most probable parameters m, and
also on a and b. In order to find suitable values for a, b and m, the
quantities can be reestimated iteratively, starting from an initial
guess for a and b, until convergence. The optimization of a and b
can also be performed through an expectation–maximization
(EM) algorithm, leading to different reestimation formulae that,
unlike MacKay’s, are guaranteed to increase the marginal like-
lihood. In practice, MacKay’s method converges to the same values
faster than its EM counterpart [15].

For prediction purposes, given a new input vector x�, we seek
the probability of the corresponding target t�, marginalizing a and
b as Pðt�jtÞ ¼

R
Pðt�jt;a;b;wÞPða;b;wÞdadbdw. In practice, this

integral is commonly approximated by Pðt�jt;aMP ;bMPÞ:

Pðt�jt;aMP ;bMPÞ ¼

Z
Pðt�jw;aMP ;bMPÞPðwjt;aMP ;bMPÞdw, (12)

where aMP and bMP represent the (most probable) estimates for a
and b. Again, this is a Gaussian, with mean and variance (error
bars) given by

y� ¼ mTfðx�Þ, (13)

s2
� ¼ b�1

þfðx�ÞTSfðx�Þ. (14)

3.3. The third level of inference

Supposing we have a set of models, Hi, containing different
subsets of BFs ffig, their posterior probability given the data set is

PðHijtÞ ¼
PðtjHiÞPðHiÞ

PðtÞ
, (15)

where PðHiÞ is the prior probability of model Hi. Given a new
input vector x�, a full Bayesian approach would use a committee
with all the models to make predictions: Pðt�jtÞ ¼

P
i Pðt�jt;HiÞP

ðHijtÞ. As a practical approximation to full Bayesian inference,
only the model with the highest PðHijtÞ is commonly used and
then Eq. (12) is used to approximate Pðt�jt;HiÞ. Assuming there is
no reason to assign different priors to different models, then they
can be ranked by evaluating the fully marginalized probability
PðtjHiÞ, known as the evidence for the model. Integrating out a
and b from (8):

PðtjHiÞ ¼

Z
Pðtja;b;HiÞPða;bjHiÞdadb, (16)

where Pðtja;b;HiÞ is the marginal likelihood (8) with the
dependency on the model made explicit. This analytically
intractable integral has been approximated [11] with a separable
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Gaussian around PðtjaMP ;bMP ;HiÞ:

PðtjHiÞ ’ PðtjaMP ;bMP ;HiÞPðaMP ;bMPjHiÞ2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

logas
2
logb

q
, (17)

where s2
logb ¼ 2=ðN � gÞ is the variance of the Gaussian approx-

imation for logb and s2
loga ¼ 2=g is the variance for loga, and they

are both found by differentiating (8) twice. This Gaussian
approximation holds good for gb1 and N � gb1 [12].

Again Pða;bjHiÞ is considered, as above, a flat prior over log a
and log b, so it cancels out when comparing different models.
Dropping constant terms, the evidence (or, for convenience, its
logarithm) can be approximated by

log PðtjHiÞ ’ log PðtjaMP ;bMP ;HiÞ þ
1

2
log

2

g

� �
þ

1

2
log

2

N � g

� �

¼ �
1

2
N log 2pþ log jCj þ tT C�1t � log

2

g

� ��

� log
2

N � g

� ��
, (18)

where C ¼ b�1
MPI þ a�1

MPFF
T .

3.4. The relevance vector machine

The RVM is a Bayesian approximation method that considers
an individual Gaussian prior for each parameter, instead of using
an overall prior for all the parameters (5). It can also be seen as a
special case of Sparse Bayesian learning [26]. Training consists on
iteratively optimizing the hyper-parameters until a local max-
imum of the evidence is found. The number of hyper-parameters
is very high, which can lead to slow convergence, even when a fast
algorithm is used. Following inference on the specific prior
produces very sparse solutions. However, this sparsity may come
at the expense of worse predictive distributions [20]. An
individual Gaussian prior on the parameters has been proposed
[26]:

PðwjaÞ ¼
YM
i¼0

Nðwij0;a�1
i Þ. (19)

The posterior for the parameters and the marginal likelihood
are still Gaussian. The marginal likelihood can be written as

Pðtja;bÞ ¼Nð0;FA�1FT
þ b�1IÞ, (20)

where A ¼ diagða1; . . . ;aMÞ. Eq. (8) is a particular case of (20),
where A ¼ aI. In the second level of inference, the hyper-
parameters (b and ai) are optimized by maximizing the marginal
likelihood. Initially, the number of BFs equals the number of data
(M ¼ N); as b and ai are optimized, most of the ai tend to infinity,
so their corresponding wi tend to zero, obtaining sparse solutions
(M5N). As in finite linear models, the predictive variances of the
RVM are overconfident, which can be healed through augmenta-
tion [20].
4. Feature selection search strategies

