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Abstract. A Feature Selection process with Single-Layer Perceptrons is shown
to provide optimum discrimination of an international, multi-centre *H-MRS
database of brain tumors at reasonable computational cost. Results are both intu-
itively interpretable and very accurate. The method remains simple enough as to
allow its easy integration in existing medical decision support systems.

1 Introduction

Diagnostic decision making in brain oncology is, for rather obvious reasons, an ex-
tremely sensitive matter. Much of the responsibility of brain tumour diagnostic deci-
sions ultimately rest on the expert clinician’s shoulders. Taking into account that most
diagnostic techniques have to be non-invasive in this domain, clinicians might benefit
from the use of an at least partially automated computer-based medical decision support
system (MDSS) that embedded data mining processes. The reluctance of a clinician to
seek the support of a computer-based MDSS should not be underestimated, though, as
exemplified by the few products of this kind reaching mainstream medical practice [1]].
This makes simplicity and robustness compulsory requirements for the employed data
analysis methods.

In this study, we analyze Magnetic Resonance Spectroscopy (MRS) brain tumor data
from the INTERPRET European research project [2]]. The original database contains
records corresponding to many brain tumour pathologies (many of which are repre-
sented by a very small sample of cases) and even to healthy brain tissue. This makes
their computer-based automated classification a non-trivial undertaking that must be
carefully designed. Most importantly, the high dimensionality of the data also precludes
the straightforward interpretation of the obtained results, limiting their usability in a
practical medical context, in which interpretability is paramount.

In the case of MRS data mining, one way to comply simultaneously with the afore-
mentioned simplicity and interpretability requirements is through dimensionality reduc-
tion and, more specifically, through feature selection (FS). In this paper a FS
procedure with Single-Layer Perceptron (SLP) classifiers that yields very accurate re-
sults with a parsimonious subset of interpretable spectral MRS frequencies is described.
The method is based on the hypothesis that irrelevant features produce smaller varia-
tions in the output values than relevant ones. Hence, a natural way of comparing the
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relevance of two features is by comparing the absolute values of the derivatives of the
output function with respect to the corresponding input units in the trained model. For
SLP, the variation (in absolute value) of the output function is smaller for input features
with smaller weights (in absolute value). Therefore, the magnitude of the weight can be
considered as an indicator of its importance.

A backward selection technique was used as search procedure: starting from the
complete set of available features, several features are removed at every step. The num-
ber of features removed at every step is a parameter of the system that controls the
granularity of the selection and its computational cost. Under the hypothesis that many
of the features are not necessary to obtain a good classification performance (which is a
reasonable hypothesis for the analyzed MRS data set), an aggressive strategy structured
in three phases was designed to save computational time: in a first phase, 50% of the
features were removed at every step of the backward selection procedure. In a second
phase, a 20% of the remaining features were removed. Finally, in a third phase, features
were removed one by one.

The experiments with 'H-MRS data reported in the following sections validate the
usefulness of the described method, since the results presented are, to the best of our
knowledge, the best reported up to date using this database. In addition, most of the
selected features have a direct interpretation in terms of metabolites and molecules often
mentioned in the MRS literature as descriptors of brain tumor pathologies.

2 Description of the INTERPRET 'H-MRS Brain Tumour Data

The echo time is a determinant parameter in *H-MRS data acquisition. In short-echo
time (SET) spectra some metabolites are better resolved (e.g. lipids, myo-inositol, glu-
tamine and glutamate). However, there may be numerous overlapping resonances
making the spectra difficult to interpret [3]. The use of a long-echo time (LET) in the
acquisition of spectra yields less clearly resolved metabolites but also less baseline dis-
tortion, resulting in a more readable spectrum. LET data also allow a more reliable
analysis and testing of classification methods [4].

In this study we consider three different data sets of single voxel *H-MR spectra,
acquired in vivo from brain tumor patients. The first was acquired at SET, the second
at LET and, finally, the third is a fusion of the two previous ones, where the spec-
tra acquired at two echo times obtained for the same patient (when both echo times
were available) are combined through straight concatenation. The clinically-relevant re-
gions of both the SET and LET spectra were sampled to obtain 195 frequency intensity
values.

