
Exploratory Characterization of Outliers in a
Multi-centre 1H-MRS Brain Tumour Dataset

Alfredo Vellido1,�, Margarida Julià-Sapé2,3, Enrique Romero1,
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C. Jordi Girona, 1-3. 08034, Barcelona, Spain

{avellido,eromero}@lsi.upc.edu
http://www.lsi.upc.edu/∼websoco/AIDTumour

2 Centro de Investigación Biomédica en Red en Bioingenieŕıa, Biomateriales y
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Abstract. As part of the AIDTumour research project, the analysis of
MRS data corresponding to various tumour pathologies is used to assist
expert diagnosis. The high dimensionality of the MR spectra might ob-
scure atypical aspects of the data that would jeopardize their automated
classification and, as a result, the process of computer-based diagnostic
assistance. In this paper, we put forward a method to overcome this po-
tential problem that combines automatic outlier detection, visualization
through dimensionality reduction, and expert opinion.
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1 Introduction

Decision making in oncology is a sensitive matter, and even more so in the spe-
cific area of brain tumour oncologic diagnosis, for which the direct and indirect
costs - both human and financial - of misdiagnosis are very high. In this area, in
which most diagnostic techniques must be non-invasive, clinicians should benefit
from the use of an at least partially automated computer-based medical Decision
Support System (DSS).

AIDTumour (Artificial Intelligence Decision Tools for Tumour diagnosis [1])
is a research project for the design and implementation of a medical DSS to
assist experts in the diagnosis of human brain tumours on the basis of data
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obtained by Magnetic Resonance Spectroscopy (MRS). This is a technique that
can shed light on cases that remain ambiguous after clinical investigation. The
MRS data used in AIDTumour and analyzed in this paper belong to a complex
multi-centre set containing cases of several brain tumour pathologies [2]. These
data have undergone a rigorous pre-processing quality control that validates
them from the viewpoint of the radiologists. Nevertheless, and for their use in
an automated computer-based DSS, the various origins of these spectra and the
complexity of their pre-processing make further data exploration advisable.

It might be problematic to include some of the spectra in an automated DSS
without further ado for three different reasons: Firstly, some may contain mea-
surement or acquisition artifacts that, even if not completely precluding diagnosis
by visual inspection, might induce errors in computer-based diagnosis: these are
what we call here artifact-related outliers. Secondly, atypical cases that do not
contain artifacts but are nevertheless unrepresentative of the main distributions
of the whole dataset: herein, these will be referred to as distinct outliers [3].
Thirdly, some cases with a clear biopsy-based diagnosis (tumour type attribu-
tion) may yield spectra that are quantitatively similar to those of other tumour
types, misleading a computer-based classification system. Even if representative
of the data as a whole, they are still unrepresentative of their own tumour type:
these we will call class outliers. Note that these three reasons are not always
mutually exclusive.

In this paper, we show the effectiveness of a method to identify and character-
ize potentially conflicting MRS data that combines techniques of dimensionality
reduction, exploratory visualization, and outlier detection, with expert knowl-
edge. The introduction of the latter is paramount, as it will help to skim those
cases truly conflictive out of those shortlisted by blind quantitative criteria.
Overall, this method is conceived as a preliminary step to data classification in
the DSS. Dimensionality reduction is not trivial in this setting, as the available
MRS data are scarce and high dimensional. Sammon’s mapping [4] is used to this
end. Generative Topographic Mapping (GTM [5]), a manifold learning model, is
used to quantify spectra atypicality.

2 MRS Data

The analysed MRS data correspond to 217 short-echo time (SET) and 195 long-
echo time (LET) single voxel 1H MR spectra acquired in vivo from brain tumour
patients. They include 58 (SET) and 55 (LET) meningiomas (mm), 86 (SET)
and 78 (LET) glioblastomas (gl), 38 (SET) and 31 (LET) metastases (me), 22
(SET) and 20 (LET) astrocytomas grade II (a2 ), 6 (SET and LET) oligoastro-
cytomas grade II (oa), and 7 (SET) and 5 (LET) oligodendrogliomas grade II
(od). For details on data acquisition and processing, see [2]. Class labelling was
performed according to the World Health Organization (WHO) system for diag-
nosing brain tumours by histopathological analysis of a biopsy sample. For the
reported analysis, spectra were bundled into three groups, namely: G1: low grade
gliomas (a2, oa and od); G2: high grade malignant tumours (me and gl); and
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G3: meningiomas. The clinically-relevant regions of the spectra were sampled to
obtain 195 frequency intensity values (measured in parts per million (ppm), an
adimensional unit of relative frequency position in the data vector), from 4.25
parts per million (ppm) down to 0.56 ppm, which become data attributes.

3 Methods

3.1 MRS Data Visualization through Sammon’s Mapping

In order to allow the visualization of the data through dimensionality reduction,
the spectra were mapped onto a 3-D space through Sammon’s mapping [4]. The
non-linear mapping is constructed as to minimize the inter-point distortions it
introduces, quantified by Sammon’s error measure:

1
∑

i<j δij

∑

i<j

(δij − ξij)2

δij
, (1)

where δij is the Euclidean distance between spectra i and j in the original
data space and ξij is the Euclidean distance between the projections of these
spectra in the 3-D space. In this study, the minimization of the Sammon’s error
was performed by the Newton method. A collection of models was obtained
by varying the initial points (100 different random values) and the step size (9
different values), for a total of 900 runs. The models with lowest Sammon’s error
were selected for further analysis.

