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Abstract

The combination of an Artificial Neural Network classi-
fier, a feature selection process, and a novel linear dimen-
sionality reduction technique that provides a data projec-
tion for visualization and which preserves completely the
class discrimination achieved by the classifier, is appliedin
this study to the analysis of an international, multi-centre
1H-MRS database of brain tumors. This combination yields
results that are both intuitively interpretable and very accu-
rate. The method as a whole remains simple enough as to
allow its easy integration in existing medical decision sup-
port systems.

1. Introduction

Ideally, full patient bioprofiles should include disparate
and heterogeneous information including, amongst other
possible options, individual and family health history, ge-
nomic and proteomic data, and electronic medical records
including biosignal and image recordings. The creation of
standard databases of this type of bioprofiles is still far from
becoming a reality even in advanced healthcare systems.

The creation and use of more restricted and goal-specific
databases of bioprofiles, instead, is within closer reach. An
example of this is the combination of Magnetic Resonance
Spectroscopy (MRS) data with metabolomic and genomic
profiles for brain tumor diagnostic assistance used in the e-
Tumour European research project [1]. E-Tumour builds on
the MRS decision support system (DSS) tool for tumour di-

agnosis previously delivered by the INTERPRET research
project [2].

Decision making in oncology is a sensitive matter, and
even more so in the specific area of brain tumour diagno-
sis, for which the direct and indirect costs - both human and
financial - of misdiagnosis are very high. In this area, in
which most diagnostic techniques should be non-invasive,
clinicians might benefit from the use of an at least partially
automated computer-based medical DSS. In this study, we
analyze MRS data from the INTERPRET project, which are
scarce and of very high dimensionality. This makes their
computer-based automated classification a non-trivial un-
dertaking. Most importantly, this high dimensionality also
precludes the straightforward interpretation of the obtained
results, limiting their usability in a practical medical con-
text, in which interpretability is paramount and simplicity
and robustness of the methods employed are compulsory
requirements.

In this paper, we propose a combination of two meth-
ods: First, an Artificial Neural Network (ANN) classifier
that, combined with a supervised feature selection (FS) pro-
cedure, yields very accurate results with a parsimonious
subset of interpretable spectral MRS frequencies. Sec-
ond, a novel linear dimensionality reduction technique that
preserves in its integrity the class discrimination achieved
by the classifier, while providing an intuitive visualization
of the original dataset and making the results more inter-
pretable. The experiments validate the usefulness of the
proposed combination of methods, which could easily be
integrated in a computer-based medical DSS.



2. Data and methods

2.1. Brain tumour 1H-MRS data

The data analyzed in this study were extracted from an
international and multi-centre web-accessible database re-
sulting from the International Network for Pattern Recogni-
tion of Tumours Using Magnetic Resonance (INTERPRET)
European research project [2]. These data correspond to
the combination (through concatenation) of single voxel
1H-MR spectra measured at two echo times: a short-echo
time (SET: PRESS 30-32 ms) and a long-echo time (LET:
PRESS 135-144 ms). These spectra were acquired in vivo
from 195 brain tumor patients. They include 55 menin-
giomas (mm), 78 glioblastomas (gl), 31 metastases (me),
20 astrocytomas grade II (a2), 6 oligoastrocytomas grade II
(oa), and 5 oligodendrogliomas grade II (od). For further
details on data acquisition and processing, and on database
characteristics, see, for instance, [3, 10, 22].

Class labelling was performed according to the World
Health Organization (WHO) system for diagnosing brain
tumors by histopathological analysis of a biopsy sample.
For the reported analysis, spectra were bundled into three
groups, namely:G1: low grade gliomas (a2, oa andod);
G2: high grade malignant tumors (me and gl ); and G3:
meningiomas (mm). This type of grouping is justified [21]
by the difficulty in distinguishing between metastases and
glioblastomas, which has its origin in the similar spectral
pattern produced by the highly necrotic nature of both of
these types of tumors. The clinically-relevant regions of
both the SET and LET spectra were sampled to obtain 195
frequency intensity values from each (measured in parts per
million (ppm), an adimensional unit of relative frequency
position in the data vector), from 4.25 parts per million
(ppm) down to 0.56 ppm. As a result, the data in the re-
ported experiments consist of 195 cases and 390 features.

