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Abstract

The selection of weights of the new hidden units for sequential feed-forward neural networks (FNNs) usually involves a non-linear
optimization problem that cannot be solved analytically in the general case. A suboptimal solution is searched heuristically. Most models
found in the literature choose the weights in the first layer that correspond to each hidden unit so that its associated output vector
matches the previous residue as best as possible. The weights in the second layer can be either optimized (in a least-squares sense) or not.
Several exceptions to the idea of matching the residue perform an (implicit or explicit) orthogonalization of the output vectors of the
hidden units. In this case, the weights in the second layer are always optimized. An experimental study of the aforementioned approaches
to select the weights for sequential FNNs is presented. Our results indicate that the orthogonalization of the output vectors of the hidden

units outperforms the strategy of matching the residue, both for approximation and generalization purposes.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The well-known architecture of a fully connected feed-
forward neural network (FNN) with one hidden layer of
units and one output linear unit computes a function
f:R - R defined as

N
S =bo+ > dwpp(wi,x,b), o € R 4y bo, b € R,

k=1
(1)

where N is the number of units in the hidden layer and ¢,, is
the activation function of the kth hidden unit. For
convenience, we refer to the weights in the first layer
({wk}fyzl) as hidden-layer weights and to the weights in the
second layer ({4, }_,) as output-layer weights. The biases
{bk},l(\’:1 can be seen as part of the hidden-layer weights and
by as an output-layer weight.
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The selection of a proper number of hidden units for
FNNs is a very important issue in practical applications,
and it has been widely discussed in the literature. In terms
of the bias/variance decomposition, as the number of
hidden units of an FNN grows, bias decreases and variance
increases [9]. This happens because the flexibility of the
model also grows with the number of hidden units [3].

Sequential algorithms (also known as constructive or
incremental) for FNNs allow to dynamically construct the
network, without setting a priori the architecture [18].
These methods start with a small network (usually with no
hidden units), and sequentially add hidden units until a
satisfactory solution is found. Although it cannot be
guaranteed that the solution obtained is minimal, it is
expected to have a few number of terms.

Pruning methods are an alternative to sequential ones
[28]. Pruning algorithms work roughly as follows. A larger
than needed network is trained until an acceptable solution
is found. Subsequently, some hidden units or weights are
removed (pruned) if they are considered useless. Then, the
network is retrained, and the process starts again.

The sequential approach, however, presents a number of
advantages over the pruning one [18]. First, specifying the
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initial network is straightforward. For pruning algorithms
it is not clear how large the initial network should be.
Second, pruning algorithms spend most of the time
training networks larger than necessary. Sequential algo-
rithms always search for small solutions first. Therefore,
sequential methods are more likely to obtain smaller
networks with less computational cost than pruning ones.

In practice, sequential approximations have been found
to be very competitive in different tasks, such as speech
recognition [24], voltage and current fault detection [20],
image compression [22], or handwritten digit recognition
[31]. Experiments on well-known benchmark problems for
classification and regression tasks have also shown the
good properties of sequential methods.

However, the selection of weights of the new hidden
units for sequential FNNs minimizing the sum-of-squares
error function usually involves a non-linear optimi-
zation problem that cannot be solved analytically in the
general case. A suboptimal solution is searched heuristi-
cally. In this work, an experimental study of some of these
heuristics is presented, both for classification and regres-
sion tasks.

We will focus on sequential approximations that obtain
the new hidden-layer weights while keeping the previously
selected ones fixed. That is, the previously obtained hidden-
layer weights are frozen in order to obtain the new ones
[19]. Most models found in the literature choose the
hidden-layer weights of the new unit so that its output
vector matches the previous residue as best as possible
[8,11,15,24]. After the selection of the hidden-layer weights
of the new unit, the output-layer weights can be either
optimized (in a least-squares sense) or not. Several
alternative approaches to the idea of matching the residue
perform an (implicit or explicit) orthogonalization of the
output vectors of the hidden units, so that the new hidden-
layer weights are selected taking into account the interac-
tions with the previously selected ones in order to minimize
the global error [5,29,31]. In this case, the output-layer
weights are always optimized. Theoretical results show that
these two approaches may construct a sequence of output
functions convergent to the target one. However, although
the non-linear optimization problem posed at every step is,
in theory, easier to solve than the optimization problem for
a non-sequential procedure, it cannot be solved analytically
in the general case [14], and a suboptimal solution is
searched heuristically. The difficulty lies on the selection of
the hidden-layer weights, since the optimal output-layer
weights can be computed analytically (they can be obtained
by solving a linear equations system, since output units are
linear) [1].