3.2 Outlier Detection Using t-GTM

Generative Topographic Mapping (GTM [5]) is a non-linear latent variable model
defined as a mapping from a low dimensional latent space onto the multivariate
data space. The mapping is carried through by a set of basis functions and is
defined as a generalized linear regression model:

y = φ(u)W, (2)

where W is a matrix of adaptive weights that defines the mapping, and u is a
point in latent space. φ are M basis functions that, in the original formulation,
were chosen to be spherically symmetric Gaussians. For this Gaussian GTM,
the presence of outliers is likely to negatively bias the estimation of its adap-
tive parameters. In order to overcome this limitation, the GTM was recently
redefined [3] as a constrained mixture of Student’s t distributions: the t -GTM.
The mapping described by Equation (2) remains, with the basis functions now
being Student’s t distributions. As a byproduct of this reformulation of GTM,
and following [7], a statistic quantifying to what extent t -GTM considers a data
case to be an outlier can be defined as On =

∑
k p(uk|xn)β‖yk − xn‖2, where

β is the inverse of the noise variance. The larger the value of this statistic the
more likely the case is to be an outlier. Notice that p(uk|xn) is the responsibility
assumed by a latent point k : 1, . . . , K for the data case n and, the same as for
the standard GTM, it is obtained as part of the maximum likelihood estimation
of the model’s parameters.
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3.3 Shortlisting Outlier Cases of Interest

The free software package KING [6] is used to visualize in 3-D the Sammon’s
mapping of the spectra described in section 2, enabling a preliminary data ex-
ploration. The data projections obtained with Sammon’s mapping were then
modelled by t -GTM, obtaining a value of On for each data case, indicating the
corresponding degree of atypicality. Histograms of On were generated to short-
list potentially conflictive cases of the three types described in the introduction.
Loose thresholds of the statistic were set for the selection of the lists of outlier
candidates. Using all this information, an expert in MRS then singled out those
spectra she/he considered to be truly atypical in any sense and compared them
to the characteristic spectra corresponding to their tumour type.

4 Experimental Results and Discussion

4.1 Short Echo Time 1H MRS Data

The histogram in Fig. 1 displays the distribution of the value of the statistic On,
first calculated for the complete SET MRS dataset. A threshold of On = 20 was
set to shortlist outlier candidate spectra. This yielded 23 potential outliers, which
were inspected by an expert who decided that only 19 of them (4 distinct outliers
and 15 artifact-related outliers) qualified as such, for different causes listed in
Table 1 (left). Notice that there are plenty of low grade gliomas (37% of all
outliers, while only 16% of all data). Six different types of artifacts were found
in the data, namely: spectra heavily contaminated by noise; bad water signal
suppression as part of the data pre-processing; incorrect spectrum alignment of
the ppm reference; incorrect baseline; the existence of polispiculated artifact;
and signal distorsion due to eddy currents (induced as a result of field gradient
switching in signal acquisition).
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Fig. 1. Histogram of statistic On for the SET dataset. The selected threshold at value
20 is represented as a vertical dotted line.
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Fig. 2. 3-D Sammon’s mapping view of two cases of interest (with groups of tumours
displayed in different shades of gray), on the left column, and their corresponding
individual spectra (solid lines) and mean spectra (dotted lines) of the tumour groups
they belong to, on the right column. The abscissa axis displays frequency in ppm.

To illustrate the visualization of the high-dimensional spectra through Sam-
mon’s mapping, Fig. 2 displays SET cases I1283 (a meningioma, which the expert
described as being contaminated by noise, and affected by bad water suppression,
polispiculated effect and eddy currents), and I0354 (a glioblastoma, which the
expert described as being affected by a polispiculated effect). Their atypicality
is clearly captured by the visualization.

Spectra can also be atypical specifically with respect to their group of tumours.
These are what we call class outliers. The histograms of On for each group
of tumours are omitted here for the sake of brevity. Five low grade gliomas,
20 high grade malignant tumours, and 13 meningiomas where shortlisted and
inspected by the expert, who considered that, out of these, none of the low
grade gliomas, only 9 high grade malignant tumours, and 8 meningiomas should
be tagged as class outliers. Some of them also contain artifacts, given that, as
mentioned in the introduction, artefact-related outliers and class outliers are
not mutually exclusive characterizations. They are described in Table 2 (left). It
is very interesting that, even though low grade glioma outliers are plentiful, as
seen in Table 1 (left), there is no class outlier amongst them in the SET spectra,
suggesting a well-defined against the rest but less-than-compact structure in this
group of tumours.