The approach of combining the SET and LET versions
of these data through concatenation, in order to classify G1,
G2 and G3 was also recently followed in [8].

2.2. Classification and feature selection using an
artificial neural network

Models. Single-Layer Perceptron (SLP) ANNs with sig-
moidal output units (one for each of the analyzed classes)
were used both to obtain the test accuracy (within the learn-
ing process) and for the feature subsets evaluation criterion
(within the FS process). The activationyj of the output unit
j for ad-dimensional input vectorx is computed as

yj = g

(

d
∑

i=1

xi · ωji + bj

)

, (1)

whereωji is the weight that connects the input uniti with
the output unitj, bj is the bias of the output unitj, andg(z)
is the logistic function. The SLPs were trained in this study
so as to minimize the sum-of-squares error.

There are several reasons for using SLPs instead of more
complex ANN alternative models in this particular case. FS
with Multi-Layer Perceptrons (MLP) would be computa-
tionally too expensive for the number of features of the an-
alyzed1H-MRS brain tumour dataset (as described in Sec-
tion 2.1) [16]. In addition, MLP parameters are more diffi-
cult to adjust. Alternatively, FS with linear Support Vector
Machines (SVM) [9, 15] usually computes the saliency of
the features as a function of the weights, as in our model
(see below). However, the weights of a SLP are not neces-
sarily a linear combination of the data, as for linear SVMs.
Therefore, the saliency of every feature is likely to be more
independent for SLPs than for linear SVMs.

In addition, linear models had shown quite good perfor-
mance with these data in previous studies [22].

Feature subsets evaluation criterion.The relevance of
a feature subset is computed as the sum of the individual
saliencies of its features, where the saliencysi of a feature
i overO outputs is:

si =
O
∑

j=1

|ω̂ji|,

and wherêωji are the weights of the trained SLP.
This method is based on the hypothesis that irrelevant

features produce smaller variations in the output values than
relevant ones. Hence, a natural way to compare the rele-
vance of two features is to compare the absolute values of
the derivatives of the output function with respect to their
respective input units in the trained model.

Formally, the derivative in the trained model of the out-
put functionyj in (1) with respect to an input featurexi is
∂yj

∂xi
= g′

(

∑d

i=1
xi · ω̂ji + bj

)

· ω̂ji, and, for everyj,

|∂yj/∂xi1 |

|∂yj/∂xi2 |
=

|ω̂ji1 |

|ω̂ji2 |
.

Therefore, the variation (in absolute value) of the output
function is smaller for input features with smaller weights
(in absolute value), and they are the main candidates to be
eliminated in a FS process. In summary, for linear discrim-
inant functions such as SLPs, the magnitude of the weights
corresponding to a feature is considered as an indicator of
its importance.

Similar approaches have been applied elsewhere for
other models. In [9] and [15], the squares of the weights in
a trained linear SVM were used as a proxy of saliency. For
hard-margin SVMs, this value is the variation in the cost
function experimented when the feature is removed from
the trained model.



For MLPs, more variations on this measure can be found
in the literature. In [13] and [20], for example, the saliency
of a feature is computed as the sum of the squares of the
weights in the first hidden layer. In [12], [24] and [25], the
absolute values of the weights in the first hidden layer are
used to that end. The derivative of the output function with
respect to the input features has also been widely used to
compute their saliency, as in [14], [17], or [19].

FS search procedure.A backward selection procedure
was used as an iterative selection process guided by the pre-
viously defined saliency measure. Starting from the com-
plete set of available features, a subset of them was deleted
at every step of the algorithm according to the evaluation
criterion. Since the evaluation measure of a feature subset
is computed as the sum of the saliencies of its features, the
features to be deleted at every step are those with the small-
est saliency. The number of features deleted at every step
is a parameter of the system that controls the granularity of
the selection and its computational cost.