An experimental study of the aforementioned ap-
proaches to select the weights for sequential FNNs is
presented. To the best of our knowledge, this is the first
time that this assessment is carried out so exhaustively.
Other related works are more focused on the comparison
with alternative models [31] or are less complete than the
current study [19,29].

The results of our experiments indicate that the
orthogonalization of the output vectors of the hidden
units (taking into account the interactions with the
previously selected hidden-layer weights) outperforms the
strategy of matching the residue, both for approximation
and generalization purposes. For noise-free data sets, the
orthogonalization of the output vectors of the hidden units
allows to obtain better approximations than the strategy of
matching the residue with the same number of hidden units
and a moderate increase in the execution times. For noisy
data sets, the models obtained with the orthogonalization
of the output vectors have less hidden units than those
obtained matching the residue, yielding to better perfor-
mance with lower execution times. These results are in
agreement with the bias/variance decomposition, since the
same level of approximation is achieved with less hidden
units (that is, simpler models with the same bias are
obtained), yielding better generalization performance.

The rest of the paper is organized as follows. Several
approaches to obtain the weights in sequential FNNs are
discussed in Section 2. Section 3 is devoted to describe the
sequential models tested. The experiments can be found in
Section 4. Finally, Section 5 concludes and outlines some
directions for further research.

2. Heuristics for the selection of weights in sequential FINNs

The construction of a sequential FNN can be formulated
as a state space search problem [18], where the state space
corresponds to the collection of functions that can be
obtained by the model. The initial state is usually a network
with no hidden units. The evaluation criterion is, most of
the times, an estimation of the network performance and
the termination of the search happens either when the
performance of the model is satisfactory or it begins to
deteriorate. The search strategy determines how the model
evolves during the construction. This is the most interesting
part of the algorithm, and includes the number of hidden
units added at every step (usually set to one), the choice of
the activation function for the new hidden units (usually
predefined a priori) and the selection of the hidden-layer
weights for the new hidden unit, together with the
adjustment of the weights of the whole network. The rest
of the section is devoted to a detailed description of the
most common approaches found in the literature for the
selection of weights in sequential FINNs.

Most of the sequential algorithms for FNNs keep the
previously selected hidden-layer weights fixed and search
only for the hidden-layer weights of the new hidden unit
and for the output-layer weights of the whole network.
Some exceptions to this approach are the dynamic node
creation [2] and resource-allocating network [26] schemes,
where a new hidden unit is added during the training
procedure if the current network does not show a certain
desired behavior. The disadvantage of weight freezing is
that each optimization step is not optimal, and this can
result in larger networks than those in which all the weights
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are optimized. In contrast, the difficulty and the computa-
tional cost of solving the underlying optimization problem
is reduced (see [16,18,19]).

The general structure of sequential schemes that keep the
previously selected hidden-layer weights fixed is shown in
Algorithm 1. Given a data set D = {x,...,x;} with L
patterns, the objective is to minimize the sum-of-squares
error function |[f—XN||§, where f = (f,...,f) is the
target vector and ||g|| stands for the 2-norm. The output
Xy is a vector in RY which can be defined as (output units
are linear)

N-1
XN = Z ;L;(\/h(z)/( + /I%h(/wa (2)

k=1
where N is the number of hidden units, &, =
(oo, x1,b8), . . ., oi(0k, XL, bi)) 1s the output vector of
the kth hidden unit (with hidden-layer weights wy), )»,](V are
the output-layer weights of that hidden unit at step N, and
Xo = 0. The hidden-layer weights wy of the new hidden
unit are obtained by optimizing a certain objective
function, which somehow depends on the previously
obtained hidden-layer weights. In some cases, the output-
layer weights are independent of the selection of the
hidden-layer weights, and they can be computed after the
hidden-layer weights have been already selected. In other
ones, the output-layer weights are involved in the process
of the selection of the hidden-layer weights, as explained in
the rest of the section.

Algorithm 1. A general algorithm for sequential FNNs
that keeps the previously selected hidden-layer weights
fixed and searches only for the hidden-layer weights of the
new unit and the output-layer weights of the whole
network.