The main objective of feature selection in inductive learning is
selecting the most suitable subset from a set of features [9]. A
common approach is a search process with three basic elements:
an objective function for subset evaluation, a strategy to decide
how to continue exploring and an initial state where the search
starts from. Some popular algorithms are
PTA(l, r):
 Plus l and take away r [9]. At every step, l features are
added one at a time and then r features are removed
one at a time (always the one that locally optimizes the
objective function).
SFFS:
 Sequential forward floating selection [16]. At every step,
a feature is added and then zero or more features are
removed one at a time, while the value of the objective
function is better than the best value achieved so far
with same numbers of features. Note that subset size
does not grow constantly with respect to the number of
steps, but in a staggered way.
Oscil(c):
 Oscillating algorithm with parameter c [25]. In simpli-
fied form, let s:¼1. Add s features, then remove 2s

features and add s features (always one at a time). If the
objective function has been optimized, let s:¼1 and
repeat. If not, let s:¼sþ 1 and repeat, unless s ¼ c. The
final solution has as many features as the initial one.
PTA(1,0)—or forward selection—is usually the fastest method,
but its solutions tend to be the worse. SFFS usually finds better
solutions than PTA [7]. One of the advantages of the PTAðl; rÞ
family over other methods is that the number of steps (and the
number of added/removed features) is known in advance. In the
next section, we develop specific search strategies inspired on
these algorithmic ideas, exchanging features for basis functions.
5. Search strategies guided by the evidence

A Bayesian approximation suggests the use of the evidence to
compare different models. Models with higher evidence will
usually generalize better and have a sensible number of BFs. There
is, however, the question of which models to compare. One may
use heuristics such as using h equally spaced radial BFs over the
range of interest and vary h to find alternative models [11].
Alternatively, we develop evidence-guided search algorithms for
the selection of good subsets of BFs from a set of candidates.

5.1. Pseudocode for the SSGEs

In order to implement the SSGEs, it is enough to provide
pseudocode for the addition (of the best) and elimination (of the
worst) BF, as well as for the reestimation of a and b. The
pseudocode for these three functions follows. An efficient
implementation of these operations is also developed. A model

is defined by a set of BFs ffig and the posterior distribution over
the parameters (w;S). We use ji to denote the candidate BFs and
fi to denote the BFs present in the current model.
AddBestBasisFunction (a model H, a, b, a set of candidate BFs fjig)
1.
 for each candidate BF ji do
2.
 set H0 the model obtained by adding ji to H and computing
the initial value for the parameters w0 and S0 with equations (7)
3.
 (a0 ;b0 ;w0 ;S0) :¼Reestimate(a;b;H0)
4.
 compute the evidence for H0 with equation (17) using a0 and b0
5.
 end for

6.
 set H the model obtained by adding to H the ji that
maximizes the evidence in the previous loop and compute the
initial value for the parameters w and S with equations (7)
7.
 (a;b;w;S) :¼Reestimate(a;b;H)
8.
 return (a;b;H)
end AddBestBasisFunction

RemoveWorstBasisFunction (a model H, a, b)
9.
 for each basis_function fi in H
10.
 set H0 the model obtained by removing fi from H and computing
the initial value for the parameters w0 and S0 with equations (7)
11.
 (a0 ;b0 ;w0 ;S0) :¼Reestimate(a;b;H0)
12.
 compute the evidence for H0 with equation (17) using a0 and b0
13.
 end for

14.
 set H the model obtained by removing from H thefi that
maximizes the evidence in the previous loop and compute
the initial value for the parameters w and S with equations (7)
15.
 (a;b;w;S) :¼Reestimate(a;b;H0)
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16.
 return (a;b;H)
end RemoveWorstBasisFunction

Reestimate (a, b, a model H)
17.
 while not Convergence(a;b;H) do

18.
 estimate a and b with equations (10)
19.
 estimate the parameters w and S with equations (7)
20.
 end while

21.
 return(a;b;w;S)
end Reestimate

5.2. Fast implementation of SSGEs

Some properties of the marginal likelihood have been
exploited to devise a fast implementation of the relevance vector
machine [27]. Some of these are also useful for model evidence
maximization in an incremental way, as explained next.