Class (tumour pathology type) labelling was performed according to the World Health
Organization (WHO) system for diagnosing brain tumors by histopathological analy-
sis of a biopsy sample. For the reported experiments, spectra were bundled into three
groups, namely: G1: low grade gliomas (astrocytomas grade I, oligoastrocytomas grade
II and oligodendrogliomas grade II); G2: high grade malignant tumors (metastases and
glioblastomas); and G3: meningiomas. In summary, three data sets were analyzed: SET
(217 cases and 195 features), LET (195 cases and 195 features) and SET+LET (195
cases and 390 features).
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3 Some Precedents of Feature Selection and Classification with
INTERPRET 'H-MRS Brain Tumour Database

Previous published work analyzing similar 'H-MRS INTERPRET data used feature
extraction (PCA, specifically) followed by LDA to distinguish between high-grade ma-
lignant tumours and meningiomas, obtaining a mean AUC (area under the ROC curve)
of 0.94, using 6 principal components [S]]. The same method was used to distinguish be-
tween high-grade malignant tumours and astrocytomas Grade II (part of the low-grade
gliomas group), obtaining a mean AUC of 0.92, also using 6 principal components.
Independent Component Analysis (ICA), an alternative feature extraction method, has
also been applied to analyze an earlier version of the INTERPRET data in [6].

This type of binary classification, in different combinations, has been carried out with
different versions of INTERPRET 'H-MRS data and with varying degrees of success
(see, for instance, the combination of spectrometric and imaging data in [7]). This is a
somehow easier problem than the multi-class one that we deal with in this paper. In [8]],
this time using exactly the same three groups of tumours that we have analyzed in this
study, a basic linear model (LDA) with 6 spectral frequencies (3.72, 3.04, 2.31, 2.14,
1.51 and 1.20 ppm) achieved a 83% of correct classification on an independent test set
for LET, and a 89% correct classification for SET, using 5 frequencies (namely 3.76,
3.57, 3.02, 2.35 and 1.28 ppm). Similar results were found for LET data in [4] for a
combination of PCA and LDA and for different versions of support vector machines.

Only a few recent works have addressed the problem of multi-class classification of
'H-MRS data by combination of echo times. In [3]], SET and LET data were combined
in a classification problem that involved four groups of tumours: high grade malignant
tumours and meningiomas, as in the current study, and astrocytomas grade II (part of
our low grade gliomas) and anaplastic astrocytomas. Using LDA, the correct diagnosis
was suggested by at least one of the echo times in 90% of all cases. A far more similar
approach to the one followed in the current study (combining the SET and LET data
through concatenation) was used in [9], also to classify G1, G2 and G3: feature selec-
tion followed by LDA achieved 88.71% test accuracy, while PCA followed by LDA
achieved a maximum of just over 90% test accuracy for 8 principal components.

4 Feature Selection Process

The problem of FS can be defined as follows: given a set of d features, select a subset
that performs the best under certain evaluation measure. From a computational point
of view, the definition of FS usually leads to a search problem in a space of 2¢ ele-
ments. In this case, two components must be specified: the feature subsets evaluation
measure and the search procedure through the space of feature subsets. If any of these
two componentes depends on an external model, it must also be specified.

In the rest of the section, the constituent elements of the FS process for the 'H-MRS
brain tumour database are described.

4.1 Model

SLP Artificial Neural Networks (ANN) with sigmoidal output units were used both
for the feature subsets evaluation measure (within the FS process) and to obtain the
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test accuracy (within the learning process). The number of output units was set to the
number of classes of the problem. Therefore, the activation y; of the output unit j for a
d-dimensional input vector z is computed as

d
i =g<2xk-wjk+bj>, (1)

k=1

where wj; is the weight that connects the input unit k£ with the output unit j, b; is the
bias of the output unit 7, and g(z) is a sigmoidal function. The SLP were trained in this
study so as to minimize the sum-of-squares error.

There are several reasons for using SLP instead of more complex ANN alternative
models in this particular case. FS with Multi-Layer Perceptrons (MLP) would be com-
putationally too expensive for the number of features of the 'H-MRS brain tumour data
set [[10]]. In addition, MLP parameters are more difficult to adjust. Alternatively, FS with
linear Support Vector Machines (SVM) [ 1] usually computes the saliency of the fea-
tures as a function of the weights, as in our model (see below). However, the weights
of a SLP are not necessarily a linear combination of the data, as for linear SVM. There-
fore, the saliency of every feature is likely be more independent for SLP than for linear
SVM. In addition, linear models had shown quite good performance with these data in
previous studies [].

4.2 Feature Subsets Evaluation Measure

The evaluation measure (the relevance) of a feature subset was computed as the sum of
the individual saliencies of its features. The saliency s; of a feature ¢ over O outputs
was computed as: s; = Z?Zl |&;:], where &; are the weights of the trained SLP.