4.2 Long Echo Time 1H MRS Data

The histogram in Fig. 3 displays the distribution of On for the complete LET
MRS dataset. A threshold of On = 15 was set to shortlist outlier candidate
spectra. This yielded 21 potential outliers, which were again inspected by an
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Table 1. Outlier characterization of the SET (left) and LET (right) 1H MRS datasets.
Columnwise, Id is an anonymized case identifier; star superscripts indicate that there
are artifacts that do not preclude the expert’s correct interpretation of the case. Tum
refers to tumour type (see labels in section 2). Dis refers to Distinct outliers. Six types
of artifacts were found: noi stands for noise; wat, for bad water signal suppression; ali,
for alignment; lin, linebase; pol, for the polispiculated effect; and edd for eddy currents.
See main text for details.

Id Tum Dis Artifact-relat. outl.
noi wat ali bas pol edd

I0335 G1(a2) X

I1052∗ G1(a2) X

I1087∗ G1(a2) X

I0060 G1(oa) X

I0069 G1(oa) X

I0450 G1(oa) X

I0179 G1(od) X

I0135∗ G2(gl) X

I0172∗ G2(gl) X X

I0354∗ G2(gl) X

I0421∗ G2(gl) X

I1024∗ G2(gl) X

I0055 G2(me) X

I0244∗ G3(mm) X

I0375 G3(mm) X

I0381∗ G3(mm) X

I0390∗ G3(mm) X

I0393∗ G3(mm) X X X

I1283∗ G3(mm) X X X X

Id Tum Dis Artifact-relat. outl.
noi wat ali bas pol edd

I1061 G1(a2) X

I0062∗ G2(gl) X X X

I0105∗ G2(gl) X

I0172 G2(gl) X X

I0175∗ G2(gl) X X

I0354∗ G2(gl) X X

I0428∗ G2(gl) X X

I1044∗ G2(gl) X

I1057∗ G2(gl) X X X

I1379∗ G2(gl) X X

I0027 G2(me) X X

I0368∗ G2(me) X X

I1070 G2(me) X

I0390∗ G3(mm) X

I0420 G3(mm) X

I1074 G3(mm) X

I1090 G3(mm) X

I1378 G3(mm) X X
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Fig. 3. Histogram of statistic On for the LET dataset. The selected threshold at value
15 is represented as a vertical dotted line.
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expert, who decided that only 18 of them qualified as such (3 distinct outliers
and 15 artifact-related outliers). The corresponding characterization is presented
in Table 1 (right). Interestingly, in this case there is almost no low grade glioma
outlier and, instead, high grade malignant outliers predominate (67% of all out-
liers, while only 56% of all data).

Turning now our attention to class outliers, 9 low grade gliomas, 7 high grade
malignant tumours, and 10 meningiomas were shortlisted and inspected by the
expert, who considered that, out of these, none of the low grade gliomas, only
2 high grade malignant tumours, and 5 meningiomas should be tagged as class
outliers. Some of them also contain artifacts, and they are characterised in Table
2 (right). It is worth noting that there are far less class outliers in the LET
dataset than in the SET one, suggesting a much more compact definition of the
tumour groups in the former representation. It is also interesting that, again,
there is no class outlier amongst the low grade gliomas. Together with the almost
complete lack of outliers in this tumour group shown in Table 1 (right), this
indicates that they have a much more compact and well-defined structure in the
LET representation.

Table 2. Class outlier characterization of the SET (left) and LET (right) 1H MRS
datasets, by groups of tumours. Label description as in Table 1.

Id Tum Artifacts
noi wat ali bas pol edd

Low grade gliomas (G1)
∅
High grade malignant (G2)

I0021∗ gl

I0358∗ gl X

I0200∗ gl X

I1390 gl X

I0168∗ gl

I1098∗ gl

I1076∗ me X

I0352∗ me X

I1377∗ me

Meningiomas (G3)
I0160∗ mm

I1090∗ mm

I1073∗ mm X

I0009 mm

I0390∗ mm X

I1378∗ mm X

I0375 mm X X

I1149∗ mm

Id Tum Artifacts
noi wat ali bas pol edd

Low grade gliomas (G1)
∅
High grade malignant (G2)

I0105∗ gl

I1070 me

Meningiomas (G3)
I0114∗ mm

I1090 mm

I1378 mm X X

I0002∗ mm

I0009∗ mm
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5 Conclusion

In this paper, we have defined a method to identify and characterize poten-
tially conflicting MRS multi-center data corresponding to several brain tumour
pathologies, which combines dimensionality reduction, outlier detection and ex-
ploratory visualization techniques with expert knowledge. This combination of
data-based analysis and human expertise is one of the distinctive hallmarks of
Evidence-Based Medicine (EBM) for healthcare practice [8]. This method will be
embedded in a medical DSS resulting from the AIDTumour [1] research project.

Several research questions would require further research. First, the useful-
ness of outlier detection and characterization for the improvement of automated
tumour diagnostic classification should be assessed. For instance, does the fact
the LET MRS data include less class outliers mean that we should expect better
classification of tumour groups using these and not SET data? Second, only 2
glioblastomas and 1 meningioma tagged as artifact-related outliers, and 3 menin-
giomas tagged as class outliers appear both for SET and LET data. How can we
explain this level of mismatch? Specific policies to deal with this wide variety of
situations should be carefully implemented in the projected DSS.
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