5.2.1. Addition

Addition of the candidate BF ji makes the C matrix become

Cþi ¼ b�1I þ a�1FFT
þ a�1jij

T
i ¼ C þ a�1jij

T
i , (21)

where Cþi is C, after the inclusion of BF i. The determinant and
inverse are then written as

jCþij ¼ jCjj1þ a�1jT
i C�1jij, (22)

C�1
þi ¼ C�1

�
C�1jijT

i C�1

aþjT
i C�1ji

. (23)

Applying them to the marginal likelihood (8), we get

log Pðtja;b;HþiÞ ¼ log Pðtja;b;HÞ

þ
1

2
loga� logðaþjT

i C�1jiÞ þ
ðjT

i C�1tÞ2

aþjT
i C�1ji

" #

¼ log Pðtja;b;HÞ

þ
1

2
loga� logðaþ SiÞ þ

Q2
i

aþ Si

" #
, (24)

where Hþi is the model H with BF i included and we have
defined Si9jT

i C�1ji and Qi9jT
i C�1t. Using the Woodbury

identity we can write:

Sm ¼ bjT
mjm � b2jT

mFSF
Tjm, (25)

Qm ¼ bjT
mt � b2jT

mFSF
T t. (26)

The log-evidence (18) can then be written in an incremental way
as

log PðtjHþiÞ ¼ log PðtjHÞ þ
1

2
loga� logðaþ SiÞ þ

Q2
i

aþ Si

"

þ log
2

gþi

� �
þ log

2

N � gþi

� �
� log

2

g

� �

� log
2

N � g

� ��
, (27)

where gþi is the number of well determined parameters after
adding the BF i. To calculate gþi, the trace of Sþi should be
computed (see Eq. (11)). We have

Sþi ¼
Sþ b2SiiSF

TjijT
i FS �bSiiSF

Tji

�bSiiðSF
TjiÞ

T Sii

0
@

1
A, (28)

where Sii ¼ ðaþ SiÞ
�1. We can write the trace as

trSþi ¼ Sii þ b2SiiRi þ trS, (29)
where we have defined Ri9jT
i FSSF

Tji. Note that the trace of a
product of a column vector by a row vector equals the product of
the row vector by the column vector.

To add/remove BFs, it is convenient to maintain and update the
values Sm, Qm and Rm, for each candidate BF jm. When selecting
the BF to add, we need to select the one that increments the log-
evidence (27) the most. This increment can be computed as

2ðlog PðtjHþiÞ � log PðtjHÞÞ ¼ logðaÞ � logðaþ SiÞ þ
Q2

i

aþ Si

þ log
g
gþi

þ log
N � g

N � gþi

, (30)

where

gþi ¼ M þ 1� a trSþi. (31)

If by adding the BF i, the values of a and b are not modified, Sm,
Qm and Rm can be recomputed incrementally, making use of (28):

Smþi
¼ Sm � SiiðbjT

me0Þ
2, (32)

Qmþi
¼ Qm �oiðbjT

me0Þ, (33)

Rmþi
¼ Rm þjT

i e2ðSiibjT
me0Þ

2
þ ðjT

me1Þ
2
� ðbjT

me2Þ
2, (34)

where oi ¼ SiiQ i is the value of the i-th parameter after including
the BF, and we define

e09ji � bFSFTji, (35)

e19bSiiFSF
Tji þ bFSSFTji �Siiji, (36)

e29FSSFTji. (37)

When adding/removing a BF, there is no need to explicitly
compute the parameters w (steps 2 and 10 of the pseudocode) in
order to compute the evidence.

5.2.2. Removal

We can rewrite (24) for the removal of BF fi:

log Pðtja;b;HÞ ¼ log Pðtja;b;H�iÞ

þ
1

2
loga� logðaþ fT

i C�1
�i fiÞ þ

ðfT
i C�1
�i tÞ2

aþfT
i C�1
�i fi

" #

¼ log Pðtja;b;H�iÞ

þ
1

2
loga� logðaþ siÞ þ

q2
i

aþ si

" #
, (38)

where H�i is the model H with BF fi removed and we have
defined si9fT

i C�1
�i fi and qi9fT

i C�1
�i t. Applying (23) we can write:

si ¼
aSi

a� Si
and qi ¼

aQi

a� Si
. (39)

After removing the BF i, the matrix S becomes

S�i ¼ S�
1

Sii
SiS

T
i . (40)

Notice that this is an abuse of notation, since S�i should have one
dimension less than S. That is, the resulting i-th row and column
(which are now zeros) should be removed. The trace can be
written as

trS�i ¼ trS�
1

Sii
ST

i Si. (41)

Replacing si and qi in (38) by (39) and extending to the evidence
for the model, we get