Algorithm
Initialize Xy =0
repeat
Increase by 1 the number of hidden units &
Pick an activation function ¢, for the new hidden unit
Obtain the hidden-layer weights wy of the new hidden
unit
Fix the hidden-layer weights in the network
Compute/Adjust the output-layer weights {i]kv },12[:l to
obtain Xy
until a certain stopping criterion is satisfied
end Algorithm

2.1. Matching the previous residue

Many sequential schemes choose the new hidden-layer
weights oy so that A, matches the previous residue as best
as possible [19], that is

(o, ) = arg min |/ = Xv-1) - 23 3)

By inner product properties, this is equivalent to say that
wy = arg max | (f = Xn-1,ho) /1o 4

where (,-) is the dot product in RY and %, is the output
vector of a hidden unit with hidden-layer weights w.
Equivalently, the desired hidden-layer weights maximize
the Fourier transform of the residue at every step. After the
selection of the hidden-layer weights of every new hidden
unit, either its (optimal) output-layer weight is computed
or the output-layer weights of the whole network are
optimized. Both computations can be made using inner
product properties:

(1) When only the (optimal) output-layer weight of the
new hidden unit (with hidden-layer weights wy) is
computed, we have

I = A = Xnots hoy) oy 3. )
The output-layer weights of the rest of the units remain

unchanged, that is, 2 = AV~ ..., AN |, = AN}, In this

case, it can be proved that (see, for example, [29])
|(f - XN—lah(uNHz
[N

If — XnlI5 = If — Xnalls — (6)

(2) When the output-layer weights of the whole network
are optimized, they can be obtained by solving a linear
equations system (output units are linear) [1]:

Ay - A AN
= ((f7 h(U] )a MR ] (fa hU)N,] )9 (fa hw/\/>)t5 (7)

where Ay[i,j] = (he,, ho,) for 1<i,j<N. In this case, it
can be proved that

If = Xnl3 = I£13 = 1 X wl3. ®)

Some models sharing these underlying ideas are projection
pursuit regression [8] originally described in the statistics
field, matching pursuit [24] in the context of signal
processing, or projection pursuit learning network [11] in
the neural networks framework. Similarly, and also
depending on the previous residue, the hidden-layer
weights obtained by the cascade-correlation algorithm
([6,23,30], see also [19]) maximize the correlation between
the new hidden unit and the residual error. Sometimes,
convex approximations are constructed, as in the incre-
mental linear quasi-parallel algorithm [15] (see also
[10,32]).

2.2. Interacting hidden-layer weights

Some exceptions to the idea of matching the residue are
the orthogonal least squares learning algorithm [5], kernel
matching pursuit with pre-fitting [31] and the sequ-
ential approximation with optimal coefficients and inter-
acting frequencies [29], where an (implicit or explicit)
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orthogonalization of the output vectors of the hidden units
is performed. The hidden-layer weights wy are selected
taking into account the interactions of h, with A,,,...,
hey_, in order to minimize |/ — X y|13. The interactions are
discovered by means of the optimal output-layer weights
{)L,{Y }szl, which can be computed with (7). In other words,
wy 1s considered better than w) if &,, allows, together
with the previously selected hidden-layer weights (and after
computing the optimal output-layer weights of the whole
network), a better approximation of f'than A, . There is no
explicit intention to match the residue.

3. Sequential models tested

In the following, we will refer to MPR, OCMPR and
SAOCIF as:

o Matching the previous residue (MPR): The new hidden-
layer weights wy are selected according to (4). The
output-layer weights of the whole network are not
optimized. That is, Xy = Xy_| + ANy, with Iy
computed according to (5).

e Optimal coefficients after matching the previous residue
(OCMPR): The new hidden-layer weights wy are
selected according to (4). Subsequently, the output-layer
weights of the whole network are optimized by solving
their associated linear equations system (7).

e Scquential approximation with optimal coefficients and
interacting frequencies (SAOCIF): The new hidden-
layer weights wy are selected taking into account the
interactions of h,, with /hg,,...,h,, , in order to
minimize ||f — X N||%. The interactions are discovered
by means of the optimal output-layer weights, obtained
with (7).