This method is based on the hypothesis that irrelevant features produce smaller vari-
ations in the output values than relevant ones. Hence, a natural way to compare the
relevance of two features is to compare the absolutes values of the derivatives of the
output function with respect to their respective input units in the trained model.

Formally, the derivative in the trained model of the output function y; in (I) with
respect to an input feature x; is

d
Jy, . .
ow; Y <Z T - Wik + bﬁ) Wi,

k=1

and, for every 7,
|0y;/0wiy | _ |wji, |
10y;/0zi, | |@jis |

Therefore, the variation (in absolute value) of the output function is smaller for input
features with smaller weights (in absolute value), and they are the main candidates to be
eliminated in a FS process. In summary, for linear discriminant functions such as SLP,
the magnitude of the weights corresponding to a feature is considered as an indicator of
its importance. Similar ideas can be found elsewhere (see, for example, [[L1] or [12]).
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4.3 Search Procedure

A backward selection procedure was used as an iterative selection process guided by
the previously defined saliency measure. Starting from the complete set of available
features, a subset of them was removed at every step of the algorithm according to the
evaluation measure. Since the evaluation measure of a feature subset is computed as the
sum of the saliencies of its features, the features to be removed at every step are those
with the smallest saliency. The number of features removed at every step is a parameter
of the system, that controls the granularity of the selection and the computational cost.
The main reason for choosing a backward procedure instead of a forward one is twofold:
First, a backward procedure allows, at the onset, to take into account all the interactions
among variables. Second, the parameters of the SLP are easier to adjust.

4.4 Algorithm
The FS algorithm finally applied in this study consisted of three general phases:

1. Perform a backward selection procedure (see section [£.3)), starting with the whole
set of features, until only one feature remain. At every step:
(a) Train a SLP with the remaining features (see section [4.T)).
(b) Compute the saliency of every feature (see section [4.2]).
(c¢) Remove the 50% of the remaining features with the lowest saliency.
For every feature subset obtained, estimate its generalization performance. Out of
all the results, keep the previous to the best one for the next phase (to avoid missing
a possible generalization maximum in intermediate, not analyzed, subsets).
2. The second phase is similar to the first one, except for:
(a) The initial feature subset is the one obtained in the first phase.
(b) Atevery step, 20% of the remaining features are removed.
3. The third phase is similar to the second one, except for:
(a) The initial feature subset is the one obtained in the second phase.
(b) At every step, one feature is removed.

5 Experiments

5.1 Experimental Setting

No preprocessing of the data was done, since all the features were in the same range of
values. The target values were generated with a 1-of-C coding scheme (a value of 1 for
the correct class, an O for all the others).

The SLP models were trained with the Delta rule in on-line mode for 10, 000 epochs.
The logistic function g(z) = +i—z was used for the output units. Initial weights and
momentum were set to 0. Learning rates were heuristically adjusted.

The saliencies were calculated using the whole data set, and five runs of a 5-fold
stratified Cross-Validation (CV) were performed to estimate the generalization perfor-
mance. Prior to every CV, the data were randomly shuffled. The complete experiment
took around 7 hours in an Intel Xeon CPU at 2,000 MHz.
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Table 1. Classification and FS results

Data Set Test NF Features Selected (ppm)
SET 95.72% 29 3.13 1.514.15 1.65 3.74 3.60 3.51 1.30 1.82 3.45
2.312222273.323.77 1.870.94 3.81 3.24 2.29
2.031.97 1.47 1.63 3.56 3.93 2.23 1.59 3.34
SET 90.51% 18 1.513.132.222.27 3.56 3.60 3.45 3.51 1.87 2.29
2.031.47 1.59 1.97 3.74 4.15 3.77 1.30

Data Set Test NF Features Selected (ppm)
LET 95.79% 50 1.232.162.27 2.333.36 0.87 3.72 1.422.99 2.39
3.09 3.05 1.76 0.54 2.88 1.53 1.44 2.52 2.54 2.56
3.70 3.64 3.32 1.32 3.91 2.94 1.06 3.20 3.55 3.85
1.59 3.533.18 3.79 1.04 0.64 3.26 2.48 0.73 1.27
1.513.37 3.453.03 1.84 4.19 1.91 3.39 3.94 0.89
LET 90.26% 8 2.272.161.232.992.880.873.721.76

Data Set Test NF Features Selected (ppm)