2ðlog PðtjH�iÞ � log PðtjHÞÞ ¼
Q2

i

Si � a
� log 1�

Si

a

� �

þ log
g
g�i

þ log
N � g

N � g�i

, (42)
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where

g�i ¼ M � 1� a trS�i. (43)

Immediately after removing the BF i, and if a and b are not
reestimated, making use of (40) we can write:

Sm�i
¼ Sm þ

1

Sii
ðbST

i F
TjmÞ

2, (44)

Qm�i
¼ Qm þ

oi

Sii
ðbST

i F
TjmÞ, (45)

Rm�i
¼ Rm �

2

Sii
jmFSSiS

T
i Fjm þ

ST
i Si

Sii
jT

mFSiS
T
i F

Tjm, (46)

where oi denotes the value of the i-th parameter before removing
the BF.

5.2.3. Reestimation of a and b and convergence

For computational reasons, the selection of the best candidate
can be performed with the previous values of a and b (i.e., steps 3
and 11 need not be implemented). However, after adding or
removing a BF, a and b should be reestimated (steps 7 and 15).

In order to check convergence (step 17), Eqs. (10) can be used
for computing trial values anew and bnew. Since the evidence is
approximated with a Gaussian using s2

loga and s2
logb (see Eq. (17)),

if

j logbnew � logbj
slogb

o� and
j loganew � logaj

sloga
o� (47)

then we consider convergence has been achieved. If not, a and b
are set to anew and bnew (step 18) and the trial is performed again
unless condition (47) is satisfied. In the experiments, � will be set
to 0:1. A larger value of � allows faster computations, while a
smaller � allows a better convergence of a and b. Sometimes
convergence is achieved in the first iteration and the Reestimate

function does not modify the values for a and b. When a and b are
not modified, the selection of the next BF can be done more
efficiently, as shown in Sections 5.2.1 and 5.2.2. We also found
that, as the model grows, a and b tend to stabilize and more fast
selections can be done. This is an advantage, since the cost of
‘‘slow’’ selections (immediately after a and b have been changed)
is higher for larger models.

5.2.4. Evaluation of the log-evidence

After adding or removing a BF, we usually need to evaluate the
log-evidence for the model (steps 26 and 30 in the pseudocode). If
no recomputation of a and b is necessary, we can update the
evidence for the model with the increments given by (30) and
(42).

After recomputation of a and b, the evaluation of the log-
evidence has to be done from scratch. In that case, evaluating (18)
requires the computation of the determinant and inverse of
matrix C, sized N � N. However, using the Woodbury identity,
both computations can be rewritten as a function of S, sized M �

M [11]:

log PðtjHiÞ ’ �
1

2
N log 2p� log jSj � N logb�M loga
�

þbkt �Fwk2 þ akwk2 � log
2

g

� �
� log

2

N � g

� ��
.

(48)

5.2.5. Initialization

Initial values of a and b need to be set beforehand. In our
experiments, b was set to ð0:1� varðtÞÞ�1, following [27], and a
was set to 0:001, assuming a broad prior distribution that leaves
the weight values fairly unconstrained. When adding the first BF,
the BF with the largest normalized projection onto the target
vector kjT

i tk2=kjik
2 is selected. After its inclusion, a and b are

reestimated, so their initial values are not directly used for any
selection of BF. However, the reestimation equations of a and b
always depend on previous values and therefore the selection of
BFs might vary by changing the initialization.

5.2.6. Numerical inaccuracies

The presented methods need the computation of S (7)—the
inverse of the Hessian matrix—that may become ill-conditioned.
This may be the case when a small noise level is assumed
(i.e., high b), and there exists near co-linearity between basis
vectors fi. This would lead to numerical inaccuracies due to
machine precision. When such inaccuracies arise, inversion
techniques like SVD or LU decomposition could help, though they
will not always solve the problem. In that case, trying a different
set of candidate BFs would be a possible workaround.

5.2.7. Computational cost and memory requirements in practice

The cost of selecting the best candidate BF from a set of P

candidates is imposed by the computation of all the Rm, Qm and Sm

which, assuming that the candidates ji are stored in memory, can
be achieved in OðP � N �MÞ.

When removing a BF, only the values of Rm, Qm and Sm

corresponding to those BFs present in the model are needed. The
cost of removing a BF would then be OðM2

� NÞ. However, in that
case the other Rm, Qm and Sm could not be recomputed
incrementally. In our implementation we chose to compute all
the Rm, Qm and Sm.