As it is well-known, an approximation scheme is said to
have the convergence property if it is able to produce a
sequence of output functions convergent to the target.
MPR, OCMPR and SAOCIF have been proved to have
the convergence property (see [13,24] for MPR, [15,19] for
OCMPR and [29] for SAOCIF, for example). Unfortu-
nately, these theoretical results cannot be directly applied
in practice. The optimization problem posed in the general
case cannot be solved analytically, and a suboptimal
solution is searched heuristically. Note that the difficulty
lies on the selection of the hidden-layer weights, since the
output-layer weights can always be computed analytically
(they can be obtained by solving a linear equations system,
since output units are linear) [1].

An experimental study of MPR, OCMPR and SAOCIF
is presented. To the best of our knowledge, this is the first
time that this type of study is carried out so exhaustively.
Other related works are more focused on the comparison
with alternative models [31] or are less complete than the
current study [19,29].

In order to compare their respective heuristics, algo-
rithms for MPR, OCMPR and SAOCIF were designed

(see Algorithm 2) as particular cases of that in Algorithm 1.
Both the activation function and the weights are selected in
Algorithm 2. Regarding the activation function, it can be
chosen, for example, from a finite list of functions fixed a
priori (see Section 4). Regarding the weights, a number of
hidden-layer candidate weights are assigned to the new
hidden unit at every step. Every hidden-layer candidate
weights are tested according to the objective function of
every model.

Algorithm 2. Algorithms for MPR, OCMPR and SAO-
CIF.

Algorithm
Xo=0
repeat
Increase by 1 the number of hidden units N
for every activation function ¢ in a finite list
Assign ¢ to the new hidden unit
for every hidden-layer candidate weights @
Assign w to the new hidden unit
MPR/OCMPR: Following (4),
set oy=w if |(f = Xn_1,h0)*/Ilholl3 is
maximized
SAOCIF: Compute the optimal output-layer
weights of the whole
network {1} with (7), and set wy=o if
If — X3 is
minimized
end for
Set py:=¢ if oy has changed
end for
Fix the hidden-layer weights wy in the network
MPR: Following (5), compute its optimal output-layer
weights
/L% = O{ - XN—lahU)N)/”% for th
OCMFT/SAOCIF: Compute the optimal output-layer
weights of the
whole network {4 }¥_, with (7)
until a certain stopping criterion is satisfied
end Algorithm

At first sight, it could be thought that the computational
cost of SAOCIF is very high when compared to that of
MPR and OCMFT. However, SAOCIF satisfies a number
of interesting properties that allow to implement it in an
efficient fashion (see [29]).

4. Experiments

The experiments were performed with Algorithm 2. The
main objective of these experiments was to compare MPR,
OCMPR and SAOCIF (see Section 3). In particular, we
studied the effect of their respective criteria of selection of
weights both for approximation and generalization pur-
poses. Execution times were also compared.
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The overfitting problem has not been treated explicitly in
the experiments. The main reason was that no additional
distorting element was wanted to include in the compar-
isons. In practice, for noisy data sets, one should define a
stopping criterion to stop the addition of new hidden units
to the network. It could be done based on a validation set,
for example. We have assumed the hypothesis that any
such stopping criterion would behave similarly in the three
strategies tested. Therefore, in this work we have only
wanted to show the power of each strategy in a relative
manner, not in absolute terms.

4.1. HEA data sets

We used the same artificial data sets described in [11],
where five non-linear functions g, :[0,1] x [0,1] = R,
ne{l,2,3,4,5}, were defined as follows:

e Simple interaction function:
g1(x1,x2) = 10.391((x; — 0.4)(x2 — 0.6) + 0.36).

e Radial function:
gr(x1,x2) = 24.234(r*(0.75 — %)),
where 1% = (x; — 0.5)% + (x, — 0.5)°.
e Harmonic function:
g3(x1,X2) = 42.659((2 + x1)/20 + Re(2%)),
where z = x| + ix; — 0.5(1 4 ).
o Additive function:
ga(x1,x2) = 1.3356
x(1.5(1 = x1) + e sin(3n(x; — 0.6)%)
+ 32709 gin(4n(x, — 0.9)%)).

o Complicated interaction function:

gs(x1, x2) = 1.9(1.35 + " sin(13(x; — 0.6)*)e™ sin(7x2)).