SET+LET 98.46% 18 1.2.88 L2.27 S0.89 S3.58 1.2.03 L.2.54 L.3.64 L1.59 S1.32
L.3.79 S3.77 L1.84 S3.45 L3.70 S1.25 S2.12 L0.70 S3.18

SET+LET 91.08% 9 1.2.271.2.88 S2.121.1.59L.2.54 L3.79 S3.58 S1.251.2.03

5.2 Results

Classification and FS results of the experiments for the three data sets studied are sum-
marized in Table [l (SET: top, LET: middle, and SET+LET: bottom). For the combi-
nation of echo times, SET+LET, up to a 98.46% average test accuracy (an average of
only 3 misclassifications out of 195 spectra) was achieved using a parsimonious subset
of only 18 spectral frequencies, 8 of them belonging to SET and 10 to LET. The results
reported in the second rows of Table [l illustrate how the test accuracy deteriorates as
we detract features from the selected subset. Nevertheless, for the SET+LET data set,
a selection of 9 spectral frequencies (a mere 2.3% of the original 390) was still able to
retain over 91% of the average test classification accuracy in the multi-class problem
involving low grade gliomas, high grade malignant tumors, and meningiomas.

For illustration, the 18 selected spectral frequencies are displayed, together with the
mean spectra of the three tumour classes, in Figure [Il both for SET (top) and LET
(bottom) data separately. Many of them have a clear interpretation as resonances of
metabolites and molecules often reported in the MRS literature as descriptors of brain
tumor pathologies. They include, at SET: Alanine (2*CH-group) at 3.77 ppm, Glycine
(?CHa-group) or Myo-Inositol at 3.58, possibly Taurine at 3.45, Choline and other
trimethylamine-containing compounds at 3.18, Glutamate and Glutamine (*CH,- and
4CH,- groups) at 2.12, Lactate and Lipids at 1.32 and 1.25, and also lipids at 0.89.
They also include, at LET: Glutamate/Glutamine-containing compounds (?CH-groups)
at 3.79 and, possibly, 3.70, Glutamate and Glutamine metabolites (this time *C Ho-
groups) at 2.54 and 2.27, and N-acetylaspartate and other N-acetyl-containing com-
pounds at 2.03. All this metabolic information should provide medical experts with
intuitive insights on the diagnoses of the analyzed brain tumour pathologies.
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Fig. 1. Representation of the 18 selected spectral frequencies from the SET+LET data set as
vertical lines, with their value in ppm tagged by their side. Left plot: SET results; right plot: LET
results. The 3 most relevant frequencies of each echo time are represented with thicker lines.
Mean spectra of each class are represented as dashed lines (low grade gliomas), dotted lines
(high grade malignant tumors), and solid lines (meningiomas).

The use of a single echo time yields a 95.72% average test accuracy (an average
of between 8 and 9 misclassifications out of 195 spectra) for SET using 29 spectral
frequencies and a very similar 95.79% for LET, this time using a less compact subset of
50 selected frequencies. According to these results, a classification based on SET only
might be preferred to one based on LET only (on the grounds of easier interpretation),
although LET reaches a rather good compromise between accuracy and interpretability
with a 90.26% result using only 8 frequencies. In any case, according to the results
reported in Table[Il models using SET+LET instead of a single echo time should always
be the choice in order to achieve optimal generalization.

Furthermore, our results using SET+LET to discriminate between low grade gliomas,
high grade malignant tumors, and meningiomas with a combination of FS and SLP
improve on those reported in [9]] for the same problem (using stepwise FS with LDA), by
almost a 10% average test accuracy. Our results using only SET and LET also improve
on those previously reported for the same problem in [8/413].

6 Conclusions and Future Work

A simple SLP with FS has achieved a near perfect classification (measured by test ac-
curacy) of an international, multi-centre 'H-MRS data set by combining data acquired
at two different echo times. This performance is better than that achieved using data
obtained at any of the echo times separately, reinforcing previous results [9]. In future
research, out-of-sample data should be acquired in order to fully ensure the general-
ization capabilities of the model. Importantly, these good results are obtained while
retaining model simplicity and interpretability, as they only require less than 5% of
the original frequencies (most of them identifiable as known descriptors of brain tumor
pathologies).

The FS procedure was designed with an aggressive strategy that allowed to save
computational time, making it feasible for data sets with a large number of variables.
However, for highly correlated features the values of the weights (and therefore the
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saliency) may be distributed in the trained SLP, leading to unsuitable FS. In this case,
the FS process would benefit from a previous filter procedure where highly correlated
features were considered as a single one.
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