After adding or removing a BF, a and b should be reestimated
until convergence. After their reestimation S has to be computed,
requiring a cost in OðM3

Þ. When the current values of a and b are
valid no reestimation is needed. In these cases, S, Rm, Sm and Qm

can be recomputed incrementally and the cost of selecting a BF is
reduced to OðP � NÞ. In practice, memory requirements are
dominated by the P � N design matrix for the whole dictionary.
In the experiments a dictionary of P ¼ N BFs will be used.

5.3. An example: the PTA(l,r) family of algorithms

We illustrate the use of these operations with the pseudocode
for the PTAðl; rÞ family of algorithms:
PTA (l, r, initial model H, set of candidate BFs fjig)
22.
 set a, b to some sensible value
23.
 while not StoppingCriterion(H) do

24.
 for l times do

25.
 (a;b;H) ¼ AddBestBasisFunction(H;a;b; fjig)
26.
 compute the evidence for H
27.
 end for

28.
 for r times do

29.
 (a;b;H) ¼ RemoveWorstBasisFunction(H;a;b)
30.
 compute the evidence for H
31.
 end for

32.
 end while

33.
 set H the model that maximizes the evidence in the previous loop
34.
 return (H)
end PTA
6. An experimental comparison

6.1. A toy problem

We first introduce an artificial data set for illustrative purposes
only, by creating a data set with 200 one-dimensional uniformly
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distributed input data. A target function with 20 BFs fi ¼

expð�0:5ðx� ciÞ
2
Þ was constructed, where the centers of the BFs

were randomly chosen from the input data. The 20 parameters of
the model were sampled from a Gaussian distribution with
inverse variance a ¼ 0:4. The targets are generated by adding
Gaussian noise with variance s2 ¼ 0:05.

We explored PTA(1,0), PTA(2,1), SFFS and the RVM to model the
data. The dictionary of BFs contained 200 radial BFs (i.e., RBFs)
centered at the input data with the same width as that generating
the model (this way the true model is within the dictionary). The
four methods found models with 23, 15, 9 and 8 BFs, respectively.
The generated functions and the selected BFs are shown in Fig. 1.
We can see that different search strategies achieve comparable
accuracy (also comparable to RVM) with a different number of
BFs. Interestingly, the true model was never found, and only
PTA(1,0) required more BFs than the true model.
6.2. Full experimental comparison

The aim of the following experiments is to contrast the
described methods regarding generalization performance, model
size and computational effort (measured by mean number of
added/removed BFs and pure CPU training time). The following
SSGEs were used: PTA(1,0), PTA(2,1), SFFS and Oscil(5). For the
latter, the initial model is found by PTA(1,0), as suggested
elsewhere [25]. We then compared the SSGEs to OLS, the SVM,
the RVM and to a model with all the candidate BFs included
(dubbed ABF), in which the hyper-parameters are adapted to
maximize the marginal likelihood. The software LIBSVM [2]
was used for the SVM, modified to deal with multiple RBF widths.
We used our own implementation of the SSGEs, ABF, OLS and
the RVM (for which the fast algorithm described in [27]
was implemented). In the first part of the experiments, some
data families of moderate size from the DELVE archive are used
to contrast the methods. In the second part, a new family of data
sets of increasing size is used to test the scalability of the
methods.
Real function
PTA(1.0)

Real function
SFFS

Fig. 1. A toy problem. Top row of crosses: locations of actual BFs. Botto
6.2.1. Candidate BFs and the ABF model

We used N candidate radial BFs (RBF) coincident with the
training set input vectors ci:

jiðxÞ ¼ exp �
XD

d¼1

ðxd � cidÞ
2

r2
d

 !
,

where D is the dimension of the input vectors. In order to choose
the RBF widths rd, a model with all the candidate BFs included
(M ¼ N) was considered and conjugate gradients was applied to
maximize the marginal likelihood. The derivatives of the marginal
likelihood with respect to the RBF widths are similar to the those
of the Z-RVM [26]:

@L

@rd
¼
XN

n¼1

XM
m¼1

@L

@fnm

@fnm

@rd
¼
XN

n¼1

XM
m¼1

Dnm
@fnm

@rd
, (49)

where D ¼ b½ðt �FwÞwT �FS� and fnm ¼ fmðxn; rÞ. The RBF
widths were jointly optimized with a and b. The model obtained
from this first stage is the one labeled ABF. Since RBF widths are
fixed during SSGE training, there is no need to marginalize them
out when computing the evidence for the models.
6.2.2. Additional considerations