In [11], 225 pairs (xi, x;) of values were generated from a
uniform distribution in [0, 1] x [0, 1]. These data were used
for all five functions in order to generate five noise-free
training sets:

where n € {1,2,3,4,5}. In addition, another five train-
ing data sets were generated by adding independent
and identically distributed Gaussian noise to the previous
ones:

.....

where &~.17(0, 1). The test set was built by sampling every
function on a regularly spaced grid on [0, 1] x [0, 1]
consisting of 10,000 points. In summary, 10 training sets
(5 noise-free and 5 noisy versions) and 5 test sets were
generated in [11] for the 5 aforementioned functions. These

data sets have been widely used in the literature (see
[12,17,19,23,30], for example).

4.1.1. Experimental setting

In our experiments, we constructed 10 training sets for
every function, each containing 225 points, changing the
initial seed of the random function for the uniform
distribution (the noise-free data sets). Similar to [11], 10
noisy training data sets were generated in the same way.
For every function, the test set in [11] was used as a
validation set for the adjustment of the parameters in the
preprocessing procedure. For the final results, a new test
set was constructed, with an offset of 0.0025 with respect to
the input points in the original test set. In summary, 100
training sets (50 noise-free and 50 noisy versions), 5
validation sets and 5 test sets were generated for the five
aforementioned functions. For every function and version
(noise-free and noisy), every model was trained with every
one of the 10 different training sets, and tested on the
test set.

A maximum of 50 hidden units were added to the initial
architecture. The activation function was selected from a
list including the hyperbolic tangent, sine, cosine and
Gaussian functions, with multi-layer perceptrons units.
Ten-thousand  hidden-layer candidate weights in
[—0.5,40.5] x [-0.5,40.5] were generated at random for
every model. The biases were considered as part of the
hidden-layer weights. Other parameters (the gain factor,
for example) were chosen in the preprocessing procedure,
independently for every model.

4.1.2. Results

Results are shown in Table 1 as the average of the
minimum squared test set errors. Figures in boldface
indicate the best results. Numbers in brackets are 6,//n,
the standard errors estimated from the sample standard
deviation &,." The average number of hidden units where
these minima were achieved is also shown. For the HEA1-
NF data set, OCMPR and SAOCIF achieved a training
error less than 0.000001 with less than 50 hidden units, so
that it made no sense adding new hidden units.

Regarding the overall behavior, SAOCIF obtained
better results than OCMFT, which in turn compared
favorably with MPR. This fact can be understood by
looking at the number of hidden units of the obtained
results:

(1) For noise-free data sets the number of hidden units was
close to 50, the maximum number of allowed hidden
units. This is due to the fact that overfitting was not
observed during the learning process with these data
sets. Therefore, the best results were obtained by those
models that were able to fit more accurately the data.

"Under normality assumptions, the confidence interval can be computed
from this value. For example, the deviation of the true value from the
observed mean X, is, with probability 0.95, less than 1.966,/+/n [7].
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Table 1
Results for the HEA data sets
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Data set Test set error Num. hidden units
MPR OCMPR SAOCIF MPR OCMPR SAOCIF

HEAI-NF 0.06 (0.1) 0.00 (0.0) 0.00 (0.0) 49.3 20.3 9.6
HEA2-NF 29.81 (2.6) 1.18 (0.5) 0.18 (0.1) 49.1 47.1 44.1
HEA3-NF 694.11 (27.2) 31.41 (6.9) 5.57 2.2) 49.2 45.0 49.1
HEA4-NF 69.29 (6.9) 24.32 (1.8) 9.80 (3.7) 49.4 45.8 47.3
HEAS-NF 49.22 (7.8) 14.79 (3.4) 7.76 (1.0) 49.8 49.4 46.2
HEA1-WN 14.37 (3.1) 10.70 (1.6) 15.37 (2.9) 39.1 4.5 44
HEA2-WN 110.85 (6.8) 99.13 (7.1) 89.47 (6.3) 30.9 19.1 154
HEA3-WN 704.35 (50.5) 303.65 (18.9) 256.01 (32.6) 49.9 33.6 31.6
HEA4-WN 213.67 (8.0) 202.91 (14.7) 120.58 (11.5) 47.0 27.5 17.4
HEAS5-WN 174.63 (9.0) 211.82 (18.0) 173.35 (5.7) 35.0 23.7 19.4

Numbers in brackets are 6,/+/n, the standard errors estimated from the sample standard deviation &,,.

The scheme of selection of hidden-layer weights of
SAOCIF allows to find better approximations with the
same number of hidden units as OCMPR or MPR. The
same happens when OCMPR is compared with MPR.