The application of the standard backward selection pro-
cedure to FS (deleting one feature at every step) would
involve the training ofd networks. However, under the
hypothesis that many of the features are not necessary to
obtain a good classification performance (which is a rea-
sonable hypothesis for the analyzed MRS dataset), a more
aggressive strategy can be designed to save computational
time: at every step, a fixed percentage of features is deleted.
In order to control the granularity of the selection, the whole
process can be repeated in different phases with different
percentages at every phase (and different initial feature sub-
sets). In the last phase, when only a few irrelevant features
are supposed to remain in the dataset, the procedure can
switch to deleting them one by one.

2.3. Low-dimensional data visualization with scat-
ter matrices

As mentioned in the introduction, the high dimension-
ality of the analyzed spectra makes the interpretation of the
obtained results a non-trivial undertaking, which potentially
limits their usability in a practical medical decision making
context such as brain tumor diagnosis. This may still be the
case even after a FS process as the one described in the pre-
vious section. In these medical context, data visualization
in a low-dimensional representation space may become ex-
tremely important, helping radiologists to gain insights into
what undoubtedly is a complex domain.

Low-dimensional visualization methods generally fall
into three categories. Purely linear methods frequently uti-
lize singular values spanning the largest variance in the data,
for instance the widely used Principal Component Analysis-
based bi-plots [7]. While this approach is useful to visually
verify known correlations between attributes, it is generally

the case that the first two or three components explain a rel-
atively small proportion of the variance in the data, with
the consequence that true compact groups of data (be them
clusters or, if labels are available as in this study, classes)
are severely mixed due to the loss of information incurred
by the projection.

A second approach is to relax the linearity assumption
and to define a non-linear projection to optimize the cor-
respondence between nearest neighbour distances in the
original input space and between the two-dimensional pro-
jections of the individual data points, such as in Multi-
Dimensional Scaling (MDS) [4] or Sammon mapping [18].
However, these maps can be too sensitive to noise in the
data, radically altering the data projections even when only
a small number of points vary or are added or removed from
the data set. The non-linearity of the projections also makes
them prone to misinterpretation.

A third approach generates topographic maps by project-
ing data onto a curved surface weaving through the data
and cutting through noise, such as in Self-Organizing Maps
(SOM) [11] or in Generative Topographic Mapping (GTM)
[23]. Although these are powerful methods for the simulta-
neous clustering and visualization of intrinsically non-linear
data (and, therefore, able to produce more faithful represen-
tations of such data), their non-linearity can again make the
interpretation of the obtained results difficult.

The method proposed here is linear in nature, making
it easier to use in a real decision-making process that re-
quires an intuitive representations of results. It is basedon
the decomposition of the scatter matrix, which is arguably
a neglected method for dimensionality reduction with the
remarkable property of maximizing the separation between
the projections of compact groups of data (tumor classes, in
this work). A new result is here described, which leads onto
the definition of low-dimensional projective spaces with
good separation between classes even when the covariance
matrix of the data is singular.

It is well-known that the overall variance of the data,ST ,
can be decomposed into the sum of two terms, known as
the scatter matrices, which calculate the variance referred to
the mean of each data group and between the group mean
vectors [5, 6] generating a within-cluster matrix,SW , and a
between-cluster matrix,SB, namely:ST = SW + SB. For
a data matrix{xi}

N
i=1

comprisingd-dimensional data points
of overall meanm,

ST =

N
∑

i=1

{(xi − m)T (xi − m)}

SW =

Nc
∑

j=1

Nj
∑

i=1

{(xj
i − mj)

T (xj
i − mj)}



SB =

Nc
∑

j=1

Nj{(mj − m)T (mj − m)},

where the data are partitioned intoNc groups (tumor classes
in this study), each withNj points and meanmj . Scalar
merit figures for the separation between classes are readily
obtained by taking the traces of the scatter matrices, defin-
ing sum-of-squares within- and between-classes. These par-
tial sums are sensitive to linear transformations of the data,
for instance relative scaling of the axes, introducing an ele-
ment of arbitrariness that is not necessary. This leads to the
definition of an invariant scatter matrixM = S−1

W SB and an
invariant class separation indexJ = tr(M). This merit fig-
ure suggests that the eigenvalues of the scatter matrix con-
tain useful information about the structure of the data once
partitioned into classes.