A stopping criterion for the SSGEs is advisable since the highest
evidence is usually achieved with a rather small subset of BFs
(Fig. 2) and much computational effort can be avoided. In the
experiments, a stopping criterion was applied as follows: suppose
the current model has m BFs and the model with the highest
evidence so far has mh BFs, then if mh þ kom the process is
stopped and the returned model is that with mh BFs. A value of k

too small can make the training stop too early, while a k too high
will lead to wasteful computation. In this work we set k

dynamically to maxð15;0:3�mhÞ, rounded to the closest integer.
In order to select the number of BFs for OLS, 5-fold cross-

validation (5-CV) and the previous stopping criterion were used.
Instead of evaluating the models with the evidence, the sum-of-
squares error (on the validation set) was used. Appropriate values
for the SVM parameters � and C were also found with 5-CV.
Real function
PTA(2.1)

Real function
RVM

m row: selected BFs. (A) PTA(1,0). (B) PTA(2,1). (C) SFFS. (D) RVM.
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Fig. 2. The best log-evidence obtained by each SSGE method for each model size,

measured in number of BFs, for a kin-8nh task instance. SFFS found the model with

the highest evidence. PTA(2,1) and Oscil(5) also found models with higher

evidence than PTA(1,0).

Table 2
Summary of the results for the pumadyn-8, bank-8 and kin-8 families of data sets.

– PTA(1,0) PTA(2,1) SFFS Oscil(5) RVM ABF SVM OLS

PTA(1,0) – 0 0 10 3 10 6 0

PTA(2,1) 6 – 1 5 2 11 6 0

SFFS 16 10 – 14 4 14 13 0

Oscil(5) 5 0 0 – 1 8 5 0

RVM 13 5 3 13 – 17 7 0

ABF 4 2 1 4 2 – 6 0

SVM 6 3 1 7 2 6 – 0

OLS 23 18 9 22 15 20 14 -

Each cell shows the number of tasks where the column method performed better

than the row method (indicated by a p-value lower than 0.05).

Table 3
Summary of the results for the Hwang tasks (8192 training data).

– PTA(1,0) PTA(2,1) SFFS Oscil(5) RVM SVM

PTA(1,0) – 0 0 4 0 4

PTA(2,1) 0 – 0 3 0 4

SFFS 1 0 – 2 0 2

Oscil(5) 1 0 0 – 0 1

RVM 4 4 3 4 – 4

SVM 1 1 2 4 0 –

Each cell shows the number of tasks where the column method performed better

than the row method (indicated by a p-value lower than 0.05).

Table 4
Mean number of BFs of the resulting models for all tasks with 1024 training data.

Method pumadyn-8 kin-8 bank-8

fh fm nh nm fh fm nh nm fh fm nh nm

PTA(1,0) 39 80 59 68 48 71 120 264 204 52 86 221

PTA(2,1) 11 59 24 34 39 46 103 203 191 35 61 142
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6.2.3. The DELVE environment

DELVE [21]—data for evaluating learning in valid experi-
ments—contains a collection of families of data sets and an
environment to assess the performance of supervised learning
methods, allowing for statistically valid comparisons of different
methods.

In the first part of the experiments, we worked with the
pumadyn-8, bank-8 and kin-8 data sets from the DELVE archive.
Four versions (prototasks) for each data set are provided: one f

airly linear with high noise (fh), one f airly linear with moderate
noise (fm), one non-linear with high noise (nh) and one non-linear
with moderate noise (nm).

Each prototask consists of different tasks, where each task
specifies the size of the training set. For the pumadyn-8, bank-8 and
kin-8 data sets, five tasks are available, for training set sizes 64, 128,
256, 512 and 1024. Finally, each task has several task instances,
corresponding to a particular training set and test set for that task,
to which the training methods are applied. The particular results of
the methods on several task-instances are used to estimate their
expected performance on the task. In our case, all the tasks contain
eight task-instances, except the 1024 task, that contains four task-
instances. The comparisons between different methods are based
on the sum-of-squares error on the test sets. Each test set (one for
each task instance) consists of 512 examples, except for the tasks
with 1024 training data, where the test set consists of 1024
examples. A total of 60 DELVE tasks were run for each method.

In the second part of the experiments, the Hwang family of data
sets (DELVE version) was used. These data sets give the values of
five different test functions over a common two-dimensional
domain. The values are provided both without noise and with
Gaussian noise added. With the purpose of assessing scalability of
the methods, training and test set sizes were set to 1024, 2048,
4096 and 8192, amounting for 5� 2� 4 ¼ 40 different tasks. In all
cases, target values were translated to ti ¼ t0i �meanðt0iÞ, where t0i
are the targets of the training sets. The input vectors were linearly
scaled to ½�1;þ1�.
SFFS 2.5 4.5 8.5 13 10 22 76 159 123 27 42 100

Oscil(5) 39 80 59 68 48 71 120 264 204 52 86 221

RVM 3.5 6.5 9.0 13 9.2 24 90 185 130 32 43 115

SVM 593 726 668 608 708 667 682 836 801 763 698 854

OLS 11 14 15 26 18 35 49 169 164 23 51 156
6.2.4. Summary of experimental results

The obtained DELVE diagrams for the first part of the
experiments are summarized in Table 2, showing the number of
tasks for which a method performed better than another, as
follows: a t-test was performed on the test sets averages. Then we
considered that a method performed (significantly) better than
another if the p-value was lower than 0.05. Each entry shows the
number of tasks where the column method is better than the row
method; for example, PTA(1,0) performed better than Oscil(5) in
five tasks and worse in ten tasks (Table 3).