(2) For noisy data sets, there was a high correlation
between the number of hidden units and the goodness
of the model: those models that attain their minima
with less hidden units usually obtain better results.
SAOCIF obtained simpler models (in terms of the
number of hidden units), with the same training error,
than OCMFT. According to the bias/variance trade-
off, the minimum test set error should be smaller for
SAOCIF than for OCMFT, as observed. The same
happens with respect to MPR.

As an example, Fig. 1 shows the evolution of the average
training and test errors of OCMPR and SAOCIF with
respect to the number of hidden units for the HEA4 data
sets, where the aforementioned behaviors can be observed.
The interacting hidden-layer weights selected by SAOCIF
show a better behavior than hidden-layer weights selected
so as to match the previous residue, both for approxima-
tion and generalization purposes. Note that the differences
among methods are greater for noise-free data sets than for
noisy ones.

The execution times needed to obtain the final solutions
were, as expected, highly correlated with the number of
hidden units of the resulting models. For noise-free data
sets, MPR was faster than OCMFT, which was in turn
faster than SAOCIF: taking the mean execution time for
MPR as 1, the relative execution times for OCMPR and
SAOCIF were 1.02 and 1.57, respectively. Therefore, a
better performance was obtained with a moderate increase
in the execution times. For noisy data sets, in contrast,
SAOCIF was the fastest method: taking the mean
execution time for SAOCIF as 1, the relative execution
times for OCMPR and MPR were 1.10 and 2.01,
respectively. In this case, the larger computational cost of
every step for SAOCIF was compensated with the lower

number of steps (number of hidden units) in the obtained
solutions.

4.2. The two spirals data set

The well-known Two spirals problem consists in
identifying the points of two interlocking spirals. Both
training and test set comprise 194 points with balanced
classes. The training set is symmetric with respect to the
target (i.e., if (x, y) belongs to a class, the training set also
contains the point (—x, —y), which belongs to the other
class). The test set is not symmetric, and it is obtained
adding an offset to the points in the training set.

4.2.1. Experimental setting

This problem was tested with MPR, OCMPR and
SAOCIF for the logistic activation function. Two-hundred
hidden-layer candidate weights were generated at random
for every model, within a certain range of weights. The
maximum number of hidden units added was 500, and no
more hidden units were added once the whole training set
was learned. The sign of the output value indicates the class
assigned to the input pattern.

4.2.2. Results

Results are shown in Table 2 as the average of 10 runs of
the algorithms. Column ‘Train’ indicates the percentage of
the training set which has been learned. Column ‘Test’
indicates the generalization performance obtained by an
average-output committee of the resulting networks. As
already known, this is a very hard problem for the logistic
function because of its intrinsic high non-linearity and
radial symmetry, but it could be learned by OCMPR and
SAOCIF and an adequate (and very large) range of
weights. M PR could not solve the problem with the same
ranges, at least with 500 hidden units. Generalizations in
the obtained solutions was very good.

In these experiments, OCMPR took less execution time
than SAOCIF, which in turn was faster than MPR. The
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Fig. 1. Evolution of the average training and test error of OCMPR and SAOCIF with respect to the number of hidden units for the HEA4-NF (left) and

HEA4-WN (right) data sets.

Table 2

Results for the Two spirals data set

Method WRange Training % Test % NHid
MPR [—16,+16] 98.97 99.48 500 (0.00)
MPR [-8,+8] — — NP
OCMFT [-8,+8] 100 100 105.2 (3.52)
SAOCIF [-8,+8] 100 100 91.7 (2.33)

Columns ‘WRange’ and ‘NHid’ indicate the range within which hidden-
layer candidate weights are selected and the average number of hidden units
in the resulting networks, respectively. Numbers in brackets are 6,,/4/n, the
standard errors estimated from the sample standard deviation 6,,.

execution time for M PR was very high because of the large
number of hidden units required. Taking the mean
execution time for OCMPR as 1, the relative execution
times for SAOCIF and MPR in these experiments were
1.52 and 10.98, respectively. However, the number of
hidden units in the obtained solutions was smaller for
SAOCIF than for OCMPR and MPR, and it was obtained
with a moderate increase in the execution times.

4.3. Real world data sets

Real world benchmark data sets from the UCI
repository [4] were also used to compare MPR, OCMPR
and SAOCIF. These data sets, namely Hepatitis (19 input
variables, 155 examples) and lonosphere (33 input vari-
ables, 351 examples), have a high input dimension with
respect to the number of examples, and they have been
widely used in the literature.