Given the importance of the class means as representa-
tives for the classes themselves, it is natural to project the
data onto the sub-space spanned by these means. This is
readily achieved by defining an orthonormal set of basis
vectors{b̂i}, i = 1 . . .Nc, for instance by Gram-Schmidt
orthogonalization, generating the first compact projective
representation in this method

xc =

Nc
∑

i=1

xb̂T
i .

However, the separating boundaries in the Voronoi de-
composition created by the grouping will generally not be
preserved by this projective map, causing mixing among
classes. One way to preserve as much as possible of the
class separation after compressing the data by projecting
onto the space spanned by the means is to linearize the Ma-
halanobis metric in the original data space by whitening, or
sphering, the data. This transformation is applied solely for
the purpose of dimensionality reduction and visualisation.

Reducing the dimensionality of the data to be visualized
from its original value toNc now requires a drop in rank by
just one unity for the scatter matrix calculated in the space
of class means, namely:

Sc
W =

Nc
∑

j=1

Nj
∑

i=1

{(xc
i − mc

j)
T (xc

i − mc
j)}

Sc
B =

Nc
∑

j=1

Nj{(m
c
j − mc)T (mc

j − mc)}

andM c = (Sc
W )−1Sc

B. Consequently, a diagonalization of
the new scatter matrixM c shows, typically, that the trace of
the matrix is contained in the largest few eigenvalues. These
eigenvectors form the basis for a two- or three-dimensional
visualization of the data.
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Figure 1. (Top): Representation of the 8 se-
lected SET spectral frequencies (as vertical
lines, with their value in ppm tagged by their
side) out of the subset of 18 selected frequen-
cies. The 3 most relevant out of the 8 are rep-
resented by thicker lines. Mean SET spectra
of each class are represented as a dashed line
(low grade gliomas), a dotted line (high grade
malignant tumors), and a solid line (menin-
giomas). (Bottom): Similar representation of
the 10 selected LET spectral frequencies.

3. Results and discussion

The SLP-based FS process and classification described
in section 2.2 were carried out as follows. For the FS pro-
cess, a first phase was performed where50% of the fea-
tures were deleted at every step of the backward selection
procedure. In a second phase, a20% of the remaining fea-
tures were deleted. Finally, features were deleted one by
one. Thisad hocprocedure allowed keeping the compu-
tation time within reasonable bounds while threading more
carefully through the sensitive final third stage of the fea-
ture selection process. In order to compute the saliencies of



Dataset Test acc. Nf Subset of selected features
SET + LET 98.46% 18 L2.88 L2.27 S0.89 S3.58 L2.03 L2.54 L3.64 L1.59 S1.32

L3.79 S3.77 L1.84 S3.45 L3.70 S1.25 S2.12 L0.70 S3.18
SET + LET 91.08% 9 L2.27 L2.88 S2.12 L1.59 L2.54 L3.79 S3.58 S1.25 L2.03

Table 1. Classification results. First column: Dataset desc ription. Second column: Average test
accuracy of a 5-fold cross-validation procedure repeated 5 times. Third column: Number of features
(Nf ) selected. Fourth column: Frequency (in ppm) of the selecte d features, ranked according to their
relative relevance; the frequency is preceded by a letter in dicating the frequency ascription to either
SET (S) or LET (L).
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Figure 2. Visualization of low grade gliomas
(asterisks), high grade malignant tumors (cir-
cles), and meningiomas (squares) using the
first two eigenvectors of M c, with the method
described in the main text.

the features, the SLPs were trained with the whole data set.
For the classification results, a 5-fold cross-validation pro-
cedure was performed 5 times for every feature subset ob-
tained during the FS process, producing the results reported
in Table 1.