In addition, Table 4 presents the mean number of BFs of the
models found with the different algorithms on the tasks with
1024 training data, for ease of comparison. In a glance, and among
the SSGEs, SFFS found the solution with the lowest number of BFs
and the highest evidence. The SSGEs and the RVM then had
comparable accuracy with a similar number of BFs. In general,
models with higher sparsity performed slightly worse. In
particular, ABF performed best, followed by Oscil(5) and
PTA(1,0), PTA(2,1) and the SVM, the RVM, SFFS and finally OLS.
Focusing on the evidence-driven methods, Table 6 presents the
number of added/removed BFs of the different methods for the
tasks with 1024 training data. The number of steps of SFFS and
RVM varies much from one task to another. For those tasks
requiring more BFs (i.e., difficult tasks), the number of steps is
much larger. When the number of steps and BFs was high,
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Fig. 3. Training time for all the SSGE methods and the RVM (left) and number of final BFs of the models (right), illustrated on the pumadyn-8nm and kin-8nm. These precise

values were obtained on a Pentium IV running at 2.80 GHz.

Table 5
Mean number of BFs (#BF) and mean number of added/removed BFs (#BFa/r) (re-

estimation iterations in the case of the RVM) in the training stage for all the

Hwang-8192 tasks.

PTA(1,0) PTA(2,1) SFFS Oscil(5) RVM SVM

#BF 42.1 41.7 34.5 42.1 19.2 3407

#BFa/r 57.5 161.1 127.4 247.2 1234.1 –
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PTA(1,0), PTA(2,1) and Oscil(5) usually required significantly less
training time than the RVM and SFFS (Fig. 3). When the number of
BFs of the model is high, SFFS and the RVM require a high number
of iterations and the training time is higher.

The Hwang problems represent a different source of experi-
mental results. Given its comparatively poor results, OLS was not
considered in these experiments. The first thing to note is that ABF
cannot be run for training set sizes greater than a couple of
thousands, because of excessive training time (over 100 h without
finishing). The obtained DELVE diagrams for the second part of the
experiments are summarized in Table 3, focusing on the biggest
data sets (with 8192 training data). Very noteworthy is the good
behavior of Oscil(5) and the SVM. Table 5 presents the mean
number of final BFs of the models found as well as the mean
number of added/removed BFs (Table 6) (re-estimation iterations
in the case of the RVM) again on the tasks with 8192 training data,
for ease of comparison. Fig. 4 shows average training times (in
seconds) and numbers of BFs across all Hwang tasks as a function
of training set size.
7. Discussion

From Tables 2 and 3 it can be inferred that ABF, SSGE, the RVM
and the SVM obtain in many cases better generalization than OLS.
This can be explained by the fact that these methods explicitly
consider noise and smoothness in the computation of the
parameters, whereas the only measure in OLS to tackle the noise
is to control the number of BFs.
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Table 6
Mean number of added plus removed BFs in the training stage for all tasks with 1024 training data (re-estimation iterations in the case of the RVM).

Method pumadyn-8 kin-8 bank-8

fh fm nh nm fh fm nh nm fh fm nh nm

PTA(1,0) 56 107 79 88 65 92 155 343 244 94 126 261

PTA(2,1) 78 238 118 148 162 183 403 791 692 225 302 545

SFFS 132 344 190 361 330 381 2051 5892 4216 874 1528 3334

Oscil(5) 205 308 256 250 224 311 433 738 529 228 403 552

RVM 180 196 406 230 115 118 6236 13753 302 106 7225 7066
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Fig. 4. Training time for all the SSGE methods and the RVM (left) and numbers of final BFs of the models (right), across all Hwang tasks as a function of training set size.