4.3.1. Experimental setting

A maximum of 100 hidden units were added to the initial
architecture. In these experiments, the networks con-
structed by MPR, OCMPR and SAOCIF computed the
hyperbolic tangent activation function in their hidden units
(all the hidden units had the same activation function).
Hidden-layer candidate weights were selected from the data
set, as in [5,29,31] in a deterministic manner: for every
hidden unit to be added, every point in the training set was
tested as hidden-layer candidate weights. The biases were
computed in a heuristic manner as follows: the bias of the



2742 E. Romero, R. Alquézar | Neurocomputing 70 (2007) 2735-2743

Table 3
Results for the real world data sets

Data set Test % Num. hidden units

MPR OCMFT SAOCIF MPR OCMPR SAOCIF
Hepatitis 85.42 (0.70) 88.90 (1.12) 89.55 (1.07) 76.8 19.2 12.2
Ionosphere 89.77 (0.58) 91.54 (0.74) 92.23 (0.62) 82.5 20.2 18.9

Numbers in brackets are 6,/+/n, the standard errors estimated from the sample standard deviation &,,.

new hidden unit is such that, if the rest of the hidden-layer
weights are 0, the output of the hidden unit is the mean
value of the error obtained with the previously selected
hidden units. It can be easily obtained by computing the
residue and then inverting the obtained value with respect
to the activation function of the hidden unit. Every bias
was computed and fixed previous to the selection of the rest
of the hidden-layer weights, so that all the hidden-layer
candidate weights were tested with the same bias (although
different for every hidden unit).

For every model, an exhaustive search process was
performed in order to select its parameters (the gain factor,
for example). For every parameters configuration, five
repetitions of a 5-fold cross-validation were performed.
Previous to every cross-validation, the examples in the data
set were randomly shuffled.

4.3.2. Results

Results are shown in Table 3 as the average of the
maximum test set accuracies. Figures in boldface indicate
the best results. Similar to the HEA data sets, a high
correlation between the number of hidden units and the
goodness of the model is observed: those models that attain
their optimal values with less hidden units also obtain
better generalization results. In this case, however,
differences are not as large as in the HEA data sets.

Similar to the Two spirals data set, the execution time for
MPR was higher because of the large number of hidden
units in the final solutions, and similar to the HEA noisy
data sets, SAOCIF was the fastest method: taking the mean
execution time for SAOCIF as 1, the relative execution
times for OCMPR and MPR in these experiments were
1.06 and 5.17, respectively.

5. Conclusions and future work

This work empirically shows that the orthogonalization
of the hidden vectors (interacting hidden-layer weights)
outperforms the strategy of matching the residue, both for
approximation and generalization purposes. The impor-
tance of the interacting hidden-layer weights lies in the
hypothesis that they allow to find better partial approx-
imations, with the same number of hidden units, than
hidden-layer weights selected just to match the residue as
best as possible. Likewise, the same level of approximation
may be achieved with less hidden units. Therefore, in terms

of the bias/variance decomposition, it is possible to obtain
simpler models with the same bias.

New experiments could be designed by changing the
heuristic to select the hidden-layer weights of the new unit
in the tested models. It would be interesting to test whether
the observed differences remain or not. The field of
evolutionary algorithms offers a number of search algo-
rithms to that end. For example, a population of hidden-
layer weights could evolve driven by a breeder genetic
algorithm (BGA) [25] with the squared error as the fitness
function.

A different point of view could be introduced in the
construction of FNNs if we reconsidered the goodness of
the previously selected hidden-layer weights. Comparing
the addition of hidden units in a sequential FNN with the
selection of features in the sequential forward selection
procedure for feature selection [21], we can see that they
share the same general principles, although applied to
different objects. Whereas sequential FNNs applies the
forward selection to the hidden units, sequential forward
selection applies it to the features. Therefore, other feature
selection search procedures can be applied to the construc-
tion of FNNS. In particular, floating methods [27] may help
to obtain more compact networks. Note that the criterion
to remove a previously selected hidden unit, needed in
floating algorithms, cannot be directly based on the
approximation of a previous residue, and it should be
redefined. In contrast, the same idea used by SAOCIF to
add a new term can be used to remove an old one: the
hidden unit such that, when removed allows to obtain
(after computing the optimal output-layer weights of the
resulting network) the smallest error.
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