Up to a 98.46% average test accuracy was achieved us-
ing a parsimonious subset of 18 data features, 8 of them
belonging to SET and 10 to LET. The results reported in the
second row of Table 1 illustrate how the test accuracy dete-
riorates as we detract features from the selected 18 subset:
a parsimonious selection of 9 features is still able to retain
over 91% of the average test classification in the multi-class
classification problem involvinglow grade gliomas, high
grade malignant tumors, andmeningiomas. These results
are a neat improvement on the average 88.71% accuracy ob-
tained in [8] for the same problem, using stepwise FS with
Linear Discriminant Analysis (LDA), and the just over 90%

obtained using 8 principal components in PCA with LDA.
For illustration, the 18 selected spectral frequencies

are displayed together with the mean spectra of the three
classes, both for SET (Figure 1, top) and LET (Figure 1,
bottom) datasets. Many of them have a clear interpretation
in terms of metabolites and molecules often reported in the
MRS literature as descriptors of brain tumor pathologies,
such as frequencies associated to lipids, lactate, and myo-
inositol in SET, N-acetyl-aspartate in LET, and Glutamine-
Glutamate-GABA complex at both echo times.

A selection of 18 spectral frequencies, out of the 390
originally available, already simplifies the interpretation of
results considerably. Even though, the intuitive visualiza-
tion of the data is still out of bounds in a 18-dimensional
data space. At this point, we would like to visualize the data
without loosing any of the class discrimination obtained by
the classifier. This is fully achieved using the method de-
scribed in section 2.3, as illustrated by Figure 2. This is
a 2-D view of a 3-D projection of the three classes (using
only the first two eigenvectors ofM c). The discrimination
is near-perfect by itself and fully preserves the classifierre-
sults, asJ = tr(M c) = 1. Bear in mind that this is a linear
dimensionality reduction method and, therefore, the projec-
tion results could also be straightforwardly interpreted in
terms of the initial subset of 18 selected features.

4. Conclusions

A very accurate classification of brain tumor typologies
based on MRS information has been accomplished. How-
ever accurate, though, classification by itself does not suf-
fice to ensure the clinical applicability of the results. Fea-
ture selection, as applied in this study, simplifies the results
and makes them far more interpretable. Interpretation be-
comes more intuitive through data visualization, which can
only be the result of further dimensionality reduction. Most
dimensionality reduction techniques do not preserve class
separation. Here, we have described one such technique
that does preserve class separability in its integrity in the
visualization of MRS brain tumor data.
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M. Julià-Sapé are funded by the CIBER of Bioengineering,
Biomaterials and Nanomedicine, an initiative of the Insti-
tuto de Salud Carlos III (ISCIII) of Spain.

References

[1] e-Tumour project. URL: http://www.etumour.net/.
[2] International Network for Pattern Recognition of Tumours

Using Magnetic Resonance (INTERPRET) project. URL:
http://azizu.uab.es/INTERPRET.

[3] International Network for Pattern Recognition
of Tumours Using Magnetic Resonance (IN-
TERPRET) project: Data protocols. URL:
http://azizu.uab.es/INTERPRET/cdap.html.

[4] T. F. Cox and M. A. A. Cox. Multidimensional Scaling.
Chapman and Hall, UK, 2001.

[5] R. O. Duda and P. E. Hart.Pattern Classification and Scene
Analysis. John Wiley, NY, 1973.

[6] H. P. Friedman and J. Rubin. On some invariant criteria for
grouping data.Journal of the American Statistical Associa-
tion, 62(320):1159–1178, 1967.

[7] K. R. Gabriel. The biplot graphical display of matrices with
applications to principal component analysis.Biometrika,
58(3):453–467, 1971.
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