These precise values were obtained on a Pentium IV running at 2.80 GHz.
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Fig. 5. The horizontal axis represents the space of possible data sets. Model H1 has

a very low number of BFs and, as opposed to H2, it is plausible only under a

reduced range of data sets. In other words, the prior over functions is more

restrictive for H1. The vertical axis shows the evidence for each model. Since the

evidence is normalized on t, under certain range of data sets the evidence for H1 is

much higher than for H2.
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Basis expansion models can produce overconfident predictive
variances because the limited number of BFs restricts the prior
over functions. This restriction is also responsible for the higher
evidence obtained by simpler models, for which this prior is more
limited—a model with M BFs only considers M linearly indepen-
dent functions. Since the evidence is normalized on the space of
data sets t (see Fig. 5), the models with the most restrictive priors
can have higher evidence than the rest. This effect manifests in
our experiments in the ABF method, which displays very good
generalization performance (when applicable). The evidence for
this model is rather low (Fig. 2) because it is plausible under a
wide range of data sets (Fig. 5). The prior over functions for this
model is fairly unconstrained (it considers M ¼ N linearly
independent functions), suggesting that, contrary to the
assumption in Section 3.3, the prior PðHABF Þ should be higher
than for simpler models, and consequently PðHABF jtÞ should also
be high. Therefore, when no computational or memory
restrictions are present, and for moderate training sizes, we
recommend the use of ABF. If there are, but model size is not an
issue, the choice should be the SVM. Otherwise, Oscil(5)
represents a suitable trade-off between model size, training
time and generalization error and shall be the preferred SSGE.
Table 7 presents the methods ordered from top to bottom for the
three preferences individually. It is advisable to remind that these
issues can be controlled in the SSGEs by selecting the search
strategy and that ABF can only cope with problems of moderate
size.

On the other hand, the model with the highest evidence (found
by SFFS) did not obtain the best generalization rate. Therefore, it
could be argued that the evidence is not a good measure to
optimize. Under the assumption of all the models having the same
prior PðHiÞ, the evidence is a good measure to optimize, since
PðHijtÞ / PðHiÞPðtjHiÞ. However, this assumption is usually
inaccurate and the evidence shows a preference for simpler
models. In other words, it satisfies a tradeoff between model
simplicity and accuracy, which is why the models with the highest
evidence, as found by SFFS, did not have the best performance, but
were instead much simpler. This is an appealing property for
many practical applications, in which time, memory or model size
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Table 7
The methods ordered for each preference.

Training time Model size Generalization error

SVM SFFS, RVM ABF

PTA(1,0) SFFS, RVM Oscil(5), SVM

PTA(2,1) PTA(2,1) Oscil(5), SVM

Oscil(5) PTA(1,0), Oscil(5) PTA(1,0)

ABF PTA(1,0), Oscil(5) PTA(2,1)

RVM SVM RVM

SFFS ABF SFFS
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can be critical; in other situations, only pure generalization ability
is important. In this sense, Oscil(5) was the most accurate method
overall, besides ABF (when applicable). We attribute this fact to
the number of BFs being fixed beforehand to a high value—the
one obtained with PTA(1,0)—so the simplicity of the model was
constrained (i.e., the prior over functions was unconstrained).
8. Conclusions and final remarks

The regression problem has been tackled following an approx-
imate Bayesian treatment as a search guided by the evidence (SSGE
methods). In the experiments, some SSGEs—as Oscil(5)—produced
compact models very competitive with implicit methods such as
the RVM or the SVM. More sophisticated search strategies found
more compact models than simpler ones at the expense of some
accuracy. It has been found that sparsity usually comes at the
expense of some accuracy; therefore, high sparsity is not always
desirable. The choice of the proper search strategy will fulfill a
tradeoff between computational effort, model size and general-
ization rate, for which Oscil(5) stands out as a suitable compromise.
In this vein, the choice of the parameter in Oscil(5) could be
explored to further reduce computational effort.

It has also been reported that a model with all the candidate
BFs performed better than the SSGEs and the RVM for moderate
training set sizes. This suggests that the assumption of all models
having the same prior PðHiÞ is inaccurate. An alternative would
then be to approximate the ABF model with a subset of MoN

parameters that maximize the posterior (6). The selection of this
subset could also be performed with a search process.

Some other approximate Bayesian approaches in the literature
such as the RVM or sparse GP approximations are based on
counter-intuitive assumptions or on a ‘‘convenience prior’’ that
favors sparse solutions [20,18], leading to degenerate Gaussian
processes. Since they restrict the prior over functions, the evidence
has similar properties than under linear basis expansion models
(see Fig. 5): it is biased towards simpler models (with more
restricted priors) at the expense of some accuracy. It is conjectured
that using complex search strategies to maximize the evidence in
sparse GP approximations [17] would produce similar results to
those obtained in this work. An interesting discussion about the
effect of the prior on the size of the model can be found in [19].
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